

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 February 2011 (24.02.2011)

(10) International Publication Number
WO 2011/021160 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/IB2010/053735

(22) International Filing Date:
18 August 2010 (18.08.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/545,293 21 August 2009 (21.08.2009) US

(71) Applicant (for all designated States except US): **LAM RESEARCH CORPORATION** [US/US]; 4650 Cushing Parkway, Fremont, CA 94538 (US).

(71) Applicant (for BZ only): **LAM RESEARCH AG** [AT/AT]; SEZ-Strasse 1, A-9500 Villach (AT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MAKHRATCHEV, Konstantin** [RU/US]; 3412 Manchester CMN, Fremont, CA 94536 (US). **VALCORE, John** [US/US]; 294 N. Cragmont Avenue, San Jose, CA 95127 (US).

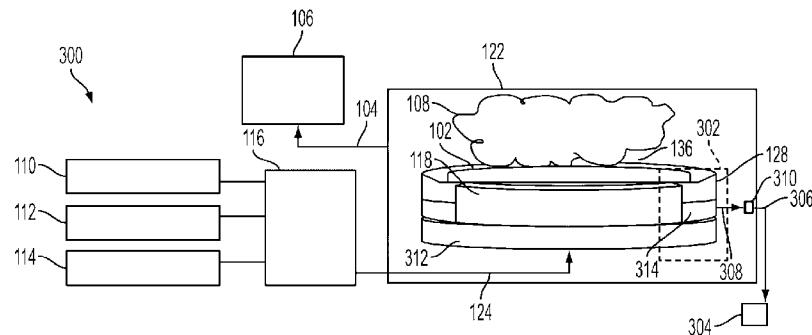
(74) Agent: **KONTRUS, Gerhard**; SEZ-Strasse 1, A-9500 Villach (AT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:


- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: METHOD AND APPARATUS FOR MEASURING WAFER BIAS POTENTIAL

[Fig. 3]

(57) Abstract: A device for use in a wafer processing chamber having a plasma forming volume and a hot edge ring. The hot edge ring has a first surface and a second surface. The first surface is in contact with the plasma forming volume. The second surface is not in contact with the plasma forming volume. The device includes a detector operable to contact the second surface of the hot edge ring. The detector can detect a parameter of the hot edge ring and can provide a detected signal based on the detected parameter.

WO 2011/021160 A2

Description

Title of Invention: METHOD AND APPARATUS FOR MEASURING WAFER BIAS POTENTIAL BACKGROUND

The present invention relates to wafer processing chambers. More particularly, the present invention relates to an apparatus for measuring the DC bias potential of a wafer during plasma processing.

In conventional wafer processing systems, it is common to affix the wafer to the lower electrode pedestal with an electrostatic attraction force provided by an electrostatic chuck (ESC). Electrostatic chucking is commonly implemented by providing a conductive film between two insulation films located on the upper surface of the pedestal. Once a semiconductor wafer is affixed to the ESC, the wafer may be processed.

In the conventional production of semiconductor integrated circuits, plasma is used to promote ionization of a process gas for etching, chemical vapor deposition or sputtering a wafer. In a conventional capacitive plasma processing system, upper and lower electrodes, e.g., large area parallel plates, are provided in a pressure-controlled process chamber with the electrodes facing each other.

In this plasma processing system, the electrode located at the top or upper portion of the chamber, is connected to ground potential, and a high-frequency voltage is applied to the electrode at the bottom or lower portion of the chamber. The lower electrode also serves as a pedestal. A process gas is converted into plasma by the electrical discharge between the upper and lower electrodes.

Strong electric field regions are produced between the electrodes and the plasma. These strong electric field regions are referred to as plasma sheaths. The strong electrical field regions accelerate the electrons and ions from the electrodes to the plasma and vice-versa.

Electrons and ions in the plasma are attracted to a semiconductor wafer residing on the pedestal by the force of an electric field. The ions react with the surface of the semiconductor.

In a conventional plasma processing apparatus, a high-frequency voltage is applied to the lower electrode by a capacitor, and as a result a high-frequency voltage is also applied to the wafer located on the pedestal. This configuration generates a substantially negative DC voltage potential on the pedestal and the wafer. The negative DC voltage potentials are commonly referred to as DC bias potentials.

During the half cycle when the high-frequency voltage is positive, negatively

charged electrons in the plasma are attracted to the wafer, whereas during the other half cycle when the high-frequency voltage is negative, positively charged ions in the plasma are attracted to the wafer.

Since an electron has a smaller weight than that of an ion, electrons are more easily transferred to the wafer than the ions are. Consequently, the wafer becomes negatively charged, as more electrons are attracted to the wafer than ions. Thus, the wafer develops a substantially negative DC bias potential.

The DC bias potential increases the energy of the ion presented to the wafer and consequently alters the effectiveness of the wafer processing system. Excessively large bias voltages in the range of 400V to 500V can damage the oxide film on the surface of a wafer. Hence it is crucial in wafer processing systems to be able to monitor and control the DC bias potential of the wafer, or wafer potential. Direct measurement of wafer potential is very difficult. It is virtually impossible to attach or connect a probe to the wafer for direct measurement of the wafer potential, as probes are incapable of withstanding the harsh environment surrounding the wafer.

Several conventional methods have been developed for estimating the wafer potential in a semiconductor processing system. While these conventional methods are capable of providing an estimate of the wafer potential, each method has issues with respect to accuracy, longevity, maintenance, configuration and/or potential for errors.

One convention method for estimating wafer potential uses a probe located within the chamber wall of the plasma processing system. Such a conventional method will now be described with reference to **FIG. 1**.

FIG. 1 illustrates an example of a conventional wafer processing system **100**. As illustrated, wafer processing system **100** includes a communication channel **104**, a user interface **106**, a 2 MHz RF generator **110**, a 27 MHz RF generator **112**, a 60 MHz RF generator **114**, an impedance matching circuit **116**, an ESC **118**, an ESC base plate **120**, a wafer processing chamber **122**, a ceramic coupling ring **126**, a hot edge ring (HER) **128**, a voltage measuring instrument **130**, and a probe **132**.

A wafer **102** resides on and is clamped to ESC **118** by an electrostatic attraction force. HER **128** surrounds ESC **118** and provides a uniform etch rate and reduced etch rate drift near the edge of wafer **102**. Ceramic coupling ring **126** surrounds ESC **118** and is located beneath HER **128**. ESC base plate **120** is located beneath ESC **118** and ceramic coupling ring **126**.

Impedance matching circuit **116** receives driving signals from 2 MHz RF generator **110**, 27 MHz RF generator **112** and 60 MHz RF generator **114** and provides an appropriate RF signal **124** to ESC base plate **120**. Impedance matching circuit **116** is configured such that its impedance is the complex conjugate of the impedance of wafer processing chamber **122**, thus minimizing reflected energy and enabling maximum RF

energy transfer of the signals provided by 2 MHz RF generator **110**, 27 MHz RF generator **112** and 60 MHz RF generator to wafer processing chamber **122**.

A plasma **108** is generated above wafer **102** as a result of the RF energy supplied by RF signal **124**. Plasma **108** is used to convert or process wafer **102** by bombarding wafer **102** with positively charged ions. A plasma sheath **136** is located between plasma **108** and wafer **102**, HER **128**. Positively charged ions are propelled across plasma sheath **136** due to a strong electric field region located between plasma **108** and wafer **102**, HER **128**.

Information related to the status of wafer processing chamber **122** is communicated to user interface **106** by communication channel **104**. Further, a user (not shown) is operable to control 2 MHz RF generator **110**, 27 MHz RF generator **112** and 60 MHz RF generator **114**, by way of user interface **106** and communication channel **136**.

Probe **132** is fabricated from electrically conductive material and is attached to the side of wafer processing chamber **122**. An electrical conductor **134** is attached to probe **132** and exits wafer processing chamber **122** and connects to voltage measuring instrument **130**. Voltage measuring instrument **130** is capable of measuring either AC (peak-to-peak) or DC (bias level) voltages.

Voltage measuring instrument **130** measures the potential of wafer **102**.

In conventional wafer processing system **100**, probe **132** does not directly contact wafer **102** or plasma sheath **136** and is prone to errors in the measurement of the potential of wafer **102** as presented to voltage measuring instrument **130**. Additionally, for configurations of wafer processing system **100** using multi-frequency driven plasma, the errors in the estimated potential for wafer **102** are especially pronounced during complex load transitions. This method for processing wafers can be difficult to calibrate and configure as a result of the complex load transition errors which occur in the estimated potential of wafer **102**.

Another conventional method for estimating the wafer potential is by providing electrodes located about the periphery of the ESC, which are in contact with the wafer. The electrodes are commonly constructed of silicon carbide probes. Unfortunately, the use of these electrodes produces contaminants within the process chamber, as the electrodes are eroded by the plasma. This contamination negatively impacts the effectiveness of the plasma by reducing the plasma etch rate. Additionally, the electrodes are consumable and must frequently be replaced requiring significant time, effort and cost.

FIG. 2 illustrates an example of a conventional wafer processing system **200**. Wafer processing system **200** contains several common elements wafer processing system **100** of **FIG. 1**. However, probe **132** and electrical conductor **134** of wafer processing system **100** are replaced with a probe **202** and an electrical conductor **204** in wafer

processing system **200**. As illustrated in **FIG. 2**, an upper end of a probe **202** contacting the underside of wafer **102** through a cavity **206** provided through ESC base plate **120**, ESC **118** and HER **128**. Lower end of probe **202** connects to electrical conductor **204**. Electrical conductor **204** connects to voltage measuring instrument **130**. Probe **202** is commonly constructed of a silicon carbide pin. The potential of wafer **102** is detected by probe **202** and transferred to voltage measuring instrument **130**. Voltage measuring instrument **130** is then capable of measuring AC (peak-to-peak) or DC (bias level) voltages of wafer **102**.

While wafer processing system **200** enables accurate measurement of the potential of wafer **102**, it causes contaminants to be projected into the processing chamber from the consumption of probe **202** during wafer processing. These contaminates negatively impact the effectiveness of the plasma by reducing the plasma etch rate. Additionally, the electrodes are consumable and must frequently be replaced requiring significant time, effort and cost.

Another conventional method for measuring the wafer potential is performed by varying the DC voltage applied to the electrostatic chucking electrode and measuring the leakage current between the wafer and the electrostatic chucking electrode. The measured leakage current is then used to estimate the wafer potential.

While the leakage current measurement method for estimating the wafer potential provides a capable wafer processing system, the method is highly dependant upon the magnitude of the leakage current. The magnitude of the leakage current can vary significantly depending upon the configuration of the plasma processing system. Hence, the ESC leakage current detection method for estimating the wafer potential requires considerable time, effort and cost for calibration and configuration.

Unfortunately, conventional methods for measuring the wafer potential are inaccurate, have short lifetimes, are prone to errors and require significant effort for maintenance and configuration. What is needed is a method for measuring the wafer potential that is accurate, has a prolonged lifetime, is not prone to errors and does not require a significant amount of effort for maintenance and configuration.

BRIEF SUMMARY

It is an object of the present invention to provide an apparatus for measuring the wafer potential located in a plasma processing system that is accurate, provides a sustained lifetime, is not prone to errors and provides for ease of maintenance and configuration.

An aspect of the present invention includes a device for use in a wafer processing chamber having a plasma forming volume and a hot edge ring. The hot edge ring has a first surface and a second surface. The first surface is in contact with the plasma

forming volume. The second surface is not in contact with the plasma forming volume. The device includes a detector operable to contact the second surface of the hot edge ring. The detector can detect a parameter of the hot edge ring and can provide a detected signal based on the detected parameter.

Additional objects, advantages and novel features of the invention are set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

BRIEF SUMMARY OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate an exemplary embodiment of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:

FIG. 1 illustrates an example of a conventional wafer processing system;

FIG. 2 illustrates another example of a conventional wafer processing system;

FIG. 3 illustrates an example of a wafer processing system in accordance with an aspect of the present invention;

FIG. 4 is a cross-sectional view of a portion of **FIG. 3**;

FIG. 5 is a graph comparing plasma potential measured by a probe with wafer potential measured by a wired wafer;

FIG. 6 is a graph comparing plasma potential as measured by a probe with the potential of a wafer as measured using an HER in accordance with an aspect of the present invention;

FIG. 7 illustrates an example embodiment of a signal detector in accordance with an aspect of the present invention;

FIG. 8 illustrates another example embodiment of a signal detector in accordance with an aspect of the present invention;

FIG. 9 illustrates another example embodiment of a signal detector in accordance with an aspect of the present invention; and

FIGs. 10A and 10B illustrate another example embodiment of a signal detector in accordance with an aspect of the present invention.

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, an HER is used as a plasma sheath voltage transducer to monitor wafer potential in a wafer processing system. Accordingly, in accordance with an aspect of the present invention, voltage probe is not exposed to the plasma as with conventional systems discussed above with reference to

FIGs. 1 and 2.

Aspects of the present inventions will now be described with reference to **FIGs. 3-10B.**

FIG. 3 illustrates an example of a wafer processing system **300** in accordance with an aspect of the present invention. Wafer processing system **300** contains several common elements wafer processing system **200** of **FIG. 2**. However, wafer processing system **300** does not include probe **202** and electrical conductor **204**. Wafer processing system **300** further includes a signal conditioner **310** and a processor **304**. Additionally, ESC base plate **120** and ceramic coupling ring **126** of wafer processing system **200** have been replaced with an ESC base plate **312** and a ceramic coupling ring **314** in wafer processing system **300**.

ESC base plate **312** and ceramic coupling ring **314** enable generation and transmission of an electrical signal **308**. Electrical signal **308** exits ceramic coupling ring **314** and is transmitted from wafer processing chamber **122** to signal conditioner **310**. Signal conditioner **310** includes circuitry for filtering the RF signal from electrical signal **308** to provide a DC bias potential **306**, which is a representation of the potential of wafer **102**.

DC bias potential **306** is useful for plasma tool process monitoring, process end point detection and detection of significant process events. DC bias potential **306** is transmitted to processor **304**. Processor **304** monitors DC bias potential **306** to verify the proper processing of wafer **102** and to monitor for error conditions within wafer processing chamber **122**. Processor **304** enables a user to monitor the operation of wafer processing chamber **122** and determine if an error condition has occurred.

A cutout **302** is provided in order to detail an embodiment of the present invention located within the cutout area, and will be described below with reference to **FIG. 4**.

FIG. 4 is a cross-sectional view of cutout **302** as illustrated in **FIG. 3**. HER **128** has a bottom surface **404** and a slanted surface **408**. Ceramic coupling ring **314** has a top surface **406**. Bottom surface **404** of HER **128** rests on top surface **406** of ceramic coupling ring **314**. Slanted surface **408** is located on the inner diameter of HER **128** and is exposed to plasma during wafer processing. Wafer **102** is disposed upon ESC **118** and resides close to slanted surface **408** of HER **128**. Slanted surface **408** of HER **128** is provided in order to aid in positioning wafer **102** and also for beneficial shaping of plasma **108** near the edge of wafer **102**.

As illustrated in the figure, a signal detector **400** resides in a space **402** within ESC base plate **312** and ceramic coupling ring **314**. A hole **402** extends from space **402** to hole **410** located in top surface **406** of ceramic coupling ring **314**. Signal detector **400** is in electrical contact with HER **128** through hole **410** and produces electrical signal **308**. Accordingly, HER **128** serves as a probe to measure wafer potential.

The aspect of using HER 128 as a probe to measure wafer potential is best explained by: first showing that the plasma potential as measured by a probe 202 is linearly related to the wafer potential as measured by a wired wafer; then by discussing that HER 128 being used as a probe to measure the plasma potential is linearly related to the plasma potential as measured by a probe 202; and then experimentally verifying that HER 128 may be used as a probe to measure the wafer potential.

Returning to **FIG. 2**, it has been determined that the plasma potential as measured by probe 202 is linearly related to the wafer potential as measured by a wired wafer.

FIG. 5 is a graph 500 comparing plasma potential as measured by probe 202 with a wafer potential as measured by a wired wafer. For wafer potential as measured by a wired wafer, a probe was placed in contact with the top or upper surface of a wafer. For both measurements, the signals derived from the probes were filtered to remove RF components. After applying the RF filter, the signals contained only the DC voltage.

In graph 500, the x-axis is time (in seconds), whereas the y-axis is measured voltage (in volts). A dotted line 502 corresponds to the plasma potential as measured by probe 202, whereas a dashed line 504 corresponds to the wafer potential as measured by a wired wafer.

As illustrated in graph 500, dotted line 502 and dashed line 504 are very similar. Based on the similar behavior of dotted line 502 and dashed line 504, it is determined the measurement of the plasma potential by probe 202 is an accurate representation of the wafer potential.

FIG. 6 is a graph 600 comparing plasma potential as measured by probe 202 with the potential of wafer 102 as measured using HER 128 in accordance with an aspect of the present invention.

In graph 600, the x-axis is time (in seconds), whereas the y-axis is measured voltage (in volts). A dotted line 602 corresponds to the plasma potential as measured by probe 202, whereas a dashed line 604 corresponds to the potential of wafer 102 as measured using HER 128 in accordance with an aspect of the present invention.

As illustrated in graph 600, dotted line 602 and dashed line 604 are very similar. Based on the similarity of dotted line 602 and dashed line 604, it is determined the measurement of the potential of wafer 102 by HER 128 accurately represents the plasma potential as measured by probe 202.

As discussed above with reference to **FIG. 5**, the measurement of the plasma potential by probe 202 is an accurate representation of the wafer potential. Further, as discussed above with reference to **FIG. 6**, the measurement of the potential of wafer 102 by HER 128 is an accurate representation of the plasma potential as measured by probe 202. Therefore, the measurement of the potential of wafer 102 by HER 128 is an

accurate representation of the wafer potential.

Returning to **FIG. 4**, since it has been determined that the potential of wafer **102** as measured by HER **128** is an accurate representation of the wafer potential, signal detector **400** determines the potential of wafer **102**, by measuring the potential of HER **128**.

Example embodiments of signal detector **400** will now be described with reference to **FIGS. 7-10B**.

FIG. 7 illustrates an example embodiment of signal detector **400** in accordance with an aspect of the present invention.

In this example embodiment, signal detector **400** includes an electrical contact **700** and is disposed within a cavity **702**. An upper end of electrical contact **700** is disposed at hole **402**, such that the upper end of electrical contact **700** touches and electrically connects with bottom surface **404** of HER **128**. The potential of HER **128** is conveyed to signal detector **400** by electrical signal **308**.

FIG. 8 illustrates another example embodiment of signal detector **400** in accordance with an aspect of the present invention.

In this example embodiment, signal detector **400** includes electrical contact **700**, a resistor **800** and an electrical contact **802**, all disposed within a cavity **804**. The lower end of electrical contact **700** is electrically connected to resistor **800**. Resistor **800** is additionally electrically connected to an upper end of electrical contact **802**. The potential of HER **128** is conveyed to signal detector **400** by electrical signal **308**.

With further reference to **FIG. 3**, resistor **800** impedes arcing that may result from an impedance mismatch between impedance matching circuit **116** and wafer processing chamber **122**. Particularly during system switching, it is possible to experience spurious impedance differentials between impedance matching circuit **116** and wafer processing chamber **122**. These periods of impedance mismatch can induce undesirable electrical arcing within wafer processing chamber **122**. Resistor **800** reduces the magnitude of impedance differentials between impedance matching circuit **116** and wafer processing chamber **122**.

FIG. 9 illustrates another example embodiment of signal detector **400** in accordance with an aspect of the present invention.

In this example embodiment, signal detector **400** includes electrical contact **700**, resistor **800**, electrical contact **802** and a dielectric spacer **900**, all disposed within a cavity **902**. Dielectric spacer **900** is disposed adjacent to resistor **800**. Dielectric spacer **900** acts as a heat sink to draw heat from resistor **800**. Dielectric spacer **900** should have a low value of dielectric constant to provide a high impedance, as compared to resistor **800**. Such a comparatively high impedance would minimize transmission of electrical signals through dielectric spacer **900** and would maximize transmission of

electrical signals through resistor **800**. A non-limiting example of a material exhibiting both a low value of dielectric constant and excellent thermal conductivity is quartz.

FIGs. 10A and **10B** illustrate another example embodiment of signal detector **400** in accordance with an aspect of the present invention. In particular, **FIG. 10A** illustrates a first state of signal detector **400**, when HER **128** is disposed on ceramic coupling ring **314**, whereas **FIG. 10B** illustrates a second state of signal detector **400**, when HER **128** is separated from ceramic coupling ring **314**.

In this example embodiment, signal detector **400** includes a spring-loaded contact **1000**, resistor **800**, electrical contact **802** and dielectric spacer **900**, all disposed within a cavity **1002**. An upper end of spring-loaded contact **1000** is disposed at hole **402**, such that the upper end of spring-loaded contact **1000** touches and electrically connects with bottom surface **404** of HER **128**. A lower end of spring-loaded contact **1000** is electrically connected to resistor **800**. Resistor **800** is additionally electrically connected to an upper end of electrical contact **802**. The potential of HER **128** is conveyed to signal detector **400** by electrical signal **308**.

FIG. 10A illustrates the operation of signal detector **400** during an operation time period t_{op} of wafer processing system **300**. During operation time period t_{op} , bottom surface **404** of HER **128** rests on top surface **406** of ceramic coupling ring **314**, forcing spring-loaded contact **1000** to contract. Accordingly, signal detector **400** is able to detect a signal from HER **128**.

HER **128** may have an operation lifetime, wherein HER **128** is likely to function within predetermined acceptable threshold parameters. However after the operation lifetime, HER **128** may not function within the predetermined acceptable threshold parameters as a result of wear and tear from exposure to plasma within wafer processing system **300**. Accordingly, after the operation lifetime, HER **128** may need to be removed and replaced with a new HER. In the event that HER **128** needs to be removed, HER **128** may be lifted off of ceramic coupling ring **314**. This will be described in greater detail below with reference to **FIG. 10B**.

FIG. 10B illustrates the disposition of signal detector **400** during a non-operation time period t_{nonop} of wafer processing system **300**. During non-operation time period t_{nonop} , wafer processing system **300** is turned off and signal detector **400** does not detect a signal from HER **128**. HER **128** may be lifted off of ceramic coupling ring **314**, wherein bottom surface **404** of HER **128** may be separated from top surface **406** of ceramic coupling ring **314**, thus disconnecting spring-loaded contact **1000** from HER **128**.

As illustrated in **FIG. 10B**, when HER **128** is separated from ceramic coupling ring **314**, HER **128** will continue to be lifted away from ceramic coupling ring **314** such that a space **1004** will continue to grow and spring-loaded contact **1000** will extend

through hole **402**. At some time, spring-loaded contact **1000** will stop extending through hole **402**. After this time, as HER **128** continues to be lifted away from ceramic coupling ring **314** and space **1004** continues to grow, spring-loaded contact **1000** will be disconnected from HER **128**. In this state, spring-loaded contact **1000** does not make contact with HER **128** and does not provide an electrical path for the voltage potential from HER **128**.

Once HER **128** is removed, a new HER may replace HER **128**. At first, spring-loaded contact **1000** will not make contact with the new HER and will not provide an electrical path for the voltage potential from the new HER. As the new HER continues to be moved toward ceramic coupling ring **314** and space **1004** continues to decrease, spring-loaded contact **1000** will eventually contact the new HER. The new HER will continue to be moved toward ceramic coupling ring **314** such that space **1004** will continue to decrease and spring-loaded contact **1000** will compress down into hole **402**. The new HER will finally be disposed onto ceramic coupling ring **314**, such that the bottom surface of the new HER will rest on top surface **406** of ceramic coupling ring **314**. In this situation, the bottom surface of the new HER will remain in contact with spring-loaded contact **1000**. Wafer processing system **300** may then be turned on and signal detector **400** may then detect a signal from the newly-installed HER.

The benefit of the example embodiment illustrated in FIGS. **10A** and **10B**, is that the length of spring-loaded contact **1000** need not be as precise as the length of the contacts discussed above with reference to FIGS. **7-9**. In particular, the contacts discussed above with reference to FIGS. **7-9** should be sufficiently long to contact bottom surface **404** of HER **128** through hole **402**. However, the contacts discussed above with reference to FIGS **7-9** should not be so long as to damage bottom surface **404** of HER **128**. However, in the case of spring-loaded contact **1000**, the length of spring-loaded contact **1000** may extend and contract to maintain contact with bottom surface **404** of HER **128** without damaging bottom surface **404** of HER **128**.

In the example embodiments discussed above, a parameter of the HER is detected by contacting a bottom surface of the HER by way of a detector disposed within a ceramic coupling ring. In other embodiments, the detector is not disposed within the ceramic coupling ring, but is arranged to detect a parameter of the HER without being exposed to the plasma forming volume. A non-limiting example of such an embodiment includes the embodiment wherein the detector is disposed within the HER and is not exposed to the plasma forming volume.

In accordance with an aspect of the present invention, a HER is used as a portion of a detecting system to detect the wafer potential in a wafer processing system. Accordingly, in accordance with an aspect of the present invention, plasma-exposed probes are no longer needed, thus reducing operating and maintenance costs.

The foregoing description of various preferred embodiments of the invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The exemplary embodiments, as described above, were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.

Claims

0001] A device for use in a wafer processing chamber having a plasma forming volume, a hot edge ring, the hot edge ring having a first surface and a second surface, the first surface being in contact with the plasma forming volume, the second surface not being in contact with the plasma forming volume, said device comprising:
a detector operable to contact the second surface of the hot edge ring, wherein said detector is operable to detect a parameter of the hot edge ring and provide a detected signal based on the detected parameter.

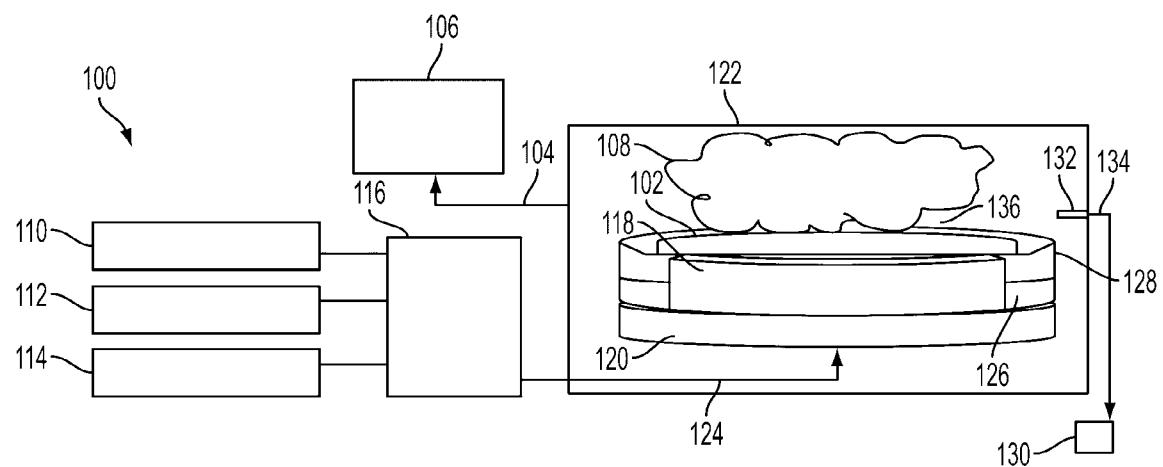
0002] The device of claim 1, further comprising:
a coupling ring operable to contact the second surface of the hot edge ring, said coupling ring having cavity therein, the cavity having an opening facing the second surface of said hot edge ring,
wherein said detector is disposed within the cavity and is arranged to contact the second surface of the hot edge ring.

0003] The device of claim 1, further comprising:
an output portion operable to provide an output signal based on the detected signal; and
a resistor disposed between and in series with said detector and said output portion.

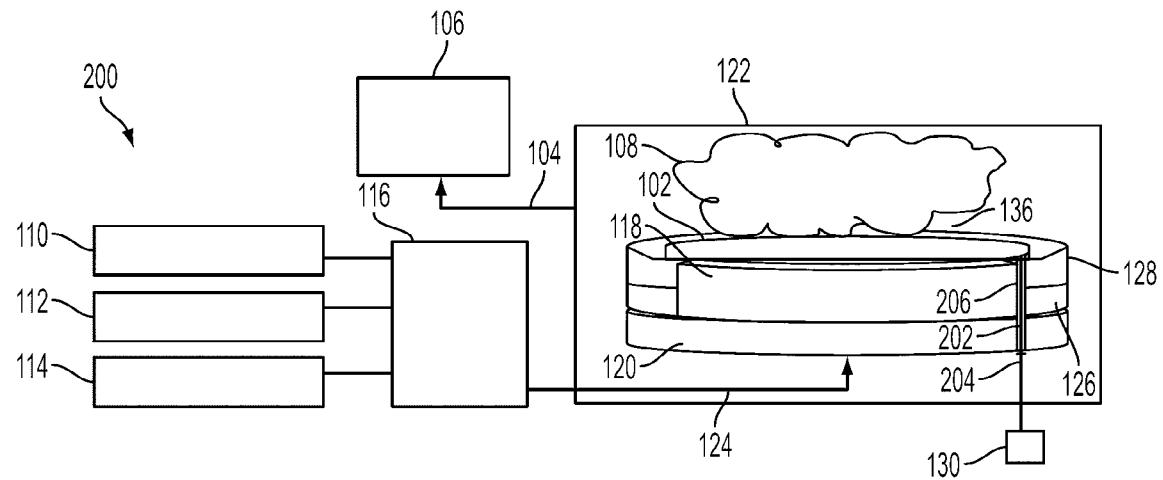
0004] The device of claim 3, further comprising a heat sink disposed in contact with said resistor.

0005] The device of claim 4, wherein said heat sink comprises quartz.

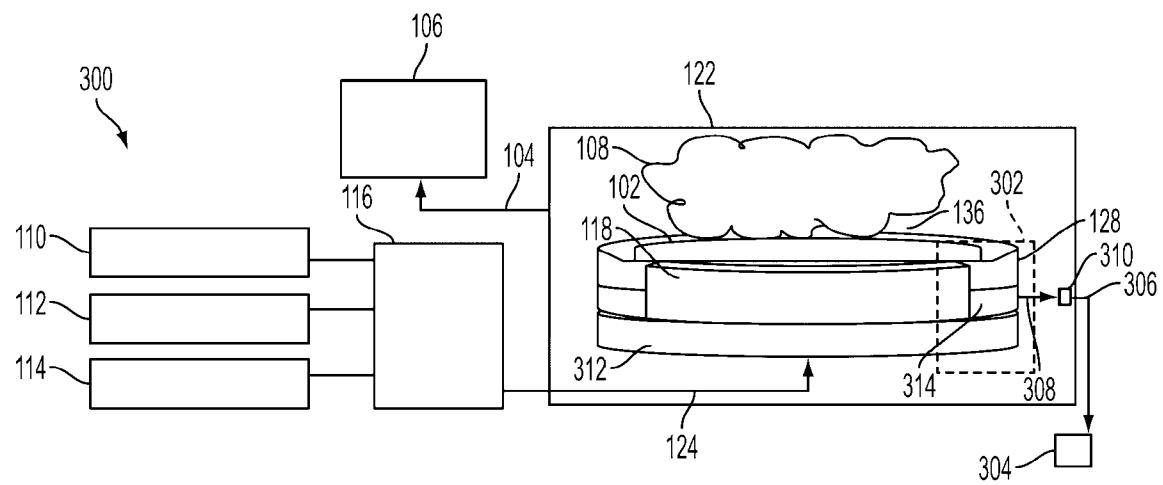
0006] The device of claim 1, wherein said detector comprises indium.

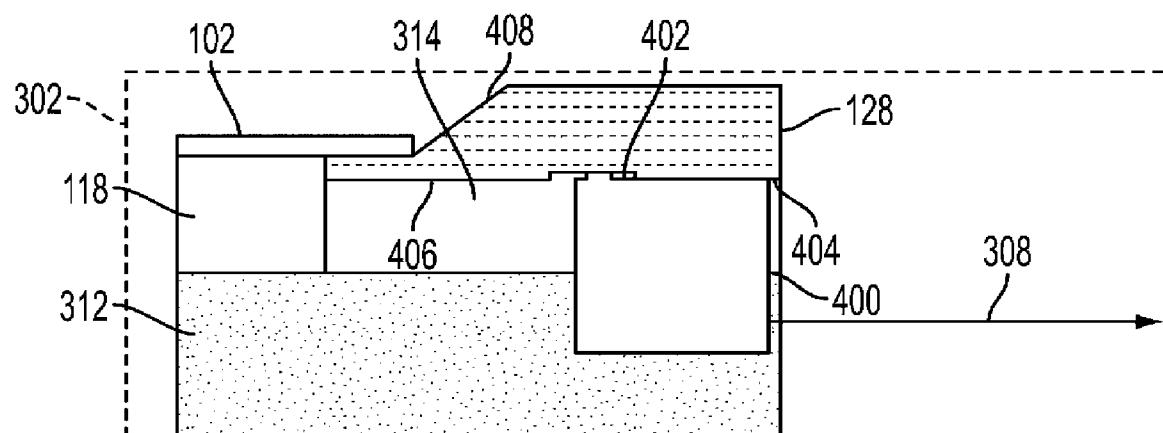

0007] The device of claim 1,
wherein said detector comprises a biasing portion and a contact portion, and
wherein said biasing portion is operable to provide a biasing force against said contact portion to keep said contact portion in contact with the second surface of the hot edge ring.

0008] The device of claim 7, wherein said biasing portion comprises a coil spring.

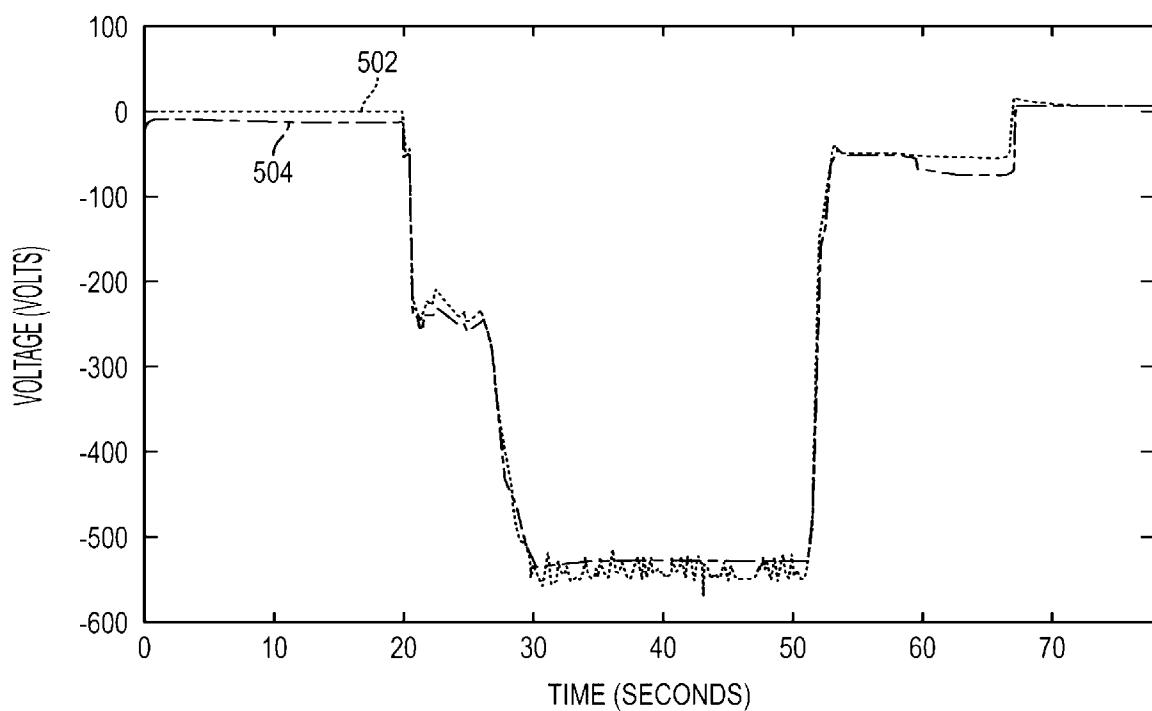

0009] A method of measuring wafer potential in a wafer processing chamber having a plasma forming volume, a hot edge ring, the hot edge ring having a first surface and a second surface, the first surface being in contact with the plasma forming volume, the second surface not being in contact with the plasma forming volume, said method comprising:

contacting the second surface of the hot edge ring with a detector; detecting, with the detector, a parameter of the hot edge ring; providing a detected signal based on the detected parameter; and measuring wafer potential based on the detected signal.

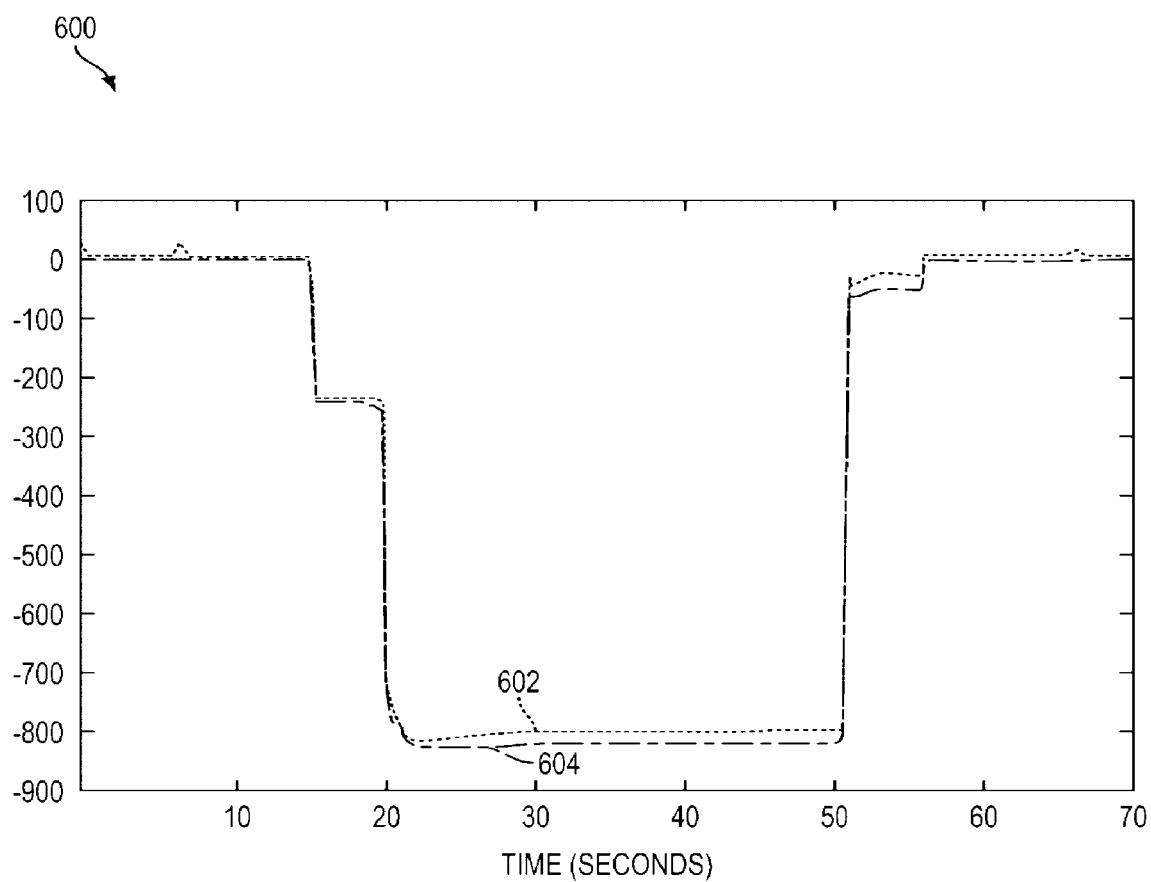

[Fig. 1]


[Fig. 2]

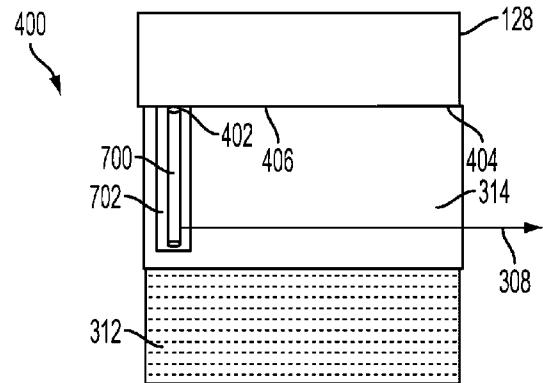
[Fig. 3]

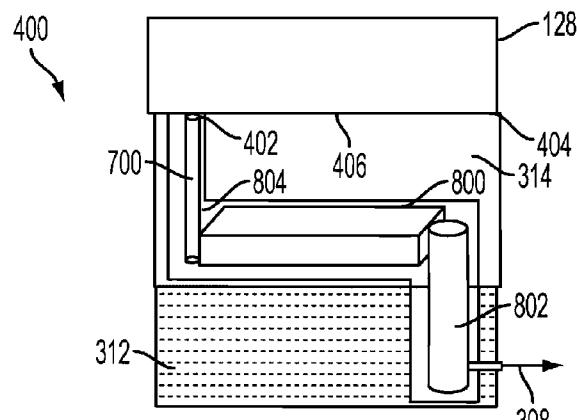


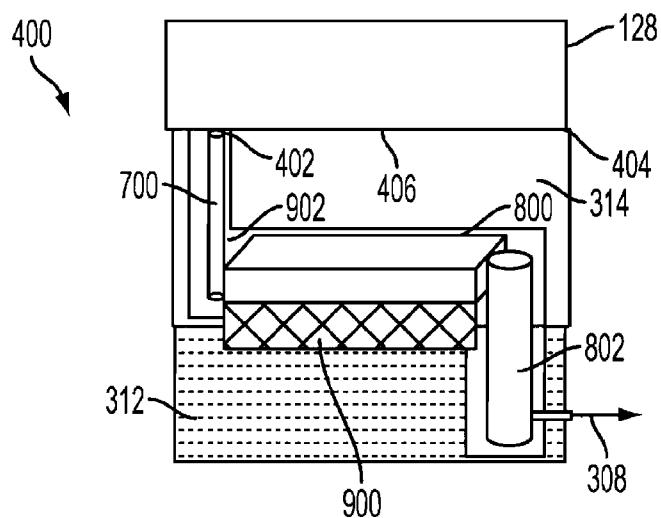
[Fig. 4]

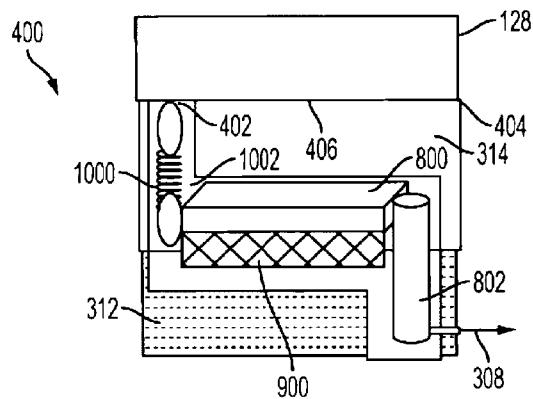


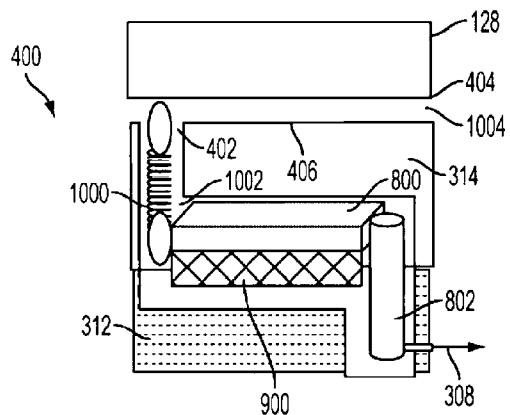
[Fig. 5]


500


[Fig. 6]


[Fig. 7]


[Fig. 8]


[Fig. 9]

[Fig. 10A]

[Fig. 10B]

