发明名称
一种1-氨基-2-萘酚-4-磺酸制备方法

摘要
本发明提出了一种1-氨基-2-萘酚-4-磺酸制备方法。在含有分散剂的浓度为5-10%的NaOH水溶液中，将2-萘酚完全溶解为酚钠盐，分散剂的添加重量为2-萘酚重量的0.05%-5%；向溶液中滴加34%浓盐酸，控制pH=6-7，酸析出2-萘酚结晶颗粒；在2-萘酚悬浮液中加入NaNO₂水溶液，亚硝酸钠用量为2-萘酚重量的50%-55%；再加入34%浓盐酸，浓盐酸用量为2-萘酚重量的65%-75%；进行亚硝化反应，亚硝化反应温度在0-5℃，反应时间2-6小时。通过本发明，采用在亚硝化阶段添加有效的分散剂的方式，可以使1-氨基-2-萘酚-4-磺酸收率明显提高，分散剂添加量较少，不需要添加额外的设备，降低了1-氨基-2-萘酚-4-磺酸的成本，并且易于工业化，有非常好的经济效益。
1. 一种改进的 1- 氨基-2- 萘酚-4- 硝酸制备方法，对 2- 萘酚进行亚硝化、亚硫酸盐加成，酸性还原转位工艺中的亚硝化工艺进行改进，其特征是：

1）在加有分散剂的浓度为 5-10% 的 NaOH 水溶液中，将 2- 萘酚完全溶解为酚钠盐，分散剂的添加重量为 2- 萘酚重量的 0.05% -5% ；

2）向步骤 1）的溶液中滴加 34% 浓盐酸，控制 pH = 6-7，析出 2- 萘酚结晶颗粒 ；

3）向步骤 2）的 2- 萘酚悬浮液中加入 NaNO₂ 水溶液，亚硝酸钠用量为 2- 萘酚重量的 50% -55% ；再加入 34% 浓盐酸，浓盐酸用量为 2- 萘酚重量的 65% -75% ；进行亚硝化反应，亚硝化反应温度在 0-5℃，亚硝化反应时间 2-6 小时。

2. 如权利要求 1 所述的方法，其特征是所述的分散剂为土耳其红油、十二烷基磺酸钠、吐温 80 或 Subwet 159。
一种 1- 氨基 -2- 萘酚 -4- 磺酸制备方法

技术领域
[0001] 本发明属于染料中间体合成领域，特别提出了一种 1- 氨基 -2- 萘酚 -4- 磺酸制备方法。

背景技术
[0002] 1- 氨基 -2- 萘酚 -4- 磺酸，又称 1, 2, 4- 酸，是重要的染料中间体，可用于制备酸性媒介染料、酸性络合染料、中性染料等，也可以用作分析磷酸盐和钙盐，用途广泛，市场需求量大。文献中有多种制备 1- 氨基 -2- 萘酚 -4- 磺酸的工艺，但工艺条件以及结果均不相同。较佳的合成路线是由 2- 萘酚进行亚硝化、亚硫酸盐加成、酸性还原转位而制得 1- 氨基 -2- 萘酚 -4- 磺酸。具体的报道工艺有：(1) 在醇类溶剂（如乙醇）中将 2- 萘酚亚硝化得到 1- 亚硝基 -2- 萘酚，再与亚硫酸氢钠加成、硫酸中还原、磺化得到 1- 氨基 -2- 萘酚 -4- 磺酸，总收率 74%；溶剂可回收 85%。该工艺的溶剂成本较高，并且回收溶剂也比较耗能。设备复杂（中国专利 CN10192380）；(2) 在异丙醇中将 2- 萘酚亚硝化得到 1- 亚硝基 -2- 萘酚，再与焦亚硫酸钠加成、硫酸中还原、磺化得到 1- 氨基 -2- 萘酚 -4- 磺酸，总收率 72%。该工艺同样存在溶剂成本较高，并且回收溶剂也比较耗能、设备复杂。1- 氯基 -2- 萘酚 -4- 磺酸收率也不高（精细化工中间体，2003, 33 (5): 25-27）；(3) 同样在异丙醇中将 2- 苯酚亚硝化得到 1- 亚硝基 -2- 苯酚，不过滤亚硝化的中间体，而是直接与亚硫酸氢钠加成、硫酸中还原、磺化得到 1- 氨基 -2- 苯酚 -4- 磺酸，总收率 85.4%。该工艺虽然 1- 氨基 -2- 苯酚 -4- 磺酸收率较高，但同样存在溶剂成本较高，并且回收溶剂也比较耗能，设备复杂（德国专利 DE3431695）；(4) 将 2- 萘酚在水- 溶剂中研磨到一定细度后，再加硫酸亚硫酸氢钠加成、酸性还原得到 1- 氨基 -2- 苯酚 -4- 磺酸，收率 85%（美国专利 US4929752）。硫酸设备复杂、不易放大、噪声大、耗能高；(5) 将 2- 苯酚碱溶成酸，析出羧酸，与亚硫酸氢钠加成，硫酸中还原，磺化得到 1- 氨基 -2- 苯酚 -4- 磺酸，总收率 68.4%（天津理工大学学报，2005, 21 (3): 76-77）。该工艺收率不高。目前工业上也是普遍采用类似该工艺的路线，收率与此相当。

发明内容
[0003] 针对 1- 氨基 -2- 萘酚 -4- 磺酸合成过程中使用醇类溶剂，不易回收、溶剂易燃易爆危险性较高、成本较高的问题，针对大型球磨设备不易工业化的困难，以及 1- 氨基 -2- 苯酚 -4- 磺酸收率较低等问题，本发明的 1- 氨基 -2- 苯酚 -4- 磺酸改进的合成方法不采用有机溶剂，不涉及水溶性有机溶剂的回收，不采用复杂的球磨设备，可以使 1- 氨基 -2- 苯酚 -4- 磺酸的收率达到 80%左右。生产工艺易于工业化实施，成本较低。
[0004] 通过对由 2- 萘酚进行亚硝化、亚硫酸盐加成、酸性还原转位而制得 1- 氨基 -2- 苯酚 -4- 磺酸的工艺进行详细分析，可以知道，亚硝化反应是很关键的反应。在对 2- 苯酚进行亚硝化处理时，若 2- 苯酚固体颗粒较大，不易进行亚硝化反应，亚硝化反应不完全，会使 1- 氨基 -2- 苯酚 -4- 磺酸收率较低。另外，若 2- 苯酚不能很快被亚硝化，则很容易被亚硝化。
酸氧化为结构复杂的副产物如黑色的焦油物等，同样会使 1- 氨基 -2- 萘酚 -4- 磺酸收率较低。

[0005] 针对上述的分析原因，本发明主要对亚硝化反应过程进行改进。采取措施如下：
在对 2- 萘酚进行碱水溶解时，在反应体系中加入分散剂，然后向体系中再加入酸，将 2- 萘酚钠酸化为 2- 萘酚固体细颗粒重新析出。由于有分散剂存在，析出的 2- 萘酚颗粒较细、均匀，易于进行亚硝化反应。使亚硝化反应速度快，副反应生成的焦油较少，再经过亚硫酸盐加成、酸性还原转位而制得 1- 氨基 -2- 萘酚 -4- 磺酸时，收率较高。反应方程式如下：

[0006]

[0007] 本发明的技术方案为：

[0008] 一种 1- 氨基 -2- 萘酚 -4- 磺酸制备方法，对 2- 萘酚进行亚硝化、亚硫酸盐加成、
酸性还原转位工艺中的亚硝化工艺进行改进：

[0009] 1) 在加有分散剂的浓度为 5-10% 的 NaOH 水溶液中，将 2- 萘酚完全溶解为酚钠
盐，分散剂的添加重量为 2- 萘酚重量的 0.05% -5%；
[0010] 2) 向步骤 1) 的溶液中添加 34% 浓盐酸，控制 pH = 6-7，酸析出 2- 萘酚结晶颗粒；
[0011] 3) 向步骤 2) 的 2- 萘酚悬浮液中加入 NaNO₂ 水溶液，亚硝酸钠用量为 2- 萘酚重量的
50% -55%；再加入 34% 浓盐酸，浓盐酸用量为 2- 萘酚重量的 65% -75%；进行亚硝化
反应，亚硝化反应温度在 0-5℃，亚硝化反应时间 2-6 小时。
[0012] 所述的分散剂为土耳其红油、十二烷基硫酸钠、吐温 80 或 Subwet 159。
[0013] 亚硝化反应结束，直接向反应体系中加入焦亚硫酸钠进行加成，再进行过滤、加硫酸、
还原转位磺化等常规过程得到 1- 氨基 -2- 萘酚 -4- 磺酸。
[0014] 在碱溶 2- 萘酚时，碱水浓度在 5-10%；碱溶时加入的分散剂有土耳其红油、十二
烷基硫酸钠、吐温 80、Subwet 159。分散剂的添加重量为 2- 萘酚重量的 0.05% -5%。酸析
时浓盐酸添加不易过多，以控制 pH 为 6-7 较好。亚硝化反应时，亚硝酸钠不易过多，亚硝酸
钠用量为 2- 萘酚重量的 50% -55% 较好。亚硝化反应时使用的浓盐酸（重量浓度 34%）
用量为 2- 萘酚重量的 65% -75%。较好亚硝化的反应温度在 0-5℃，亚硝化反应时间 2-6
小时。
[0015] 通过本发明，采用在亚硝化阶段添加有效的分散剂的方式，可以使 1- 氨基 -2- 萘酚
-4- 磺酸收率明显提高，分散剂添加量较少，不需要添加额外的设备，降低了 1- 氨基
-2- 萘酚 -4- 磺酸的成本，并且易于工业化，有非常好的经济效益。
具体实施方式
[0016] 实施例 1
[0017] 亚硝化反应：
[0018] 在1000mL的四口瓶中，加入浓度为7%的NaOH水溶液162g，再加入分散剂土耳其红油1.2g，搅拌约20分钟，使之完全溶解。在良好的搅拌下加入折百后的2-萘酚36g(0.25mol)，搅拌30min，使2-萘酚完全溶解为酚钠盐，用冰水浴降温到10℃左右。
[0019] 量取34%的浓盐酸约27g，慢慢滴加入四口瓶中（约20分钟），使2-萘酚呈细颗粒析出，以获得精细结晶的2-萘酚颗粒。酸析终点pH=7，温度10℃左右。
[0020] 将配制好的NaNO₂溶液（NaNO₂ 18g和H₂O 80mL的混合物）缓慢加入上述溶液中，然后降温至0~2℃。量取34%浓盐酸24.5g，在良好搅拌下均匀缓慢地滴加入四口瓶中（约1.5h加完），此过程保持温度0~2℃（冰水浴）。滴完盐酸后，保持0~2℃继续搅拌亚硝化反应4h，使残余的未反应的2-萘酚能完成亚硝化。
[0021] 酸化反应：
[0022] 在良好搅拌下，用NaOH溶液将上述亚硝化混合物中和至pH=7，然后升温到25℃，加入Na₂S₂O₅ 63g和H₂O 120mL的混合物，并搅拌反应3h。过滤，得红棕色滤液，保留备下一步反应。滤饼为少量焦油，弃去。
[0023] 还原反应：
[0024] 将上述滤液倒入1000mL四口瓶中，加入CuSO₄·5H₂O 0.3g、35%硫酸105mL，升温至46℃±1℃，反应12h。冷却至室温，过滤得1-氨基-2-萘酚-4-磺酸产品滤饼，通过重蒸馏除去1-氨基-2-萘酚-4-磺酸收率80.2%。
[0025] 实施例 2
[0026] 亚硝化反应：
[0027] 在1000mL的四口瓶中，加入浓度为5%的NaOH水溶液224g，再加入分散剂土耳其红油1.8g，搅拌约20分钟，使之完全溶解。在良好的搅拌下加入折百后的2-萘酚36g(0.25mol)，搅拌30min，使2-萘酚完全溶解为酚钠盐，用冰水浴降温到10℃左右。
[0028] 量取34%的浓盐酸约28g，慢慢滴加入四口瓶中（约20分钟），使2-萘酚呈细颗粒析出，以获得精细结晶的2-萘酚颗粒。酸析终点pH=6，温度10℃左右。
[0029] 将配制好的NaNO₂溶液（NaNO₂ 19.8g和H₂O 80mL的混合物）缓慢加入上述溶液中，然后降温至2~5℃。量取34%浓盐酸27g，在良好搅拌下均匀缓慢地滴加入四口瓶中（约1.5h加完），此过程保持温度2~5℃（冰水浴）。滴完盐酸后，保持2~5℃继续搅拌亚硝化反应2h，使残余的未反应的2-萘酚能完成亚硝化。
[0030] 加成反应以及还原反应同实施例1，1-氨基-2-萘酚-4-磺酸收率为79.8%。
[0031] 实施例 3
[0032] 亚硝化反应：
[0033] 在1000mL的四口瓶中，加入浓度为10%的NaOH水溶液112g，再加入分散剂土耳其红油0.018g，搅拌约20分钟，使之完全溶解。在良好的搅拌下加入折百后的2-萘酚36g(0.25mol)，搅拌30min，使2-萘酚完全溶解为酚钠盐，用冰水浴降温到10℃左右。
[0034] 量取34%的浓盐酸约28g，慢慢滴加入四口瓶中（约20分钟），使2-萘酚呈细颗粒
粒析出，从而获得精核。合点 pH = 6.5，温度 10°C 左右。

[0035] 将配制好的 NaNO₂ 溶液 (NaNO₂ 19.1g 和 H₂O 80mL 的混合物) 缓慢加入上"溶液中，然后降温至 0-2°C。取 34%浓盐酸 23.4g，在良好搅拌下均匀缓慢地滴入四口瓶中（约 1.5h 加完），此过程保持温度 0-2°C（冰水浴）。滴加完盐酸后，保持 0-2°C 继续搅拌亚硝化反应 6h，使残余的未反应的 2- 萃酚能完成亚硝化。

[0036] 加成反应以及还原反应同实施例 1, 1- 氨基 -2- 萃酚 -4- 磺酸收率为 81%。

[0037] 实施例 4

[0038] 将实施例 1 中的分散剂 1.2g 土耳其红油用 0.6g 吐温 80 代替，其它条件不变，1- 氨基 -2- 萃酚 -4- 磺酸收率为 79.6%。

[0039] 实施例 5

[0040] 将实施例 1 中的分散剂 1.2g 土耳其红油用 0.15g 十二烷基磺酸钠代替，其它条件不变，1- 氨基 -2- 萃酚 -4- 磺酸收率为 79.5%。

[0041] 实施例 6

[0042] 将实施例 1 中的分散剂 1.2g 土耳其红油用 0.3g Subwet 159 代替，其它条件不变，1- 氨基 -2- 萃酚 -4- 磺酸收率为 80.1%。