DEVICE FOR INJECTING AN ELECTROMAGNETIC SIGNAL INTO AN ELECTRIC LEAD

Dispositif d'injection d'un signal électromagnétique dans un conducteur électrique

Abstract

The invention relates to a device for injecting an electromagnetic signal into a conductor cable to be tested. The device comprises a clamp (10) formed of two parts (12, 14) and intended to be placed around the cable to be tested and including a tubular cylindrical lead (18), an intermediary cylinder (20) made of ferrite and an external tubular lead (23) connected by means of coaxial cables to a signal generator. The invention allows to test insulations and protection levels of electric leads as regards to electromagnetic interferences.

Abrégé

L'invention concerne un dispositif d'injection d'un signal électromagnétique dans un câble conducteur à tester, dispositif comprenant une pince (10) en deux parties (12, 14) destinée à être placée autour du câble à tester et comprenant un conducteur cylindrique tubulaire (18), un cylindre intermédiaire (20) de ferrite et un conducteur tubulaire extérieur (24) reliés des cables coaxiaux à un générateur de signal. L'invention permet de tester les isolements et les niveaux de protection des conducteurs électriques à l'égard des perturbations électromagnétiques.
UNIQUEMENT A TITRE D’INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
</tr>
<tr>
<td>CF</td>
<td>République Centrafricaine</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne, République fédérale d'</td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
</tr>
<tr>
<td>FI</td>
<td>Finlande</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Royaume-Uni</td>
</tr>
<tr>
<td>HU</td>
<td>Hongrie</td>
</tr>
<tr>
<td>IT</td>
<td>Italie</td>
</tr>
<tr>
<td>JP</td>
<td>Japon</td>
</tr>
<tr>
<td>KP</td>
<td>République populaire démocratique de Corée</td>
</tr>
<tr>
<td>KR</td>
<td>République de Corée</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Pays-Bas</td>
</tr>
<tr>
<td>NO</td>
<td>Norvège</td>
</tr>
<tr>
<td>RO</td>
<td>Roumanie</td>
</tr>
<tr>
<td>SD</td>
<td>Soudan</td>
</tr>
<tr>
<td>SE</td>
<td>Suède</td>
</tr>
<tr>
<td>SN</td>
<td>Sénégal</td>
</tr>
<tr>
<td>SU</td>
<td>Union soviétique</td>
</tr>
<tr>
<td>TD</td>
<td>Tchad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>États-Unis d’Amérique</td>
</tr>
</tbody>
</table>
1

DISPOSITIF D'INJECTION D'UN SIGNAL ELECTROMAGNETIQUE DANS UN CONDUCTEUR ELECTRIQUE.

. **Domaine technique.**

L'invention concerne un dispositif d'injection d'un signal électromagnétique dans un conducteur électrique, en particulier pour tester ses caractéristiques d'isolement et de protection à l'égard des perturbations électromagnétiques.

. **Technique antérieure.**

Il est déjà connu d'injecter, dans un câble électroconductor de liaison entre des installations ou équipements électriques ou électroniques, des signaux simulant soit la foudre, soit des perturbations électromagnétiques résultant d'une explosion nucléaire. On utilise pour cela une pince annulaire ouvrable en deux parties, qui comprend un fil conducteur bobiné sur un tore de ferrite et relié à un générateur de signal approprié, et qui est placée autour du câble à tester.

Les résultats sont assez peu satisfaisants, car ce dispositif connu présente une impédance de charge trop élevée, un mauvais rendement de l'ordre de 10% (le signal induit dans le câble à tester est faible par rapport au signal fourni par le générateur), et la gamme de fréquences utilisables est limitée.

. **Exposé de l'invention.**

L'invention a pour objet un dispositif d'injection d'un signal sur un conducteur électrique, qui permette d'éviter ces inconvénients.
Le dispositif selon l'invention, qui comprend une pince annulaire en deux parties destinée à être placée autour du câble conducteur, et des moyens de liaison à un générateur de signal, est caractérisé en ce que la pince comprend un conducteur cylindrique tubulaire interne de faible épaisseur, entouré d'un cylindre intermédiaire de matière à propriétés ferromagnétiques, et d'un conducteur cylindrique tubulaire externe de forte épaisseur, les conducteurs externe et interne étant, à une première extrémité, reliés aux moyens de liaison au générateur de signal et, à leur seconde extrémité, raccordés l'un à l'autre.

Le dispositif selon l'invention présente une impédance de charge faible, et un bon rendement, supérieur à 50% et pouvant atteindre 80 à 85%. De plus, le choix de la section et de la longueur du cylindre intermédiaire à propriétés ferromagnétiques, qui est par exemple en ferrite, permet de déterminer la fréquence de coupure basse du dispositif en fonction de l'application envisagée.

En pratique, la bande passante d'un dispositif selon l'invention est comprise entre quelques kilohertz et cent mégahertz environ.

Selon une autre caractéristique de l'invention, la pince comprend également des cylindres de matière diélectrique placés entre les trois cylindres précités, ainsi qu'à l'intérieur du conducteur cylindrique interne et à l'extérieur du conducteur cylindrique externe.

Avantageusement, les conducteurs cylindriques de la pince comprennent, à leur première extrémité, des rebords annulaires de forte épaisseur par lesquels ils sont reliés aux
moyens de liaison au générateur de signal.
On diminue ainsi l'impédance de ces moyens de liaison, de façon à ce que la tension du signal fourni par le générateur soit appliquée essentiellement aux extrémités du conducteur cylindrique tubulaire interne de la pince, et non aux extrémités de l'ensemble conducteur cylindrique interne - conducteur cylindrique externe.
Selon encore une autre caractéristique de l'invention, les moyens de liaison au générateur de signal comprennent au moins un, et de préférence deux câbles à deux conducteurs coaxiaux, dont les conducteurs internes et externes sont respectivement reliés aux conducteurs cylindriques interne et externe de la pince.
Ainsi, par alimentation de la pince par des câbles coaxiaux en parallèle, on diminue l'impédance de la source qui alimente la pince d'injection.
Selon encore une autre caractéristique de l'invention, le dispositif comprend des cylindres conducteurs de faible épaisseur, amovibles, permettant d'adapter la pince au diamètre du câble à tester.

Description sommaire des dessins.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de celle-ci apparaitront à la lecture de la description qui suit, faite à titre d'exemple en référence aux dessins annexés, dans lesquels:
- la figure 1 est une demi vue schématique en coupe axiale du dispositif selon l'invention;
- la figure 2 est une vue schématique en perspective, représentant ce dispositif en partie ouvert.
Meilleure manière de réaliser l'invention.

Le dispositif représenté schématiquement dans les figures 1 et 2 se présente essentiellement sous la forme d'une pince cylindrique annulaire 10 en deux parties 12 et 14 semblablement identiques, reliées entre elles par des articulations du type à charnières, non représentées. Ces deux parties semi-cylindriques 12, 14 sont également associées à des moyens de verrouillage en position fermée autour d'un câble électroconducteur à tester.

Chaque partie 12, 14 de la pince comprend, de l'intérieur vers l'extérieur, un demi-cylindre 16 de matière diélectrique à faible pouvoir inducteur, un conducteur semi-cylindrique tubulaire 18, de faible épaisseur, réalisé par exemple en cuivre, un demi-cylindre intermédiaire 20 de matière à propriétés ferromagnétiques, telle que de la ferrite, ou tout autre matière à perméabilité magnétique élevée, un cylindre 22 de matière diélectrique du même type que celle du cylindre 18, et un conducteur semi-cylindrique tubulaire extérieur 24 d'épaisseur relativement forte.

Ce conducteur externe 24 comprend, à ses extrémités, des rebords annulaires 26 orientés radialement vers l'intérieur. L'un de ces rebords 26 comprend des plots ou des bornes 28 de liaison, tandis que l'autre rebord annulaire 26 est raccordé à l'extrémité correspondante du conducteur cylindrique interne 18.

A son autre extrémité, correspondant au rebord annulaire 26 portant les bornes 28, le conducteur interne 18 comprend ou est raccordé à un rebord annulaire 30 orienté vers l'extérieur et portant des plots ou des bornes de liaison 32, cor-
respondant aux bornes 28 du rebord 26 du conducteur externe 24.

Ces bornes 28 et 30 sont par exemple argentées et servent à la connexion, comme représenté en figure 2 de câbles coaxiaux 34 dont les conducteurs extérieurs 36 vont être reliés par les bornes 28 au conducteur externe 24 de la pince 10 et dont les conducteurs internes 38 vont être reliés par les bornes 32 au conducteur interne 18 de la pince 10. Les rebords annulaires 26 et 30 des conducteurs 24 et 18 sont isolés l'un de l'autre par une épaisseur 40 de matière diélectrique, qui peut également former isolation entre le cylindre 20 de ferrite et le conducteur interne 18.

Un cylindre extérieur 42 en matière plastique recouvre et protège le conducteur externe 24 et les extrémités de la pince.

Comme représenté en figure 2, selon une variante de réalisation, les extrémités de la pince peuvent être protégées par des demi disques 44 de matière plastique, qui sont vissés ou fixés par tout moyen approprié sur les extrémités du cylindre 42.

Les conducteurs interne 18 et externe 24 de la pince sont en cuivre, en aluminium, ou en tout autre matière électroconductrice appropriée. Le contact entre le rebord annulaire 26 du conducteur externe 24 et l'extrémité du conducteur interne 16 est réalisé par soudure lorsque le conducteur interne 18 n'est pas amovible, ou bien par appui avec interposition d'un conducteur compressible, par exemple une fine tresse de fils de cuivre, de bronze, d'aluminium, ou de cuivre argenté.
Ce dispositif est utilisé de la façon suivante:

Les câbles coaxiaux 34, branchés comme indiqué sur les bornes 28 et 32 des conducteurs 24 et 18 de la pince, sont reliés à un générateur de signal approprié, et la pince est placée autour d'un câble conducteur à tester, ses deux parties 12, 14 étant appliquées l'une sur l'autre et verrouillées dans cette position par tout moyen approprié.

Il est essentiel qu'il y ait un bon contact entre les bords des deux demi cylindres 20 de ferrite, pour que le circuit magnétique soit fermé. Pour améliorer ce contact, on peut creuser un peu les bords des cylindres conducteurs 18 et 24 pour y placer un conducteur souple et compressible, tel qu'une tresse de fils conducteurs. On est alors assuré, à la fermeture de la pince, d'obtenir à la fois une bonne liaison des bords des demi cylindres de ferrite 20, et une bonne liaison entre les bords en regard des demi cylindres conducteurs 18 et 24.

Le dispositif selon l'invention présente une impédance de charge relativement faible grâce à la disposition des câbles coaxiaux 34 en parallèle, ce qui permet de diviser leur impédance commune par deux, et à l'impédance faible des rebords conducteurs 26 et 30 et du conducteur externe 24. Il en résulte que la majeure partie de l'impédance de charge est constituée par le conducteur interne 18, aux extrémités duquel est appliquée la quasi totalité de la différence de tension entre les conducteurs externe 36 et interne 38 des câbles coaxiaux 34.

Cela explique que le rendement du dispositif selon l'invention est supérieur à 50% et peut atteindre 80 à 85%.
Pour fixer les idées, on indique ci-dessous, à titre d'exemple non limitatif, les principales caractéristiques du dispositif selon l'invention:

- bande passante: de quelques kilohertz à cent mégahertz environ.
- courant d'injection: de 10 à 100-200 ampères
- impédance: de 5-6 à 25-50 ohms,
- tension: jusqu'à 1 500-3 000 volts crête à vide (le câble à tester n'étant pas en place)
- rendement: 50-85%
- épaisseur du conducteur externe 24: 3mm
- épaisseur du conducteur interne 18: 0,3mm
- épaisseur du cylindre 20 de ferrite: 10 à 20mm
- longueur du cylindre 20 de ferrite: par exemple 150mm
REVENDICATIONS

1/ Dispositif d'injection d'un signal électromagnétique dans un conducteur électrique, comprenant une pince annulaire en deux parties destinée à être placée autour du conducteur, par exemple un câble, et des moyens de liaison à un générateur de signal, caractérisé en ce que la pince (10) comprend un conducteur cylindrique tubulaire interne (18) de faible épaisseur, entouré d'un cylindre intermédiaire (20) de matière à propriétés ferromagnétiques, et d'un conducteur cylindrique tubulaire externe (24) de forte épaisseur, les conducteurs externe (24) et interne (18) étant, à une première extrémité, reliés aux moyens (34) de liaison au générateur de signal et, à leur seconde extrémité, raccordés l'un à l'autre.

2/ Dispositif selon la revendication 1, caractérisé en ce qu'il comprend des cylindres (16, 22, 40) de matière diélectrique placés entre les trois cylindres (18, 20, 24) précités, ainsi qu'à l'intérieur du conducteur cylindrique interne (18), et un revêtement extérieur protecteur (42).

3/ Dispositif selon la revendication 1 ou 2, caractérisé en ce que les conducteurs cylindriques (10, 24) comprennent, à leur première extrémité, des rebords annulaires (30, 26) de forte épaisseur par lesquels ils sont reliés aux moyens (34) de liaison au générateur de signal.

4/ Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les moyens de liaison au générateur de signal comprennent un ou plusieurs câbles (34) à deux conduc-
teurs coaxiaux, dont les conducteurs internes (38) et externes (36) sont respectivement reliés aux conducteurs interne (18) et externe (24) de la pince (10).

5/ Dispositif selon l'une des revendications précédentes, caractérisé en ce que les deux parties (12,14) de la pince sont semi cylindriques et reliées entre elles par des articulations du type charnière, et comprennent des conducteurs souples et compressibles placés entre les bords en regard des conducteurs interne (18) et externe (24) pour assurer un bon contact, à la fermeture de la pince, d'une part entre les bords en regard de ces conducteurs (18,24), d'autre part, entre les bords en regard des deux parties du cylindre (20) de matière à propriétés ferromagnétiques.

6/ Dispositif selon l'une des revendications précédentes, caractérisé en ce que les conducteurs cylindriques (18,24) sont en cuivre ou en aluminium.

7/ Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que le cylindre intermédiaire (20) est en ferrite.

8/ Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des cylindres conducteurs de faible épaisseur, amovibles, pour adaptation de la pince au diamètre du câble à tester.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/FR 89/00003

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl.: G 01 R 31/02; H 01 F 40/06

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl. 4</td>
<td>G 01 R 31/00; G 01 R 15/00; G 01 R 27/00; H 01 F 31/00; H 01 F 40/00</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4325022 (PELLETIER) 13 April 1982 see column 3, line 52 - column 4, line 43; figure 2</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3665356 (DOUGLAS et al.) 23 May 1972 see column 3, line 27 - column 4, line 2; figure 4</td>
<td>1-4</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority data and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve the inventive step

"Y" document of particular relevance: the claimed invention cannot be considered to involve the inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 28 April 1989 (28.04.89)

Date of Mailing of this International Search Report: 02 June 1989 (02.06.89)

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4719414 (MILLER et al.) 12 January 1988 see column 3, lines 24-65; figures 1-4</td>
<td>1, 2, 4, 8</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (extra sheet) (January 1985)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 26/05/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale N°: PCT/FR 89/00003

I. CLASSEMENT DE L'INVENTION

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et le CIB

CIB: G 01 R 31/02; H 01 F 40/06

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTÉ

<table>
<thead>
<tr>
<th>Système de classification</th>
<th>Symboles de classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB</td>
<td>G 01 R 31/00; G 01 R 15/00; G 01 R 27/00; H 01 F 31/00; H 01 F 40/00</td>
</tr>
</tbody>
</table>

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire, des passages pertinents</th>
<th>N° des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4325022 (PELLETIER) 13 avril 1982 voir colonne 3, ligne 52 - colonne 4, ligne 43; figure 2</td>
<td>1,5,7</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3665356 (DOUGLAS et al.) 23 mai 1972 voir colonne 3, ligne 27 - colonne 4, ligne 2; figure 4</td>
<td>1-2</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4719414 (MILLER et al.) 12 janvier 1988</td>
<td>1,2,4,8</td>
</tr>
</tbody>
</table>

- Catégories spéciales de documents cités:
 - A: document définissant l'état général de la technique, non considéré comme particulièrement pertinent
 - E: document antérieur, mais publié à la date de dépôt international ou après cette date
 - L: document pouvant jeter un doute sur une revendication de priorité citée pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
 - O: document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
 - P: document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- TX: document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- EX: document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
- YX: document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- AX: document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée: 28 avril 1989
Date d'expédition du présent rapport de recherche internationale: 02. 06. 89

Administration chargée de la recherche internationale: OFFICE EUROPEN DES BREVETS

Signataire du fonctionnaire autorisé: [Signature]
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire, des passages pertinents</th>
<th>N° des revendications visées</th>
</tr>
</thead>
</table>

voir colonne 3, lignes 24-65; figures 1-4.
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.
Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 26/05/89.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82