(54) 发明名称
一种纳米 ZnO 微球/石墨烯光催化剂及其制
备方法

(57) 摘要
本发明属于光催化领域，涉及一种纳米 ZnO
微球/石墨烯光催化剂及其制备方法。本发明
中涉及的光催化剂是将石墨烯包覆在纳米 ZnO
微球表面形成的纳米复合型光催化剂，其特点在
于：纳米 ZnO 微球采用溶液回流法制备，具有杨梅
状，是由六方纤锌矿结构的小晶体构成，直径约为
100~400nm；纳米 ZnO 微球/石墨烯光催化剂通过
真空冻干和热还原等步骤实现，过程简单易行。由
于石墨烯的引入，增强了对有机分子的吸附作用，
拓宽了光谱吸收范围，促进了光生电子-空穴对
的有效分离和传输，使得 ZnO/石墨烯在光催化降
解亚甲基蓝过程中表现出良好的光催化效率。该
方法步骤简单，成本低，获得的 ZnO/石墨烯光催
化剂催化活性高，并且还具有良好的光催化效果，有
望应用于工业污染物的光催化处理。
1. 一种纳米 ZnO 微球/石墨烯光催化剂，其特征在于，透明二维石墨烯包覆着的纳米 ZnO 微球具有杨梅状，是由六方纤锌矿结构的小晶体构成，直径约为 100~400nm。

2. 一种制备根据权利要求 1 所述的 ZnO/石墨烯光催化剂的方法，其特征在于该方法的具体步骤为：

 a. 纳米 ZnO 微球的制备: 将 0.025mol 醋酸锌与去离子水 H_2O 按 1:1～1:2 加入到 250mL 二甘醇 (DEG) 中，混合均匀的溶液在 160℃回流 1～2 小时，反应完毕后的产物通过离心清洗收集后 80℃干燥 12 小时；

 c. 将氧化石墨分散在一定体积去离子水中，超声处理 0.5～1 小时，获得浓度为 0.5～2mg/mL 均匀分散的氧化石墨烯水溶液；

 d. 称量步骤 a 中的纳米 ZnO 微球，加入到步骤 b 中的氧化石墨烯水溶液中，超声处理 20～30 分钟，得到灰色的 ZnO/氧化石墨烯均匀悬浮液，再将悬浮液做真空冻干处理得到固体粉末 ZnO/氧化石墨烯；

 e. 将步骤 c 得到的 ZnO/氧化石墨烯粉末，在还原气氛 (氢气 (H_2 : N_2 = 1 : 9) 混合气或氢气 (H_2 : Ar = 1 : 9) 混合气) 中 500～800℃煅烧 2～3 小时，最终获得 ZnO/石墨烯光催化剂；所述的石墨烯与 ZnO 的质量比为 :1 : 100 ～ 10 : 100。

3. 根据权利要求 1 所述的一种制备 ZnO/石墨烯光催化剂的方法，其特征在于，步骤 a 中的回流过程以醋酸锌为前驱体，以二甘醇为溶剂介质。

4. 根据权利要求 2 所述的一种制备 ZnO/石墨烯光催化剂的方法，其特征在于，步骤 a 中回流的温度为 160℃，回流时间为 1～2 小时。

5. 根据权利要求 2 所述的一种制备 ZnO/石墨烯光催化剂的方法，其特征在于，步骤 c 中的 ZnO/氧化石墨烯均匀悬浮液做真空冻干处理，得到 ZnO/氧化石墨烯固体粉末。

6. 根据权利要求 2 所述的一种制备 ZnO/石墨烯光催化剂的方法，其特征在于，步骤 d 中 ZnO/氧化石墨烯粉末在还原气氛 (氢气 (H_2 : N_2 = 1 : 9) 混合气或氢气 (H_2 : Ar = 1 : 9) 混合气) 中煅烧，煅烧温度为 500～800℃，煅烧时间为 2～3 小时。
一种纳米 ZnO 微球 / 石墨烯光催化剂及其制备方法

技术领域
[0001] 本发明涉及一种光催化剂及其制备方法，特别是一种纳米 ZnO 微球 / 石墨烯
(ZnO–GE) 光催化剂及其制备方法。

背景技术
[0002] 有机物染料及废水污染物是纺织、造纸、塑料等工业产业中主要的污染源。除了利
用常见的 TiO₂ 通过光催化降解技术缓解环境污染物之外，ZnO 半导体也是一种重要的光催化
剂。由于 ZnO 具有较高的光敏特性、较宽的禁带宽度 (3.37 eV) 及较大的激子能 (60 meV)，这
十分有利于光催化降解的氧化还原过程。
[0003] 然而，ZnO 的光生电子与空穴对易快速复合会导致光催化性能下降。因此，研究者
们采用了许多方法来抑制光生电子与空穴对的复合并拓宽光响应区域，包括结构形貌的控
制、贵金属的负载、离子掺杂、复合其他半导体产生协同效应。特别许多工作致力于研究其
与碳材料（如碳纳米管、C60 等）的结合来抑制光生载流子的复合。
[0004] 目前，这些碳材料中石墨烯由于其优异性能而成为研究热点。石墨烯的碳原子以
sp² 杂化连接，构成二维蜂窝状晶体结构，使其拥有极大的比表面积，并表现出良好的电学、
热学和力学性能。石墨烯能够作为纳米 ZnO 光催化剂的支撑材料，起到了电子传递通道的
作用，抑制了光生电子 - 空穴对的快速复合，在促进目标分子吸附的同时拓宽了催化剂的
光吸收范围，从而有效地提高了 ZnO 材料的光催化活性。
[0005] 尽管已有研究报道了 ZnO/ 石墨烯 (ZnO–GE) 光催化剂及其制备方法，但仍存在许
多问题。如一些制备方法步骤繁琐，成本较高，还原后的石墨烯由于范德瓦尔斯力容易重新
团聚，不利于光催化活性的提高。

发明内容
[0006] 本发明的目的之一在于提供一种纳米 ZnO 微球 / 石墨烯 (ZnO–GE) 光催化剂。
[0007] 本发明的目的之二在于提供该光催化剂的制备方法。
[0008] 本发明的上述目的之一通过如下技术方案予以实现的：
[0009] 一种纳米 ZnO 微球 / 石墨烯 (ZnO–GE) 光催化剂，其特征在于，透明二维石墨
烯包裹着的纳米 ZnO 微球具有杨梅状，是由六方纤锌矿结构的小晶体构成，直径约为
100~400 nm。
[0010] 一种制备上述的 ZnO/ 石墨烯光催化剂的方法，其特征在于该方法的具体步骤为：
a. 纳米 ZnO 微球的制备：将 0.025 mol 醋酸锌与去离子水 H₂O 按 1：1～1：2 加入到
250 mL 二甘醇 (DEG) 中，混合均匀的溶液在 160°C 回流 1 ～ 2 小时；反应完毕后的产物通过
离心清洗收集后 80°C 干燥 12 小时；
b. 氧化石墨根据文献 (J. Am. Chem. Soc., 2008, 130, 5856~5857) 采用改性 Hummers 法制
备获得；
 c. 将氧化石墨分散在一定体积去离子水中，超声处理 0.5-1 小时，获得浓度为 0.5 ~
2mg/mL 均匀分散的氧化石墨烯水溶液；

d. 称量步骤 a 中的纳米 ZnO 微球, 加入到步骤 b 中的氧化石墨烯水溶液中, 超声处理
20~30 分钟, 得到灰色的 ZnO/氧化石墨烯均匀悬浮液; 再将悬浮液做真空冻干处理得到固
体粉末 ZnO/氧化石墨烯；

e. 将步骤 c 得到的 ZnO/氧化石墨烯粉末, 在还原气氛 (氢氮 (H₂ : N₂ = 1 : 9) 混合
气或氢氮 (H₂ : Ar = 1 : 9) 混合气) 中 500 ~ 800℃煅烧 3 小时, 最终获得 ZnO/石
墨烯 (ZnO-GE) 光催化剂; 所述的石墨烯与 ZnO 的质量比为 : 1 : 100 ~ 10 : 100。

【0011】本发明通过溶液回流/冻干及热还原等简单易行的步骤成功将石墨烯包覆在纳米
ZnO 微球颗粒表面, 制备获得纳米 ZnO 微球/石墨烯 (ZnO-GE) 光催化剂。由于石墨烯的引
入, 增强了对有机分子的吸附作用; 拓宽了光吸收范围, 促进了光生载流子的有效分离和传
输, 使得 ZnO/石墨烯 (ZnO-GE) 在光催化降解亚甲基蓝过程中表现出良好的光催化性能和
光催化效果。该方法步骤简单, 成本低, 获得的纳米 ZnO 微球/石墨烯 (ZnO-GE) 光催化剂
催化活性高, 有望应用于工业污染物的光催化处理。

附图说明

【0012】图 1 制备的 ZnO 纳米微球在低倍 (a) 及高倍 (b) 下的 FESEM 照片和 ZnO-GE 光催
化剂在低倍 (c) 及高倍 (d) 下的 FESEM 照片。

【0013】图 2 制备的 ZnO 的 TEM 图 (a), HRTEM 图 (b), ZnO-GE 光催化剂的 TEM 图 (c), HRTEM
图 (d)。

【0014】图 3ZnO 纳米微球及 ZnO-GE 光催化剂的 XRD 图谱。

【0015】图 4 无催化剂的亚甲基蓝溶液及其分别以 ZnO 纳米球与 ZnO-GE 纳米复合材料为
光催化剂时在波长 662nm 处随时间改变的光催化降解速率变化。

【0016】图 5ZnO 纳米球与 ZnO-GE 纳米复合材料的紫外-可见漫反射的光谱。

【0017】图 6ZnO 纳米球与 ZnO-GE 纳米复合材料的阻抗图谱。

具体实施方式

【0018】实施例 1:

【0019】以醋酸锌为原料, 采用沸腾回流法制备了杨梅状 ZnO 纳米球。0.025mol 醋酸锌及
0.5 mL 去离子水加入到 250 mL 二甘醇中, 混合均匀的溶液在 160℃回流 1 小时, 反应完毕后
的产物通过离心清洗收集后 80℃干燥 12 小时。

【0020】通过冻干法合成了 ZnO/石墨烯光催化剂。将氧化石墨分散在 80 mL 去离子水中, 超
声处理 0.5~1 小时, 获得 0.5mg/mL 的均匀氧化石墨烯水溶液。将 400mg ZnO 纳米球颗粒加入
到 80 mL 氧化石墨烯水溶液 (0.5mg/mL) 中, 获得的溶液超声 20 分钟以使得灰色的 ZnO/氧化
石墨烯悬浮液混合均匀。然后将上述悬浮液冻干处理后的粉末在在氢氮混合气氛 (H₂ : N₂
= 1 : 9) 中 600℃煅烧 2 小时。升温速率为 5℃每分钟。获得的产物即为 ZnO-GE 纳米复合
材料。

【0021】光催化的具体步骤如下:

【0022】获得的 ZnO 纳米微球和 ZnO-GE 复合光催化剂的光催化性能是通过光催化降解亚
甲基蓝溶液来确定的。将导电玻璃用玻璃刀切割成 9mm×40mm 的小片后用去离子水清洗,
置于无水乙醇中超声15min。干燥后用透明胶带固定，使涂层面积相同。取一定量的样品，分别滴入适量乙醇，搅拌制成浆料，然后再将浆料置于导电玻璃上，用玻璃棒从上往下稍用力均匀刮下，室温干燥后450℃高温煅烧2h。同时配制浓度为5×10^{-5} mol/L的亚甲基蓝溶液。

利用300W氙灯作为光源来光催化降解亚甲基蓝溶液，在比色皿中分别放入涂有光催化剂的导电玻璃，加入亚甲基蓝溶液。比色皿与氙灯距离约25cm，每隔一定时间段取一次溶液在波长为662nm处（该处为亚甲基蓝最大吸收处）的吸光度。溶液的吸光度采用722可见分光光度计来测定。

制备获得的ZnO纳米球及ZnO–GE纳米复合材料的形貌如图1中的FESEM照片所示。图1a中的ZnO为典型的球形结构，直径在100到400nm，并没有明显的团聚现象。图1b进一步显示了ZnO纳米球是由无数小颗粒组成，并且表面有许多小突起，这使得ZnO表面粗糙，带有不规则的微孔和小尖峰，具有类似杨梅的形貌。图1c及1d中的ZnO–GE纳米复合材料，我们可以清楚观察到ZnO纳米球良好地分散在了石墨烯片组成的网状结构中，没有明显的团聚倾向。大多数纳米球被石墨烯片包裹着，组成了三维的网状结构，这使得ZnO纳米球与石墨烯片充分接触。

图2分别为制备的ZnO纳米微球及ZnO–GE纳米复合材料的TEM图。如图2a所示，ZnO纳米球接近杨梅状，直径约为200nm。每个自团聚的杨梅状纳米球是由无数小晶体在三维方向连接聚集而成球状的。图2b中以可以清楚观察到六方晶系的ZnO晶粒（100）晶面的晶面间距为0.28nm。图2c中为典型的ZnO–GE纳米复合材料复合结构。透明褶皱的二维石墨烯片包裹着ZnO纳米球。说明经过冻干及热还原过程，ZnO纳米球的形貌仍然未改变。图2d则显示了ZnO纳米球与石墨烯片之间的紧密接触。

图3的XRD测试结果中ZnO纳米微球的所有衍射峰都对应于晶胞参数为a = 3.249 Å, c = 5.206 Å的六方纤锌矿相结构（JCPDS No. 36-1451）；而ZnO–GE纳米复合材料表现出与纯ZnO纳米微球相似的XRD衍射图谱，而且并没有观察到属于氧化石墨的衍射峰，说明氧化石墨已经成功被还原为石墨烯，更重要的是石墨烯重新爬叠成石墨的趋势被抑制了。

图4为亚甲基蓝溶液分别以ZnO纳米球与ZnO–GE纳米复合材料为光催化剂时在波长662nm处随时间改变的光催化降解速率变化，并且与相同条件下不含任何催化剂的亚甲基蓝溶液的浓度变化进行比较。将吸光度比A/A_0用浓度比C/C_0代替后可以看出，图中ln(C/C_0)随光照时间变化曲线符合一阶动力学公式-ln(C/C_0) = Kt，其中K是光解降速率常数。显然，不含任何催化剂的亚甲基蓝溶液在140分钟光照后未发生明显的降解现象，表明亚甲基蓝溶液光照下的自降解可以忽略不计。而带有ZnO纳米球与ZnO–GE复合光催化剂的亚甲基蓝溶液光照下降解效果明显，且对应的K值分别为0.812%, 1.15% min^{-1}。由此可见，ZnO纳米球与ZnO–GE纳米复合材料均具有良好的光催化活性；而ZnO–GE纳米复合材料的光催化活性显然要优于纯ZnO纳米球。

影响提高ZnO–GE纳米复合材料光催化活性的因素之一是禁带宽度的减小而拓宽了紫外–可见光吸收范围。图5中插图是ZnO及ZnO–GE纳米复合材料的紫外–可见漫反射光谱。由于直接半导体纳米颗粒的禁带宽度满足：a \propto (hv-E_g)^{1/2}（其中a是吸收系数，hv是光电子能，E_g是禁带宽度）；而a \propto F(R) = (1-R)^2/2R（这里F(R)是指Kubelka-Munk
公式）。将 F(R)^2 对 hv 作图。转换之后如图 5 所示，得出 ZnO 纳米球与 ZnO-GE 纳米复合材料的禁带宽度分别为 3.31eV 及 3.29eV。ZnO-GE 纳米复合材料的禁带宽度略小于纯 ZnO 纳米球。这表明由于石墨烯的引入，ZnO-GE 纳米复合材料在紫外 - 可见光区域的利用范围拓宽了，这有利于光催化效率的提高。

[0029] 图 6 是 ZnO 纳米球与 ZnO-GE 纳米复合材料的阻抗图谱。可以明显观察到 ZnO-GE 纳米复合材料的半圆要比 ZnO 纳米球的小得多，表明 ZnO-GE 纳米复合材料的固态界面层及表面的电荷传递阻抗在很大程度上降低了。这种改善源于石墨烯的引入，正是由于导电性优异的石墨烯与 ZnO 之间良好的接触，石墨烯作为电子受体负责将电子传递，使得 ZnO 导带中的活性电子通过传递机制传递给石墨烯成为可能，由此有效地分离了光生电子及空穴，提高了光催化活性。

[0030] 应当理解的是，上述实例只是本发明的举例，尽管表述较为详细，但并不能因此而认为是本发明专利保护范围的限制，本发明的专利保护范围应以所附权利要求为准。
图 1

图 2
图 3

图 4
图 5

图 6