

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 November 2010 (11.11.2010)

(10) International Publication Number
WO 2010/129339 A2

(51) International Patent Classification:

C12N 15/63 (2006.01) C12N 15/12 (2006.01)
C12N 15/85 (2006.01) A61P 35/00 (2006.01)

(21) International Application Number:

PCT/US2010/032779

(22) International Filing Date:

28 April 2010 (28.04.2010)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/173,413 28 April 2009 (28.04.2009) US

(71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; 3400 North Charles Street, Baltimore, MD 21218 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WU, Tzyy-Chouo [US/US]; 11002 Nacirema Lane, Stevenson, MD 21153 (US). HUNG, Chien-Fu [—/US]; 13 Ballyhean Court, Timonium, MD 21093 (US).

(74) Agent: RUSSELL, Hathaway, P.; Foley Hoag LLP, Patent Group, Seaport West, 155 Seaport Boulevard, Boston, MA 02210-2600 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))
- with sequence listing part of description (Rule 5.2(a))

WO 2010/129339 A2

(54) Title: COMPOSITIONS AND METHODS FOR ENHANCING ANTIGEN-SPECIFIC IMMUNE RESPONSES

(57) Abstract: Methods for treating or preventing recurrence of hyper proliferating diseases, e.g., cancer, are described. A method may comprise priming a mammal by administering to the mammal an effective amount of a nucleic acid composition encoding an antigen or a biologically active homolog thereof and boosting the mammal by administering to the mammal an effective amount of an oncolytic virus comprising a nucleic acid encoding the antigen or the biologically active homolog thereof.

**COMPOSITIONS AND METHODS FOR ENHANCING
ANTIGEN-SPECIFIC IMMUNE RESPONSES**

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application claims the benefit of U.S. Provisional Application No. 61/173413, filed on April 28, 2009, the content of which is specifically incorporated by reference herein in its entirety.

GOVERNMENTAL SUPPORT

10 This invention was made with government support under grant numbers P50 CA 098252 and RO1 CA 114425, awarded by the U.S. National Cancer Institute. The government has certain rights in this invention.

BACKGROUND

15 Cancer immunotherapeutics have shown promise for the treatment of a number of tumors and hyper proliferative diseases, but their utility is limited in situations where the tumor is relatively large or rapidly growing. For example, advanced stage cancers are extremely difficult to treat and rarely result in a cure. Efforts to improve early detection and treatment of advanced stage cancers have been relatively unsuccessful. Existing 20 therapies for advanced disease, such as chemotherapy and radiation therapy, have not improved the overall survival of patients with locally advanced or metastatic disease (Early Breast Cancer Trialists' Collaborative Group, Lancet, 339:1-15 (1992); Baum *et al.*, Salmon SE, ed., *Adjuvant therapy of cancer V1*. Philadelphia: WB. Saunders, 269-74 (1990); Swain, S.M., Surg. Clin. North Am., 70:1061-80 (1990)). Therefore, there is a strong need 25 to develop innovative therapeutic approaches for the control of hyper proliferative diseases, particularly if they have progressed to an advanced stage.

SUMMARY OF THE INVENTION

30 In one embodiment, the invention is directed, at least in part, to a method of inducing or enhancing an antigen-specific immune response in a mammal, comprising the steps of: (a) priming the mammal by administering to the mammal an effective amount of a nucleic acid composition encoding the antigen or a biologically active homolog thereof; and (b) boosting the mammal by administering to the mammal an effective amount of an

oncolytic virus comprising a nucleic acid encoding the antigen or the biologically active homolog thereof, thereby inducing or enhancing the antigen-specific immune response. In some embodiments, the antigen is a tumor-associated antigen (TAA), foreign to the mammal, and/or includes ovalbumin, HPV E6, and HPV E7. In yet another embodiment, 5 the antigen comprises an ovalbumin protein comprising an amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:139. In still other embodiments, the antigen comprises an HPV E7 protein comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of

LSRHFMHQKRTAMFQDPQERPRKLPQ and

10 AMFQDPQERPRKLPQLCTELQTTIHDIILEC. In one embodiment, the antigen comprises an HPV E7 protein comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of PTLHEYMLDLQPETTDLYCYEQ, HEYMLDLQPET, TLHEYMLDLQPETTD, EYMLDLQPETTDLY, DEIDGPAGQAEPDRAHY and GPAGQAEPDRAHYNI.

15 In certain embodiments, the nucleic acid composition is a DNA vaccine. In some embodiments, the nucleic acid composition is administered from the group consisting of intradermally, intraperitoneally, and intravenously. In certain embodiments, the mammal is a human having a tumor and wherein the nucleic acid composition is administered intratumorally or peritumorally. In some embodiments, the oncolytic virus is selected from 20 the group consisting of vaccinia virus, adenovirus, herpes simplex virus, poxvirus, vesicular stomatitis virus, measles virus, Newcastle disease virus, influenza virus, and reovirus. In yet another embodiment, the oncolytic virus is thymidine kinase negative. In certain embodiments, the oncolytic virus is administered from the group consisting of intradermally, intraperitoneally, and intravenously. In some embodiments, the mammal is a 25 human having a tumor and wherein the oncolytic virus is administered intratumorally or peritumorally. In still other embodiments, the nucleic acid composition is present within an oncolytic virus. In other embodiments, the oncolytic virus of step (a) is the same as or is different from the oncolytic virus of step (b). In yet other embodiments, step (a) is performed before step (b), step (a) and step (b) are performed at the same time, or step (a) is 30 performed after step (b). In still another embodiment, step (a) and/or step (b) is repeated at least once. In one embodiment, the dosage used in step (a) and/or step (b) is a range that includes 1×10^7 pfu.

In certain embodiments, the antigen-specific immune response is greater in magnitude than an antigen-specific immune response induced by administration of the nucleic acid composition alone. In other embodiments, the antigen-specific immune response is mediated at least in part by CD8⁺ cytotoxic T lymphocytes (CTL). In other 5 embodiments, the antigen-specific immune response is mediated at least in part by CD8⁻ cytotoxic T lymphocytes (CTL) and/or peritumoral stromal cells. In yet another embodiment, the method also includes administering an effective amount of a chemotherapeutic agent.

In still other embodiments, the method includes screening the mammal for the 10 presence of antibodies against the antigen. In some embodiments, the mammal is a human. In other embodiments, the mammal is afflicted with cancer.

The instant invention is also directed at least in part to a method for treating or preventing advanced stage cancer in a mammal comprising (a) priming the mammal by administering to the mammal an effective amount of a nucleic acid composition encoding 15 the antigen or a biologically active homolog thereof; and (b) boosting the mammal by administering to the mammal an effective amount of an oncolytic virus comprising a nucleic acid encoding the antigen or the biologically active homolog thereof, thereby inducing or enhancing the antigen-specific immune response. In some embodiments, the advanced stage cancer is a cancer described herein, including melanoma or thymoma.

20 The instant invention is also directed at least in part to a kit comprising a priming composition and a boosting composition, the kit comprising; (a) a priming composition comprising DNA encoding an immunogenic foreign antigen and a pharmaceutically acceptable carrier; and (b) a boosting composition comprising a virus encoding said foreign antigen and a pharmaceutically acceptable carrier.

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-1B. Luminescence imaging demonstrating vaccinia infection in mice. Groups of C57BL/6 mice (5 per group) were subcutaneously challenged with 5×10^4 /mouse of TC-1 tumor cells. When tumor size reached about 8-10 mm, mice were treated with 30 either i.t. or i.p. injection of Vac-luc at 1×10^7 pfu/mouse. **(A)** Representative bioluminescence signal for each group over time. **(B)** Bar graph depicting the ratios of signal intensity of intratumoral (i.t.) over intraperitoneal (i.p.) administrations in mice treated with Vac-luc over time.

Figures 2A-2C. *In vivo* tumor treatment experiments with B16 tumors. (A)

Diagrammatic representation of the prime-boost treatment regimen. Groups of C57BL/6 mice (5 per group) were subcutaneously challenged with 5×10^4 /mouse of B16/F10 tumor cells. 5 days after tumor challenge, mice were immunized with either 2 μ g/mouse of pcDNA3 DNA or pcDNA3 expressing ovalbumin (p-OVA) by gene gun. On day 12, mice were boosted by intratumoral injection of 1×10^7 pfu/mouse of either wild-type vaccinia (Vac-WT) or vaccinia encoding ovalbumin (Vac-OVA). B16 tumor-bearing mice treated with 1X PBS were used as a control. (B) Line graph depicting the tumor volume in B16 tumor bearing mice treated with the different prime-boost regimens. Numbers in parentheses indicate complete tumor rejection rates. (C) Kaplan & Meier survival analysis of B16 tumor bearing mice treated with the different treatment regimens. Data shown are representative of two experiments performed (mean \pm SD).

Figures 3A-3C. *In vivo* tumor treatment experiments with TC-1 tumors. (A)

Diagrammatic representation of the prime-boost treatment regimen. Groups of C57BL/6 mice (5 per group) were subcutaneously challenged with 5×10^4 /mouse of TC-1 tumor cells. 5 days after tumor challenge, mice were immunized with either 2 μ g/mouse of pcDNA3 DNA or pcDNA3 expressing ovalbumin (p-OVA) by gene gun. On day 12, mice were boosted by intratumoral injection of 1×10^7 pfu/mouse of either wild-type vaccinia (Vac-WT) or vaccinia encoding ovalbumin (Vac-OVA). TC-1 tumor-bearing mice treated with 1X PBS were used as a control. (B) Line graph depicting the tumor volume in TC-1 tumor bearing mice treated with the different prime-boost regimens. Numbers in parentheses indicate complete tumor rejection rates. (C) Kaplan & Meier survival analysis of TC-1 tumor bearing mice treated with the different treatment regimens. Data shown are representative of two experiments performed (mean \pm SD).

Figures 4A-4C. *In vivo* tumor treatment experiments. Groups of C57BL/6 mice (5 per group) were subcutaneously challenged with 5×10^4 /mouse of TC-1 tumor cells. 5 days after tumor challenge, mice were immunized with 2 μ g/mouse of pcDNA3 expressing CRT/E7 (p-CRT/E7) by gene gun. On day 12, mice were boosted by intraperitoneal or

intratumoral injection of 1×10^7 pfu/mouse of either wild-type vaccinia (Vac-WT) or vaccinia encoding CRT/E7 (Vac-CRT/E7). TC-1 tumor-bearing mice treated with 1X PBS were used as a control. (A) Diagrammatic representation of the prime-boost treatment regimen. (B) Line graph depicting the tumor volume in TC-1 tumor bearing mice treated with the different prime-boost regimens. Numbers in parentheses indicate complete tumor

30

30

rejection rates. **(C)** Kaplan & Meier survival analysis of TC-1 tumor challenged mice treated with the different treatment regimens. * indicates p<0.05. Data shown are representative of two experiments performed (mean+SD).

Figures 5A-5D. Intracellular cytokine staining followed by flow cytometry analysis to determine the number of OVA-specific CD8⁺ T cells in tumor-bearing mice treated with the different prime-boost regimens. Groups of C57BL/6 mice (5 per group) were challenged subcutaneously with 5×10^4 /mouse of B16/F10 tumor cells. 5 days after tumor challenge, mice were immunized with either pcDNA3 or p-OVA DNA by gene gun and boosted by intratumoral injection of either Vac-WT or Vac-OVA as shown in Figure 2. 10 TC-1 tumor-bearing mice treated with PBS were used as a control. 7 days after vaccinia infection, cells from the spleens (**A & B**) and tumors (**C & D**) of mice were harvested, incubated overnight with the OVA peptide and stained for CD8 and intracellular IFN- γ and then characterized for OVA-specific CD8⁺ T cells using intracellular IFN- γ staining followed by flow cytometry analysis. **A & C.** Representative flow cytometry data showing 15 the percentage of OVA-specific IFN γ ⁺ CD8⁺ T cells in the (**A**) spleens and (**C**) tumors of mice treated with the different prime boost regimens. **B & D.** Bar graph depicting the numbers of OVA-specific IFN- γ -secreting CD8⁺ T cells per 2×10^5 pooled cells in the (**B**) spleens and (**D**) tumors of treated mice. Data shown are representative of two experiments performed (mean+SD).

Figures 6A-6B. Intracellular cytokine staining followed by flow cytometry analysis to determine the number of E7-specific CD8⁺ T cells in tumor-bearing mice treated with the different prime-boost regimens. Groups of C57BL/6 mice (5 per group) were subcutaneously challenged with 5×10^4 /mouse of TC-1 tumor cells. 5 days after tumor challenge, mice were immunized with 2 μ g/mouse of pcDNA3 expressing CRT/E7 (p-CRT/E7) by gene gun. On day 12, mice were boosted by intraperitoneal or intratumoral injection of 1×10^7 pfu/mouse of either wild-type vaccinia (Vac-WT) or vaccinia encoding CRT/E7 (Vac-CRT/E7). TC-1 tumor-bearing mice treated with PBS were used as a 25 control. 7 days after vaccinia infection, cells from the spleens (**A**) and tumors (**B**) of mice were harvested and stained for CD8 and intracellular IFN- γ and then characterized for E7-specific CD8⁺ T cells using intracellular IFN- γ staining followed by flow cytometry 30 analysis. Bar graph depicting the numbers of OVA-specific IFN- γ -secreting CD8⁺ T cells per 2×10^5 pooled cells in the (**A**) spleens and (**B**) tumors of treated mice. Data shown are representative of two experiments performed (mean+SD).

Figures 7A-7B. Intracellular cytokine staining followed by flow cytometry analysis to determine the number of OVA-specific CD4⁺ T cells in tumor-bearing mice treated with the different prime-boost regimens. Groups of C57BL/6 mice (5 per group) were challenged subcutaneously with 5×10^4 /mouse of B16/F10 tumor cells. 5 days after tumor challenge, mice were immunized with either pcDNA3 or p-OVA DNA by gene gun and boosted by intratumoral injection of either Vac-WT or Vac-OVA as shown in Figure 2. TC-1 tumor-bearing mice treated with 1X PBS were used as a control. 7 days after vaccinia infection, cells from the spleens (**A**) and tumors (**B**) of mice were harvested and stained for CD8 and intracellular IFN- γ and then characterized for OVA-specific CD4⁺ T cells using intracellular IFN- γ staining followed by flow cytometry analysis. Bar graph depicting the numbers of OVA-specific IFN- γ -secreting CD4⁺ T cells per 2×10^5 pooled cells in the (**A**) spleens and (**B**) tumors of treated mice. Data shown are representative of two experiments performed (mean \pm SD).

Figures 8A-8B. *In vivo* antibody depletion experiments. C57BL/6 mice (5 per group) were subcutaneously challenged with 5×10^4 /mouse of B16/F10 or TC-1 tumor cells. 5 days after tumor challenge, mice were immunized with 2 μ g/mouse of pcDNA3 expressing ovalbumin (p-OVA) by gene gun. On day 12, mice were boosted by intratumoral injection of 1×10^7 pfu/mouse of vaccinia encoding ovalbumin (Vac-OVA). Mice were depleted of CD4⁺ or CD8⁺ T cells using antibodies every alternate day starting from D5 for 3 doses followed by once a week until the end of the experiment. Tumor-bearing mice treated with 1X PBS were used as a control. Kaplan & Meier survival analysis of (**A**) B16 or (**B**) TC-1 tumor bearing mice treated with the different treatment regimens.

Figures 9A-9B. *In vitro* cytotoxicity assay. (**A**) Schematic diagram of the experimental design for the cytotoxicity assay. Luciferase-expressing TC-1 tumor cells (2×10^4 /well) were added to 96-well plates. 24 hours later, Vac-WT or Vac-OVA (MOI = 0.5) was added to each well. 48 hours later, the complete medium was changed and activated OT-1 T cells were added to each well at an E:T ratio of 1:1. Bioluminescence imaging was performed 4 hours later. The degree of CTL-mediated killing of the tumor cells was indicated by the decrease of luminescence activity using the IVIS luminescence imaging system series 200. Bioluminescence signals were acquired for 10 seconds. (**B**) Representative luminescence images of 96-well plates and bar graphs depicting the

luminescence intensity in each well containing tumor cells with different treatments (mean \pm SD).

Figures 10A-10B. Characterization of vaccinia infectivity of CD31 $^{+}$ cells in tumor. **(A)** Flow cytometry data demonstrating the percentage of CD31 $^{+}$ cells in the tumor infected with vaccinia. Groups of C57BL/6 mice (5 per group) were subcutaneously challenged with 5 \times 10 4 /mouse of TC-1 tumor cells. When tumor size reached about 8-10 mm, mice were treated with either intratumorally (i.t.) or intraperitoneally (i.p.) with Vac-GFP at 1 \times 10 7 pfu/mouse. Tumors were harvested 24 hours after virus injection, stained for CD31 and characterized by flow cytometry analysis. **(B)** Representative bar graphs depicting the number of CD31 $^{+}$ AAD $^{-}$ cells per 3 \times 10 5 cells derived from the tumors in the different treatment groups (mean \pm SD). Cells derived from explanted tumors (2 \times 10 4 /well) were added to 96-well plates. 24 hours later, Vac-WT or Vac-OVA (MOI = 0.5) were added to each well and 48 hours later, activated OT-1 T cells (E:T ratio 1:1) were added to each well. 4 hours later, the cells were stained with PE labeled anti-mouse CD31 mAb and FITC labeled 7-AAD and analyzed by flow cytometry analysis.

DETAILED DESCRIPTION

Partial List of Abbreviations

20 ANOVA, analysis of variance; APC, antigen presenting cell; CRT, calreticulin; CTL, cytotoxic T lymphocyte; DC, dendritic cell; E6, HPV oncoprotein E6; E7, HPV oncoprotein E7; ELISA, enzyme-linked immunosorbent assay; HPV, human papillomavirus; IFN γ , interferon- γ ; i.m., intramuscular(ly); i.t., intratumoral(ly); i.v., intravenous(ly); luc, luciferase; mAB, monoclonal antibody; MOI, multiplicity of infection; OVA, ovalbumin; p-, plasmid-; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; SD, standard deviation; TAA, tumor-associate antigen; Vac, vaccinia virus; WT, wild-type.

30 Provided herein are methods and compositions for increasing or stimulating an immune response, *e.g.*, for treating and/or preventing recurrence of a hyper proliferating disease, *e.g.*, cancer. In one embodiment, a method comprises priming a mammal by administering to the mammal an effective amount of a composition, including a nucleic acid composition, encoding an antigen or a biologically active homolog thereof and

boosting the mammal by administering to the mammal an effective amount of an oncolytic virus comprising a nucleic acid encoding the antigen or the biologically active homolog thereof. Such methods may be used for therapeutic and/or preventative purposes. Other compositions that may additionally be administered include a protein and/or nucleic acid(s) 5 encoding a protein that enhances the immune system, but do not comprise an antigen, *e.g.*, those that prolong the life of antigen presenting cells, as further described herein.

Other methods may comprise administering a chemotherapeutic agent or drug, *e.g.*, a drug that is not a nucleic acid vaccine, such as a drug that induces apoptosis of cancer cells. Any other combinations of one or more of a nucleic acid encoding an antigen; one or 10 more oncolytic viruses encoding the antigen; one or more immune system enhancing protein(s) and or nucleic acid(s) encoding such a protein; and one or more drugs, *e.g.*, chemotherapeutic drugs, may also be used for stimulating an immune response in a mammal. At least some of the methods may also be used to enhance the efficacy of another treatment, *e.g.*, a treatment that comprises administering an immune system enhancing 15 response in a mammal. Administration of the priming step(s) may be performed at the same time, before or after administration of one or more other agents, *e.g.*, boosting step(s).

Nucleic acid vaccines

Vaccines that may be administered to a mammal include any vaccine, *e.g.*, a nucleic 20 acid vaccine (*e.g.*, a DNA vaccine). In an embodiment of the invention, a nucleic acid vaccine will encode an antigen, *e.g.*, an antigen against which an immune response is desired. Other nucleic acids that may be used are those that increase or enhance an immune reaction, but which do not encode an antigen against which an immune reaction is desired. These vaccines are further described below.

25 Exemplary antigens include proteins or fragments thereof from a pathogenic organism, *e.g.*, a bacterium or virus or other microorganism, as well as proteins or fragments thereof from a cell, *e.g.*, a cancer cell. In one embodiment, the antigen is from a virus, such as class human papilloma virus (HPV), *e.g.*, E7 or E6. These proteins are also oncogenic proteins, which are important in the induction and maintenance of cellular 30 transformation and co-expressed in most HPV-containing cervical cancers and their precursor lesions. Therefore, cancer vaccines, such as the compositions of the invention, that target E7 or E6 can be used to control of HPV-associated neoplasms (Wu, T-C, *Curr Opin Immunol.* 6:746-54, 1994).

However, as noted, the present invention is not limited to the exemplified antigen(s). Rather, one of skill in the art will appreciate that the same results are expected for any antigen (and epitopes thereof) for which a T cell-mediated response is desired. The response so generated will be effective in providing protective or therapeutic immunity, or 5 both, directed to an organism or disease in which the epitope or antigenic determinant is involved – for example as a cell surface antigen of a pathogenic cell or an envelope or other antigen of a pathogenic virus, or a bacterial antigen, or an antigen expressed as or as part of a pathogenic molecule.

Exemplary antigens and their sequences are set forth below.

10

E7 Protein from HPV-16

The E7 nucleic acid sequence (SEQ ID NO:8) and amino acid sequence (SEQ ID NO:9) from HPV-16 are shown below (see GenBank Accession No. NC_001526).

15	atg cat gga gat aca cct aca ttg cat gaa tat atg tta gat ttg caa cca gag aca act	60
	Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr	20
	gat ctc tac <u>tgt</u> tat <u>gag</u> caa tta aat gac agc tca gag gag gag gat gaa ata gat ggt	120
	Asp Leu Tyr <u>Cys</u> Tyr <u>Glu</u> Gln Leu Asn Asp Ser Ser Glu Glu Asp Glu Ile Asp Gly	40
	cca gct gga caa gca gaa ccg gac aga gcc cat tac aat att gta acc ttt tgt tgc aag	180
20	Pro Ala Gly Gln Ala Glu Pro Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys	60
	tgt gac tct acg ctt cgg ttg tgc gta caa agc aca cac gta gac att cgt act ttg gaa	240
	Cys Asp Ser Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg Thr Leu Glu	80
	gac ctg tta atg ggc aca cta gga att gtg <u>tgc</u> ccc atc tgt tct cag gat aag ctt	297
	Asp Leu Leu Met Gly Thr Leu Gly Ile Val <u>Cys</u> Pro Ile Cys Ser Gln Asp Lys Leu	99

25 In single letter code, the wild type E7 amino acid sequence (SEQ ID NO:9) is:

MHGDTPTLHE YMLDLQPETT DLYCYEQLND SSEEEDEIDG PAGQAEPDRA
HYNIVTFCCCK CDSTLRLCVQ STHVDIRTLE DLLMGTLGIV CPICSQDKL 99

In another embodiment (See GenBank Accession No. AF125673, nucleotides 562-858 and the E7 amino acid sequence), the C-terminal four amino acids QDKL (and their 30 codons) above are replaced with the three amino acids QKP (and the codons cag aaa cca), yielding a protein of 98 residues.

When an oncoprotein or an epitope thereof is the immunizing moiety, it is preferable to reduce the tumorigenic risk of the vaccine itself. Because of the potential oncogenicity of the HPV E7 protein, the E7 protein may be used in a “detoxified” form.

35 To reduce oncogenic potential of E7 in a construct of this invention, one or more of the following positions of E7 is mutated:

Original residue	Mutant residue	Preferred codon mutation	nt Position (in SEQ ID NO:8)	Amino acid (in SEQ ID NO: 9)
Cys	Gly (or Ala)	TGT→GGT	70	24
Glu	Gly (or Ala)	GAG→GGG (or GCG)	77	26
Cys	Gly (or Ala)	TGC→GGC	271	91

In one embodiment, the E7 (detox) mutant sequence has the following two mutations:

a TGT→GGT mutation resulting in a Cys→Gly substitution at position 24 of SEQ ID NO:

9 a and GAG→GGG mutation resulting in a Glu→Gly substitution at position 26 of the

5 wild type E7. This mutated amino acid sequence is shown below with the replacement residues underscored:

MHGDTPTLHE YMLDLQPETT DLYGYEGLND SSEEDEIDG PAGQAEPDRA
HYNIVTFCCCK CDSTLRLCVQ STHVDIRTLE DLLMGTLGIV CPICSQKP 97 (SEQ ID NO: 10)

10 These substitutions completely eliminate the capacity of the E7 to bind to Rb, and thereby nullify its transforming activity. Any nucleotide sequence that encodes the above E7 or E7(detox) polypeptide, or an antigenic fragment or epitope thereof, can be used in the present compositions and methods, including the E7 and E7(detox) sequences are shown above.

15

E6 Protein from HPV-16

The wild type E6 nucleotide (SEQ ID NO:11) and amino acid sequences (SEQ ID NO:12) are shown below (see GenBank accession Nos. K02718 and NC_001526):

atg	cac	caa	aag	aga	act	gca	atg	ttt	cag	gac	cca	cag	gag	cga	ccc	aga	aag	tta	cca	60	
20	Met	His	Lys	Arg	Thr	Ala	Met	Phe	Gln	Asp	Pro	Gln	Glu	Arg	Pro	Arg	Lys	Leu	Pro	20	
	cag	tta	tgc	aca	gag	ctg	caa	aca	act	ata	cat	gat	ata	ata	tta	gaa	tgt	gtg	tac	tgc	120
	Gln	Leu	Cys	Thr	Glu	Leu	Gln	Thr	Thr	Ile	His	Asp	Ile	Ile	Leu	Glu	Cys	Val	Tyr	Cys	40
	aag	caa	cag	tta	ctg	cga	cgt	gag	gtt	tat	gac	ttt	gct	ttt	cgg	gat	tta	tgc	ata	gta	180
	Lys	Gln	Leu	Leu	Arg	Arg	Glu	Val	Tyr	Asp	Phe	Ala	Phe	Arg	Asp	Leu	Cys	Ile	Val	60	
	tat	aga	gat	ggg	aat	cca	tat	gct	gtt	tat	aaa	tgt	tta	aag	ttt	tat	tct	aaa	att	240	
	Tyr	Arg	Asp	Gly	Asn	Pro	Tyr	Ala	Val	<u>Cys</u>	Asp	Lys	Cys	Leu	Lys	Phe	Tyr	Ser	Lys	Ile	80
	agt	gag	tat	aga	cat	tat	tgt	tat	agt	ttt	tat	gga	aca	aca	tta	gaa	cag	caa	tac	aac	300
	Ser	Glu	Tyr	Arg	His	Tyr	Cys	Tyr	Ser	Leu	Tyr	Gly	Thr	Thr	Leu	Glu	Gln	Gln	Tyr	Asn	100
	aaa	ccg	ttg	tgt	gat	ttg	tta	att	agg	tgt	att	aac	tgt	caa	aag	cca	ctg	tgt	cct	gaa	360
30	Lys	Pro	Leu	Cys	Asp	Leu	Leu	Ile	Arg	Cys	Ile	Asn	<u>Cys</u>	Gln	Lys	Pro	Leu	Cys	Pro	Glu	120
	gaa	aag	caa	aga	cat	ctg	gac	aaa	aag	caa	aga	ttc	cat	aat	ata	agg	ggt	cgg	tgg	acc	420
	Glu	Lys	Gln	Arg	His	Leu	Asp	Lys	Lys	Gln	Arg	Phe	His	Asn	<u>Ile</u>	Arg	Gly	Arg	Trp	Thr	140
	gtt	cga	tgt	atg	tct	tgt	tgc	aga	aca	aca	cgt	aga	gaa	acc	cag	ctg	taa			474	

Gly Arg Cys Met Ser Cys Cys Arg Ser Ser Arg Thr Arg Arg Glu Thr Gln Leu stop 158

This polypeptide has 158 amino acids and is shown below in single letter code (SEQ ID NO:12):

5 MHQKRTAMFQ DPQERPRKLP QLCTELQTTI HDIILECVYC KQQLLRREVY
 DFAFRDLCIV YRDGNPYAVC DKCLKFYSKI SEYRHYCYSL YGTTLEQQYN
 KPLCDLLIRC INCQKPLCPE EKQRHLDKKQ RFHNIRGRWT GRCMSCCRSS
 RTRRETQL 158

10 E6 proteins from cervical cancer-associated HPV types such as HPV-16 induce proteolysis of the p53 tumor suppressor protein through interaction with E6-AP. Human 15 mammary epithelial cells (MECs) immortalized by E6 display low levels of p53. HPV-16 E6, as well as other cancer-related papillomavirus E6 proteins, also binds the cellular protein E6BP (ERC-55). As with E7, described below a non-oncogenic mutated form of E6 may be used, referred to as “E6(detox).” Several different E6 mutations and publications 15 describing them are discussed below.

The amino acid residues to be mutated are underscored in the E6 amino acid sequence above. Some studies of E6 mutants are based upon a shorter E6 protein of 151 nucleic acids, wherein the N-terminal residue was considered to be the Met at position 8 in the wild type E6. That shorter version of E6 is shown below as (SEQ ID NO:13):

20 MFQDPQERPR KLPQLCTELQ TTIHDIILEC VYCKQQLLRR EVYDFAFRDL
 CIVYRDGNPY AVCDKCLKFY SKISEYRHYC YSLYGTTLEQ QYNKPLCDLL
 IRCINCQKPL CPEEKQRHLD KKQRFHNIRG RWTGRCMSCC RSSRTRRETQ L

To reduce oncogenic potential of E6 in a construct, one or more of the following positions of E6 is mutated:

Original residue	Mutant residue	aa position in SEQ ID NO: 12	aa position in SEQ ID NO: 13
Cys	Gly (or Ala)	70	63
Cys	Gly (or Ala)	113	106
Ile	Thr	135	128

25 Nguyen *et al.*, *J Virol.* 6:13039-48, 2002, described a mutant of HPV-16 E6 deficient in binding α -helix partners which displays reduced oncogenic potential *in vivo*. This mutant, which includes a replacement of Ile with Thr as position 128 (of SEQ ID NO: 13), may be used in accordance with the present invention to make an E6 DNA vaccine 30 that has a lower risk of being oncogenic. This E6(I¹²⁸T) mutant is defective in its ability to

bind at least a subset of α -helix partners, including E6AP, the ubiquitin ligase that mediates E6-dependent degradation of the p53 protein.

Cassetti MC *et al.*, *Vaccine* 22:520-52, 2004, examined the effects of mutations four or five amino acid positions in E6 and E7 to inactivate their oncogenic potential. The following mutations were examined: E6-C⁶³G and E6 C¹⁰⁶G (positions based on the wild type E6); E7-C²⁴G, E7-E²⁶G, and E7 C⁹¹G (positions based on the wild type E7).

Venezuelan equine encephalitis virus replicon particle (VRP) vaccines encoding mutant or wild type E6 and E7 proteins elicited comparable CTL responses and generated comparable antitumor responses in several HPV16 E6(+)E7(+) tumor challenge models: protection from either C3 or TC-1 tumor challenge was observed in 100% of vaccinated mice.

Eradication of C3 tumors was observed in approximately 90% of the mice. The predicted inactivation of E6 and E7 oncogenic potential was confirmed by demonstrating normal levels of both p53 and Rb proteins in human mammary epithelial cells infected with VRPs expressing mutant E6 and E7 genes.

The HPV16 E6 protein contains two zinc fingers important for structure and function; one cysteine (C) amino acid position in each pair of C-X-X-C (where X is any amino acid) zinc finger motifs may be mutated at E6 positions 63 and 106 (based on the wild type E6). Mutants are created, for example, using the Quick Change Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). HPV16 E6 containing a single point mutation in the codon for Cys¹⁰⁶ in the wild type E6 (= Cys 113 in the wild type E6). Cys¹⁰⁶ neither binds nor facilitates degradation of p53 and is incapable of immortalizing human mammary epithelial cells (MEC), a phenotype dependent upon p53 degradation. A single amino acid substitution at position Cys⁶³ of the wild type E6 (=Cys⁷⁰ in the wild type E6) destroys several HPV16 E6 functions: p53 degradation, E6TP-1 degradation, activation of telomerase, and, consequently, immortalization of primary epithelial cells.

Any nucleotide sequence that encodes these E6 polypeptides, one of the mutants thereof, or an antigenic fragment or epitope thereof, can be used in the present invention. Other mutations can be tested and used in accordance with the methods described herein including those described in Cassetti *et al.*, *supra*. These mutations can be produced from any appropriate starting sequences by mutation of the coding DNA.

The present invention also includes the use of a tandem E6-E7 vaccine, using one or more of the mutations described herein to render the oncoproteins inactive with respect to their oncogenic potential *in vivo*. VRP vaccines (described in Cassetti *et al.*, *supra*)

comprised fused E6 and E7 genes in one open reading frame which were mutated at four or five amino acid positions. Thus, the present constructs may include one or more epitopes of E6 and E7, which may be arranged in their native order or shuffled in any way that permits the expressed protein to bear the E6 and E7 antigenic epitopes in an immunogenic form. DNA encoding amino acid spacers between E6 and E7 or between individual epitopes of these proteins may be introduced into the vector, provided again, that the spacers permit the expression or presentation of the epitopes in an immunogenic manner after they have been expressed by transduced host cells.

10 *Ovalbumin (OVA)*

An amino acid sequences encoding a representative OVA (SEQ ID NO:139) is shown below.

MGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMSALAMVYLGAKDSTRTQINK
VVRFDKLPFGFDSIEAQCGTSVNV

15 HSSLRDILNQITKPNDVYSFSLASRLYAEERYPILPEYLQCVKELYRGGLEPINFQTA
ADQARELINSWVESQTNGIIRN
VLQPSSVDSQTAMVLVNAIVFKGLWEKTFKDEDTQAMPFRVTEQESKPVQMMYQI
GLFRVASMASEKMKILELPFASGTM
SMLVLLPDEVSGLEQLESIINFEKLTEWTSSNVMEERKIKVYLPRMKMEEKYNLTS
20 VLMAMGITDVFSSSANLSGISSAE
SLKISQAVHAAHAEINEAGREVVGSAEAGVDAASVSEEFRADHPFLFCIKHIATNAV
LFFGRCVSP

Other exemplary antigens

25 Exemplary antigens are epitopes of pathogenic microorganisms against which the host is defended by effector T cells responses, including CTL and delayed type hypersensitivity. These typically include viruses, intracellular parasites such as malaria, and bacteria that grow intracellularly such as *Mycobacterium* and *Listeria* species. Thus, the types of antigens included in the vaccine compositions of this invention may be any of 30 those associated with such pathogens as well as tumor-specific antigens. It is noteworthy that some viral antigens are also tumor antigens in the case where the virus is a causative factor in the tumor.

In fact, the two most common cancers worldwide, hepatoma and cervical cancer, are 35 associated with viral infection. Hepatitis B virus (HBV) (Beasley, R.P. *et al.*, *Lancet* 2:1129-1133 (1981) has been implicated as etiologic agent of hepatomas. About 80-90% of cervical cancers express the E6 and E7 antigens (discussed above and exemplified herein) from one of four "high risk" human papillomavirus types: HPV-16, HPV-18, HPV-

31 and HPV-45 (Gissmann, L. *et al.*, *Ciba Found Symp.* 120:190-207, 1986; Beaudenon, S., *et al.* *Nature* 321:246-9, 1986, incorporated by reference herein). The HPV E6 and E7 antigens are the most promising targets for virus associated cancers in immunocompetent individuals because of their ubiquitous expression in cervical cancer. In addition to their 5 importance as targets for therapeutic cancer vaccines, virus-associated tumor antigens are also ideal candidates for prophylactic vaccines. Indeed, introduction of prophylactic HBV vaccines in Asia have decreased the incidence of hepatoma (Chang, MH *et al.* *New Engl. J. Med.* 336, 1855-1859 (1997), representing a great impact on cancer prevention.

Among the most important viruses in chronic human viral infections are HPV, 10 HBV, hepatitis C Virus (HCV), retroviruses such as human immunodeficiency virus (HIV-1 and HIV-2), herpes viruses such as Epstein Barr Virus (EBV), cytomegalovirus (CMV), HSV-1 and HSV-2, and influenza virus. Useful antigens include HBV surface antigen or HBV core antigen; ppUL83 or pp89 of CMV; antigens of gp120, gp41 or p24 proteins of HIV-1; ICP27, gD2, gB of HSV; or influenza hemagglutinin or nucleoprotein (Anthony, LS 15 *et al.*, *Vaccine* 1999; 17:373-83). Other antigens associated with pathogens that can be utilized as described herein are antigens of various parasites, including malaria, e.g., malaria peptide based on repeats of NANP.

In certain embodiments, the invention includes methods using foreign antigens in which individuals may have existing T cell immunity (such as influenza, tetanus toxin, 20 herpes etc). In other embodiments, the skilled artisan would readily be able to determine whether a subject has existing T cell immunity to a specific antigen according to well known methods available in the art and use a foreign antigen to which the subject does not already have an existing T cell immunity against.

In alternative embodiments, the antigen is from a pathogen that is a bacterium, such 25 as *Bordetella pertussis*; *Ehrlichia chaffeensis*; *Staphylococcus aureus*; *Toxoplasma gondii*; *Legionella pneumophila*; *Brucella suis*; *Salmonella enterica*; *Mycobacterium avium*; *Mycobacterium tuberculosis*; *Listeria monocytogenes*; *Chlamydia trachomatis*; *Chlamydia pneumoniae*; *Rickettsia rickettsii*; or, a fungus, such as, e.g., *Paracoccidioides brasiliensis*; or other pathogen, e.g., *Plasmodium falciparum*.

30 As used herein, the term “cancer” and includes, but is not limited to, solid tumors and blood borne tumors. The term cancer includes diseases of the skin, tissues, organs, bone, cartilage, blood and vessels. A term used to describe cancer that is far along in its growth, also referred to as “late stage cancer” or “advanced stage cancer,” is cancer that is

metastatic, e.g., cancer that has spread from its primary origin to another part of the body. In certain embodiments, advanced stage cancer includes stages 3 and 4 cancers. Cancers are ranked into stages depending on the extent of their growth and spread through the body; stages correspond with severity. Determining the stage of a given cancer helps doctors to 5 make treatment recommendations, to form a likely outcome scenario for what will happen to the patient (prognosis), and to communicate effectively with other doctors.

There are multiple staging scales in use. One of the most common ranks cancers into five progressively more severe stages: 0, I, II, III, and IV. Stage 0 cancer is cancer that is just beginning, involving just a few cells. Stages I, II, III, and IV represent progressively 10 more advanced cancers, characterized by larger tumor sizes, more tumors, the aggressiveness with which the cancer grows and spreads, and the extent to which the cancer has spread to infect adjacent tissues and body organs.

Another popular staging system is known as the TNM system, a three dimensional rating of cancer extensiveness. Using the TNM system, doctors rate the cancers they find 15 on each of three scales, where T stands for tumor size, N stands for lymph node involvement, and M stands for metastasis (the degree to which cancer has spread beyond its original locations). Larger scores on each of the three scales indicate more advanced cancer. For example, a large tumor that has not spread to other body parts might be rated T3, N0, M0, while a smaller but more aggressive cancer might be rated T2, N2, M1 20 suggesting a medium sized tumor that has spread to local lymph nodes and has just gotten started in a new organ location.

Cancers that may be treated by methods and compositions of the invention include, but are not limited to, cancer cells from the bladder, blood, bone, bone marrow, brain, breast, colon, esophagus, gastrointestinal, gum, head, kidney, liver, lung, nasopharynx, neck, ovary, 25 prostate, skin, stomach, testis, tongue, or uterus. In addition, the cancer may specifically be of the following histological type, though it is not limited to these: neoplasm, malignant; carcinoma; carcinoma, undifferentiated; giant and spindle cell carcinoma; small cell carcinoma; papillary carcinoma; squamous cell carcinoma; lymphoepithelial carcinoma; basal cell carcinoma; pilomatrix carcinoma; transitional cell carcinoma; papillary 30 transitional cell carcinoma; adenocarcinoma; gastrinoma, malignant; cholangiocarcinoma; hepatocellular carcinoma; combined hepatocellular carcinoma and cholangiocarcinoma; trabecular adenocarcinoma; adenoid cystic carcinoma; adenocarcinoma in adenomatous polyp; adenocarcinoma, familial polyposis coli; solid carcinoma; carcinoid tumor,

malignant; bronchiolo-alveolar adenocarcinoma; papillary adenocarcinoma; chromophobe carcinoma; acidophil carcinoma; oxyphilic adenocarcinoma; basophil carcinoma; clear cell adenocarcinoma; granular cell carcinoma; follicular adenocarcinoma; papillary and follicular adenocarcinoma; nonencapsulating sclerosing carcinoma; adrenal cortical
5 carcinoma; endometroid carcinoma; skin appendage carcinoma; apocrine adenocarcinoma; sebaceous adenocarcinoma; ceruminous adenocarcinoma; mucoepidermoid carcinoma; cystadenocarcinoma; papillary cystadenocarcinoma; papillary serous cystadenocarcinoma; mucinous cystadenocarcinoma; mucinous adenocarcinoma; signet ring cell carcinoma; infiltrating duct carcinoma; medullary carcinoma; lobular carcinoma; inflammatory
10 carcinoma; paget's disease, mammary; acinar cell carcinoma; adenosquamous carcinoma; adenocarcinoma w/squamous metaplasia; thymoma, malignant; ovarian stromal tumor, malignant; thecoma, malignant; granulosa cell tumor, malignant; and roblastoma, malignant; sertoli cell carcinoma; leydig cell tumor, malignant; lipid cell tumor, malignant; paraganglioma, malignant; extra-mammary paraganglioma, malignant; pheochromocytoma;
15 glomangiosarcoma; malignant melanoma; amelanotic melanoma; superficial spreading melanoma; malig melanoma in giant pigmented nevus; epithelioid cell melanoma; blue nevus, malignant; sarcoma; fibrosarcoma; fibrous histiocytoma, malignant; myxosarcoma; liposarcoma; leiomyosarcoma; rhabdomyosarcoma; embryonal rhabdomyosarcoma; alveolar rhabdomyosarcoma; stromal sarcoma; mixed tumor, malignant; mullerian mixed
20 tumor; nephroblastoma; hepatoblastoma; carcinosarcoma; mesenchymoma, malignant; brenner tumor, malignant; phyllodes tumor, malignant; synovial sarcoma; mesothelioma, malignant; dysgerminoma; embryonal carcinoma; teratoma, malignant; struma ovarii, malignant; choriocarcinoma; mesonephroma, malignant; hemangiosarcoma; hemangioendothelioma, malignant; kaposi's sarcoma; hemangiopericytoma, malignant;
25 lymphangiosarcoma; osteosarcoma; juxtacortical osteosarcoma; chondrosarcoma; chondroblastoma, malignant; mesenchymal chondrosarcoma; giant cell tumor of bone; ewing's sarcoma; odontogenic tumor, malignant; ameloblastic odontosarcoma; ameloblastoma, malignant; ameloblastic fibrosarcoma; pinealoma, malignant; chordoma; glioma, malignant; ependymoma; astrocytoma; protoplasmic astrocytoma; fibrillary
30 astrocytoma; astroblastoma; glioblastoma; oligodendrogloma; oligodendroblastoma; primitive neuroectodermal; cerebellar sarcoma; ganglioneuroblastoma; neuroblastoma; retinoblastoma; olfactory neurogenic tumor; meningioma, malignant; neurofibrosarcoma; neurilemmoma, malignant; granular cell tumor, malignant; malignant lymphoma; Hodgkin's

disease; Hodgkin's lymphoma; paragranuloma; malignant lymphoma, small lymphocytic; malignant lymphoma, large cell, diffuse; malignant lymphoma, follicular; mycosis fungoides; other specified non-Hodgkin's lymphomas; malignant histiocytosis; multiple myeloma; mast cell sarcoma; immunoproliferative small intestinal disease; leukemia; 5 lymphoid leukemia; plasma cell leukemia; erythroleukemia; lymphosarcoma cell leukemia; myeloid leukemia; basophilic leukemia; eosinophilic leukemia; monocytic leukemia; mast cell leukemia; megakaryoblastic leukemia; myeloid sarcoma; and hairy cell leukemia.

In addition to its applicability to human cancer and infectious diseases, the present invention is also intended for use in treating animal diseases in the veterinary medicine 10 context. Thus, the approaches described herein may be readily applied by one skilled in the art to treatment of veterinary herpes virus infections including equine herpes viruses, bovine viruses such as bovine viral diarrhea virus (for example, the E2 antigen), bovine herpes viruses, Marek's disease virus in chickens and other fowl; animal retroviral and lentiviral diseases (e.g., feline leukemia, feline immunodeficiency, simian 15 immunodeficiency viruses, *etc.*); pseudorabies and rabies; and the like.

As for tumor antigens, any tumor-associated or tumor-specific antigen (or tumor cell derived epitope) (collectively, TAA) that can be recognized by T cells, including CTL, can be used. These include, without limitation, mutant p53, HER2/neu or a peptide 20 thereof, or any of a number of melanoma-associated antigens such as MAGE-1, MAGE-3, MART-1/Melan-A, tyrosinase, gp75, gp100, BAGE, GAGE-1, GAGE-2, GnT-V, and p15 (see, for example, US Pat. 6,187,306, incorporated herein by reference).

It is not necessary to include a full length antigen in a nucleic acid vaccine; it suffices to include a fragment that will be presented by MHC class I and/or II. A nucleic acid may include 1, 2, 3, 4, 5 or more antigens, which may be the same or different ones.

25

Approaches for Mutagenesis of E6, E7, and other Antigens

Mutants of the antigens described here may be created, for example, using the Quick Change Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). Generally, 30 antigens that may be used herein may be proteins or peptides that differ from the naturally- occurring proteins or peptides but yet retain the necessary epitopes for functional activity. In certain embodiments, an antigen may comprise, consist essentially of, or consist of an amino acid sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to that of the naturally-occurring antigen or a

fragment thereof. In certain embodiments, an antigen may also comprise, consist essentially of, or consist of an amino acid sequence that is encoded by a nucleotide sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to a nucleotide sequence encoding the naturally-
5 occurring antigen or a fragment thereof. In certain embodiments, an antigen may also comprise, consist essentially of, or consist of an amino acid sequence that is encoded by a nucleic acid that hybridizes under high stringency conditions to a nucleic acid encoding the naturally-occurring antigen or a fragment thereof. Hybridization conditions are further described herein.

10 In one embodiment, an exemplary protein may comprise, consist essentially of, or consist of, an amino acid sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to that of a viral protein, including for example E6 or E7, such as an E6 or E7 sequence provided herein. Where the E6 or E7 protein is a detox E6 or E7 protein, the amino acid sequence of the protein may comprise, consist essentially of, or consist of an amino acid sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to that of an E6 or E7 protein, wherein the amino acids that render the protein a “detox” protein are present.

15

20 *Exemplary DNA vaccines encoding an Immunogenicity-Potentiating Polypeptide (IPP) and an antigen*

In one embodiment, a nucleic vaccine encodes a fusion protein comprising an antigen and a second protein, *e.g.*, an IPP. An IPP may act in potentiating an immune response by promoting: processing of the linked antigenic polypeptide via the MHC class I pathway or targeting of a cellular compartment that increases the processing. This basic strategy may be combined with an additional strategy pioneered by the present inventors and colleagues, that involve linking DNA encoding another protein, generically termed a “targeting polypeptide,” to the antigen-encoding DNA. Again, for the sake of simplicity, the DNA encoding such a targeting polypeptide will be referred to herein as a “targeting DNA.” That strategy has been shown to be effective in enhancing the potency of the vectors carrying only antigen-encoding DNA. See for example, the following PCT publications by Wu *et al*: WO 01/29233; WO 02/009645; WO 02/061113; WO 02/074920;

25

30

and WO 02/12281, all of which are incorporated by reference in their entirety. The other strategies include the use of DNA encoding polypeptides that promote or enhance:

- (a) development, accumulation or activity of antigen presenting cells or targeting of antigen to compartments of the antigen presenting cells leading to enhanced antigen presentation;
- (b) intercellular transport and spreading of the antigen; or
- (c) any combination of (a) and (b).
- (d) sorting of the lysosome-associated membrane protein type 1 (Sig/LAMP-1).

The strategy includes use of:

- (a) a viral intercellular spreading protein selected from the group of herpes simplex virus-1 VP22 protein, Marek's disease virus UL49 (see WO 02/09645 and US Patent No. 7,318,928), protein or a functional homologue or derivative thereof;
- (b) calreticulin (CRT) and other endoplasmic reticulum chaperone polypeptides selected from the group of CRT-like molecules ER60, GRP94, gp96, or a functional homologue or derivative thereof (see WO 02/12281 and US Patent No. 7,3442,002);
- (c) a cytoplasmic translocation polypeptide domains of a pathogen toxin selected from the group of domain II of *Pseudomonas* exotoxin ETA or a functional homologue or derivative thereof (see published US application 20040086845);
- (d) a polypeptide that targets the centrosome compartment of a cell selected from γ -tubulin or a functional homologue or derivative thereof; or
- (e) a polypeptide that stimulates dendritic cell precursors or activates dendritic cell activity selected from the group of GM-CSF, Flt3-ligand extracellular domain, or a functional homologue or derivative thereof; or .
- (f) a costimulatory signal, such as a B7 family protein, including B7-DC (see U.S. Serial No. 09/794,210), B7.1, B7.2, soluble CD40, etc.).
- (g) an anti-apoptotic polypeptide selected from the group consisting of (1) BCL-xL, (2) BCL2, (3) XIAP, (4) FLICEc-s, (5) dominant-negative caspase-8, (6) dominant negative caspase-9, (7) SPI-6, and (8) a functional homologue or derivative of any of (1)-(7). (See WO 2005/047501).

The following publications, all of which are incorporated by reference in their entirety, describe IPPs: Kim TW *et al.*, *J Clin Invest* 112: 109-117, 2003; Cheng WF *et al.*, *J Clin Invest* 108: 669-678, 2001; Hung CF *et al.*, *Cancer Res* 61:3698-3703, 2001; Chen CH *et al.*, 2000, *supra*; US Pat. 6,734,173; published patent applications WO05/081716,

WO05/047501, WO03/085085, WO02/12281, WO02/074920, WO02/061113, WO02/09645, and WO01/29233. Comparative studies of these IPPs using HPV E6 as the antigen are described in Peng, S. *et al.*, *J Biomed Sci.* 12:689-700 2005.

5 An antigen may be linked N-terminally or C-terminally to an IPP. Exemplary IPPs and fusion constructs encoding such are described below.

Lysosomal Associated Membrane Protein 1 (LAMP-1)

The DNA sequence encoding the E7 protein fused to the translocation signal sequence and LAMP-1 domain (Sig-E7-LAMP-1) [SEQ ID NO: 16] is:

10 ATGGCGGCCCGGGCGCCGGCGCTGCTCCTGCTGCTGGCAGGCCTT
GCACATGGCGCCTCAGCACTCTTGAGGATCTAATCATGCATGGAGATAACACT
ACATTGCATGAATATATGTTAGATTGCAACCAGAGACAACGTGATCTACTGT
TATGAGCAATTAAATGACAGCTCAGAGGAGGAGGATGAAATAGATGGTCCAGC
TGGACAAGCAGAACCGGACAGAGCCCATTACAATATTGTTACCTTTGTTGCAA
15 GTGTGACTCTACGCTTCGGTGTGCGTACAAAGCACACACAGTAGACATTGCTAC
TTTGGAAAGACCTGTTAATGGGCACACTAGGAATTGTGTGCCCATCTGTTCTCA
GGATCTAACACATGTTGATCCCCATTGCTGTGGCGGTGCCCTGGCAGGGCT
GGTCCTCATCGCCTCATTGCCTACCTCATTGGCAGGAAGAGGAGTCACGCCGG
CTATCAGACCCTAG.

20 The amino acid sequence of Sig/E7/LAMP-1 [SEQ ID NO: 17] is:

MAAPGARRPL LLLLLAGLAH GASALFEDLI MHGDTPTLHE YMLDLQPETT
DLYCYEQLND SSEEEDIEIDG PAGQAEPDRA HYNIVTFCCCK CDSTLRLCVQ
STHVDIRTLE DLLMGTGIV CPICSQDLNN MLIPIAVGGA LAGLVLIVLI
AYLIGRKRSW AGYQTI.

25 The nucleotide sequence of the immunogenic vector pcDNA3-Sig/E7/LAMP-1 [SEQ ID NO: 18] is shown below with the SigE7-LAMP-1 coding sequence in lower case and underscored:

GACGGATCGGGAGATCTCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCT
CTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTCG
30 CTGAGTAGTGCAGCAGAAAATTAAAGCTACAACAAGGCAAGGCTTGACCGA
CAATTGCATGAAGAATCTGCTTAGGGTTAGGCCTTGCCTGCTCGCGATGT
ACGGGCCAGATATACCGCGTTGACATTGATTATTGACTAGTTATTAAATAGTAATC
AATTACGGGGTCATTAGTTCATAGCCCATATGGAGTTCCCGCTACATAA

CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCATTGACG
TCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCATTGACGT
CAATGGGTGGACTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGT
ATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCCT
5 GGCATTATGCCAGTACATGACCTTATGGGACTTCCACTTGGCAGTACATCT
ACGTATTAGTCATCGCTATTACCATGGTATGCGGTTTGGCAGTACATCAA
TGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGA
CGTCAATGGGAGTTGTTGGCACCAAAATCAACGGACTTCCAAAATGTCG
TAACAACCTCCGCCCCATTGACGCAAATGGCGGTAGGCGTGTACGGTGGGAG
10 GTCTATATAAGCAGAGCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTT
ATCGAAATTAATACGACTCACTATAAGGAGACCCAAGCTGGCTAGCGTTAAC
GGGCCCTCTAGACTCGAGCGGCCACTGTGCTGGATATCTGCAGAATTCa
tggcgccccccggcccccggccgctgctctgctgctggcaggcctgcacatggcgccctcagcactcttgag
gatctaattatgcatggagatacacctacattgcatgaatatatgttagatttgcaccagagacaactgtctactg
15 ttatgagcaattaaatgacagctcagaggaggatgaaatagatggccagctggacaaggcagaaccggacagagccc
attacaatattgttacctttgttgcacgtgtgactctacgcctcggtgtcgtaaaagcacacacgttagacattcgt
actttggaaagacactgttaatggcacacttaggaattgtgtgccccatctgttctcaggatctaacaacatgttgcattcc
cattgctgtggcggtgccctggcaggcgtggcctcatgcctcattgcctacccattggcaggaagaggagtcacg
ccggctatcagaccatctagGGATCCGAGCTCGGTACCAAGCTTAAGTTAAACCGCTGAT
20 CAGCCTCGACTGTGCCCTCTAGTTGCCAGCCATCTGTTGTTGCCCTCCCCGT
GCCTCCTTGACCTGGAAAGGTGCCACTCCACTGTCCTTCCTAATAAAATGA
GGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGTGGGGT
GGGCAGGACAGCAAGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGG
GATGCGGTGGCTCTATGGCTCTGAGGCAGGAAAGAACCAAGCTGGGCTCTAG
25 GGGGTATCCCCACGCGCCCTGTAGCGCGCATTAAAGCGCGGGGTGTGGTGG
TTACCGCGACCGTACACTGCCAGCGCCCTAGCGCCGCTCCTTC
CTTCTCCCTTCTCGCCACGTTGCCGGCTTCCCCGTCAAGCTCTAAAT
CGGGCATCCCTTAGGGTCCGATTAGTGCCTTACGGCACCTCGACCCAAA
AAACTGATTAGGGTATGGTCACGTAGTGGCCATGCCCTGATAGACGGTT
30 TTTCGCCCTTGACGTTGGAGTCCACGTTTAATAGTGGACTCTGTTCCAAA
CTGGAACAAACACTCAACCCATTCTCGGTCTATTCTTTGATTATAAGGGATT
GGGGATTTCGGCCTATTGGTAAAAAAATGAGCTGATTAAACAAAATTAAACGC
GAATTAAATTCTGTGGAATGTGTGTCAGTTAGGGTGGAAAGTCCCCAGGCTCC

CCAGGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGT
GTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTC
AATTAGTCAGCAACCATACTCCGCCCTAACTCCGCCATCCGCCCTAACT
CCGCCAGTCCGCCATTCTCCGCCATGGCTGACTAATTTTTATTATG
5 CAGAGGCCGAGGCCGCTCTGCCTTGAGCTATTCCAGAAGTAGTGAGGAGGC
TTTTTGGAGGCCTAGGCTTGCAAAAAGCTCCGGGAGCTGTATATCCATT
TCGGATCTGATCAAGAGACAGGATGAGGATCGTTCGATGATTGAACAAAGAT
GGATTGCACGCAGGTTCTCCGGCCGCTGGGTGGAGAGGCTATTGGCTATGAC
TGGGCACAACAGACAATCGGCTGCTCTGATGCCGCGTGTCCGGCTGTCAGCG
10 CAGGGCGCCCGGTTCTTTGTCAAGACCGACCTGTCCGGTGCCTGAATGAA
CTGCAGGACGAGGCAGCGCGCTATCGTGGCTGGCCACGACGGCGTTCCCTG
CGCAGCTGTGCTCGACGTTGTCACTGAAGCGGAAGGGACTGGCTGCTATTGGG
CGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTGCTCCTGCCAGAAAGT
ATCCATCATGGCTGATGCAATCGGGCGCTGCATACGCTTGATCCGGTACCTG
15 CCCATTGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGG
AAGCCGGTCTTGTGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGCG
CCAGCCGAACTGTTGCCAGGCTCAAGGCGCGATGCCGACGGCGAGGATCT
CGTCGTGACCCATGGCGATGCCTGCTGCCAATATCATGGTGGAAAATGGCG
CTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGA
20 CATAGCGTTGGCTACCGTGATATTGCTGAAGAGACTGGCGCGAATGGGCTGA
CCGCTTCCTCGTGCTTACGGTATGCCGCTCCGATTGCAAGCGCATCGCCTTC
TATGCCTTCTGACGAGTTCTGAGCGGGACTCTGGGTTGAAATGACC
GACCAAGCGACGCCAACCTGCCATCACGAGATTGCAATTCCACCGCCGCTTC
TATGAAAGGTTGGCTCGGAATCGTTCCGGACGCCGGCTGGATGATCCTC
25 CAGCGCGGGATCTCATGCTGGAGTTCTCGCCACCCCAACTGTTATTG
CAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTCAAAATAAA
GCATTTTTCACTGCATTCTAGTTGTGGTTGTCAAACACTCATCAATGTATCTT
ATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTGGCGTAATCATGGTC
ATAGCTGTTCCCTGTGTGAAATTGTTATCCGCTCACAAATTCCACACAAACATACG
30 AGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCA
CATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGAAACCTGTCGTGC

CAGCTGCATTAATGAATCGGCCAACGCGGGGGAGAGGCGGTTGCGTATTGG
GCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCCTCGGTCGGCTGC
CGAGCGGTATCAGCTCACTCAAAGGCGTAATAACGGTTATCCACAGAACATCAG
GGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAA
5 CCGTAAAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCCCTGACGA
GCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTAT
AAAGATAACCAGGCAGTTCCTGGAAAGCTCCCTCGTGCCTCTCCTGTTCCGA
CCCTGCCGCTTACCGGATACCTGTCCGCCTTCTCCCTCGGGAAAGCGTGGCGCT
TTCTCAATGCTCACGCTGTAGGTATCTCAGTTGGTAGGTCGTTCGCTCCAAG
10 CTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTATCCGGT
AACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATGCCACTGGCAGCA
GCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTT
CTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTG
CGCTCTGCTGAAGCCAGTTACCTCGGAAAAAAGAGTTGGTAGCTCTGATCCGG
15 CAAACAAACCACCGCTGGTAGCGGTGGTTTTTTGTTGCAAGCAGCAGATTAC
GCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGA
CGCTCAGTGGAACGAAAACCTACGTTAACGGGATTGGTACAGGATTATCAA
AAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATCAATCTA
AAAGTATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC
20 ACCTATCTCAGCGATCTGTCTATTGTTCATCCATAGTTGCCCTGACTCCCCGTC
GTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG
ATACCGCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACAGCCA
GCCGGAAGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAG
TCTATTAATTGTTGCCGGAAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTG
25 CGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTGTGGT
ATGGCTTCATTCAAGCTCCGGTCCCAACGATCAAGGCGAGTTACATGATCCCC
ATGTTGTGAAAAAAAGCGGTTAGCTCCTCGGTCCGATCGTTGTCAGAAGT
AAGTTGGCCGCAGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTT
ACTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAG
30 TCATTCTGAGAATAGTGTATCGGGCGACCGAGTTGCTCTGCCCGCGTCAATA
CGGGATAATACCGCGCCACATAGCAGAACCTTAAAAGTGCTCATCATTGGAAA
ACGTTCTCGGGCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTTC
GATGTAACCCACTCGTCACCCAACTGATCTCAGCATCTTACTTCACCAGC

GTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAGGGAATAA
GGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTCAATATTATTGAA
GCATTATCAGGGTATTGTCTCATGAGCGGATACATATTGAATGTATTAGA
AAAATAAACAAATAGGGTCCGCGCACATTCCCCGAAAAGTGCCACCTGAC
5 GTC,

HSP70 from M. tuberculosis

The nucleotide sequence encoding HSP70 (SEQ ID NO: 19) is (nucleotides 10633-12510 of the *M. tuberculosis* genome in GenBank NC_000962):

10 atggctcg tgccgtcggt atcgacctcg ggaccaccaa ctccgtcg tcgggtctgg aaggtggcga cccggcgctc
gtcgccaaact ccgagggctc caggaccacc ccgtcaattg tcgcgttcgc ccgcaacggt gaggtgtctgg tcggccagcc
cgccaagaac caggcagtga ccaacgtcg tcgcaccgtg cgctcggtca agcgacacat gggcagcgcac
tggtccatag agattgacgg caagaaatac accgcgcgg agatcagcgc ccgcattctg atgaagctga agcgcgacgc
cgaggcctac ctgcgtgagg acattaccga cgcggttatc acgacgccc cctacttcaa tgacgcccag cgtcaggcca
15 ccaaggacgc cggccagatc gcccgcctca acgtgtcg gatgtcaac gagccgaccc cggccgcgc
ggcctacggc ctgcacaagg gcgagaagga gcagcgaatc ctggcttcg acttgggtgg tggcacttgc gacgttccc
tgctggagat cggcgagggt gtgggtgagg tccgtgcac ttgggtgac aaccacctcg gccgcacga ctgggaccag
cgggtcgatc attggctgtt ggacaagttc aaggcacca gcccgcacgc tctgaccaag gacaagatgg cgatgcagcg
gtcgccggaa gcccgcaga aggcaaaat cgagctgagt tcgagtcagt ccacctcgat caacctgccc tacatcaccc
20 tcgacgcgcga caagaacccg ttgttcttag acgagcagct gacccgcgcg gagttccaac ggatcactca ggacctgcgt
gaccgcactc gcaagccgtt ccagtcggtg atcgctgaca ccggcatttc ggtgtcgag atcgatcagc ttgtgtcg
gggtggatc accccggatgc ccgcgggtgac cgatctgtc aaggaactca ccggcggcaa ggaaccac
aaggcgatca accccgatga gttgtcgcc gtgggagccg ctctgcaggc cggcgtccctc aaggcgagg
tgaaaagacgt tctgcgtctt gatgttaccc cgctgagcct gggatcgag accaaggcg gggatgac caggctcatc
25 gagcgcaaca ccacgatccc caccaagcg tcggagactt tcaccaccgc cgacgacaac caaccgtcg
tgcagatcca ggttatcag ggggagcgtg agatcgccgc gcacaacaag ttgctgggt cttcgagct gaccggcatc
ccggccgcgc cgccggggat tccgcagatc gaggtcactt tcgacatcgac ccgcacgcg attgtgcacg tcaccgc
ggacaaggc accggcaagg agaacacgt ccgaatccag gaaggctcg gcctgtccaa ggaagacatt
gaccgcatga tcaaggacgc cgaagcgcac gcccaggagg atcgcaagcg tcgcaggag gccgatgttc
30 gtaatcaagc cgagacattg gtctaccaga cggagaagtt cgtcaaagaa cagcgtgagg ccgagggtgg ttgcaggt
cctgaagaca cgctgaacaa gttgtatgcc gcgggtggcgg aagcgaaggc ggcacttggc ggatcgata ttccggcat
caagtcggcg atggagaagc tggccagga gtcgcaggct ctggggcaag cgatctacga agcagctag

gctgcgtcac aggccactgg cgctgccccac cccggccggcg agccgggggg tgcccacccc ggctggctg
atgacgttgt ggacgcggag gtggtcgacg acggccggga ggcagaatgt

The amino acid sequence of HSP70 [SEQ ID NO: 20] is:

MARAVGIDLG TTNSVVSVLE GGDPVVVANS EGSRTTPSIV AFARNGEVLV
5 GQPAKNQAVT NVDRTVRSVK RHMGSDWSIE IDGKKYTAPE ISARILMKLK
RDAEAYLGED ITDAVITTPA YFNDAQRQAT KDAQQIAGLN VLRLIVNEPTA
AALAYGLDKG EKEQRILVFD LGGGTFDVSL LEIGEGVVEV RATSGDNHLG
GDDWDQRVVD WLVDKFKGTS GIDLTKDKMA MQRLREAAEK AKIELSSSQS
TSINLPYITV DADKNPLFLD EQLTRAEFQR ITQDLLDRTR KPFQSVIADT
10 GISVSEIDHV VLVGGSTRMP AVTDLVKELT GGKEPNKGVN PDEVVAVGAA
LQAGVLKGEV KDVLLLDVTP LSLGIETKGG VMTRLIERNT TIPTKRSETF
TTADDNQPSV QIQVYQGERE IAAHNKLLGS FELTGIPPAP RGIPQIEVTF
DIDANGIVHV TAKDKGTGKE NTIRIQEGSG LSKEDIDRMI KDAEAHAEED
RKRREEADVR NQAETLVYQT EKFVKEQREA EGGSKVPEDT LNKVDAAVAE
15 AKAALGGSDI SAIKSAMEKL GQESQALGQA IYEAAQAASQ ATGAAHPGGE
PGGAHPGSAD DVVDAEVVDD GREAK

The E7-Hsp70 chimera/fusion polypeptide sequences (Nucleotide sequence SEQ ID NO: 21 and amino acid sequence SEQ ID NO: 22) are provided below. The E7 coding sequence is shown in upper case and underscored.

20 1/1 31/11
ATG CAT GGA GAT ACA CCT ACA TTG CAT GAA TAT ATG TTA GAT TTG CAA
CCA GAG ACA ACT
 Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr
 61/21 91/31
 25 GAT CTC TAC TGT TAT GAG CAA TTA AAT GAC AGC TCA GAG GAG GAT
GAA ATA GAT GGT
 Asp Leu Tyr Cys Tyr Glu Gln Leu Asn Asp Ser Ser Glu Glu Glu Asp Glu Ile Asp Gly
 121/41 151/51
CCA GCT GGA CAA GCA GAA CCG GAC AGA GCC CAT TAC AAT ATT GTA ACC
 30 TTT TGT TGC AAG
 Pro Ala Gly Gln Ala Glu Pro Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys
 181/61 211/71
TGT GAC TCT ACG CTT CGG TTG TGC GTA CAA AGC ACA CAC GTA GAC ATT
CGT ACT TTG GAA
 35 Cys Asp Ser Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg Thr Leu Glu
 241/81 271/91
GAC CTG TTA ATG GGC ACA CTA GGA ATT GTG TGC CCC ATC TGT TCT CAA
GGA TCC atg gct
 Asp Leu Leu Met Gly Thr Leu Gly Ile Val Cys Pro Ile Cys Ser Gln Gly Ser Met *ala*
 40 301/101 331/111

cgt gcg gtc ggg atc gac ctc ggg acc acc aac tcc gtc gtc tcg gtt ctg gaa ggt ggc
 Arg Ala Val Gly Ile Asp Leu Gly Thr Thr Asn Ser Val Val Ser Val Leu Glu Gly Gly
 361/121 391/131

5 gac ccg gtc gtc gcc aac tcc gag ggc tcc agg acc acc ccg tca att gtc gcg ttc
 Asp Pro Val Val Ala Asn Ser Glu Gly Ser Arg Thr Thr Pro Ser Ile Val Ala Phe
 421/141 451/151

gcc ccg aac ggt gag gtg ctg gtc ggc cag ccc gcc aag aac cag gca gtg acc aac gtc
 Ala Arg Asn Gly Glu Val Leu Val Gly Gln Pro Ala Lys Asn Gln Ala Val Thr Asn Val
 481/161 511/171

10 gat cgc acc gtg cgc tcg aag cga cac atg ggc agc gac tgg tcc ata gag att gac
 Asp Arg Thr Val Arg Ser Val Lys Arg His Met Gly Ser Asp Trp Ser Ile Glu Ile Asp
 541/181 571/191

ggc aag aaa tac acc gcg ccg gag atc agc gcc ccg att ctg atg aag ctg aag cgc gac
 Gly Lys Lys Tyr Thr Ala Pro Glu Ile Ser Ala Arg Ile Leu Met Lys Leu Lys Arg Asp
 15 601/201 631/211

gcc gag gcc tac ctc ggt gag gac att acc gac gcg gtt atc acg acg ccc gcc tac ttc
 Ala Glu Ala Tyr Leu Gly Glu Asp Ile Thr Asp Ala Val Ile Thr Thr Pro Ala Tyr Phe
 661/221 691/231

aat gac gcc cag cgt cag gcc acc aag gac gcc ggc cag atc gcc ggc ctc aac gtg ctg
 20 Asn Asp Ala Gln Arg Gln Ala Thr Lys Asp Ala Gly Gln Ile Ala Gly Leu Asn Val Leu
 721/241 751/251

cgg atc gtc aac gag ccg acc gcg gcc gcg ctg gcc tac ggc ctc gac aag ggc gag aag
 Arg Ile Val Asn Glu Pro Thr Ala Ala Ala Leu Ala Tyr Gly Leu Asp Lys Gly Glu Lys
 781/261 811/271

25 gag cag cga atc ctg gtc gac ttg ggt ggc act ttc gac gtt tcc ctg ctg gag
 Glu Gln Arg Ile Leu Val Phe Asp Leu Gly Gly Thr Phe Asp Val Ser Leu Leu Glu
 841/281 871/291

atc ggc gag ggt gtg gtt gag gtc cgt gcc act tcg ggt gac aac cac ctc ggc ggc gac
 Ile Gly Glu Gly Val Val Glu Val Arg Ala Thr Ser Gly Asp Asn His Leu Gly Gly Asp
 30 901/301 931/311

gac tgg gac cag cgg gtc gat tgg ctg gtg gac aag ttc aag ggc acc agc ggc atc
 Asp Trp Asp Gln Arg Val Val Asp Trp Leu Val Asp Lys Phe Lys Gly Thr Ser Gly Ile
 961/321 991/331

gat ctg acc aag gac aag atg gcg atg cag cgg ctg cgg gaa gcc gac aag gca aag
 35 Asp Leu Thr Lys Asp Lys Met *ala* Met Gln Arg Leu Arg Glu Ala Ala Glu Lys Ala Lys
 1021/341 1051/351

atc gag ctg agt tcg agt cag tcc acc tcg atc aac ctg ccc tac atc acc gtc gac gcc
 Ile Glu Leu Ser Ser Gln Ser Thr Ser Ile Asn Leu Pro Tyr Ile Thr Val Asp Ala
 1081/361 1111/371

40 gac aag aac ccg ttg ttc tta gac gag cag ctg acc cgc gcg gag ttc caa cgg atc act
 Asp Lys Asn Pro Leu Phe Leu Asp Glu Gln Leu Thr Arg Ala Glu Phe Gln Arg Ile Thr
 1141/381 1171/391

cag gac ctg ctg gac cgc act cgc aag ccg ttc cag tcg gtg atc gtc gac acc ggc att
 Gln Asp Leu Leu Asp Arg Thr Arg Lys Pro Phe Gln Ser Val Ile Ala Asp Thr Gly Ile
 45 1201/401 1231/411

tcg gtg tcg gag atc gat cac gtt gtg ctc gtg ggt tcg acc cgg atg ccc gcg gtg
 Ser Val Ser Glu Ile Asp His Val Val Leu Val Gly Gly Ser Thr Arg Met Pro Ala Val
 1261/421 1291/431

acc gat ctg gtc aag gaa ctc acc ggc ggc aag gaa ccc aac aag ggc gtc aac ccc gat

Thr Asp Leu Val Lys Glu Leu Thr Gly Gly Lys Glu Pro Asn Lys Gly Val Asn Pro Asp
 1321/441 1351/451
 gag gtt gtc gcg gtg gga gcc gct ctg cag gcc ggc gtc ctc aag ggc gag gtg aaa gac
 Glu Val Val Ala Val Gly Ala Ala Leu Gln Ala Gly Val Leu Lys Gly Glu Val Lys Asp
 5 1381/461 1411/471
 gtt ctg ctg ctt gat gtt acc ccg ctg agc ctg ggt atc gag acc aag ggc ggg gtg atg
 Val Leu Leu Leu Asp Val Thr Pro Leu Ser Leu Gly Ile Glu Thr Lys Gly Gly Val Met
 1441/481 1471/491
 acc agg ctc atc gag cgc aac acc acg atc ccc acc aag cgg tcg gag act ttc acc acc
 10 Thr Arg Leu Ile Glu Arg Asn Thr Thr Ile Pro Thr Lys Arg Ser Glu Thr Phe Thr Thr
 1501/501 1531/511
 gcc gac gac aac caa ccg tcg gtg cag atc cag gtc tat cag ggg gag cgt gag atc gcc
 Ala Asp Asp Asn Gln Pro Ser Val Gln Ile Gln Val Tyr Gln Gly Glu Arg Glu Ile Ala
 1561/521 1591/531
 15 gcg cac aac aag ttg ctc ggg tcc ttc gag ctg acc ggc atc ccg ccg gcg ccg cgg ggg
 Ala His Asn Lys Leu Leu Gly Ser Phe Glu Leu Thr Gly Ile Pro Pro Ala Pro Arg Gly
 1621/541 1651/551
 att ccg cag atc gag gtc act ttc gac atc gac gcc aac ggc att gtg cac gtc acc gcc
 Ile Pro Gln Ile Glu Val Thr Phe Asp Ile Asp Ala Asn Gly Ile Val His Val Thr Ala
 20 1681/561 1711/571
 aag gac aag gcc acc ggc aag gag aac acg atc cga atc cag gaa ggc tcg ggc ctg tcc
 Lys Asp Lys Gly Thr Gly Lys Glu Asn Thr Ile Arg Ile Gln Glu Gly Ser Gly Leu Ser
 1741/581 1771/591
 aag gaa gac att gac cgc atg atc aag gac gcc gaa gcg cac gcc gag gag gat cgc aag
 25 Lys Glu Asp Ile Asp Arg Met Ile Lys Asp Ala Glu Ala His Ala Glu Glu Asp Arg Lys
 1801/601 1831/611
 cgt cgc gag gag gcc gat gtt cgt aat caa gcc gag aca ttg gtc tac cag acg gag aag
 Arg Arg Glu Glu Ala Asp Val Arg Asn Gln Ala Glu Thr Leu Val Tyr Gln Thr Glu Lys
 1861/621 1891/631
 30 ttc gtc aaa gaa cag cgt gag gcc gag ggt ggt tcg aag gta cct gaa gac acg ctg aac
 Phe Val Lys Glu Gln Arg Glu Ala Glu Gly Ser Lys Val Pro Glu Asp Thr Leu Asn
 1921/641 1951/651
 aag gtt gat gcc gcg gtg gcg gaa gcg aag gcg gca ctt ggc gga tcg gat att tcg gcc
 Lys Val Asp Ala Ala Val Ala Glu Ala Lys Ala Leu Gly Gly Ser Asp Ile Ser Ala
 35 1981/661 2011/671
 atc aag tcg gcg atg gag aag ctg ggc cag gag tcg cag gct ctg ggg caa gcg atc tac
 Ile Lys Ser Ala Met Glu Lys Leu Gly Gln Glu Ser Gln Ala Leu Gly Gln Ala Ile Tyr
 2041/681 2071/691
 gaa gca gct cag gct gcg tca cag gcc act ggc gct gcc cac ccc ggc tcg gct gat gaA
 40 GLU ALA ALA GLN ALA ALA SER GLN ALA THR GLY ALA ALA HIS PRO GLY
 SER ALA ASP GLU
 2101/701
 AGC a
 Ser.
 45

ETA(dII) from *Pseudomonas aeruginosa*

The complete coding sequence for *Pseudomonas aeruginosa* exotoxin type A (ETA) - SEQ ID NO: 23 - GenBank Accession No. K01397, is shown below:

tacgcccagg accaggaacc cgacgcacgc ggccggatcc gcaacgggtgc cctgctgccc gtctatgtgc
 cgcgctcgag cctgccgggc ttctaccgca ccagcctgac cctggccgccc ccggaggcgg cgggcgaggt
 cgaacggctg atcggccatc cgctgccgt ggcgcctggac gccatcaccg gccccgagga ggaaggcggg
 cgcctggaga ccattctcggt ctggccgctg gccgagcgcga ccgtgggtat tccctcgccg atccccaccg acccgcgcaa
 5 cgtcggcggc gacctcgacc cgtccagcat ccccgacaag gaacaggcga tcagcgccct gccggactac
 gccagccagc ccggcaaacc gccgcgcgag gacctaagt aactgccgcg accggccggc tccctcgca
 ggagccggcc ttctcggggc ctggccatac atcagggttt cctgatgcca gccaatcga atatgaattc 2760

The amino acid sequence of ETA (SEQ ID NO: 24), GenBank Accession No. K01397, is:

10 *MHLIPH^WIPL VASLG^ILLAGG SSAS^AEEAF DLWNECAKAC VL^LDLKDGVRS*
 SRMSVDPAIA DTNGQGV^LHY SMVLEGGNDA LKLAIDNALS ITSDGLTIRL
 EGGVEPNKPV RYSYTRQARG SWSLNWLVPI GHEKPSNIKV FIHELNAGNQ
 LSHMSPIYTI EMGDELLAKL ARDATFFVRA HESNEMQPTL AISHAGVSVV
 MAQTQPRREK RWSEWASGKV LCLLDPLDGV YNYLAQQRCN LDDTWEGKIY
 15 RVLAGNPAKH DLDIKPTVIS HLRHFPEGGS LAALTAHQAC HLPLETFTRH
RQPRGWEQLE QCGYPVQRLV ALYLAARLSW NQVDQVIRNA LASPGSGGDL
GEAIREQPEQ ARLALTAAA ESERFVRQGT GNDEAGAANA DVVSLTCPVA
AGECA^GGPADS GDALLERNYP TGA^EFLGDGG DVSFSTRGTQ NWTVERLLQA
 HRQLEERGYV FVGYHGT^FLE AAQ^SIVFGGV RARSQDLD^AI WRGFYIAGDP
 20 ALAYGYAQDQ EPDARGRIRN GALLRVYVPR SSLPGFYRTS LT^LAAPEAAG
 EVERLIGHPL PLRLDAITGP EEEGG^RLETI LGWPLAERTV VIPS^APTDP
 RNVGGDLDPS SIPDKEQ^AIS ALPDYASQPG KPPREDLK 638

Residues 1-25 (italicized) above represent the signal peptide. The first residue of the mature polypeptide, Ala, is bolded/underscored. The mature polypeptide is residues 26-638 of SEQ ID NO: 24.

Domain II (ETA(II)), translocation domain (underscored above) spans residues 247-417 of the mature polypeptide (corresponding to residues 272-442 of SEQ ID NO: 24) and is presented below separately as SEQ ID NO: 25.

RLHFPEGGSL AALTAHQACH LPLETFTRHR QPRGWEQLEQ CGYPVQRLVA
 30 LYLAARLSWN QVDQVIRNAL ASPGSGGDLG EAIREQPEQA RLALTAAA
 SERFVRQGTG NDEAGAANAD VVSLTCPVAA GECAGP^AD^SG DALLERNYP
 GAEFLGDGGD VSFSTRGTQ^N W 171

The construct in which ETA(dII) is fused to HPV-16 E7 is shown below (nucleotides; SEQ ID NO: 26 and amino acids; SEQ ID NO: 27). The ETA(dII) sequence appears in plain font, extra codons from plasmid pcDNA3 are italicized. Nucleotides between ETA(dII) and E7 are also bolded (and result in the interposition of two amino acids between ETA(dII) and E7). The E7 amino acid sequence is underscored (ends with Gln at position 269).

10	1/1	31/11
	atg cgc ctg cac ttt ccc gag ggc ggc agc ctg gcc gcg ctg acc	
	gcg cac cag gct tgc	
	Met arg leu his phe pro glu gly gly ser leu ala ala leu thr	
	ala his gln ala cys	
	61/21	91/31
	cac ctg ccg ctg gag act ttc acc cgt cat cgc cag ccg cgc ggc	
15	tgg gaa caa ctg gag	
	His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly	
	Trp Glu Gln Leu Glu	
	121/41	151/51
	cag tgc ggc tat ccg gtg cag cgg ctg gtc gcc ctc tac ctg gcg	
20	gcg cgg ctg tcg tgg	
	Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala	
	Ala Arg Leu Ser Trp	
	181/61	211/71
	aac cag gtc gac cag gtg atc cgc aac gcc ctg gcc agc ccc ggc	
25	agc ggc ggc gac ctg	
	Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly	
	Ser Gly Gly Asp Leu	
	241/81	271/91
	ggc gaa gcg atc cgc gag cag ccg gag cag gcc cgt ctg gcc ctg	
30	acc ctg gcc gcc	
	Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu	
	Thr Leu Ala Ala Ala	
	301/101	331/111
	gag agc gag cgc ttc gtc cgg cag ggc acc ggc aac gac gag gcc	
35	ggc gcg gcc aac gcc	
	Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala	
	Gly Ala Ala Asn Ala	
	361/121	391/131
	gac gtg gtg agc ctg acc tgc ccg gtc gcc ggc ggt gaa tgc gcg	
40	ggc ccc gcg gac agc	
	Asp Val Val Ser Leu Thr Cys Pro Val Ala Ala Gly Glu Cys Ala	
	Gly Pro Ala Asp Ser	
	421/141	451/151
	ggc gac gcc ctg ctg gag cgc aac tat ccc act ggc gcg gag ttc	
45	ctc ggc gac ggc ggc	
	Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe	
	Leu Gly Asp Gly Gly	
	481/161	511/171
	gac gtc agc ttc agc acc cgc ggc acg cag aac gaa ttc atg cat	
	gga qat aca cct aca	

Asp Val Ser Phe Ser Thr Arg Gly Thr Gln **Asn Glu Phe** Met His
Gly Asp Thr Pro Thr
 541/181 571/191
 ttg cat gaa tat atg tta gat ttg caa cca gag aca act gat ctc
 5 tac tgt tat gag caa
Leu His Glu Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr Asp Leu
Tyr Cys Tyr Glu Gln
 601/201 631/211
 tta aat gac agc tca gag gag gag gat gaa ata gat ggt cca gct
 10 gga caa gca gaa ccg
Leu Asn Asp Ser Ser Glu Glu Asp Glu Ile Asp Gly Pro Ala
Gly Gln Ala Glu Pro
 661/221 691/231
 gac aga gcc cat tac aat att gta acc ttt tgt tgc aag tgt gac
 15 tct acg ctt cgg ttg
Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys Cys Asp
Ser Thr Leu Arg Leu
 721/241 751/251
 tgc gta caa agc aca cac gta gac att cgt act ttg gaa gac ctg
 20 tta atg ggc aca cta
Cys Val Gln Ser Thr His Val Asp Ile Arg Thr Leu Glu Asp Leu
Leu Met Gly Thr Leu
 781/261 811/271
 gga att gtg tgc ccc atc tgt tct caa gga tcc gag ctc ggt acc
 25 aag ctt aag ttt aaa
Gly Ile Val Cys Pro Ile Cys Ser Gln Gly Ser Glu Leu Gly Thr
Lys Leu Lys Phe Lys
 841/281
 ccg ctg atc agc ctc gac tgt gcc ttc tag
 30
Pro Leu Ile Ser Leu Asp Cys Ala Phe AMB
 The nucleotide sequence of the pcDNA3 vector encoding E7 and HSP70 (pcDNA3-E7-Hsp70) (SEQ ID NO: 3).
 atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc
 35 48
 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
 1 5 10 15
 gat gag tac gag gat ctg tac acc ccg tct tca ggt atg gcg agt
 40 96
 Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser
 20 25 30
 ccc gat agt ccg cct gac acc tcc cgc cgt ggc gcc cta cag aca cgc
 45 144
 Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg
 35 40 45
 tcg cgc cag agg ggc gag gtc cgt ttc gtc cag tac gac gag tcg gat
 50 192
 Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp
 50 55 60
 tat gcc ctc tac ggg ggc tcg tct tcc gaa gac gac gaa cac ccg gag
 55 240
 Tyr Ala Leu Tyr Gly Ser Ser Glu Asp Asp Glu His Pro Glu

	65	70	75	80												
	gtc ccc cgg acg cgg cgt ccc gtt tcc ggg gcg gtt ttg tcc ggc ccc 288															
5	Val	Pro	Arg	Thr	Arg	Arg	Pro	Val	Ser	Gly	Ala	Val	Leu	Ser	Gly	Pro
	85				90					95						
	ggg cct gcg cgg gcg cct ccg cca ccc gct ggg tcc gga ggg gcc gga 336															
10	Gly	Pro	Ala	Arg	Ala	Pro	Pro	Pro	Ala	Gly	Ser	Gly	Gly	Ala	Gly	
	100				105				110							
	cgc aca ccc acc acc gcc ccc cgg gcc ccc cga acc acc cag cgg gtg gcg 384															
15	Arg	Thr	Pro	Thr	Thr	Ala	Pro	Arg	Ala	Pro	Arg	Thr	Gln	Arg	Val	Ala
	115					120				125						
	tct aag gcc ccc gcg gcc ccg gcg gag acc acc cgc ggc agg aaa 432															
20	Ser	Lys	Ala	Pro	Ala	Ala	Pro	Ala	Ala	Glu	Thr	Thr	Arg	Gly	Arg	Lys
	130				135					140						
	tcg gcc cag cca gaa tcc gcc gca ctc cca gac gcc ccc gcg tcg acg 480															
25	Ser	Ala	Gln	Pro	Glu	Ser	Ala	Ala	Leu	Pro	Asp	Ala	Pro	Ala	Ser	Thr
	145				150				155			160				
	gcg cca acc cga tcc aag aca ccc gcg cag ggg ctg gcc aga aag ctg 528															
30	Ala	Pro	Thr	Arg	Ser	Lys	Thr	Pro	Ala	Gln	Gly	Leu	Ala	Arg	Lys	Leu
	165					170			175							
	cac ttt agc acc gcc ccc cca aac ccc gac gcg cca tgg acc ccc cgg 576															
35	His	Phe	Ser	Thr	Ala	Pro	Pro	Asn	Pro	Asp	Ala	Pro	Trp	Thr	Pro	Arg
	180				185					190						
	gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc gcg gtc ggg cgc ctg 624															
40	Val	Ala	Gly	Phe	Asn	Lys	Arg	Val	Phe	Cys	Ala	Ala	Val	Gly	Arg	Leu
	195					200				205						
	gcg gcc atg cat gcc cgg atg gcg gct gtc cag ctc tgg gac atg tcg 672															
45	Ala	Ala	Met	His	Ala	Arg	Met	Ala	Ala	Val	Gln	Leu	Trp	Asp	Met	Ser
	210				215					220						
	cgt ccg cgc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc acc 720															
50	Arg	Pro	Arg	Thr	Asp	Glu	Asp	Leu	Asn	Glu	Leu	Leu	Gly	Ile	Thr	Thr
	225				230				235			240				
	atc cgc gtg acg gtc tgc gag ggc aaa aac ctg ctt cag cgc gcc aac 768															
55	Ile	Arg	Val	Thr	Val	Cys	Glu	Gly	Lys	Asn	Leu	Leu	Gln	Arg	Ala	Asn
	245					250				255						
	gag ttg gtg aat cca gac gtc gtc cag gac gtc gac gcg gcc acg gcg 816															
60	Glu	Leu	Val	Asn	Pro	Asp	Val	Val	Gln	Asp	Val	Asp	Ala	Ala	Thr	Ala
	260				265				270							
	act cga ggg cgt tct gtc gcg tcg cgc ccc acc gag cga cct cga gcc 864															

Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala
 275 280 285
 cca gcc cgc tcc gct tct cgc ccc aga cgg ccc gtc gag ggt acc gag
 5 912
 Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu
 290 295 300
 ctc gga tcc atg cat gga gat aca cct aca ttg cat gaa tat atg tta
 10 960
 Leu Gly Ser Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu
 305 310 315 320
 gat ttg caa cca gag aca act gat ctc tac tgt tat gag caa tta aat
 15 1008
 Asp Leu Gln Pro Glu Thr Thr Asp Leu Tyr Cys Tyr Glu Gln Leu Asn
 325 330 335
 20 gac agc tca gag gag gat gaa ata gat ggt cca gct gga caa gca
 1056
 Asp Ser Ser Glu Glu Asp Glu Ile Asp Gly Pro Ala Gly Gln Ala
 340 345 350
 gaa ccg gac aga gcc cat tac aat att gta acc ttt tgt tgc aag tgt
 25 1104
 Glu Pro Asp Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys Cys
 355 360 365
 gac tct acg ctt cgg ttg tgc gta caa agc aca cac gta gac att cgt
 30 1152
 Asp Ser Thr Leu Arg Leu Cys Val Gln Ser Thr His Val Asp Ile Arg
 370 375 380
 act ttg gaa gac ctg tta atg ggc aca cta gga att gtg tgc ccc atc
 35 1200
 Thr Leu Glu Asp Leu Leu Met Gly Thr Leu Gly Ile Val Cys Pro Ile
 385 390 400
 tgt tct cag gat aag ctt aag ttt aaa ccg ctg atc agc ctc gac tgt
 40 1248
 Cys Ser Gln Asp Lys Leu Lys Phe Lys Pro Leu Ile Ser Leu Asp Cys
 405 410 415
 45 gcc ttc tag
 1257
 Ala Phe

The nucleic acid sequence of plasmid construct pcDNA3-ETA(dII)/E7 (SEQ ID NO: 4). ETA(dII)/E7 is ligated into the EcoRI/BamHI sites of pcDNA3 vector. The nucleotides encoding ETA(dII)/E7 are shown in upper case and underscored. Plasmid sequence is lower case.

Calreticulin (CRT)

Calreticulin (CRT), a well-characterized ~46 kDa protein was described briefly above, as were a number of its biological and biochemical activities. As used herein, 55 “calreticulin” or “CRT” refers to polypeptides and nucleic acids molecules having

substantial identity to the exemplary human CRT sequences as described herein or homologues thereof, such as rabbit and rat CRT - well-known in the art. A CRT polypeptide is a polypeptide comprising a sequence identical to or substantially identical to the amino acid sequence of CRT. An exemplary nucleotide and amino acid sequence for a 5 CRT used in the present compositions and methods are presented below. The terms "calreticulin" or "CRT" encompass native proteins as well as recombinantly produced modified proteins that, when fused with an antigen (at the DNA or protein level) promote the induction of immune responses and promote angiogenesis, including a CTL response. Thus, the terms "calreticulin" or "CRT" encompass homologues and allelic variants of 10 human CRT, including variants of native proteins constructed by *in vitro* techniques, and proteins isolated from natural sources. The CRT polypeptides of the invention, and sequences encoding them, also include fusion proteins comprising non-CRT sequences, particularly MHC class I-binding peptides; and also further comprising other domains, *e.g.*, epitope tags, enzyme cleavage recognition sequences, signal sequences, secretion signals 15 and the like.

A human CRT coding sequence is shown below (SEQ ID NO: 28):

1 **atgctgtat** ccgtgcgcgt gctgcteggc ctcctcgcc tggccgtgc cgagcccgcc
61 gtctacttca aggagcagtt tctggacgga gacgggtgga ctccccgtg gatcgaatcc
121 aaacacaagt cagatttgg caaattcggt ctcagttccg gcaagttcta cggtaacgag
181 gagaaagata aaggtttgcg gacaagccag gatgcacgct tttatgctct gtcggccagt
241 ttcgagccct tcagcaacaa aggccagacg ctgggtggc agttcacggg gaaacatgag
301 cagaacatcg actgtggggg cggctatgtg aagctgtttc ctaatagttt ggaccagaca
361 gacatgcacg gagactcaga atacaacatc atgtttggc ccgacatctg tggccctggc
421 accaagaagg ttcatgtcat cttcaactac aaggcaaga acgtgctgat caacaaggac
481 atccgttgca aggatgatga gtttacacac ctgtacacac tgattgtgcg gccagacaac
541 acctatgagg tgaagattga caacagccag gtggagtcgg gtccttggg agacgattgg
601 gacttcctgc cacccaaagaa gataaaggat cctgtatgctt caaaaccggg agactgggat
661 gagcggggcca agatcgatga tcccacagac tccaaggctg aggactgggca caagcccgag
721 catatccctg accctgtatgc taagaagccc gaggactggg atgaagagat ggacggagag
781 tgggaacccc cagtgattca gaaccctgag tacaagggtg agtggaaagcc ccggcagatc
841 gacaacccag attacaaggg cacttggatc cacccagaaa ttgacaaccc cgagtattct
901 cccgatccca gtatctatgc ctatgataac tttggcgtgc tggccctggg cctctggcag
961 gtcaagtctg gcaccatctt tgacaacttc ctcacacca acgtgaggc atacgctgag

1021 gagtttggca acgagacgtg gggcgtaaca aaggcagcag agaaacaaat gaaggacaaa
1081 caggacgagg agcagaggct taaggaggag gaagaagaca agaaacgcaa agaggaggag
1141 gaggcagagg acaaggagga tcatgaggac aaagatgagg atgaggaggta tgaggaggac
1201 aaggaggaag atgaggaggta agatgtcccc gcccaggcca aggacgagct **gtag** 1251

5 The amino acid sequence of the human CRT protein encoded by SEQ ID NO: 28 is set forth below (SEQ ID NO: 29). This amino acid sequence is highly homologous to GenBank Accession No. NM 004343.

1 MLLSVPLLLG LLGLAVAEPA VYFKEQFLDG DGWTSRWIES KHKSDFGKFKV
LSSGKFYGDE

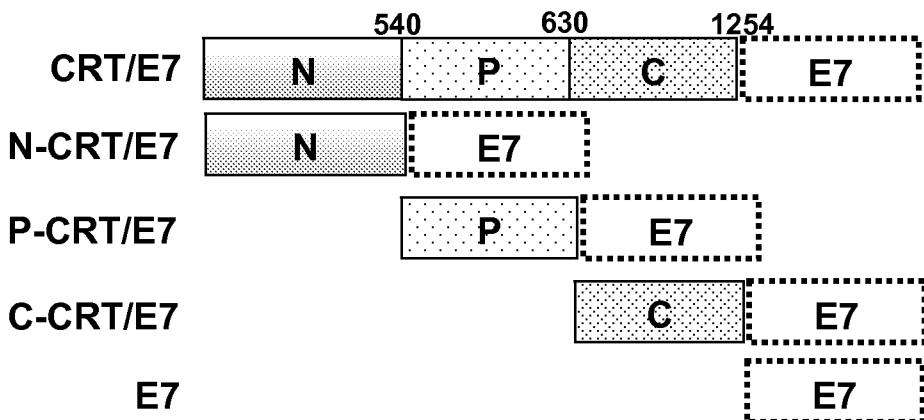
10 61 EKDKGLQTSQ DARFYALSAS FEPFSNKQQT LVVQFTVKHE QNIDCGGGYV
KLFPNSLDQT

121 DMHGDSEYNI MFGPDICPGK TKKVHVIFNY KGKNVLINKD IRCKDDEFTH
LYTLIVRPDN

181 TYEVKIDNSQ VESGSLEDDW DFLPPKKIKD PDASKPEDWD ERAKIDDPTD
15 SKPEDWDKPE

241 HIPDPDAKKP EDWDEEMDGE WEPPVIQNPE YKGEWKPRQI DNPDYKGTWI
HPEIDNPEYS

301 PDPSIYAYDN FGVLGLDLWQ VKSGTIFDNF LITNDEAYAE EFGNETWGVT
KAAEKQMKDK


20 361 QDEEQRLKEE EEDKKRKEEE EAEDKEDDED KDEDEEDEED KEEDEEDVP
GQAKDEL 417

25 The amino acid sequence of the rabbit and rat CRT proteins are set forth in GenBank Accession Nos. P1553 and NM 022399, respectively. An alignment of human, rabbit and rat CRT shows that these proteins are highly conserved, and most of the amino acid differences between species are conservative in nature. Most of the variation is found in the alignment of the approximately 36 C-terminal residues. Thus, for the present invention, human CRT may be used as well as, DNA encoding any homologue of CRT from any species that has the requisite biological activity (as an IPP) or any active domain or fragment thereof, may be used in place of human CRT or a domain thereof.

30 The present inventors and colleagues (Cheng *et al.*, *supra*; incorporated by reference in its entirety) that DNA vaccines encoding each of the N, P, and C domains of CRT chimerically linked to HPV-16 E7 elicited potent antigen-specific CD8+ T cell responses and antitumor immunity in mice vaccinated i.d., by gene gun administration. N-

CRT/E7, P-CRT/E7 or C-CRT/E7 DNA each exhibited significantly increased numbers of E7-specific CD8⁺ T cell precursors and impressive antitumor effects against E7-expressing tumors when compared with mice vaccinated with E7 DNA (antigen only). N-CRT DNA administration also resulted in anti-angiogenic antitumor effects. Thus, cancer therapy 5 using DNA encoding N-CRT linked to a tumor antigen may be used for treating tumors through a combination of antigen-specific immunotherapy and inhibition of angiogenesis.

The constructs comprising CRT or one of its domains linked to E7 is illustrated schematically below.

10 The amino acid sequences of the 3 human CRT domains are shown as annotations of the full length protein (SEQ ID NO: 29). The N domain comprises residues 1-170 (normal text); the P domain comprises residues 171-269 (underscored); and the C domain comprises residues 270-417 (bold/italic)

1 MLLSVPLLLG LLGLAVALAEP A VYFKEQFLDG DGWTSRWIES

15 KHKSDFGKFKV LSSGKFYGYD E

61 EKDKGLQTSQ DARFYALSAS FEPFSNKGQT LVVQFTVKHE

QNIDCGGGYV KLFPNSLDQT

121 DMHGDSEYNI MFGPDICGPG TKKVHVIFNY KGKNVLINKD

IRCKDDEFTH LYTLIVRPDN

20 181 TYEVKIDNSQ VESGSLEDDW DFLPPKKIKD PDASKPEDWD

ERAKIDDPTD SKPEDWDKPE

241 HIPDPDAKKP EDWDEEMDGE WEPPVIQNPE YKGEWKPRQI

DNPDYKGTWI HPEIDNPEYS

301 PDPsiYAYDN FGVLGLDLWQ VKSGTIFDNF LITNDEAYAE

25 EFGNETWGVT KAAEKQMKDK

361 ***QDEEQRLKEE EEDKKRKEEE EAEDKEDDED KDEDEEDEED
KEEDEEEDVP GQAKDEL 417***

The sequences of the three domains are shown as separate polypeptides below:

Human N-CRT (SEQ ID NO: 30)

5 1 MLLSVPLLLG LLGLAVAEPA VYFKEQFLDG DGWTSRWIES
 KHKSDFGKFKV LSSGKFYGYD
 61 EKDKGLQTSQ DARFYALSAS FEPFSNKGQT LVVQFTVKHE
 QNIDCGGGYV KLFPNSLDQT
 121 DMHGDSEYNI MFGPDICGPG TKKVHVIFNY KGKNVLINKD
10 IRCKDDEFTH **170**

Human P-CRT (SEQ ID NO: 31)

1 LYTLIVRPDN TYEVKIDNSQ VESGSLEDDW DFLPPKKIKD
 PDASKPEDWD ERAKIDDPTD
 61 SKPEDWDKPE HIPDPDAKKP EDWDEEMDGE WEPPVIQNPE
15 YKGEWKPRQ **109**

Human C-CRT (SEQ ID NO: 32)

1 IDNPDYKGTW IHPEIDNPEY SPDPSIYAYD NFGVLGLDLW
 QVKSGTIFDN FLITNDEAYA
 61 EEFGNETWGV TKAAEKQMKD KQDEEQRLKE EEEDEEDEE
20 EEAEDKEDDE DKDEEDEE
 121 DKEEDEEEDV PGQAKDEL **138**

The present vectors may comprises DNA encoding one or more of these domain sequences, which are shown by annotation of SEQ ID NO: 28, below, wherein the N-domain sequence is upper case, the P-domain sequence is lower case/italic/underscored, and the C domain sequence is lower case. The stop codon is also shown but not counted.

25 1 **ATGCTGCTAT** CCGTGCCGCT GCTGCTCGGC CTCCTCGGCC
 TGGCCGTCGC CGAGCCCGCC
 61 GTCTACTTCA AGGAGCAGTT TCTGGACGGGA GACGGGTGGA
 CTTCCCGCTG GATCGAATCC
30 121 AAACACAAGT CAGATTGG CAAATTGTT CTCAGTTCCG
 GCAAGTTCTA CGGTGACGAG
 181 GAGAAAGATA AAGGTTGCA GACAAGCCAG GATGCACGCT
 TTTATGCTCT GTCGGCCAGT

241 TTCGAGCCTT TCAGCAACAA AGGCCAGACG CTGGTGGTGC
AGTTCACGGT GAAACATGAG

301 CAGAACATCG ACTGTGGGGG CGGCTATGTG AAGCTGTTTC
CTAATAGTTT GGACCAGACA

5 361 GACATGCACG GAGACTCAGA ATACAACATC ATGTTGGTC
CCGACATCTG TGGCCCTGGC

421 ACCAAGAAGG TTCATGTCAT CTTCAACTAC AAGGGCAAGA
ACGTGCTGAT CAACAAGGAC

481 ATCCGTTGCA AGGATGATGA GTTTACACAC CTGTACACAC
10 TGATTGTGCG GCCAGACAAC

541 acctatgagg tgaagattga caacagccag gtggagtccg gtccttgga agacgattgg
601 gacttcctgc cacccaaagaa gataaaggat cctgatgctt caaaaaccgga agactggat
661 gagegggcca agatcgatga tcccacagac tccaagcctg aggactggga caagcccgag
721 catatccctg accctgatgc taagaagccc gaggactggg atgaagagat ggacggagag
15 781 tgggaacccc cagtgattca gaaccctgag tacaagggtg agtggaaagcc ccggcagatc
841 gacaacccag attacaaggg cacttggatc cacccagaaa ttgacaaccc cgagtattct
901 cccgatccca gtatctatgc ctatgataac ttggcgtgc tggcctgga cctctggcag
961 gtcaagtctg gcaccatctt tgacaacttc ctcacca acgatgaggc atacgctgag
1021 gagttggca acgagacgtg gggcgtaaca aaggcagcag agaaacaaat gaaggacaaa
20 1081 caggacgagg agcagaggct taaggaggag gaagaagaca agaaacgcaa agaggaggag
1141 gaggcagagg acaaggagga tcatgaggac aaagatgagg atgaggaggta gaggaggac
1201 aaggaggaag atgaggaggaa agatgtcccc ggccaggcca aggacgagct gtag 1251
The coding sequence for each separate domain is provided below:

Human N-CRT DNA (SEQ ID NO: 33)

25 1 ATGCTGCTAT CCGTGCCGCT GCTGCTCGGC CTCCTCGGCC
TGGCCGTCGC CGAGCCCGCC

61 GTCTACTTCA AGGAGCAGTT TCTGGACGGAA GACGGGTGGA
CTTCCCGCTG GATCGAATCC

121 AAACACAAGT CAGATTGGA CAAATTGTT CTCAGTTCCG
30 GCAAGTTCTA CGGTGACGAG

181 GAGAAAGATA AAGGTTGCA GACAAGCCAG GATGCACGCT
TTTATGCTCT GTCGGCCAGT

241 TTCGAGCCTT TCAGCAACAA AGGCCAGACG CTGGTGGTGC
 AGTTCACGGT GAAACATGAG
 301 CAGAACATCG ACTGTGGGGG CGGCTATGTG AAGCTGTTTC
 CTAATAGTTT GGACCAGACA
 5 361 GACATGCACG GAGACTCAGA ATACAACATC ATGTTGGTC
 CCGACATCTG TGGCCCTGGC
 421 ACCAAGAAGG TTCATGTCAT CTTCAACTAC AAGGGCAAGA
 ACGTGCTGAT CAACAAGGAC
 481 ATCCGTTGCA AGGATGATGA GTTTACACAC CTGTACACAC
 10 TGATTGTGCG GCCAGACAAC

Human P-CRT DNA (SEQ ID NO: 34)

1 acctatgagg tgaagattga caacagccag gtggagtccg gtccttgga agacgattgg
 61 gacttcctgc cacccaaagaa gataaaggat cctgatgctt caaaaccgga agactggat
 121 gagegggcca agatcgatga tcccacagac tccaagcctg aggactggga caagcccgag
 15 181 catatccctg accctgatgc taagaagccc gaggactggg atgaagagat ggacggagag
 241 tggaaacccc cagtgattca gaaccct 267

Human C-CRT DNA (SEQ ID NO: 35)

1 gagtacaagg gtgagtggaa gccccggcag atcgacaacc cagattcaa gggcacttgg 61
 atccacccag aaattgacaa ccccgagat tctccgatc ccagtatcta tgcctatgt 121 aacttggcg
 20 tgctggcct ggacctctgg caggtcaagt ctggcaccat cttgacaac 181 ttcctcatca ccaacgatga
 ggcatacgct gaggagttg gcaacgagac gtggggcgt 241 acaaaggcag cagagaaaca
 aatgaaggac aaacaggacg aggagcagag gcttaaggag 301 gaggaagaag acaagaaacg
 caaagaggag gaggaggcag aggacaagga ggatgatgag 361 gacaaagatg aggatgagga
 ggatgaggag gacaaggagg aagatgagga ggaagatgtc 421 cccggccagg ccaaggacga gctg
 25 444

Alternatively, any nucleotide sequences that encodes these domains may be used in the present constructs. Thus, for use in humans, the sequences may be further codon-optimized.

The present construct may employ combinations of one or more CRT domains, in 30 any of a number of orientations. Using the designations N^{CRT} , P^{CRT} and C^{CRT} to designate the domains, the following are but a few examples of the combinations that may be used in the DNA vaccine vectors of the present invention (where it is understood that *Ag* can be any antigen, including E7(detox) or E6 (detox)).

$N^{CRT} - P^{CRT} - Ag$; $N^{CRT} - P^{CRT} - Ag$; $N^{CRT} - C^{CRT} - Ag$; $N^{CRT} - N^{CRT} - Ag$;
 $N^{CRT} - N^{CRT} - N^{CRT} - Ag$; $P^{CRT} - P^{CRT} - Ag$; $P^{CRT} - C^{CRT} - Ag$; $P^{CRT} - N^{CRT} - Ag$;
 $C^{CRT} - P^{CRT} - Ag$; $N^{CRT} - P^{CRT} - Ag$; etc.

The present invention may employ shorter polypeptide fragments of CRT or CRT domains provided such fragments can enhance the immune response to an antigen with which they are paired. Shorter peptides from the CRT or domain sequences shown above that have the ability to promote protein processing via the MHC-1 class I pathway are also 5 included, and may be defined by routine experimentation.

The present invention may also employ shorter nucleic acid fragments that encode 10 CRT or CRT domains provided such fragments are functional, e.g., encode polypeptides that can enhance the immune response to an antigen with which they are paired (e.g., linked). Nucleic acids that encode shorter peptides from the CRT or domain sequences shown above and are functional, e.g., have the ability to promote protein processing via the MHC-1 class I pathway, are also included, and may be defined by routine experimentation.

A polypeptide fragment of CRT may include at least or about 50, 100, 200, 300, or 15 400 amino acids. A polypeptide fragment of CRT may also include at least or about 25, 50, 75, 100, 25-50, 50-100, or 75-125 amino acids from a CRT domain selected from the group N-CRT, P-CRT, and C-CRT. A polypeptide fragment of CRT may include residues 1-50, 50-75, 75-100, 100-125, 125-150, 150-170 of the N-domain (e.g., of SEQ ID NO: 30). A polypeptide fragment of CRT may include residues 1-50, 50-75, 75-100, 100-109 of the P-domain (e.g., of SEQ ID NO: 31). A polypeptide fragment of CRT may include residues 1-50, 50-75, 75-100, 100-125, 125-138 of the C-domain (e.g., of SEQ ID NO: 32).

20 A nucleic acid fragment of CRT may encode at least or about 50, 100, 200, 300, or 400 amino acids. A nucleic acid fragment of CRT may also encode at least or about 25, 50, 75, 100, 25-50, 50-100, or 75-125 amino acids from a CRT domain selected from the group N-CRT, P-CRT, and C-CRT. A nucleic acid fragment of CRT may encode residues 1-50, 50-75, 75-100, 100-125, 125-150, 150-170 of the N-domain (e.g., of SEQ ID NO: 30). A 25 nucleic acid fragment of CRT may encode residues 1-50, 50-75, 75-100, 100-109 of the P-domain (e.g., of SEQ ID NO: 31). A nucleic acid fragment of CRT may encode residues 1-50, 50-75, 75-100, 100-125, 125-138 of the C-domain (e.g., of SEQ ID NO: 32).

30 Polypeptide “fragments” of CRT, as provided herein, do not include full-length CRT. Likewise, nucleic acid “fragments” of CRT, as provided herein, do not include a full-length CRT nucleic acid sequence and do not encode a full-length CRT polypeptide.

In one embodiment, a vector construct of a complete chimeric nucleic acid of the invention, is shown below (SEQ ID NO: 36). The sequence is annotated to show plasmid-derived nucleotides (lower case letters), CRT-derived nucleotides (upper case bold letters), and HPV-E7-derived nucleotides (upper case, italicized/underlined letters). Note that 5 plasmid nucleotides are found between the CRT and E7 coding sequences and that the stop codon for the E7 sequence is double underscored. This plasmid is also referred to as pNGVL4a-CRT/E7(detox).

1 gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaacc
61 gacaggacta taaagatacc aggcgttcc ccctggaagc tccctcggtc gctctcctgt
10 121 tccgaccctg ccgcttaccg gatacctgtc cgcccttctc cttcgaa gcggtggcgct
181 ttctcatagc tcacgctgt a ggtatctcag ttccgtgt tag gtcgttcgct ccaagctggg
241 ctgtgtgcac gaacccccc ttcagcccga ccgctgccc ttatccggta actatcgct
301 tgagtccaaac ccggtaagac acgacttac gccactggca gcagccactg gtaacaggat
361 tagcagagcg aggtatgt tag gcgggtctac agagttctg aagtgggtgc ctaactacgg
15 421 ctacactaga agaacagtat ttggtatctg cgctctgt aagccagttt cttcgaa
481 aagagttgg agctttgat ccggcaaaca aaccaccgct ggtagcggtg gttttttgt
541 ttgcaagcag cagattacgc gcagaaaaaa aggatctaa gaagatcctt tgatctttc
601 tacggggtct gacgctcagt ggaacgaaaa ctcacgtt a gggattttgg tcatgagatt
661 atcaaaaagg atcttcacct agatccttt aaattaaaaa tgaagttta aatcaatcta
20 721 aagtatata gactaaactt ggtctgacag ttaccaatgc ttaatcagtg aggacacat
781 ctcagcgatc tgtctatttc gttcatccat agttgcctga ctgggggggg gggggcgctg
841 aggtctgcct cgtgaagaag gtgttgcgtc ctcataccag ggcaacgtt tgccattgc
901 tacaggcattt gtgggtcac gctcgtcggtt tggtatggct tcattcagct ccggttccca
961 acgatcaagg cgagttacat gatccccat gttgtcaaa aaagcggtt gctcattcgg
25 1021 tcctccgatc gttgtcagaa gtaagttggc cgcaatgtt tcactcatgg ttatggcagc
1081 actgcataat tctctactg tcatgccatc cgtaagatgc tttctgtga ctggtagt
1141 ctcaaccaag tcattctgag aatagtgtat gggcgaccg agttgcctt gcccggcgct
1201 aatacgggat aataccgcgc cacatagcag aactttaaa gtgctcatca ttggaaaac
1261 ttcttcgggg cggaaactct caaggatctt accgctgtt agatccagtt cgtatgt
30 1321 cactcgtgca cctgaatcgc cccatcatcc agccagaaag tgaggagcc acggttgt
1381 agagcttgcgtt gtaggtggc ccagttggc attttgcact tttgcttgc cacggaaac
1441 tctgcgtgtt cggaaagatg cgtgatctg tccctcaact cagcaaaagt tcgatttatt
1501 caacaaagcc gccgtcccgta agtcagcg taatgtctg ccagtttac aaccaattaa

1561 ccaattctga ttagaaaaac tcatcgagca tcaaataaaa ctgcaattta ttcatatcag
1621 gattataat accatatttt tggaaaaagcc gtttctgtaa tgaaggagaa aactcaccga
1681 ggcagttcca taggatggca agatcctggt atcggctgc gattccgact cgtccaacat
1741 caataacaacc tattaatttc ccctcgtaa aaataaggaa atcaagttag aatcaccat
5 1801 gagtgacgac tgaatccggg gagaatggca aaagctttag catttcttc cagacttgtt
1861 caacaggcca gccattacgc tcgtcatcaa aatcactcgc atcaaccaaaa ccgttattca
1921 ttctgtgattt cgcctgagcg agacgaaata cgcgatcgct gttaaaagga caattacaaa
1981 caggaatcga atgcaaccgg cgccaggaaca ctgcccagcgc atcaacaata tttcacctg
2041 aatcaggata ttcttctaat accttggaaatg ctgtttccc ggggatcgca gtggtagtga
10 2101 accatgcac atcaggagta cggataaaaat gcttgatggt cggaagaggc ataaattccg
2161 tcagccagtt tagtctgacc atctcatctg taacatcatt ggcaacgcta cctttgcct
2221 gtttcagaaa caactctggc gcatcgggct tcccatacaa tcgatagatt gtgcacactg
2281 attgccccgac attatcgca gcccatttt acccatataa atcagcatcc atgttggaaat
2341 ttaatcgccg cctcgagcaa gacgtttccc gttgaatatg gctcataaca cccctgtat
15 2401 tactgtttat gtaagcagac agttttattt ttcatgtatga tatatttttata tcttgtgcaa
2461 tgtaacatca gagatttga gacacaacgt ggctttcccc ccccccccat tattgaagca
2521 tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaaac
2581 aaataggggt tcccgccaca ttccccgaa aagtgccacc tgacgtctaa gaaaccattt
2641 ttatcatgac attaacctat aaaaataggc gtatcacgag gcccattcgct ctgcgcgtt
20 2701 tcgggtgatga cggtaaaaac ctctgacaca tgcagctccc ggagacggc acagcttgtc
2761 tgtaagcgga tgccgggagc agacaagccc gtcagggcgc gtcagcgggt gttggcgggt
2821 gtcggggctg gcttaactat gcggcatcag agcagattgt actgagagtg caccatatgc
2881 ggtgtgaaat accgcacaga tgcgttaagga gaaaataccg catcagattt gctattggcc
2941 attgcatacg ttgtatccat atcataatat gtacattttt attggctcat gtccaaacatt
25 3001 accggccatgt tgacattgtat tattgacttag ttattaaatag taatcaattt cggggcattt
3061 agttcatagc ccatatatgg agttccgcgt tacataactt acggtaatgg gcccgcctgg
3121 ctgaccggccc aacgacccccc gcccatggac gtcataataatg acgtatgttc ccatagtaac
3181 gccaataggg actttccattt gacgtcaatg ggtggagttat ttacggtaaa ctgcccactt
3241 ggcagtacat caagtgtatc atatgcctaa tacggccctt attgacgtca atgacggtaa
30 3301 atggcccgcc tggcattatg cccagttacat gacctttagg gactttctta ttggcagta
3361 catctacgtt ttagtcatcg ctattaccat ggtgtatgcggg tttggcagt acatcaatgg
3421 gcgtggatag cggtttactt cacggggatt tccaaatgc caccatgg acgtcaatgg
3481 gagtttgttt tggcaccaaaa atcaacggga ctttccaaaa tgcgttaaca actccggccc

3541 attgacgcaa atggcggtta ggcgtgtacg gtgggagggtc tatataagca gagctcgtt
 3601 agtgaaccgt cagatcgctt ggagacgcca tccacgctgt tttgaccctcc atagaagaca
 3661 ccgggaccga tccagcctcc gcggccggga acgggtcatt ggaacgcggta ttccccgtgc
 3721 caagagtgac gtaagtaccg cctatagact ctataggcac acccctttgg ctcttatgca
 5 3781 tgctatactg ttttggctt ggggcctata caccggcgttc ttccatgtct ataggtgatg
 3841 gtatacgctt gcctataggt gtgggttatt gaccattatt gaccactcca acgggtggagg
 3901 gcagtgtagt ctgagcagta ctgggtgctt ccggcgccgc caccagacat aatagctgac
 3961 agactaacag actgttcctt tccatgggtc ttttgcag tcaccgtgt cgac**ATGCTG**
4021 CTATCCGTGC CGCTGCTGCT CGGCCTCCTC GGCGCTGGCCG
 10 **TCGCCGAGCC TGCCGTCTAC**
4081 TTCAAGGAGC AGTTCTGGA CGGGGACGGG TGGACTTCCC
GCTGGATCGA ATCCAAACAC
4141 AAGTCAGATT TTGGCAAATT CGTTCTCAGT TCCGGCAAGT
TCTACGGTGA CGAGGAGAAA
 15 **4201 GATAAAGGTT TGCAGACAAG CCAGGATGCA CGCTTTATG**
CTCTGTCGGC CAGTTTCGAG
4261 CCTTCAGCA ACAAAAGGCCA GACGCTGGTG GTGCAGTTCA
CGGTGAAACA TGAGCAGAAC
4321 ATCGACTGTG GGGCGGGCTA TGTGAAGCTG TTTCTTAATA
 20 **GTTTGGACCA GACAGACATG**
4381 CACGGAGACT CAGAATACAA CATCATGTTT GGTCCCGACA
TCTGTGGCCC TGGCACCAAG
4441 AAGGTTCATG TCATCTTCAA CTACAAGGGC AAGAACGTGC
TGATCAACAA GGACATCCGT
 25 **4501 TGCAAGGATG ATGAGTTTAC ACACCTGTAC ACACGTGATTG**
TGCAGGCCAGA CAACACCTAT
4561 GAGGTGAAGA TTGACAACAG CCAGGTGGAG TCCGGCTCCT
TGGAAGACGA TTGGGACTTC
4621 CTGCCACCCA AGAAGATAAA GGATCCTGAT GCTTCAAAAC
 30 **CGGAAGACTG GGATGAGCGG**
4681 GCCAAGATCG ATGATCCCAC AGACTCCAAG CCTGAGGACT
GGGACAAGCC CGAGCATATC

4741 CCTGACCCCTG ATGCTAAGAA GCCCCGAGGAC TGGGATGAAG
AGATGGACGG AGAGTGGGAA

4801 CCCCCAGTGA TTCAGAACCC TGAGTACAAG GGTGAGTGGAA
AGCCCCGGCA GATCGACAAC

5 4861 CCAGATTACA AGGGCACTTG GATCCACCCA GAAATTGACA
ACCCCGAGTA TTCTCCCGAT

4921 CCCAGTATCT ATGCCTATGA TAACTTGGC GTGCTGGGCC
TGGACCTCTG GCAGGTCAAG

4981 TCTGGCACCA TCTTGACAA CTTCCATC ACCAACGATG
10 AGGCATACGC TGAGGAGTTT

5041 GGCAACGAGA CGTGGGGCGT AACAAAGGCA GCAGAGAAAC
AAATGAAGGA CAAACAGGAC

5101 GAGGAGCAGA GGCTTAAGGA GGAGGAAGAA GACAAGAAAC
GCAAAGAGGA GGAGGAGGCA

15 5161 GAGGACAAGG AGGATGATGA GGACAAAGAT GAGGATGAGG
AGGATGAGGA GGACAAGGAG

5221 GAAGATGAGG AGGAAGATGT CCCCCGCCAG GCCAAGGACG
AGCTGgaatt CATGCATGGA

5281 GATACACCTA CATTGCATGA ATATATGTTA GATTGCAAC CAGAGACAAC
20 TGATCTCTAC

5341 GGTTATGGGC AATTAAATGA CAGCTCAGAG GAGGAGGATG
AAATAGATGG TCCAGCTGGA

5401 CAAGCAGAAC CGGACAGAGC CCATTACAAT ATTGTAACCT TTTGTTGCAA
GTGTGACTCT

25 5461 ACGCTTCGGT TGTGCGTACA AAGCACACAC GTAGACATTG TACTTGGAA
AGACCTGTTA

5521 ATGGGCACAC TAGGAATTGT GTGCCCATC TGTTCTCAGA AACCATAAAgg
atccagatct

5581 tttccctct gccaaaaatt atggggacat catgaagccc cttgagcatc tgacttctgg

30 5641 ctaataaagg aaatttattt tcattgcaat agtgttgtt aatttttgt gtctctact

5701 cggaaggaca tatgggaggg caaatcattt aaaacatcag aatgagtatt tggtttagag

5761 ttggcaaca tatgccatt cttccgcttc ctgcgtcaact gactcgctgc gctcggtcggt

5821 tcggctgcgg cgagcggat cagctcaactc aaaggcggta atacggttat ccacagaatc

5881 aggggataac gcagggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa
 5941 aaaggcccg tgcgtggcgt tttccatag **5970**

The Table below describes the structure of the above plasmid.

Plasmid Position	Genetic Construct	Source of Construct
5970-0823	E. coli ORI (ColEl)	pBR / <i>E. coli</i> -derived
0837-0881	portion of transposase (tpnA)	Common plasmid sequence Tn5/Tn903
0882-1332	β -Lactamase (Amp ^R)	pBRpUC derived plasmid
1331-2496	AphA (Kan ^R)	Tn903
2509-2691	P3 Promoter DNA binding site	Tn3/pBR322
2692-2926	pUC backbone	Common plasmid sequence pBR322-derived
2931-4009	NF1 binding and promoter	HHV-5(HCMV UL-10 lE1 gene)
4010-4014	Poly-cloning site	Common plasmid sequence
4015 - 5265	Calreticulin (CRT)	Human Calreticulin
5266-5271	GAATTC plasmid sequence	Remain after cloning
5272-5568	dE7 gene (detoxified partial)	HPV-16 (E7 gene) incl. stop codon
5569-5580	Poly-cloning site	Common plasmid sequence
551-5970	Poly-Adenylation site	Mammalian signal, pHCMV-derived

5

In some embodiments, an alternative to CRT is another ER chaperone polypeptide exemplified by ER60, GRP94 or gp96, well-characterized ER chaperone polypeptide that representatives of the HSP90 family of stress-induced proteins (see WO 02/012281, incorporated herein by reference). The term “endoplasmic reticulum chaperone polypeptide” as used herein means any polypeptide having substantially the same ER chaperone function as the exemplary chaperone proteins CRT, tapasin, ER60 or calnexin. Thus, the term includes all functional fragments or variants or mimics thereof. A polypeptide or peptide can be routinely screened for its activity as an ER chaperone using assays known in the art. While the invention is not limited by any particular mechanism of action, *in vivo* chaperones promote the correct folding and oligomerization of many

10

chaperones.

15

glycoproteins in the ER, including the assembly of the MHC class I heterotrimeric molecule (heavy (H) chain, β 2m, and peptide). They also retain incompletely assembled MHC class I heterotrimeric complexes in the ER (Hauri FEBS Lett. 476:32-37, 2000).

5 *Intercellular spreading proteins*

The potency of naked DNA vaccines may be enhanced by their ability to amplify and spread *in vivo*. VP22, a herpes simplex virus type 1 (HSV-1) protein and its "homologues" in other herpes viruses, such as the avian Marek's Disease Virus (MDV) have the property of intercellular transport that provide an approach for enhancing vaccine 10 potency. The present inventors have previously created novel fusions of VP22 with a model antigen, human papillomavirus type 16 (HPV-16) E7, in a DNA vaccine which generated enhanced spreading and MHC class I presentation of antigen. These properties led to a dramatic increase in the number of E7-specific CD8+ T cell precursors in vaccinated mice (at least 50-fold) and converted a less effective DNA vaccine into one with 15 significant potency against E7-expressing tumors. In comparison, a non-spreading mutant, VP22(1-267), failed to enhance vaccine potency. Results presented in U.S. Patent Application publication No. 20040028693 (US Patent No. 7,318,928), hereby incorporated by reference in its entirety, show that the potency of DNA vaccines is dramatically improved through enhanced intercellular spreading and MHC class I presentation of the 20 antigen.

A similar study linking MDV-1 UL49 to E7 also led to a dramatic increase in the number of E7-specific CD8+ T cell precursors and potency response against E7-expressing tumors in vaccinated mice. Mice vaccinated with a MDV-1 UL49 DNA vaccine stimulated E7-specific CD8+ T cell precursor at a level comparable to that induced by HSV-1 25 VP22/E7. Thus, fusion of MDV-1UL49 DNA to DNA encoding a target antigen gene significantly enhances the DNA vaccine potency.

In one embodiment, the spreading protein may be a viral spreading protein, including a herpes virus VP22 protein. Exemplified herein are fusion constructs that comprise herpes simplex virus-1 (HSV-1) VP22 (abbreviated HVP22) and its homologue 30 from Marek's disease virus (MDV) termed MDV-VP22 or MVP-22. Also included in the invention are homologues of VP22 from other members of the herpesviridae or polypeptides from nonviral sources that are considered to be homologous and share the functional characteristic of promoting intercellular spreading of a polypeptide or peptide

that is fused or chemically conjugated thereto.

DNA encoding HVP22 has the sequence SEQ ID NO: 7 as nucleotides 1-921 of the longer sequence SEQ ID NO: 6 (which is the full length nucleotide sequence of a vector that comprises HVP22). DNA encoding MDV-VP22 is SEQ ID NO: 37 shown below:

5 1 atg ggg gat tct gaa agg cgg aaa tcg gaa cgg cgt cgt tcc ctt gga 48 tat ccc tct gca tat gat gac
gtc tcg att cct gct cgc aga cca tca 96 aca cgt act cag cga aat tta aac cag gat gat ttg tca aaa cat
gga 144 cca ttt acc gac cat cca aca caa aaa cat aaa tcg gcg aaa gcc gta 192 tcg gaa gac gtt
tcg tct acc acc cgg ggt ggc ttt aca aac aaa ccc 240 cgt acc aag ccc ggg gtc aga gct gta caa
agt aat aaa ttc gct ttc 288 agt acg gct cct tca tca gca tct agc act tgg aga tca aat aca gtg 336
10 gca ttt aat cag cgt atg ttt tgc gga gcg gtt gca act gtg gct caa 384 tat cac gca tac caa ggc gcg
ctc gcc ctt tgg cgt caa gat cct ccg 432 cga aca aat gaa gaa tta gat gca ttt ctt tcc aga gct gtc att
aaa 480 att acc att caa gag ggt cca aat ttg atg ggg gaa gcc gaa acc tgt 528 gcc cgc aaa cta ttg
gaa gag tct gga tta tcc cag ggg aac gag aac 576 gta aag tcc aaa tot gaa cgt aca acc aaa tct
gaa cgt aca aga cgc 624 ggc ggt gaa att gaa atc aaa tcg cca gat ccg gga tct cat cgt aca 672
15 cat aac cct cgc act ccc gca act tcg cgt cgc cat cat tca tcc gcc 720 cgc gga tat cgt agc agt gat
agc gaa taa 747

The amino acid sequence of HVP22 polypeptide is SEQ ID NO: 38 as amino acid residues 1-301 of SEQ ID NO: 39 (the full length amino acid encoded by the vector).

The amino acid sequence of the MDV-VP22, SEQ ID NO: 40, is below:

20 2 Met Gly Asp Ser Glu Arg Arg Lys Ser Glu Arg Arg Arg Ser Leu Gly 16 Tyr Pro Ser Ala
Tyr Asp Asp Val Ser Ile Pro Ala Arg Arg Pro Ser 32 Thr Arg Thr Gln Arg Asn Leu Asn Gln
Asp Asp Leu Ser Lys His Gly 48 Pro Phe Thr Asp His Pro Thr Gln Lys His Lys Ser Ala Lys
Ala Val 64 Ser Glu Asp Val Ser Ser Thr Thr Arg Gly Gly Phe Thr Asn Lys Pro 80 Arg Thr
Lys Pro Gly Val Arg Ala Val Gln Ser Asn Lys Phe Ala Phe 96 Ser Thr Ala Pro Ser Ser Ala
25 Ser Ser Thr Trp Arg Ser Asn Thr Val 112 Ala Phe Asn Gln Arg Met Phe Cys Gly Ala Val
Ala Thr Val Ala Gln 128 Tyr His Ala Tyr Gln Gly Ala Leu Ala Leu Trp Arg Gln Asp Pro
Pro 144 Arg Thr Asn Glu Glu Leu Asp Ala Phe Leu Ser Arg Ala Val Ile Lys 160 Ile Thr Ile
Gln Glu Gly Pro Asn Leu Met Gly Glu Ala Glu Thr Cys 176 Ala Arg Lys Leu Leu Glu Glu
Ser Gly Leu Ser Gln Gly Asn Glu Asn 192 Val Lys Ser Lys Ser Glu Arg Thr Thr Lys Ser
30 Glu Arg Thr Arg Arg 208 Gly Gly Glu Ile Glu Ile Lys Ser Pro Asp Pro Gly Ser His Arg Thr
224 His Asn Pro Arg Thr Pro Ala Thr Ser Arg Arg His His Ser Ser Ala 240 Arg Gly Tyr Arg
Ser Ser Asp Ser Glu -- 249

A DNA clone pcDNA3 VP22/E7, that includes the coding sequence for HVP22 and

the HPV-16 protein, E7 (plus some additional vector sequence) is SEQ ID NO: 6.

The amino acid sequence of E7 (SEQ ID NO: 41) is residues 308-403 of SEQ ID NO: 39. This particular clone has only 96 of the 98 residues present in E7. The C-terminal residues of wild-type E7, Lys and Pro, are absent from this construct. This is an example of 5 a deletion variant as the term is described below. Such deletion variants (e.g., terminal truncation of two or a small number of amino acids) of other antigenic polypeptides are examples of the embodiments intended within the scope of the fusion polypeptides of this invention.

10 *Homologues of IPPs*

Homologues or variants of IPPs described herein, may also be used, provided that they have the requisite biological activity. These include various substitutions, deletions, or additions of the amino acid or nucleic acid sequences. Due to code degeneracy, for example, there may be considerable variation in nucleotide sequences encoding the same 15 amino acid sequence.

A functional derivative of an IPP retains measurable IPP-like activity, including that of promoting immunogenicity of one or more antigenic epitopes fused thereto by promoting presentation by class I pathways. “Functional derivatives” encompass “variants” and “fragments” regardless of whether the terms are used in the conjunctive or the alternative 20 herein.

The term “chimeric” or “fusion” polypeptide or protein refers to a composition comprising at least one polypeptide or peptide sequence or domain that is chemically bound in a linear fashion with a second polypeptide or peptide domain. One embodiment of this invention is an isolated or recombinant nucleic acid molecule encoding a fusion protein 25 comprising at least two domains, wherein the first domain comprises an IPP and the second domain comprises an antigenic epitope, e.g., an MHC class I-binding peptide epitope. The “fusion” can be an association generated by a peptide bond, a chemical linking, a charge interaction (e.g., electrostatic attractions, such as salt bridges, H-bonding, etc.) or the like. If the polypeptides are recombinant, the “fusion protein” can be translated from a common 30 mRNA. Alternatively, the compositions of the domains can be linked by any chemical or electrostatic means. The chimeric molecules of the invention (e.g., targeting polypeptide fusion proteins) can also include additional sequences, e.g., linkers, epitope tags, enzyme cleavage recognition sequences, signal sequences, secretion signals, and the like.

Alternatively, a peptide can be linked to a carrier simply to facilitate manipulation or identification/ location of the peptide.

Also included is a “functional derivative” of an IPP, which refers to an amino acid substitution variant, a “fragment” of the protein. A functional derivative of an IPP retains measurable activity that may be manifested as promoting immunogenicity of one or more antigenic epitopes fused thereto or co-administered therewith. “Functional derivatives” encompass “variants” and “fragments” regardless of whether the terms are used in the conjunctive or the alternative herein.

10 A functional homologue must possess the above biochemical and biological activity. In view of this functional characterization, use of homologous proteins including proteins not yet discovered, fall within the scope of the invention if these proteins have sequence similarity and the recited biochemical and biological activity.

15 To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In one embodiment, the method of alignment includes alignment of Cys residues.

20 In one embodiment, the length of a sequence being compared is at least 30%, at least 40%, at least 50%, at least 60%, and at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99% of the length of the IPP reference sequence. The amino acid residues (or nucleotides) at corresponding amino acid (or nucleotide) positions are then compared. When a position in the first sequence is occupied by the same amino acid residue (or nucleotide) as the corresponding position in the second sequence, then the molecules are 25 identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

30 The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In one embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (*J. Mol. Biol.* 48:444-453 (1970) algorithm which has been incorporated into the

GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at <http://www.gcg.com>), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases, for example, to identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul *et al.* (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to IPP nucleic acid molecules. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to IPP protein molecules. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.* (1997) *Nucleic Acids Res.* 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used. See <http://www.ncbi.nlm.nih.gov>.

Thus, a homologue of an IPP or of an IPP domain described above is characterized as having (a) functional activity of native IPP or domain thereof and (b) amino acid sequence similarity to a native IPP protein or domain thereof when determined as above, of at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.

It is within the skill in the art to obtain and express such a protein using DNA probes based on the disclosed sequences of an IPP. Then, the fusion protein’s biochemical and biological activity can be tested readily using art-recognized methods such as those described herein, for example, a T cell proliferation, cytokine secretion or a cytolytic assay, or an *in vivo* assay of tumor protection or tumor therapy. A biological assay of the

stimulation of antigen-specific T cell reactivity will indicate whether the homologue has the requisite activity to qualify as a “functional” homologue.

A “variant” refers to a molecule substantially identical to either the full protein or to a fragment thereof in which one or more amino acid residues have been replaced (substitution variant) or which has one or several residues deleted (deletion variant) or added (addition variant). A “fragment” of an IPP refers to any subset of the molecule, that is, a shorter polypeptide of the full-length protein.

A number of processes can be used to generate fragments, mutants and variants of the isolated DNA sequence. Small subregions or fragments of the nucleic acid encoding the spreading protein, for example 1-30 bases in length, can be prepared by standard, chemical synthesis. Antisense oligonucleotides and primers for use in the generation of larger synthetic fragment.

A one group of variants are those in which at least one amino acid residue and in certain embodiments only one, has been substituted by different residue. For a detailed description of protein chemistry and structure, see Schulz, GE *et al.*, *Principles of Protein Structure*, Springer-Verlag, New York, 1978, and Creighton, T.E., *Proteins: Structure and Molecular Properties*, W.H. Freeman & Co., San Francisco, 1983, which are hereby incorporated by reference. The types of substitutions that may be made in the protein molecule may be based on analysis of the frequencies of amino acid changes between a homologous protein of different species, such as those presented in Table 1-2 of Schulz *et al.* (*supra*) and Figure 3-9 of Creighton (*supra*). Based on such an analysis, conservative substitutions are defined herein as exchanges within one of the following five groups:

1. Small aliphatic, nonpolar or slightly polar residues Ala, Ser, Thr (Pro, Gly);
2. Polar, negatively charged residues and their amides Asp, Asn, Glu, Gln;
3. Polar, positively charged residues His, Arg, Lys;
4. Large aliphatic, nonpolar residues Met, Leu, Ile, Val (Cys)
5. Large aromatic residues Phe, Tyr, Trp.

The three amino acid residues in parentheses above have special roles in protein architecture. Gly is the only residue lacking a side chain and thus imparts flexibility to the chain. Pro, because of its unusual geometry, tightly constrains the chain. Cys can participate in disulfide bond formation, which is important in protein folding.

More substantial changes in biochemical, functional (or immunological) properties are made by selecting substitutions that are less conservative, such as between, rather than

within, the above five groups. Such changes will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Examples of such substitutions 5 are (i) substitution of Gly and/or Pro by another amino acid or deletion or insertion of Gly or Pro; (ii) substitution of a hydrophilic residue, *e.g.*, Ser or Thr, for (or by) a hydrophobic residue, *e.g.*, Leu, Ile, Phe, Val or Ala; (iii) substitution of a Cys residue for (or by) any other residue; (iv) substitution of a residue having an electropositive side chain, *e.g.*, Lys, Arg or His, for (or by) a residue having an electronegative charge, *e.g.*, Glu or Asp; or 10 (v) substitution of a residue having a bulky side chain, *e.g.*, Phe, for (or by) a residue not having such a side chain, *e.g.*, Gly.

Most acceptable deletions, insertions and substitutions according to the present invention are those that do not produce radical changes in the characteristics of the wild-type or native protein in terms of its relevant biological activity, *e.g.*, its ability to stimulate 15 antigen specific T cell reactivity to an antigenic epitope or epitopes that are fused to the protein. However, when it is difficult to predict the exact effect of the substitution, deletion or insertion in advance of doing so, one skilled in the art will appreciate that the effect can be evaluated by routine screening assays such as those described here, without requiring undue experimentation.

20 Exemplary fusion proteins provided herein comprise an IPP protein or homolog thereof and an antigen. For example, a fusion protein may comprise, consist essentially of, or consist of an IPP or an IPP fragment, *e.g.*, N-CRT, P-CRT and/or C-CRT, or an amino acid sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of the IPP or IPP 25 fragment, wherein the IPP fragment is functionally active as further described herein, linked to an antigen. A fusion protein may also comprise an IPP or an IPP fragment and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids, or about 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 1-50 amino acids, at the N- and/or C-terminus of the IPP fragment. These additional amino acids may have an amino acid sequence that is unrelated to the amino acid sequence 30 at the corresponding position in the IPP protein.

Homologs of an IPP or an IPP fragments may also comprise, consist essentially of, or consist of an amino acid sequence that differs from that of an IPP or IPP fragment by the addition, deletion, or substitution, *e.g.*, conservative substitution, of at least about 1, 2, 3, 4,

5, 6, 7, 8, 9 or 10 amino acids, or from about 1-5, 1-10, 1-15 or 1-20 amino acids.

Homologs of an IPP or IPP fragments may be encoded by nucleotide sequences that are at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleotide sequence encoding an IPP or IPP fragment, such as those described herein.

Yet other homologs of an IPP or IPP fragments are encoded by nucleic acids that hybridize under stringent hybridization conditions to a nucleic acid that encodes an IPP or IPP fragment. For example, homologs may be encoded by nucleic acids that hybridize under high stringency conditions of 0.2 to 1 x SSC at 65 °C followed by a wash at 0.2 x 10 SSC at 65 °C to a nucleic acid consisting of a sequence described herein. Nucleic acids that hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash at 2 x SSC at room temperature to nucleic acid consisting of a sequence described herein or a portion thereof can be used. Other hybridization conditions include 3 x SSC at 40 or 50 °C, followed by a wash in 1 or 2 x SSC at 20, 30, 40, 50, 60, or 65 °C.

15 Hybridizations can be conducted in the presence of formaldehyde, *e.g.*, 10%, 20%, 30% 40% or 50%, which further increases the stringency of hybridization. Theory and practice of nucleic acid hybridization is described, *e.g.*, in S. Agrawal (ed.) *Methods in Molecular Biology*, volume 20; and Tijssen (1993) *Laboratory Techniques in biochemistry and molecular biology-hybridization with nucleic acid probes*, *e.g.*, part I chapter 2 “Overview 20 of principles of hybridization and the strategy of nucleic acid probe assays,” Elsevier, New York provide a basic guide to nucleic acid hybridization.

A fragment of a nucleic acid sequence is defined as a nucleotide sequence having fewer nucleotides than the nucleotide sequence encoding the full length CRT polypeptide, antigenic polypeptide, or the fusion thereof. This invention includes such nucleic acid 25 fragments that encode polypeptides which retain the ability of the fusion polypeptide to induce increases in frequency or reactivity of T cells, including CD8+ T cells, that are specific for the antigen part of the fusion polypeptide.

Nucleic acid sequences of this invention may also include linker sequences, natural or modified restriction endonuclease sites and other sequences that are useful for 30 manipulations related to cloning, expression or purification of encoded protein or fragments. For example, a fusion protein may comprise a linker between the antigen and the IPP protein.

Other nucleic acid vaccines that may be used include single chain trimers (SCT), as further described in the Examples and in references cited therein, all of which are specifically incorporated by reference herein.

5 *Backbone of nucleic acid vaccine*

A nucleic acid, *e.g.*, DNA vaccine may comprise an “expression vector” or “expression cassette,” *i.e.*, a nucleotide sequence which is capable of affecting expression of a protein coding sequence in a host compatible with such sequences. Expression cassettes include at least a promoter operably linked with the polypeptide coding sequence; 10 and, optionally, with other sequences, *e.g.*, transcription termination signals. Additional factors necessary or helpful in effecting expression may also be included, *e.g.*, enhancers.

“Operably linked” means that the coding sequence is linked to a regulatory sequence in a manner that allows expression of the coding sequence. Known regulatory sequences are selected to direct expression of the desired protein in an appropriate host cell. 15 Accordingly, the term “regulatory sequence” includes promoters, enhancers and other expression control elements. Such regulatory sequences are described in, for example, Goeddel, *Gene Expression Technology. Methods in Enzymology*, vol. 185, Academic Press, San Diego, Calif. (1990)).

A promoter region of a DNA or RNA molecule binds RNA polymerase and 20 promotes the transcription of an “operably linked” nucleic acid sequence. As used herein, a “promoter sequence” is the nucleotide sequence of the promoter which is found on that strand of the DNA or RNA which is transcribed by the RNA polymerase. Two sequences of a nucleic acid molecule, such as a promoter and a coding sequence, are “operably linked” when they are linked to each other in a manner which permits both sequences to be 25 transcribed onto the same RNA transcript or permits an RNA transcript begun in one sequence to be extended into the second sequence. Thus, two sequences, such as a promoter sequence and a coding sequence of DNA or RNA are operably linked if transcription commencing in the promoter sequence will produce an RNA transcript of the operably linked coding sequence. In order to be “operably linked” it is not necessary that 30 two sequences be immediately adjacent to one another in the linear sequence.

In one embodiment, certain promoter sequences of the present invention must be operable in mammalian cells and may be either eukaryotic or viral promoters. Certain promoters are also described in the Examples, and other useful promoters and regulatory

elements are discussed below. Suitable promoters may be inducible, repressible or constitutive. A “constitutive” promoter is one which is active under most conditions encountered in the cell’s environmental and throughout development. An “inducible” promoter is one which is under environmental or developmental regulation. A “tissue specific” promoter is active in certain tissue types of an organism. An example of a constitutive promoter is the viral promoter MSV-LTR, which is efficient and active in a variety of cell types, and, in contrast to most other promoters, has the same enhancing activity in arrested and growing cells. Other viral promoters include that present in the CMV-LTR (from cytomegalovirus) (Bashart, M. *et al.*, *Cell* 41:521, 1985) or in the RSV-LTR (from Rous sarcoma virus) (Gorman, C.M., *Proc. Natl. Acad. Sci. USA* 79:6777, 1982). Also useful are the promoter of the mouse metallothionein I gene (Hamer, D, *et al.*, *J. Mol. Appl. Gen.* 1:273-88, 1982; the TK promoter of Herpes virus (McKnight, S, *Cell* 31:355-65, 1982); the SV40 early promoter (Benoist, C., *et al.*, *Nature* 290:304-10, 1981); and the yeast *gal4* gene promoter (Johnston, SA *et al.*, *Proc. Natl. Acad. Sci. USA* 79:6971-5, 1982); Silver, PA, *et al.*, *Proc. Natl. Acad. Sci. (USA)* 81:5951-5, 1984)). Other illustrative descriptions of transcriptional factor association with promoter regions and the separate activation and DNA binding of transcription factors include: Keegan *et al.*, *Nature* 231:699, 1986; Fields *et al.*, *Nature* 340:245, 1989; Jones, *Cell* 61:9, 1990; Lewin, *Cell* 61:1161, 1990; Ptashne *et al.*, *Nature* 346:329, 1990; Adams *et al.*, *Cell* 72:306, 1993.

20 The promoter region may further include an octamer region which may also function as a tissue specific enhancer, by interacting with certain proteins found in the specific tissue. The enhancer domain of the DNA construct of the present invention is one which is specific for the target cells to be transfected, or is highly activated by cellular factors of such target cells. Examples of vectors (plasmid or retrovirus) are disclosed, *e.g.*, in Roy-Burman *et al.*, U.S. Patent No. 5,112,767, incorporated by reference. For a general discussion of enhancers and their actions in transcription, see, Lewin, BM, *Genes IV*, Oxford University Press pp. 552-576, 1990 (or later edition). Particularly useful are retroviral enhancers (*e.g.*, viral LTR) that is placed upstream from the promoter with which it interacts to stimulate gene expression. For use with retroviral vectors, the endogenous viral LTR may be rendered enhancer-less and substituted with other desired enhancer sequences which confer tissue specificity or other desirable properties such as transcriptional efficiency.

Thus, expression cassettes include plasmids, recombinant viruses, any form of a recombinant “naked DNA” vector, and the like. A “vector” comprises a nucleic acid which can infect, transfect, transiently or permanently transduce a cell. It will be recognized that a vector can be a naked nucleic acid, or a nucleic acid complexed with protein or lipid. The 5 vector optionally comprises viral or bacterial nucleic acids and/or proteins, and/or membranes (e.g., a cell membrane, a viral lipid envelope, *etc.*). Vectors include replicons (e.g., RNA replicons), bacteriophages) to which fragments of DNA may be attached and become replicated. Vectors thus include, but are not limited to RNA, autonomous self-replicating circular or linear DNA or RNA, *e.g.*, plasmids, viruses, and the like (U.S. Patent 10 No. 5,217,879, incorporated by reference), and includes both the expression and nonexpression plasmids. Where a recombinant cell or culture is described as hosting an “expression vector” this includes both extrachromosomal circular and linear DNA and DNA that has been incorporated into the host chromosome(s). Where a vector is being maintained by a host cell, the vector may either be stably replicated by the cells during 15 mitosis as an autonomous structure, or is incorporated within the host’s genome.

Exemplary virus vectors that may be used include recombinant adenoviruses (Horowitz, MS, In: *Virology*, Fields, BN *et al.*, eds, Raven Press, NY, 1990, p. 1679; Berkner, KL, *Biotechniques* 6:616-29, 1988; Strauss, SE, In: *The Adenoviruses*, Ginsberg, HS, ed., Plenum Press, NY, 1984, chapter 11) and herpes simplex virus (HSV). 20 Advantages of adenovirus vectors for human gene delivery include the fact that recombination is rare, no human malignancies are known to be associated with such viruses, the adenovirus genome is double stranded DNA which can be manipulated to accept foreign genes of up to 7.5 kb in size, and live adenovirus is a safe human vaccine organisms. Adeno-associated virus is also useful for human therapy (Samulski, RJ *et al.*, 25 *EMBO J.* 10:3941, 1991) according to the present invention.

Another vector which can express the DNA molecule of the present invention, and is useful in the present therapeutic setting is vaccinia virus, which can be rendered non-replicating (U.S. Pats. 5,225,336; 5,204,243; 5,155,020; 4,769,330; Fuerst, TR *et al.*, *Proc. Natl. Acad. Sci. USA* 86:2549-53, 1992; Chakrabarti, S *et al.*, *Mol Cell Biol* 5:3403-9, 1985, 30 each of which are incorporated by reference). Descriptions of recombinant vaccinia viruses and other viruses containing heterologous DNA and their uses in immunization and DNA therapy are reviewed in: Moss, B, *Curr Opin Genet Dev* 3:86-90, 1993; Moss, B, *Biotechnol.* 20:345-62, 1992).

Other viral vectors that may be used include viral or non-viral vectors, including adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, and plasmid vectors. Exemplary types of viruses include HSV (herpes simplex virus), AAV (adeno associated virus), HIV (human immunodeficiency virus), BIV (bovine immunodeficiency virus), and 5 MLV (murine leukemia virus).

A DNA vaccine may also use a replicon, *e.g.*, an RNA replicon, a self-replicating RNA vector. In one embodiment, a replicon is one based on a Sindbis virus RNA replicon, *e.g.*, SINrep5. The present inventors tested E7 in the context of such a vaccine and showed (see Wu *et al.*, U.S. Patent Application 10/343,719) that a Sindbis virus RNA vaccine 10 encoding HSV-1 VP22 linked to E7 significantly increased activation of E7-specific CD8 T cells, resulting in potent antitumor immunity against E7-expressing tumors. The Sindbis virus RNA replicon vector used in these studies, SINrep5, has been described (Bredenbeek, P J *et al.*, 1993, *J. Virol.* 67:6439-6446).

Generally, RNA replicon vaccines may be derived from alphavirus vectors, such as 15 Sindbis virus (Hariharan, M J *et al.*, 1998. *J Virol* 72:950-8.), Semliki Forest virus (Berglund, P M *et al.*, 1997. *AIDS Res Hum Retroviruses* 13:1487-95; Ying, H T *et al.*, 1999. *Nat Med* 5:823-7) or Venezuelan equine encephalitis virus (Pushko, P M *et al.*, 1997. *Virology* 239:389-401). These self-replicating and self-limiting vaccines may be 20 administered as either (1) RNA or (2) DNA which is then transcribed into RNA replicons in cells transfected in vitro or in vivo (Berglund, P C *et al.*, 1998. *Nat Biotechnol* 16:562-5; Leitner, W W *et al.*, 2000. *Cancer Res* 60:51-5). An exemplary Semliki Forest virus is pSCA1 (DiCiommo, D P *et al.*, *J Biol Chem* 1998; 273:18060-6).

The plasmid vector pcDNA3 or a functional homolog thereof (SEQ ID NO: 1) may 25 be used in a DNA vaccine. In other embodiments, pNGVL4a (SEQ ID NO: 2) is used.

pNGVL4a, one plasmid backbone for the present invention was originally derived from the pNGVL3 vector, which has been approved for human vaccine trials. The pNGVL4a vector includes two immunostimulatory sequences (tandem repeats of CpG dinucleotides) in the noncoding region. Whereas any other plasmid DNA that can transform either APCs, including DC's or other cells which, via cross-priming, transfer the 30 antigenic moiety to DCs, is useful in the present invention, pNGFVLA4a may be used because of the fact that it has already been approved for human therapeutic use.

The following references set forth principles and current information in the field of basic, medical and veterinary virology and are incorporated by reference: *Fields Virology*,

Fields, BN *et al.*, eds., Lippincott Williams & Wilkins, NY, 1996; *Principles of Virology: Molecular Biology, Pathogenesis, and Control*, Flint, S.J. *et al.*, eds., Amer Soc Microbiol, Washington DC, 1999; *Principles and Practice of Clinical Virology*, 4th Edition, Zuckerman. A.J. *et al.*, eds, John Wiley & Sons, NY, 1999; *The Hepatitis C Viruses*, by Hagedorn, CH *et al.*, eds., Springer Verlag, 1999; *Hepatitis B Virus: Molecular Mechanisms in Disease and Novel Strategies for Therapy*, Koshy, R. *et al.*, eds, World Scientific Pub Co, 1998; *Veterinary Virology*, Murphy, F.A. *et al.*, eds., Academic Press, NY, 1999; *Avian Viruses: Function and Control*, Ritchie, B.W., Iowa State University Press, Ames , 2000; *Virus Taxonomy: Classification and Nomenclature of Viruses: Seventh Report of the International Committee on Taxonomy of Viruses*, by M. H. V. Van Regenmortel, MHV *et al.*, eds., Academic Press; NY, 2000.

In addition to naked DNA or viral vectors, engineered bacteria may be used as vectors. A number of bacterial strains including *Salmonella*, BCG and *Listeria monocytogenes*(LM) (Hoiseth *et al.*, *Nature* 291:238-9, 1981; Poirier, TP *et al.*, *J Exp Med* 168:25-32, 1988); Sadoff, JC *et al.*, *Science* 240:336-8, 1988; Stover, CK *et al.*, *Nature* 351:456-60, 1991; Aldovini, A *et al.*, *Nature* 351:479-82, 1991). These organisms display two promising characteristics for use as vaccine vectors: (1) enteric routes of infection, providing the possibility of oral vaccine delivery; and (2) infection of monocytes/macrophages thereby targeting antigens to professional APCs.

In addition to virus-mediated gene transfer *in vivo*, physical means well-known in the art can be used for direct transfer of DNA, including administration of plasmid DNA (Wolff *et al.*, 1990, *supra*) and particle-bombardment mediated gene transfer (Yang, N-S, *et al.*, *Proc Natl Acad Sci USA* 87:9568, 1990; Williams, RS *et al.*, *Proc Natl Acad Sci USA* 88:2726, 1991; Zelenin, AV *et al.*, *FEBS Lett* 280:94 , 1991; Zelenin, AV *et al.*, *FEBS Lett* 244:65, 1989); Johnston, SA *et al.*, *In Vitro Cell Dev Biol* 27:11, 1991). Furthermore, electroporation, a well-known means to transfer genes into cells *in vitro*, can be used to transfer DNA molecules according to the present invention to tissues *in vivo* (Titomirov, AV *et al.*, *Biochim Biophys Acta* 1088:131, 1991).

“Carrier mediated gene transfer” has also been described (Wu, CH *et al.*, *J Biol Chem* 264:16985, 1989; Wu, GY *et al.*, *J Biol Chem* 263:14621, 1988; Soriano, P *et al.*, *Proc Nat. Acad Sci USA* 80:7128, 1983; Wang, C-Y *et al.*, *Pro. Natl Acad Sci USA* 84:7851, 1982; Wilson, JM *et al.*, *J Biol Chem* 267:963, 1992). In one embodiment, carriers are targeted liposomes (Nicolau, C *et al.*, *Proc Natl Acad Sci USA* 80:1068, 1983;

Soriano *et al.*, *supra*) such as immunoliposomes, which can incorporate acylated mAbs into the lipid bilayer (Wang *et al.*, *supra*). Polycations such as asialoglycoprotein/polylysine (Wu *et al.*, 1989, *supra*) may be used, where the conjugate includes a target tissue-5 recognizing molecule (*e.g.*, asialo-orosomucoid for liver) and a DNA binding compound to bind to the DNA to be transfected without causing damage, such as polylysine. This conjugate is then complexed with plasmid DNA of the present invention.

10 Plasmid DNA used for transfection or microinjection may be prepared using methods well-known in the art, for example using the Quiagen procedure (Quiagen), followed by DNA purification using known methods, such as the methods exemplified herein.

15 Such expression vectors may be used to transfect host cells (*in vitro*, *ex vivo* or *in vivo*) for expression of the DNA and production of the encoded proteins which include fusion proteins or peptides. In one embodiment, a DNA vaccine is administered to or contacted with a cell, *e.g.*, a cell obtained from a subject (*e.g.*, an antigen presenting cell), and administered to a subject, wherein the subject is treated before, after or at the same time 20 as the cells are administered to the subject.

The term “isolated” as used herein, when referring to a molecule or composition, such as a translocation polypeptide or a nucleic acid coding therefor, means that the molecule or composition is separated from at least one other compound (protein, other 25 nucleic acid, *etc.*) or from other contaminants with which it is natively associated or becomes associated during processing. An isolated composition can also be substantially pure. An isolated composition can be in a homogeneous state and can be dry or in aqueous solution. Purity and homogeneity can be determined, for example, using analytical chemical techniques such as polyacrylamide gel electrophoresis (PAGE) or high performance liquid chromatography (HPLC). Even where a protein has been isolated so as to appear as a homogenous or dominant band in a gel pattern, there are trace contaminants which co-purify with it.

30 Host cells transformed or transfected to express the fusion polypeptide or a homologue or functional derivative thereof are within the scope of the invention. For example, the fusion polypeptide may be expressed in yeast, or mammalian cells such as Chinese hamster ovary cells (CHO) or human cells. In one embodiment, cells for expression according to the present invention are APCs or DCs. Other suitable host cells are known to those skilled in the art.

Other nucleic acids for potentiating immune responses

Methods of administrating a chemotherapeutic drug and a vaccine may further comprise administration of one or more other constructs, *e.g.*, to prolong the life of antigen presenting cells. Exemplary constructs are described in the following two sections. Such 5 constructs may be administered simultaneously or at the same time as a DNA vaccine. Alternatively, they may be administered before or after administration of the DNA vaccine or chemotherapeutic drug.

Potentiation of immune responses using siRNA directed at apoptotic pathways

Administration to a subject of a DNA vaccine and a chemotherapeutic drug may be 10 accompanied by administration of one or more other agents, *e.g.*, constructs. In one embodiment, a method comprises further administering to a subject an siRNA directed at an apoptotic pathway, such as described in WO 2006/073970, which is incorporated herein in its entirety.

The present inventors have previously designed siRNA sequences that hybridize to, 15 and block expression of the activation of Bak and Bax proteins that are central players in the apoptosis signalling pathway. The present invention is also directed to the methods of treating tumors or hyper proliferative disease involving the administration of siRNA molecules (sequences), vectors containing or encoding the siRNA, expression vectors with a promoter operably linked to the siRNA coding sequence that drives transcription of 20 siRNA sequences that are “specific” for sequences Bak and Bax nucleic acid. siRNAs may include single stranded “hairpin” sequences because of their stability and binding to the target mRNA.

Since Bak and Bax are involved, among other death proteins, in apoptosis of APCs, particularly DCs, the present siRNA sequences may be used in conjunction with a broad 25 range of DNA vaccine constructs encoding antigens to enhance and promote the immune response induced by such DNA vaccine constructs, particularly CD8+ T cell mediated immune responses typified by CTL activation and action. This is believed to occur as a result of the effect of the siRNA in prolonging the life of antigen-presenting DCs which may otherwise be killed in the course of a developing immune response by the very same 30 CTLs that the DCs are responsible for inducing.

In addition to Bak and Bax, additional targets for siRNAs designed in an analogous manner include caspase 8, caspase 9 and caspase 3. The present invention includes compositions and methods in which siRNAs targeting any two or more of Bak, Bax, caspase 8,

caspase 9 and caspase 3 are used in combination, optionally simultaneously (along with a DNA immunogen that encodes an antigen), to administer to a subject. Such combinations of siRNAs may also be used to transfect DCs (along with antigen loading) to improve the immunogenicity of the DCs as cellular vaccines by rendering them resistant to apoptosis.

5 siRNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi) (Sharp, P.A., *Genes Dev.* 15:485–90, 2001; Bernstein, E *et al.*, *Nature* 409:363–66, 2001; Nykanen, A *et al.*, *Cell* 107:309–21, 2001; Elbashir *et al.*, *Genes Dev.* 15:188–200, 2001). RNA interference is the sequence-specific degradation of homologues in an mRNA of a targeting sequence in an siNA. As used 10 herein, the term siNA (small, or short, interfering nucleic acid) is meant to be equivalent to other terms used to describe nucleic acid molecules that are capable of mediating sequence specific RNAi (RNA interference), for example short (or small) interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), short hairpin RNA (shRNA), short interfering oligonucleotide, short interfering nucleic acid, short interfering modified 15 oligonucleotide, chemically-modified siRNA, post-transcriptional gene silencing RNA (ptgsRNA), translational silencing, and others. RNAi involves multiple RNA-protein interactions characterized by four major steps: assembly of siRNA with the RNA-induced silencing complex (RISC), activation of the RISC, target recognition and target cleavage. These interactions may bias strand selection during siRNA-RISC assembly and activation, 20 and contribute to the overall efficiency of RNAi (Khvorova, A *et al.*, *Cell* 115:209–216 (2003); Schwarz, DS *et al.* 115:199–208 (2003)))

25 Considerations to be taken into account when designing an RNAi molecule include, among others, the sequence to be targeted, secondary structure of the RNA target and binding of RNA binding proteins. Methods of optimizing siRNA sequences will be evident to the skilled worker. Typical algorithms and methods are described in Vickers *et al.* (2003) *J Biol Chem* 278:7108-7118; Yang *et al.* (2003) *Proc Natl Acad Sci USA* 99:9942-9947; Far *et al.* (2003) *Nuc. Acids Res.* 31:4417-4424; and Reynolds *et al.* (2004) *Nature Biotechnology* 22:326-330, all of which are incorporated by reference in their entirety.

30 The methods described in Far *et al.*, *supra*, and Reynolds *et al.*, *supra*, may be used by those of ordinary skill in the art to select targeted sequences and design siRNA sequences that are effective at silencing the transcription of the relevant mRNA. Far *et al.* suggests options for assessing target accessibility for siRNA and supports the design of active siRNA constructs. This approach can be automated, adapted to high throughput and

is open to include additional parameters relevant to the biological activity of siRNA. To identify siRNA-specific features likely to contribute to efficient processing at each of the steps of RNAi noted above. Reynolds *et al.*, *supra*, present a systematic analysis of 180 siRNAs targeting the mRNA of two genes. Eight characteristics associated with siRNA functionality were identified: low G/C content, a bias towards low internal stability at the sense strand 3'-terminus, lack of inverted repeats, and sense strand base preferences (positions 3, 10, 13 and 19). Application of an algorithm incorporating all eight criteria significantly improves potent siRNA selection. This highlights the utility of rational design for selecting potent siRNAs that facilitate functional gene knockdown.

10 Candidate siRNA sequences against mouse and human Bax and Bak are selected using a process that involves running a BLAST search against the sequence of Bax or Bak (or any other target) and selecting sequences that “survive” to ensure that these sequences will not be cross matched with any other genes.

15 siRNA sequences selected according to such a process and algorithm may be cloned into an expression plasmid and tested for their activity in abrogating Bak/Bax function cells of the appropriate animal species. Those sequences that show RNAi activity may be used by direct administration bound to particles, or recloned into a viral vector such as a replication-defective human adenovirus serotype 5 (Ad5).

20 One advantage of this viral vector is the high titer obtainable (in the range of 10^{10}) and therefore the high multiplicities-of infection that can be attained. For example, infection with 100 infectious units/ cell ensures all cells are infected. Another advantage of this virus is the high susceptibility and infectivity and the host range (with respect to cell types). Even if expression is transient, cells would survive, possibly replicate, and continue to function before Bak/Bax activity would recover and lead to cell death. In one 25 embodiment, constructs include the following:

For **Bak**:

5'P-UGCUUACGAACUCUUCACCdTdT-3' (sense) (SEQ ID NO: 42)

5'P-GGUGAAGAGUUCGUAGGCAddTdT-3' (antisense) (SEQ ID NO: 43),

30 The nucleotide sequence encoding the Bak protein (including the stop codon) (GenBank accession No. NM_007523 is shown below (SEQ ID NO: 44) with the targeted sequence in upper case, underscored.

atggcatctggacaaggaccaggccccgaagggtggctgcgtatgagtccccgtccctctgaacagcagggtgccaggac
acagaggaggctttcgaagctacgttttacctccaccagcaggaacaggagaccaggccaggggggccgcgtccaaaccccgag

atggacaacttgcggacccaaacagcatctgggtcaggtggcggcagctgctcatcgagatgatattaaccggcg
ctacgacacagagttccagaattactagaacagcttcagcccacagccggaa**TGCCTACGAACCTTCACC**
aagatgcctccagcctattaagagtggcatcagctggccgcgtggctctcctggcttggctaccgtctggccctgtac
gtctaccagcgtggttgaccggcttcctggccaggtgacctgctttggctgatatactgcatcattacatgc
5 gcacagagaggcggtggtggcagccctgaatttgcgtagagacccatcctgaccgtaatggtgatttggtggtctgtgg
gccaattcgtggtacacagattcttcagatcatga 637

The targeted sequence of Bak, TGCCTACGAACCTTTCACC is SEQ ID NO: 45

For Bax:

10 5'P-UAUGGAGCUGCAGAGGAUGdTdT-3' (sense) (SEQ ID NO: 46)

5'P-CAUCCUCUGCAGCUCCAUAdTdT-3' (antisense) (SEQ ID NO: 47)

The nucleotide sequence encoding Bax (including the stop codon) (GenBank accession No. L22472 is shown below (SEQ ID NO: 48) with the targeted sequence shown in upper case and underscored

15 atggacgggtccggggagcagctgggagcggcggccaccagctgaacagatcatgaagacagggcctttgtacag
ggttcatccaggatcgagcaggagatggctgggagacacctgagctgacctggagcagcccccaggatcgccacc
aagaagctgagcgagtgtctccggcgaattggagatgaactggatagcaa **TATGGAGCTGCAGAGGATG**att
gctgacgtggacacggactccccccgagaggcttccgggtggcagctgacatgttgctgatggcaactcaactggggccg
cgtggttgcctctacttgctagcaaactggtgctcaaggccctgtgcactaaagtgcggagctgatcagaaccatcatggc
20 tggacactggacttcctccgtgagcggctgtgtctggatccaagaccagggtggctggaaaggcctctctacttcgggacc
cccacatggcagacagtgaccatcttggctggagtcctcaccgcctgcgtcaccatcttggaaagaagatggctga 589

The targeted sequence of Bax, TATGGAGCTGCAGAGGATG is SEQ ID NO: 49

In a one embodiment, the inhibitory molecule is a double stranded nucleic acid (i.e., an RNA), used in a method of RNA interference. The following show the “paired” 19 nucleotide structures of the siRNA sequences shown above, where the symbol \uparrow :

Bak: 5'P- UGCCUACGAACUCUUUCACCdTdT-3' (sense) (SEQ ID NO: 42)

A horizontal row of 15 double-headed vertical arrows. Each arrow has a small circle at both the top and bottom ends, pointing in opposite directions. They are evenly spaced along a thin horizontal line.

3'P-dTdtACGGAUGCUUGAGAAGUGG -5' (antisense)(SEQ ID NO: 43)

Bax: 5'P- UAUGGAGCUGCAGAGGAUGdTdT-3' (sense) (SEQ ID NO: 46)

A horizontal row of 15 double-headed arrows, each pointing vertically upwards. The arrows are evenly spaced and extend from the bottom of the row to the top.

3'P-dTdTAAUACCUCGACGUCUCCUAC -5' (antisense)(SEQ ID NO: 47)

Other Pro-Apoptotic Proteins to be Targeted

1. Caspase 8: The nucleotide sequence of human caspase-8 is shown below (SEQ ID NO: 50). GenBank Access. # NM_001228. One target sequence for RNAi is underscored. Others may be identified using methods such as those described herein (and in reference cited herein, primarily Far *et al.*, *supra* and Reynolds *et al.*, *supra*).

5 atg gac ttc agc aga aat ctt tat gat att ggg gaa caa ctg gac agt gaa gat ctg gcc tcc ctc aag ttc
 ctg agc ctg gac tac att ccg caa agg aag caa gaa ccc atc aag gat gcc ttg atg tta ttc cag aga ctc
 cag gaa aag aga atg ttg gag gaa agc aat ctg tcc ttc ctg aag gag ctg ctc ttc cga att aat aga ctg
 gat ttg ctg att acc tac cta aac act aga aag gag gag atg gaa agg gaa ctt cag aca cca ggc agg gct
 10 10 caa att tct gcc tac agg ttc cac ttc tgc cgc atg agc tgg gct gaa gca aac agc cag tgc cag aca cag
 tct gta cct ttc tgg cgg agg gtc gat cat cta tta ata agg gtc atg ctc tat cag att tca gaa gaa gtg agc
 aga tca gaa ttg agg tct ttt aag ttt ctt ttg caa gag gaa atc tcc aaa tgc aaa ctg gat gat gac atg aac
 ctg ctg gat att ttc ata gag atg gag aag agg gtc atc ctg gga gaa gga aag ttg gac atc ctg aaa aga
 gtc tgt gcc caa atc aac aag agc ctg ctg aag ata atc aac gac tat gaa gaa ttc agc aaa ggg gag gag
 15 ttg tgt ggg gta atg aca atc tcg gac tct cca aga gaa cag gat agt gaa tca cag act ttg gac aaa gtt
 tac caa atg aaa agc aaa cct cgg gga tac tgt ctg atc aac aat cac aat ttt gca aaa gca cgg gag
 aaa gtg ccc aaa ctt cac agc att agg gac agg aat gga aca cac ttg gat gca ggg gct ttg acc acg acc
 ttg gaa gag ctt cat ttt gag atc aag ccc cac gat gac tgc aca gta gag caa atc tat gag att ttg aaa atc
 tac caa ctc atg gac cac agt aac atg gac tgc ttc atc tgc tgt atc ctc tcc cat gga gac aag ggc atc
 20 atc tat ggc act gat gga cag gag gcc ccc atc tat gag ctg aca tct cag ttc act ggt ttg aag tgc cct
 tcc ctt gct gga aaa ccc aaa gtg ttt att cag gct tgt cag ggg gat aac tac cag aaa ggt ata cct gtt
 gag act gat tca gag gag caa ccc tat tta gaa atg gat tta tca tca cct caa acg aga tat atc ccg gat
 gag gct gac ttt ctg ctg ggg atg gcc act gtg aat aac tgt gtt tcc tac cga aac cct gca gag gga acc
 ttg tac atc cag tca ctt tgc cag agc ctg aga gag cga tgt cct cga ggc gat gat att ctc acc atc ctg
 25 act gaa gtg aac tat gaa gta agc aac aag gat gac aag aaa aac atg ggg aaa cag atg cct cag cct
 act ttc aca cta aga aaa aaa ctt gtc ttc cct tct gat **tga 1491**

The sequences of sense and antisense siRNA strands for targeting this sequence (including dTdT 3' overhangs, are:

5'-AACCUUCGGGGAUACUGUCUGAdTdT-3' (sense) (SEQ ID NO: 51)

30 5'-UCAGACAGUAUCCCCGAGGUdTdT-3' (antisense) (SEQ ID NO: 52)

2. Caspase 9: The nucleotide sequence of human caspase-9 is shown below (SEQ ID NO: 53). See GenBank Access. # NM_001229. The sequence below is of “variant α ” which is longer than a second alternatively spliced variant β , which lacks the underscored

part of the sequence shown below (and which is anti-apoptotic). Target sequences for RNAi, expected to fall in the underscored segment, are identified using known methods such as those described herein and in Far *et al.*, *supra* and Reynolds *et al.*, *supra*) and siRNAs, such as siRNAs, are designed accordingly.

5 atg gac gaa gcg gat cgg cgg ctc ctg cgg cgg tgc cgg ctg cgg ctg gtg gaa gag ctg cag gtg gac
cag ctc tgg gac gcc ctg ctg agc cgc gag ctg ttc agg ccc cat atg atc gag gac atc cag cgg gca
ggc tct gga tct cgg cgg gat cag gcc agg cag ctg atc ata gat ctg gag act cga ggg agt cag gct ctt
cct ttg ttc atc tcc tgc tta gag gac aca ggc cag gac atg ctg gct tcg ttt ctg cga act aac agg caa
gca gca aag ttg tcg aag cca acc cta gaa aac ctt acc cca gtg gtg ctc aga cca gag att cgc aaa cca
10 gag gtt ctc aga ccg gaa aca ccc aga cca gtg gac att ggt tct gga gga ttt ggt gat gtc ggt gct ctt
gag agt ttg agg gga aat gca gat ttg gct tac atc ctg agc atg gag ccc tgt ggc cac tgc ctc att atc
aac aat gtg aac ttc tgc cgt gag tcc ggg ctc cgc acc cgc act ggc tcc aac atc gac tgt gag aag ttg
cgg cgt cgc ttc tcc tcg cat ttc atg gtg gag gtg aag ggc gac ctg act gcc aag aaa atg gtg ctg
gct ttg ctg gag ctg gcg cag cag gac cac ggt gct ctg gac tgc tgc gtg gtc att ctc tct cac ggc
15 tgt cag gcc agc cac ctg cag ttc cca ggg gct gtc tac ggc aca gat gga tgc cct gtg tgc gtc gag aag
att gtg aac atc ttc aat ggg acc agc tgc ccc agc ctg gga ggg aag ccc aag ctc ttt ttc atc cag gcc
tgt ggt ggg gag cag aaa gac cat ggg ttt gag gtg gcc tcc act tcc cct gaa gac gag tcc cct ggc agt
aac ccc gag cca gat gcc acc ccc ttc cag gaa ggt ttg agg acc ttc gac cag ctg gac gcc ata tct agt
ttg ccc aca ccc agt gac atc ttt gtg tcc tac tct act ttc cca ggt ttt gtt tcc tgg agg gac ccc aag agt
20 ggc tcc tgg tac gtt gag acc ctg gac atc ttt gag cag tgg gct cac tct gaa gac ctg cag tcc ctc
ctg ctt agg gtc gct aat gtc gtt tcc tgg aaa ggg att tat aaa cag atg cct ggt tcc ttt aat ttc ctc cgg
aaa aaa ctt ttc ttt aaa aca tca **taa 1191**

3. Caspase 3: The nucleotide sequence of human caspase-3 is shown below (SEQ ID NO: 54). See GenBank Access. # NM_004346. The sequence below is of “variant α” which is the longer of two alternatively spliced variants, all of which encode the full protein. Target sequences for RNAi are identified using known methods such as those described herein and in Far *et al.*, *supra* and Reynolds *et al.*, *supra*) and siRNAs, such as siRNAs, are designed accordingly.

atg gag aac act gaa aac tca gtg gat tca aaa tcc att aaa aat ttg gaa cca aag atc ata cat gga agc
30 gaa tca atg gac tct gga ata tcc ctg gac aac agt tat aaa atg gat tat cct gag atg ggt tta tgt ata ata
att aat aat aag aat ttt cat aaa agc act gga atg aca tct cgg tct ggt aca gat gtc gat gca gca aac ctc
agg gaa aca ttc aga aac ttg aaa tat gaa gtc agg aat aaa aat gat ctt aca cgt gaa gaa att gtg gaa
ttg atg cgt gat gtt tct aaa gaa gat cac agc aaa agg agc agt ttt gtt tgt gtg ctt ctg agc cat ggt gaa

gaa gga ata att ttt gga aca aat gga cct gtt gac ctg aaa aaa ata aca aac ttt ttc aga ggg gat cgt tgt
aga agt cta act gga aaa ccc aaa ctt ttc att att cag gcc tgc cgt ggt aca gaa ctg gac tgt ggc att
gag aca gac agt ggt gtt gat gac atg gcg tgt cat aaa ata cca gtg gag gcc gac ttc ttg tat gca
5 tac tcc aca gca cct ggt tat tat tct tgg cga aat tca aag gat ggc tcc tgg ttc atc cag tcg ctt tgt gcc
atg ctg aaa cag tat gcc gac aag ctt gaa ttt atg cac att ctt acc cgg gtt aac cga aag gtg gca aca
gaa ttt gag tcc ttt tcc ttt gac gct act ttt cat gca aag aaa cag att cca tgt att gtt tcc atg ctc aca
aaa gaa ctc tat ttt tat cac taa **834**

Long double stranded interfering RNAs, such as miRNAs, appear to tolerate mismatches more readily than do short double stranded RNAs. In addition, as used herein, 10 the term RNAi is meant to be equivalent to other terms used to describe sequence specific RNA interference, such as post transcriptional gene silencing, or an epigenetic phenomenon. For example, siNA molecules of the invention can be used to epigenetically silence genes at both the post-transcriptional level or the pre-transcriptional level. In a non-limiting example, epigenetic regulation of gene expression by siNA molecules of the 15 invention can result from siNA mediated modification of chromatin structure and thereby alter gene expression (see, for example, Allshire *Science* 297:1818-19, 2002; Volpe *et al.*, *Science* 297:1833-37, 2002; Jenuwein, *Science* 297:2215-18, 2002; and Hall *et al.*, *Science* 297, 2232-2237, 2002.)

An siNA can be designed to target any region of the coding or non-coding sequence 20 of an mRNA. An siNA is a double-stranded polynucleotide molecule comprising self-complementary sense and antisense regions, wherein the antisense region comprises nucleotide sequence that is complementary to nucleotide sequence in a target nucleic acid molecule or a portion thereof and the sense region has a nucleotide sequence corresponding to the target nucleic acid sequence or a portion thereof. The siNA can be assembled from 25 two separate oligonucleotides, where one strand is the sense strand and the other is the antisense strand, wherein the antisense and sense strands are self-complementary. The siNA can be assembled from a single oligonucleotide, where the self-complementary sense and antisense regions of the siNA are linked by means of a nucleic acid based or non-nucleic acid-based linker(s). The siNA can be a polynucleotide with a hairpin secondary 30 structure, having self-complementary sense and antisense regions. The siNA can be a circular single-stranded polynucleotide having two or more loop structures and a stem comprising self-complementary sense and antisense regions, wherein the circular polynucleotide can be processed either *in vivo* or *in vitro* to generate an active siNA

molecule capable of mediating RNAi. The siNA can also comprise a single stranded polynucleotide having nucleotide sequence complementary to nucleotide sequence in a target nucleic acid molecule or a portion thereof (or can be an siNA molecule that does not require the presence within the siNA molecule of nucleotide sequence corresponding to the target nucleic acid sequence or a portion thereof), wherein the single stranded polynucleotide can further comprise a terminal phosphate group, such as a 5'-phosphate (see for example Martinez *et al.* (2002) *Cell* 110, 563-574 and Schwarz *et al.* (2002) *Molecular Cell* 10, 537-568), or 5',3'-diphosphate.

In certain embodiments, the siNA molecule of the invention comprises separate sense and antisense sequences or regions, wherein the sense and antisense regions are covalently linked by nucleotide or non-nucleotide linkers molecules as is known in the art, or are alternately non-covalently linked by ionic interactions, hydrogen bonding, Van der Waal's interactions, hydrophobic interactions, and/or stacking interactions.

As used herein, siNA molecules need not be limited to those molecules containing only ribonucleotides but may also further encompass deoxyribonucleotides (as in the siRNAs which each include a dTdT dinucleotide) chemically-modified nucleotides, and non-nucleotides. In certain embodiments, the siNA molecules of the invention lack 2'-hydroxy (2'-OH) containing nucleotides. In certain embodiments, siNAs do not require the presence of nucleotides having a 2'-hydroxy group for mediating RNAi and as such, siNAs of the invention optionally do not include any ribonucleotides (*e.g.*, nucleotides having a 2'-OH group). Such siNA molecules that do not require the presence of ribonucleotides within the siNA molecule to support RNAi can however have an attached linker or linkers or other attached or associated groups, moieties, or chains containing one or more nucleotides with 2'-OH groups. Optionally, siNA molecules can comprise ribonucleotides at about 5, 10, 20, 30, 40, or 50% of the nucleotide positions. If modified, the siNAs of the invention can also be referred to as "short interfering modified oligonucleotides" or "siMON." Other chemical modifications, *e.g.*, as described in Int'l Patent Publications WO 03/070918 and WO 03/074654, both of which are incorporated by reference, can be applied to any siNA sequence of the invention.

In one embodiment a molecule mediating RNAi has a 2 nucleotide 3' overhang (dTdT in the sequences disclosed herein). If the RNAi molecule is expressed in a cell from a construct, for example from a hairpin molecule or from an inverted repeat of the desired sequence, then the endogenous cellular machinery will create the overhangs.

Methods of making siRNAs are conventional. *In vitro* methods include processing the polyribonucleotide sequence in a cell-free system (e.g., digesting long dsRNAs with RNase III or Dicer), transcribing recombinant double stranded DNA *in vitro*, and chemical synthesis of nucleotide sequences homologous to Bak or Bax sequences. See, e.g., Tuschl 5 *et al.*, *Genes & Dev.* 13:3191-3197, 1999. *In vivo* methods include

- (1) transfecting DNA vectors into a cell such that a substrate is converted into siRNA *in vivo*. See, for example, Kawasaki *et al.*, *Nucleic Acids Res* 31:700-07, 2003;; Miyagishi *et al.*, *Nature Biotechnol* 20:497-500, 2003;; Lee *et al.*, *Nature Biotechnol* 20:500-05, 2002; Brummelkamp *et al.*, *Science* 296:550-53, 2002; McManus *et al.*, 10 *RNA* 8:842-50, 2002; Paddison *et al.*, *Genes Dev* 16:948-58, 2002; Paddison *et al.*, *Proc Natl Acad Sci USA* 99:1443-48, 2002; Paul *et al.*, *Nature Biotechnol* 20:505-08, 2002; Sui *et al.*, *Proc Natl Acad Sci USA* 99:5515-20, 2002; Yu *et al.*, *Proc Natl Acad Sci USA* 99:6047-52, 2002)
- (2) expressing short hairpin RNAs from plasmid systems using RNA polymerase III (pol III) promoters. See, for example, Kawasaki *et al.*, *supra*; Miyagishi *et al.*, *supra*; Lee *et al.*, *supra*; Brummelkamp *et al.*, *supra*; McManus *et al.*, *supra*), Paddison *et al.*, *supra* (both); Paul *et al.*, *supra*, Sui *et al.*, *supra*; and Yu *et al.*, *supra*; and/or
- (3) expressing short RNA from tandem promoters. See, for example, Miyagishi *et al.*, *supra*; Lee *et al.*, *supra*).

20 When synthesized *in vitro*, a typical micromolar scale RNA synthesis provides about 1 mg of siRNA, which is sufficient for about 1000 transfection experiments using a 24-well tissue culture plate format. In general, to inhibit Bak or Bax expression in cells in culture, one or more siRNAs can be added to cells in culture media, typically at about 1 ng/ml to about 10 µg siRNA/ml.

25 For reviews and more general description of inhibitory RNAs, see Lau *et al.*, *Sci Amer* Aug 2003: 34-41; McManus *et al.*, *Nature Rev Genetics* 3, 737-47, 2002; and Dykxhoorn *et al.*, *Nature Rev Mol Cell Bio* 4:457-467, 2003. For further guidance regarding methods of designing and preparing siRNAs, testing them for efficacy, and using them in methods of RNA interference (both *in vitro* and *in vivo*), see, e.g., Allshire, *Science* 30 297:1818-19, 2002; Volpe *et al.*, *Science* 297:1833-37, 2002; Jenuwein, *Science* 297:2215-18, 2002; Hall *et al.*, *Science* 297 2232-37, 2002; Hutvagner *et al.*, *Science* 297:2056-60, 2002; McManus *et al.* *RNA* 8:842-850, 2002; Reinhart *et al.*, *Genes Dev.* 16:1616-26, 2002; Reinhart *et al.*, *Science* 297:1831, 2002; Fire *et al.* (1998) *Nature* 391:806-11, 2002; Moss,

Curr Biol 11:R772-5, 2002; Brummelkamp *et al.*, *supra*; Bass, *Nature* 411 428-9, 2001; Elbashir *et al.*, *Nature* 411:494-8; US Pat. 6,506,559; Published US Pat App. 20030206887; and PCT applications WO99/07409, WO99/32619, WO 00/01846, WO 00/44914, WO00/44895, WO01/29058, WO01/36646, WO01/75164, WO01/92513, WO 01/29058, 5 WO01/89304, WO01/90401, WO02/16620, and WO02/29858, all of which are incorporated by reference.

Ribozymes and siRNAs can take any of the forms, including modified versions, described for antisense nucleic acid molecules; and they can be introduced into cells as oligonucleotides (single or double stranded), or in the form of an expression vector.

10 In one embodiment, an antisense nucleic acid, siNA (*e.g.*, siRNA) or ribozyme comprises a single stranded polynucleotide comprising a sequence that is at least about 90% (*e.g.*, at least about 93%, 95%, 97%, 98% or 99%) identical to a target segment (such as those indicated for Bak and Bax above) or a complement thereof. As used herein, a DNA and an RNA encoded by it are said to contain the same “sequence,” taking into account that the thymine bases in DNA are replaced by uracil bases in RNA.

15 Active variants (*e.g.*, length variants, including fragments; and sequence variants) of the nucleic acid-based inhibitors discussed herein are also within the scope of the invention. An “active” variant is one that retains an activity of the inhibitor from which it is derived (*i.e.*, the ability to inhibit expression). It is to test a variant to determine for its activity 20 using conventional procedures.

As for length variants, an antisense nucleic acid or siRNA may be of any length that is effective for inhibition of a gene of interest. Typically, an antisense nucleic acid is between about 6 and about 50 nucleotides (*e.g.*, at least about 12, 15, 20, 25, 30, 35, 40, 45 or 50 nt), and may be as long as about 100 to about 200 nucleotides or more. Antisense 25 nucleic acids having about the same length as the gene or coding sequence to be inhibited may be used. When referring to length, the terms bases and base pairs (bp) are used interchangeably, and will be understood to correspond to single stranded (ss) and double stranded (ds) nucleic acids. The length of an effective siNA is generally between about 15 bp and about 29 bp in length, between about 19 and about 29 bp (*e.g.*, about 15, 17, 19, 21, 30 23, 25, 27 or 29 bp), with shorter and longer sequences being acceptable. Generally, siRNAs are shorter than about 30 bases to prevent eliciting interferon effects. For example, an active variant of an siRNA having, for one of its strands, the 19 nucleotide sequence of any of SEQ ID NOs: 42, 43, 46, and 47 herein can lack base pairs from either, or both, of ends

of the dsRNA; or can comprise additional base pairs at either, or both, ends of the ds RNA, provided that the total length of the siRNA is between about 19 and about 29 bp, inclusive. One embodiment of the invention is an siRNA that “consists essentially of” sequences represented by SEQ ID NOs: 42, 43, 46, and 47 or complements of these sequence. The term “consists essentially of” is an intermediate transitional phrase, and in this case excludes, for example, sequences that are long enough to induce a significant interferon response. An siRNA of the invention may consist essentially of between about 19 and about 29 bp in length.

As for sequence variants, in one embodiment, an inhibitory nucleic acid, whether an antisense molecule, a ribozyme (the recognition sequences), or an siNA, comprises a strand that is complementary (100% identical in sequence) to a sequence of a gene that it is designed to inhibit. However, 100% sequence identity is not required to practice the present invention. Thus, the invention has the advantage of being able to tolerate naturally occurring sequence variations, for example, in human c-met, that might be expected due to genetic mutation, polymorphism, or evolutionary divergence. Alternatively, the variant sequences may be artificially generated. Nucleic acid sequences with small insertions, deletions, or single point mutations relative to the target sequence can be effective inhibitors.

The degree of sequence identity may be optimized by sequence comparison and alignment algorithms well-known in the art (see Gribskov and Devereux, Sequence Analysis Primer, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFIT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). In one embodiment, at least about 90% sequence identity may be used (e.g., at least about 92%, 95%, 98% or 99%), or even 100% sequence identity, between the inhibitory nucleic acid and the targeted sequence of targeted gene.

Alternatively, an active variant of an inhibitory nucleic acid of the invention is one that hybridizes to the sequence it is intended to inhibit under conditions of high stringency. For example, the duplex region of an siRNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the target gene transcript under high stringency conditions (e.g., 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50°C or 70°C, hybridization for 12-16 hours), followed generally by washing.

5 DC-1 cells or BM-DCs presenting a given antigen X, when not treated with the siRNAs of the invention, respond to sufficient numbers X-specific CD8+ CTL by apoptotic cell death. In contrast, the same cells transfected with the siRNA or infected with a viral vector encoding the present siRNA sequences survive better despite the delivery of killing signals.

10 Delivery and expression of the siRNA compositions of the present invention inhibit the death of DCs *in vivo* in the process of a developing T cell response, and thereby promote and stimulate the generation of an immune response induced by immunization with an antigen-encoding DNA vaccine vector. These capabilities have been exemplified by showing that:

- (1) co-administration of DNA vaccines encoding HPV-16 E7 with siRNA targeted to Bak and Bax prolongs the lives of antigen-presenting DCs in the draining lymph nodes, thereby enhancing antigen-specific CD8⁺ T cell responses, and eliciting potent antitumor effects against an E7-expressing tumor in vaccinated subjects.
- 15 (2) DCs transfected with siRNA targeting Bak and Bax resist killing by T cells *in vivo*. E7-loaded DCs transfected with Bak/Bax siRNA so that Bak and Bax protein expression is downregulated resist apoptotic death induced by T cells *in vivo*. When administered to subjects, these DCs generate stronger antigen-specific immune responses and manifest therapeutic effects (compared to DCs transfected with 20 control siRNA).

Thus, siRNA constructs are useful as a part of the nucleic acid vaccination and chemotherapy regimen described in this application.

Potentiation of immune responses using anti-apoptotic proteins

25 Administration to a subject of a DNA vaccine and a chemotherapeutic drug may also be accompanied by administration of a nucleic acid encoding an anti-apoptotic protein, as described in WO2005/047501 and in U.S. Patent Application Publication No. 20070026076, both of which are incorporated by reference.

30 The present inventors have previously designed and disclosed an immunotherapeutic strategy that combines antigen-encoding DNA vaccine compositions with additional DNA vectors comprising anti-apoptotic genes including bcl-2, bc-1xL, XIAP, dominant negative mutants of caspase-8 and caspase-9, the products of which are known to inhibit apoptosis (Wu, *et al.* U.S. Patent Application Publication No.

20070026076, incorporated herein by reference). Serine protease inhibitor 6 (SPI-6) which inhibits granzyme B, may also be employed in compositions and methods to delay apoptotic cell death of DCs. The present inventors have shown that the harnessing of an additional biological mechanism, that of inhibiting apoptosis, significantly enhances T cell 5 responses to DNA vaccines comprising antigen-coding sequences, as well as linked sequences encoding such IPPs.

Intradermal vaccination by gene gun efficiently delivers a DNA vaccine into DCs of the skin, resulting in the activation and priming of antigen-specific T cells *in vivo*. DCs, however, have a limited life span, hindering their long-term ability to prime antigen-specific T cells. According to the present invention, a strategy that combines combination 10 therapy with methods to prolong the survival of DNA-transduced DCs enhances priming of antigen-specific T cells and thereby, increase DNA vaccine potency. Co-delivery of DNA encoding inhibitors of apoptosis (BCL-xL, BCL-2, XIAP, dominant negative caspase-9, or dominant negative caspase-8) with DNA encoding an antigen (exemplified as HPV-16 E7 15 protein) prolongs the survival of transduced DCs. More importantly, vaccinated subjects exhibited significant enhancement in antigen-specific CD8+ T cell immune responses, resulting in a potent antitumor effect against antigen-expressing tumors. Among these anti-apoptotic factors, BCL-XL demonstrated the greatest enhancement of both antigen-specific immune responses and antitumor effects. Thus, co-administration of a combination therapy 20 including a DNA vaccine with one or more DNA constructs encoding anti-apoptotic proteins provides a way to enhance DNA vaccine potency.

Serine protease inhibitor 6 (SPI-6), also called Serpinb9, inhibits granzyme B, and may thereby delay apoptotic cell death in DCs. Intradermal co-administration of DNA 25 encoding SPI-6 with DNA constructs encoding E7 linked to various IPPs significantly increased E7-specific CD8+ T cell and CD4+ Th1 cell responses and enhanced anti-tumor effects when compared to vaccination without SPI-6. Thus, in certain embodiments, combined methods are used that enhance MHC class I and II antigen processing with delivery of SPI-6 to potentiate immunity.

A similar approach employs DNA-based alphaviral RNA replicon vectors, also 30 called suicidal DNA vectors. To enhance the immune response to an antigen, *e.g.*, HPV E7, a DNA-based Semliki Forest virus vector, pSCA1, the antigen DNA is fused with DNA encoding an anti-apoptotic polypeptide such BCL-xL, a member of the BCL-2 family. pSCA1 encoding a fusion protein of an antigen polypeptide and/BCL-xL delays cell death

in transfected DCs and generates significantly higher antigen-specific CD8+ T-cell-mediated immunity. The antiapoptotic function of BCL-xL is important for the enhancement of antigen-specific CD8+ T-cell responses. Thus, in one embodiment, delaying cell death induced by an otherwise desirable suicidal DNA vaccine enhances its 5 potency.

Thus, the present invention is also directed to combination therapies including administering a chemotherapeutic drug with a nucleic acid composition useful as an immunogen, comprising a combination of: (a) first nucleic acid vector comprising a first sequence encoding an antigenic polypeptide or peptide, which first vector optionally 10 comprises a second sequence linked to the first sequence, which second sequence encodes an immunogenicity-potentiating polypeptide (IPP); b) a second nucleic acid vector encoding an anti-apoptotic polypeptide, wherein, when the second vector is administered with the first vector to a subject, a T cell-mediated immune response to the antigenic polypeptide or peptide is induced that is greater in magnitude and/or duration than an 15 immune response induced by administration of the first vector alone. The first vector above may comprise a promoter operatively linked to the first and/or the second sequence.

In the above compositions the anti-apoptotic polypeptide may be selected from the group consisting of (a) BCL-xL, (b) BCL2, (c) XIAP, (d) FLICEc-s, (e) dominant-negative caspase-8, (f) dominant negative caspase-9, (g) SPI-6, and (h) a functional homologue or a 20 derivative of any of (a)-(g). The anti-apoptotic DNA may be physically linked to the antigen-encoding DNA. Examples of this are provided in U.S. Patent Application publication No. 20070026076, incorporated by reference, primarily in the form of suicidal DNA vaccine vectors. Alternatively, the anti-apoptotic DNA may be administered 25 separately from, but in combination with the antigen-encoding DNA molecule. Even more examples of the co-administration of these two types of vectors are provided in U.S. Patent Application No. 10/546,810 (publication number US 2007-0026076).

Exemplary nucleotide and amino acid sequences of anti-apoptotic and other proteins are provided in the sequence listing. Biologically active homologs of these proteins and constructs may also be used. Biologically active homologs is to be understood as described 30 herein in the context of other proteins, *e.g.*, IPPs.

The coding sequence for BCL-xL as present in the pcDNA3 vector of the present invention is SEQ ID NO:55; the amino acid sequence of BCL-xL is SEQ ID NO:56; the sequence pcDNA3-BCL-xL is SEQ ID NO:57 (the BCL-xL coding sequence corresponds

to nucleotides 983 to 1732); a pcDNA3 vector combining E7 and BCL-xL, designated pcDNA3-E7/BCL-xL is SEQ ID NO:58 (the E7 and BCL-xL sequences correspond to nucleotides 960 to 2009); the amino acid sequence of the E7-BCL-xL chimeric or fusion polypeptide is SEQ ID NO: 59; a mutant BCL-xL ("mtBCL-xL") DNA sequence is SEQ ID 5 NO: 60; the amino acid sequence of mtBCL-xL is SEQ ID NO: 61; the amino acid sequence of the E7-mtBCL-xL chimeric or fusion polypeptide is SEQ ID NO: 62; in the pcDNA-mtBCL-xL [SEQ ID NO: 63] vector, this mutant sequence is inserted in the same position that BCL-xL is inserted in SEQ ID NO: 57 and in the pcDNA-E7/mtBCL-XL [SEQ ID NO: 64], this sequence is inserted in the same position as the BCL-xL sequence is 10 in SEQ ID NO: 58; the sequence of the suicidal DNA vector pSCA1-BCL-xL is SEQ ID NO: 65 (the BCL-xL sequence corresponds to nucleotides 7483 to 8232); the sequence of the "combined" vector, pSCA1-E7/BCL-xL is SEQ ID NO: 66 (the sequence of E7 and BCL-xL corresponds to nucleotides 7461 to 8510); the sequence of pSCA1-mtBCL-xL [SEQ ID NO: 67] is the same as that for the wild type BCL-xL except that the mtBCL-xL 15 sequence is inserted in the same position as the wild type sequence in the pSCA1-mtBCL-xL vector; the sequence pSCA1-E7/mtBCL-xL [SEQ ID NO: 68] is the same as that for the wild type pSCA1-E7/BCL-xL above, except that the mtBCL-xL sequence is inserted in the same position as the wild type sequence; the sequence of the vector pSG5-BCL-xL is SEQ 20 ID NO: 69 (the BCL-xL coding sequence corresponds to nucleotides 1061 to 1810); the sequenced of the vector pSG5-mtBCL-xL is SEQ ID NO: 70 with the mutant BCL-xL sequence has the mtBCL-xL, shown above, inserted in the same location as for the wild type vector immediately above; the nucleotide sequence of the DNA encoding the XIAP anti-apoptotic protein is SEQ ID NO: 71; the amino acid of the vector comprising the XIAP anti-apoptotic protein coding sequence is SEQ ID NO: 72; the nucleotide sequence of the 25 vector comprising the XIAP anti-apoptotic protein coding sequence, designated PSG5-XIAP is shown in SEQ ID NO: 73 (with the XIAP corresponding to nucleotides 1055 to 2553); the sequence of DNA encoding the anti-apoptotic protein FLICEc-s is SEQ ID NO: 74; the amino acid sequence of the anti-apoptotic protein FLICEc-s is SEQ ID NO: 75; the PSG5 vector encoding the anti-apoptotic protein FLICEc-s, designated PSG5-FLICEc-s, 30 has the sequence SEQ ID NO: 76 (with the FLICEc-s sequence corresponding to nucleotides 1049 to 2443); the sequence of DNA encoding the anti-apoptotic protein Bcl2 is SEQ ID NO: 77; the amino acid sequence of Bcl2 is SEQ ID NO: 78; the PSG5 vector encoding Bcl2, designated PSG5-BCL2, has the sequence SEQ ID NO: 79 (with the Bcl2

sequence corresponding to nucleotides 1061 to 1678); the pSG5-dn-caspase-8 vector is SEQ ID NO: 80 (encoding the dominant-negative caspase-8 corresponding to nucleotides 1055 to 2449); the amino acid sequence of dn-caspase-8 is SEQ ID NO: 81; the pSG5-dn-caspase-9 vector is SEQ ID NO: 82 (encoding the dominant-negative caspase-9 as nucleotides 1055 to 2305); the amino acid sequence of dn-caspase-9 is SEQ ID NO: 83); the nucleotide sequence of murine serine protease inhibitor 6 (SPI-6, deposited in GENE BANK as NM 009256) is SEQ ID NO: 84; the amino acid sequence of the SPI-6 protein is SEQ ID NO: 85; the nucleic acid sequence of the mutant SPI-6 (mtSPI6) is SEQ ID NO: 86; the amino acid sequence of the mutant SPI-6 protein (mtSPI-6) is SEQ ID NO: 87; the sequence of the pcDNA3-Spi6 vector is SEQ ID NO: 88 (the SPI-6 sequence corresponds to nucleotides 960 to 2081); and the sequence of the mutant vector pcDNA3-
10 mtSpi6 vector [SEQ ID NO: 89] is the same as that above, except that the mtSPI-6 sequence is inserted in the same location in place of the wild type SPI-6.

Biologically active homologs of these nucleic acids and proteins may be used.

15 Biologically active homologs are to be understood as described in the context of other proteins, *e.g.*, IPPs, herein. For example, a vector may encode an anti-apoptotic protein that is at least about 90%, 95%, 98% or 99% identical to that of a sequence set forth herein.

Oncolytic Viruses

20 Oncolytic viruses not only comprise a class of vectors able to encode and express a particular antigen to which an antigen-specific immune response is desired, but it also mediates killing of cancer cells. The term "oncolytic" and "oncolytic viruses" refer to cancer killing, *i.e.* "onco" meaning cancer and "lytic" meaning "killing". As used herein, where oncolytic refers to an "oncolytic virus" and an "OV," this virus represents a virus that
25 may kill a cancer cell. In principle any virus capable of selective replication in neoplastic cells including cells of tumors, neoplasms, carcinomas, sarcomas, and the like may be utilized in the invention. Selective replication in neoplastic cells means that the virus replicates at least 1×10^4 , 1×10^5 , 1×10^6 , or more efficient in at least three cell lines established from different tumors compared to cells from at least three different non-tumorigenic tissues.

30 Oncolytic viruses may additionally or alternatively be targeted to specific tissues or tumor tissues. This can be achieved for example through transcriptional targeting of viral genes (*e.g.* WO 96/39841, incorporated by reference) or through modification of viral

proteins that are involved in the cellular binding and uptake mechanisms during the infection process (e.g. WO 2004033639 or WO 2003068809, all of which are incorporated by reference).

A wide range of viruses are contemplated as oncolytic viruses in the present invention, such as but not limited to herpes viruses, Adenovirus, Adeno-associated virus, influenza virus, reovirus, vesicular stomatitis virus (VSV), Newcastle virus, vaccinia virus, poliovirus, measles virus, mumps virus, sindbis virus (SrN) and sendai virus (SV). Tables 1-6 below provide an overview of examples previously published oncolytic viruses (taken from www.oncolyticVirus.org).

10

TABLE 1

Oncolytic viruses targeting oncogenic ras or defective Interferon pathways.

Virus (Company, if known)	Viral gene defect	Cellular Target	Tumor models	References
Influenza A	NS1	PKR	Melanoma	(1)
HSV1mutants: R3616, 1716, G207 (Medigene, Inc.), MGH1	ICP34.5	Protein phosphatase 1a, Defective interferon signaling.	Brain, Colorectal, ovarian, lung, prostate, breast	(2, 3)
Reovirus (Oncolytics Biotech., Inc.)	None	Overactive Ras pathway	Brain, ovarian, breast, colorectal	(4-7).
VSV	None	Defective Interferon signaling	Melanoma	(8)
Newcastle disease virus (Proivirus)	None	Overactive Ras pathway	Fibrosarcoma, Neuroblastoma	(9)

15

TABLE 2

<u>Oncolytic viruses targeting defective p16 tumor suppressor pathways.</u>				
Virus (Company, if known)	Mutated viral gene	Cellular target	Effect	References
Adenovirus D24 and d1922-947 (Onyx Pharmaceuticals)	E1A-CR2 domain	PRB	Viral replication restricted to pRB-defective mutants	(10, 11)
Adenovirus CB106	E1A-CR1 and CR2 domains	PRB, p300, p107, p130	In keratinocytes, viral replication restricted to papillomavirus E6/E7 expressors	(12)
Adenovirus ONYX-411(Onyx Pharmaceuticals)	a) E1A-CR1 b) E2F promoter driving E1A and E4 genes c) E3 deletion	PRB and upregulated E2F transcription factor	Increased dependence of virus replication on overactive E2F	(13)
HSV: hrR3, rRp450, HSV1yCD, MGH1, G207 (Medigene, Inc.), G47Δ	UL39 (ICP6)	RR activity elevating dNTP pools	Viral replication depends on dNTP pools	(14, 15)
HSV Myb34.5 (Prestwick Scientific, Inc.)	a) UL39 (ICP6) b) B-Myb (E2F-responsive) promoter driving γ34.5 gene)	RR activity elevating dNTP pools and upregulated E2F transcription factor	Increased viral replicative dependence on E2F activity	(16, 17)
Vaccinia vvDD-GFP	TK gene	Elevated dTTP (due to cellular TK?)	Viral replication restricted to cells with dTTP pools	(18, 19)

TABLE 3

<u>Oncolytic viruses targeting defective p53 tumor suppressor pathway.</u>				
Virus (Company, if known)	Mutated viral gene	Cellular target	Effect	References
Adenovirus ONYX-015 (Onyx Pharmaceuticals)	E1B-55 Kd	p53	Viral replication restricted to p53-defective mutants	(20)
Adenovirus 01/PEME (Canji)	1) p53 promoter driving expression of E2F 2) E1A-CR1 p300 binding-domain 3) E3 deletion 4) Extra Major Late Promoter driving expression of E3-11.6 Kd	p53, p300.	Expression of E2 and subsequent viral genes dependent on loss of p53 function; wild-type p53 function enhanced by p300 coactivation; increased adenoviral release and cell death by adenoviral death protein (21)	(22)
AAV	AAV unusual DNA structure is precipitating factor	p53/p21	Lack of G2/M arrest in p53-defective cells, infected with AAV, causes cell death	(23)

TABLE 4

Targeting of oncolytic viruses with tumor-specific promoters.

Virus (Company, if known)	Tumor-specific Promoter	Viral gene	Effect	References
Adenovirus CV706 (Calydon, Inc.)	PSA (prostate)	E1A	Replication restricted to prostate tissue	(24)
Adenovirus CN787 (Calydon, Inc.)	a) Rat probasin promoter for E1A b) PSA for E1B	E1A and E1B	Same as above	(25, 26)
Adenovirus CV980 (Calydon, Inc.)	AFP (hepatocellular carcinoma)	E1A and E1B	Replication restricted to hepatic tumors.	(27)
Adenovirus ONYX-411 (Onyx Pharmaceuticals)	E2F1 promoter (most tumors)	E1A and E4	Increased dependence of virus replication on overactive E2F	(13)
Adenovirus 01/PEME (Canji Inc.)	p53 promoter (most tumors)	E2F antagonist.	Expression of E2 and subsequent viral genes dependent on loss of p53 function	(22)
CG8840 (Cell Genesys, Inc.)	Uroplakin II (bladder)	E1A and E1B	Replication restricted to bladder cancer	(28)
KD1-SPB	Surfactant protein B	E4	Replication improved in lung tumors	(29)
HSV Myb34.5 (Prestwick Scientific, Inc.)	B-Myb promoter (most tumors)	g34.5 (ICP34.5)	Improved replication in tumors	(16, 17)
HSV DF3g34.5	DF3 promoter	g34.5 (ICP34.5)	Improved replication in MUC1-positive pancreatic and breast tumor cells.	(30)
HSV G92A	Albumin promoter	ICP4	Replication restricted in hepatoma	(31)

TABLE 5

Targeting with “tumor-selective” infection.				
Virus	Redirected viral ligand	Cellular target	Effect	References
Dual Adenovirus system: AdsCAR-EGF + Δ24	Bispecific- antibody binding adenovirus fiber to EGFR	EGFR	Redirects viral infection to EGFR-expressing cells	(32)
Adenovirus: Ad5-D24RGD	H1-loop in Fiber of Ad modified by incorporation of RGD	Integrin	Redirects viral infection to integrin-expressing cells.	(33)
D24 or ONYX-015	Infusion of bispecific antibodies to fiber and EGFR	EGFR	Redirects viral infection to EGFR-expressing cells	(34)
Ad 5/35	Fiber of adenovirus serotype 35 substituted into adenovirus serotype 5	Unknown	Redirects viral infection away from CAR and towards an unidentified cellular receptor present in human breast cancer	(35)

TABLE 6

Other mechanisms of oncolytic virus targeting.					
Virus	Defect in viral gene	Effect	Oncolytic mechanism	References	
Vaccinia vvDD-GFP	Vaccinia Growth Factor	Cannot prime neighboring cells to divide	Only dividing tumor cells will replicate, because normal cells are not "primed" by VGF	(18)	
Poliovirus PV1(RIPO)	Substitutes poliovirus IRES element with rhinovirus 2	Loss of neurovirulence, because neurons cannot translate	Tumor cells can still propagate virus	(36)	
HSV1: rRp450	ICP6	CYP2B1	Cyclophosphamide > Phosphoramide Mustard	Predominant anticancer action + immunosuppressive effects.	(15)
Adenovirus: FGR	E1B55kD	Fused TK-CD gene	Ganciclovir > GCV-Phosphate + 5-fluorocytosine > 5-fluorouracil	Combination of FGR, GCV, 5FC and radiation shows predominant anticancer action	(50)
HSV1: Fo-10	Unknown	Fusogenic glycol-protein	Not applicable	Enhanced fusion of cell membranes caused by replicating virus increases anticancer effect	(51)
Adenovirus: ad5/IFN	E3	Interferon	Not applicable	Increased anticancer effect compared to control E3-deleted adenovirus	(52)
Adenovirus: Ad.TK ^{RC} , Ad.OW34	E1B55KD	TK	Ganciclovir > GCV-Phosphate	Contradictory anticancer effects	(53, 54)
Adenovirus: Ig.Ad5E1 ⁺ .E3TK	E3-19K	TK	Ganciclovir > GCV-Phosphate	Increased anticancer effect in glioma	(55)
HSV1: Mix of G207 + Defective HSV-IL2	ICP6 and ICP34.5	IL2	Not applicable	At low dose, the mix was more effective than either virus alone	(56) 10
HSV1: NV1042	Complex	IL12	Not applicable	Increased anticancer effect	(57)
HSV1: Mix of G207 + Defective HSV-soluble B7-1	ICP6 and ICP34.5	Soluble B7-1	Not applicable	Increased anticancer effect	(58)
HSV1: HSV1yCD	ICP6	Yeast cytosine deaminase	5-fluorocytosine > 5-fluorouracil	Increased anticancer effect minimal antiviral effect	(59) 20
Vaccinia: VCD	TK	Bacterial cytosine deaminase	5-fluorocytosine > 5-fluorouracil	Increased effect at low viral dose	(60)
HSV1	ICP34.5	IL4, IL12, IL10	Not applicable	Increased anticancer effect for IL12 and IL4, but antagonistic effect for IL10	(61, 62)

TABLE 7

<u>Oncolytic viruses that express anti-cancer cDNAs.</u>					
Virus	Viral gene defect	Anticancer cDNA	Prodrug > Metabolite	Effect	Reference
HSV1: hrR3, MGH1, G207 (Medigene, Inc.)	ICP6 and/or ICP34.5	TK	Ganciclovir > GCV- Phosphate	Predominant anticancer action in some situations, but increased antiviral action in others (FIG. 5)	(42-49)

Methods for producing and purifying the oncolytic virus used according to the invention are described in the publications cited below.

1. Bergmann M *et al.*, 2001, *Cancer Res*, 61: 8188-8193;
- 5 2. Leib, D A *et al.*, 2000, *Proc Natl Acad Sci* 97: 6097-6101;
3. Farassati, F *et al.*, 2001, *Nat Cell Biol*, 3: 745-750;
4. Strong, J E *et al.* 1998, *Embo J*, 17: 3351-3362;
5. Coffey, M C *et al.*, 1998, *Science*, 282: 1332-1334;
6. Norman, K L *et al*, 2002, *Hum Gene Ther*, 13: 641-652;
- 10 7. Wilcox, M E *et al.*, 2001, *J Natl Cancer Inst*, 93: 903-912;
8. Stojdl, D F *et al.*, 2000 *Nat Med*, 6: 821-825;
9. Lorence, R M *et al.*, 1994, *J Natl Cancer Inst*, 86: 1228-1233;
10. Fueyo, J *et al.*, 2000, *Oncogene*, 19: 2-12;
11. Heise, C. *et al.*, 2000, *Nat Med*, 6: 1134-1139;
- 15 12. Balague, C. *et al.*, 2001, *J Virol*, 75: 7602-7611;
13. Johnson, L. *et al.*, 2002, *Cancer Cell*, 1: 325-337;
14. Carroll, N M. *et al.*, 1996, *Ann Surg*, 224: 323-329; discussion 329-330;
15. Chase, M. *et al.*, 1998, *Nat Biotechnol*, 16: 444-448;
16. Chung, R Y *et al.*, 1999, *J Virol*, 73: 7556-7564;
- 20 17. Nakamura, H *et al.*, 2002, *J Clin Invest*, 109: 871-882;
18. McCart, J A *et al.*, 2001, *Cancer Res*, 61: 8751-8757;
19. Puhlmann, M *et al.*, 1999, *Hum Gene Ther*, 10: 649-657;
20. Bischoff, J R *et al.*, 1996, *Science*, 274: 373-376;
21. Tollefson, A E *et al.*, 1996, *J Virol*, 70: 2296-2306;
- 25 22. Ramachandra, M *et al.*, 2001, *Nat Biotechnol*, 19: 1035-1041;
23. Raj, K *et al.*, 2001, *Nature*, 412: 914-917;

24. Rodriguez, R *et al.*, 1997, *Cancer Res*, 57: 2559-2563;
25. Yu, D C *et al.*, 1999, *Cancer Res*, 59: 4200-4203;
26. Chen, Y *et al.*, 2001, *Cancer Res*, 61: 5453-5460;
27. Li, Y *et al.*, 2001, *Cancer Res*, 61: 6428-6436;
- 5 28. Zhang, J *et al.*, 2002, *Cancer Res*, 62: 3743-3750;
29. Doronin, K *et al.*, 2001, *J Virol*, 75: 3314-3324;
30. Mullen, J T *et al.* *Annals of Surgery*, in press;
31. Miyatake, S I *et al.*, 1999, *Gene Ther*, 6: 564-572;
32. Hemminki, A *et al.*, 2001, *Cancer Res*, 61: 6377-6381;
- 10 33. Dmitriev, I *et al.*, 1998, *J Virol*, 72: 9706-9713;
34. van der Poel, H G *et al.*, 2002, *J Urol*, 168: 266-272;
35. Shayakhmetov, D M *et al.*, 2002, *Cancer Res*, 62: 1063-1068;
36. Gromeier, M. *et al.*, 2000, *Proc Natl Acad Sci*, 97: 6803-6808;
37. Nevins, J R, 1981, *Cell*, 26: 213-220;
- 15 38. Steinwaerder, D S *et al.*, 2000, *Hum Gene Ther*, 11: 1933-1948;
39. Steinwaerder, D S *et al.*, 2001, *Nat Med*, 7: 240-243;
40. Grote, D *et al.*, 2001, *Blood*, 97: 3746-3754;
41. Asada, T, 1974, *Cancer*, 34: 1907-1928;
42. Boviatsis, E J *et al.*, 1994, *Cancer Res*, 54: 5745-5751;
- 20 43. Kramm, C M *et al.*, 1996, *Hum Gene Ther*, 7: 1989-1994;
44. Kasuya, H *et al.*, 1999, *J Surg Oncol*, 72: 136-141;
45. Kramm, C M *et al.*, 1997, *Hum Gene Ther*, 8: 2057-2068;
46. Carroll, N M *et al.*, 1997, *J Surg Res*, 69: 413-417;
47. Yoon, S S *et al.*, 1998, *Ann Surg*, 228: 366-374;
- 25 48. Todo, T *et al.*, 2000, *Cancer Gene Ther*, 7: 939-946;
49. Samoto, K *et al.*, 2002, *Neurosurgery*, 50: 599-605; discussion 605-596;
50. Freytag, S O *et al.*, 1998, *Hum Gene Ther*, 9: 1323-1333;
51. Fu, X. and Zhang, X., 2002, *Cancer Res*, 62: 2306-2312;
52. Zhang, J F *et al.*, 1996, *Proc Natl Acad Sci* 93: 4513-4518;
- 30 53. Wildner, O *et al.*, 1999, *Cancer Res*, 59: 410-413;
54. Morris, J C and Wildner, O, 2000, *Mol Ther*, 1: 56-62;
55. Nanda, D *et al.*, 2001, *Cancer Res*, 61: 8743-8750;
56. Zager, J S *et al.*, 2001, *Mol Med*, 7: 561-568;

57. Wong, R J *et al.*, 2001, *Hum Gene Ther*, 12: 253-265;
58. Todo, T *et al.*, 2001, *Cancer Res*, 61: 153-161;
59. Nakamura, H *et al.*, 2001. *Cancer Res*, 61: 5447-5452;
60. McCart, J A, 2000, *Gene Ther*, 7: 1217-1223;
- 5 61. Andreansky, S *et al.*, 1998, *Gene Ther*, 5: 121-130;
62. Parker, J N *et al.*, 2000, *Proc Natl Acad Sci* 97: 2208-2213;
63. Pechan, P A *et al.*, 1996, *Hum Gene Ther*, 7: 2003-2013; and
64. Meignier, B. *et al.*, 1988, *J Infect Dis*, 158: 602-614, all incorporated by reference.

Generally, the virus may be purified to render it essentially free of undesirable contaminants, such as defective interfering viral particles or endotoxins and other pyrogens, so that it will not cause any undesired reactions in the cell, animal, or individual receiving the virus. A means of purifying the virus involves the use of buoyant density gradients, such as cesium chloride gradient centrifugation.

In one embodiment, the oncolytic virus, e.g. vaccinia virus, further contains foreign DNA, i.e., DNA which is not derived from said virus. This DNA may encode the antigen to which an antigen-specific immune response is desired.

In other embodiments, the foreign DNA may be a heterologous promoter region, a structural gene, or a promoter operatively linked to such a gene. Representative promoters include, but are not limited to, the CMV promoter, LacZ promoter, Egr promoter or known HSV promoters. In a one embodiment, the structural gene is selected from the group of a cytokine/chemokine, a suicide gene, a fusogenic protein or a marker gene.

Cytokines/chemokines that may be used include, but are not limited to, IL-4, IL-12 and GM-CSF. Suicide genes that may be used include, but are not limited to, p450 and cytosine deaminase. A fusogenic protein is for example Gibbon ape leukemia virus envelope.

25 Common marker genes are luciferase, GFP or one of its variants, and LacZ.

In a further embodiment the oncolytic virus is further modified to have an altered host cell specificity. Such mutants are for example known for HSV-1 from WO 2004/033639, incorporated by reference, US 2005271620 included by reference, Kamiyama *et al.* (2006) and Menotti *et al.* (2006). Here, glycoproteins of HSV-1 such as gD, gC are fused to a ligand, especially to single-chain antibodies, that specifically bind to target cells of choice. Further, to detarget such viruses from their natural receptors and heparin sulfate proteoglycan deletions and/or point mutations are made in gB, gC and/or gD (WO 2004/033639, incorporated by reference, Zhou and Roizman, 2006).

Chemotherapeutic drugs

Drugs may also further be administered to a mammal in accordance with the methods and compositions taught herein. Generally, any drug that reduces the growth of cells without significantly affecting the immune system may be used, or at least not 5 suppressing the immune system to the extent of eliminating the positive effects of a DNA vaccine that is administered to the subject. In one embodiment, the drugs are chemotherapeutic drugs.

A wide variety of chemotherapeutic drugs may be used, provided that the drug stimulates the effect of a vaccine, *e.g.*, DNA vaccine. In certain embodiments, a 10 chemotherapeutic drug may be a drug that (a) induces apoptosis of cells, in particular, cancer cells, when contacted therewith; (b) reduces tumor burden; and/or (c) enhances CD8+ T cell-mediated antitumor immunity. In certain embodiments, the drug must also be one that does not inhibit the immune system, or at least not at certain concentrations.

In one embodiment, the chemotherapeutic drug is epigallocatechin-3-gallate 15 (EGCG) or a chemical derivative or pharmaceutically acceptable salt thereof.

Epigallocatechin gallate (EGCG) is the major polyphenol component found in green tea. EGCG has demonstrated antitumor effects in various human and animal models, including cancers of the breast, prostate, stomach, esophagus, colon, pancreas, skin, lung, and other sites. EGCG has been shown to act on different pathways to regulate cancer cell growth, 20 survival, angiogenesis and metastasis. For example, some studies suggest that EGCG protects against cancer by causing cell cycle arrest and inducing apoptosis. It is also reported that telomerase inhibition might be one of the major mechanisms underlying the anticancer effects of EGCG. In comparison with commonly-used antitumor agents, including retinoids and doxorubicin, EGCG has a relatively low toxicity and is convenient 25 to administer due to its oral bioavailability. Thus, EGCG has been used in clinical trials and appears to be a potentially ideal antitumor agent.

Exemplary analogs or derivatives of EGCG include (-)-EGCG, (+)-EGCG, (-)-EGCG-amide, (-)-GCG, (+)-GCG, (+)-EGCG-amide, (-)-ECG, (-)-CG, genistein, GTP-1, GTP-2, GTP-3, GTP-4, GTP-5, Bn-(+)-epigallocatechin gallate (US 2004/0186167, 30 incorporated by reference), and dideoxy-epigallocatechin gallate (Furuta, *et al.*, Bioorg. Med. Chem. Letters, 2007, 11: 3095-3098), For additional examples, see US 2004/0186167 (incorporated by reference in its entirety); Waleh, *et al.*, Anticancer Res., 2005, 25: 397-402; Wai, *et al.*, Bioorg. Med. Chem., 2004, 12: 5587-5593; Smith, *et al.*,

Proteins: *Struc. Func. & Bioinform.*, 2003, 54: 58-70; US 7,109,236 (incorporated by reference in its entirety); Landis-Piwowar, *et al.*, *Int. J. Mol. Med.*, 2005, 15: 735-742; Landis-Piwowar, *et al.*, *J. Cell. Phys.*, 2007, 213: 252-260; Daniel, *et al.*, *Int. J. Mol. Med.*, 2006, 18: 625-632; Tanaka, *et al.*, *Ang. Chemie Int.*, 2007, 46: 5934-5937.

5 Another chemotherapeutic drug that may be used is (a) 5,6 di-methylxanthenone-4-acetic acid (DMXAA), or a chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include xanthenone-4-acetic acid, flavone-8-acetic acid, xanthen-9-one-4-acetic acid, methyl (2,2-dimethyl-6-oxo-1,2-dihydro-6H-3,11-dioxacyclopenta[α]anthracen-10-yl)acetate, methyl (2-methyl-6-oxo-1,2-dihydro-6H-3,11-dioxacyclopenta[α]anthracen-10-yl)acetate, methyl (3,3-dimethyl-7-oxo-3H,7H-4,12-dioxabenz[α]anthracen-10-yl)acetate, methyl-6-alkyloxyxanthen-9-one-4-acetates (Gobbi, *et al.*, 2002, *J. Med. Chem.*, 45: 4931) or a . For additional examples, see 10 WO 2007/023302 A1, WO 2007/023307 A1, US 2006/9505, WO 2004/39363 A1, WO 2003/80044 A1, AU 2003/217035 A1, and AU 2003/282215 A1, each incorporated by 15 reference in their entirety.

A chemotherapeutic drug may also be cisplatin, or a chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include dichloro[4,4'-bis(4,4,4-trifluorobutyl)-2,2'-bipyridine]platinum (Kyler *et al.*, *Bioorganic & Medicinal Chemistry*, 2006, 14: 8692-8700), cis-[Rh₂(-O₂CCH₃)₂(CH₃CN)₆]²⁺ (Lutterman *et al.*, *J. Am. Chem. Soc.*, 2006, 128: 738 -739), (+)-cis-(1,1-Cyclobutanedicarboxylato)((2R)-2-methyl-1,4-butanediamine-N,N')platinum 20 (O'Brien *et al.*, *Cancer Res.*, 1992, 52: 4130-4134), cis-bisneodecanoato-trans-R,R-1,2-diaminocyclohexane platinum(II) (Lu *et al.*, *J. of Clin. Oncol.*, 2005, 23: 3495-3501), carboplatin (Woloschuk, *Drug Intell. Clin. Pharm.*, 1988, 22: 843-849), sebriplatin 25 (Kanazawa *et al.*, *Head & Neck*, 2006, 14: 38-43), satraplatin (Amorino *et al.*, *Cancer Chemother. and Pharmacol.*, 2000, 46: 423-426), azane (dichloroplatinum) (CID: 11961987), azanide (CID: 6712951), platinol (CID: 5702198), lopac-P-4394 (CID: 5460033), MOLI001226 (CID: 450696), trichloroplatinum (CID: 420479), platinate(1-), amminetrichloro-, ammonium (CID: 160995), triammineplatinum (CID: 119232), 30 biocisplatinum (CID: 84691), platiblastin (CID: 2767) and pharmaceutically acceptable salts thereof. For additional examples, see US 5922689, US 4996337, US 4937358, US 4808730, US 6130245, US 7232919, and US 7038071, each incorporated by reference in their entirety.

Another chemotherapeutic drug that may be used is apigenin, or a chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include acacetin, chrysin, kampherol, luteolin, myricetin, naringenin, quercetin (Wang *et al.*, Nutrition and Cancer, 2004, 48: 106-114), puerarin (US 5 2006/0276458, incorporated by reference in its entirety) and pharmaceutically acceptable salts thereof. For additional examples, see US 2006/189680 A1, incorporated by reference in its entirety).

Another chemotherapeutic drug that may be used is doxorubicin, or a chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary 10 analogs or derivatives include anthracyclines, 3'-deamino-3'-(3-cyano-4-morpholinyldoxorubicin, WP744 (Faderl, *et al.*, Cancer Res., 2001, 21: 3777-3784), annamycin (Zou, *et al.*, Cancer Chemother. Pharmacol., 1993, 32:190-196), 5-imino-daunorubicin, 2-pyrrolinodoxorubicin, DA-125 (Lim, *et al.*, Cancer Chemother. Pharmacol., 1997, 40: 23-30), 4-demethoxy-4'-O-methyldoxorubicin, PNU 152243 and 15 pharmaceutically acceptable salts thereof (Yuan, *et al.*, Anti-Cancer Drugs, 2004, 15: 641-646). For additional examples, see EP 1242438 B1, US 6630579, AU 2001/29066 B2, US 4826964, US 4672057, US 4314054, AU 2002/358298 A1, and US 4301277, each incorporated by reference in their entirety);

Other chemotherapeutic drugs that may be used are anti-death receptor 5 antibodies 20 and binding proteins, and their derivatives, including antibody fragments, single-chain antibodies (scFvs), Avimers, chimeric antibodies, humanized antibodies, human antibodies and peptides binding death receptor 5. For examples, see US 2007/31414 and US 2006/269554, each incorporated by reference in their entirety.

Another chemotherapeutic drug that may be used is bortezomib, or a chemical 25 derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include MLN-273 and pharmaceutically acceptable salts thereof (Witola, *et al.*, Eukaryotic Cell, 2007, doi:10.1128/EC.00229-07). For additional possibilities, see Groll, *et al.*, Structure, 14:451.

Another chemotherapeutic drug that may be used is 5-aza-2-deoxycytidine, or a 30 chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include other deoxycytidine derivatives and other nucleotide derivatives, such as deoxyadenine derivatives, deoxyguanine derivatives, deoxythymidine derivatives and pharmaceutically acceptable salts thereof.

Another chemotherapeutic drug that may be used is genistein, or a chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include 7-O-modified genistein derivatives (Zhang, *et al.*, Chem. & Biodiv., 2007, 4: 248-255), 4',5,7-tri[3-(2-hydroxyethylthio)propoxy]isoflavone, genistein glycosides (Polkowski, Cancer Letters, 2004, 203: 59-69), other genistein derivatives (Li, *et al.*, Chem & Biodiv., 2006, 4: 463-472; Sarkar, *et al.*, Mini. Rev. Med. Chem., 2006, 6: 401-407) or pharmaceutically acceptable salts thereof. For additional examples, see US 6541613, US 6958156, and WO/2002/081491, each incorporated by reference in their entirety.

Another chemotherapeutic drug that may be used is celecoxib, or a chemical derivative or analog thereof or a pharmaceutically acceptable salt thereof. Exemplary analogs or derivatives include N-(2-aminoethyl)-4-[5-(4-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, 4-[5-(4-aminophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, OSU03012 (Johnson, *et al.*, Blood, 2005, 105: 2504-2509), OSU03013 (Tong, *et. al*, Lung Cancer, 2006, 52: 117-124), dimethyl celecoxib (Backhus, *et al.*, J. Thorac. and Cardiovasc. Surg., 2005, 130: 1406-1412), and other derivatives or pharmaceutically acceptable salts thereof (Ding, *et al.*, Int. J. Cancer, 2005, 113: 803-810; Zhu, *et al.*, Cancer Res., 2004, 64: 4309-4318; Song, *et al.*, J. Natl. Cancer Inst., 2002, 94: 585-591). For additional examples, see US 7026346, incorporated by reference in its entirety.

One of skill in the art will readily recognize that other chemotherapeutics can be used with the methods and kits disclosed in the present invention, including proteasome inhibitors (in addition to bortezomib) and inhibitors of DNA methylation. Other drugs that may be used include Paclitaxel; selenium compounds; SN38, etoposide, 5-Fluorouracil; VP-16, cox-2 inhibitors, Vioxx, cyclooxygenase-2 inhibitors, curcumin, MPC-6827 , tamoxifen or flutamide, etoposide, PG490, 2-methoxyestradiol, AEE-788, aglycon protopanaxadiol, aplideine, ARQ-501, arsenic trioxide, BMS-387032, canertinib dihydrochloride, canfoscamide hydrochloride, combretastatin A-4 prodrug, idronoxil, indisulam, INGN-201, mapatumumab, motexafin gadolinium, oblimersen sodium, OGX-011, patupilone, PXD-101, rubitecan, tipifarnib, trabectedin PXD-101 , methotrexate, Zerumbone, camptothecin, MG-98, VX-680, Ceflatonin, Oblimersen sodium, motexafin gadolinium, 1D09C3, PCK-3145, ME-2 and apoptosis-inducing-ligand (TRAIL/Apo-2 ligand). Others are provided in a report entitled “competitive outlook on apoptosis in

oncology, Dec. 2006, published by Bioseeker, and available, *e.g.*, at http://bizwiz.bioseeker.com/bw/Archives/Files/TOC_BSG0612193.pdf.

Generally, any drug that affects an apoptosis target may also be used. Apoptosis targets include the tumour-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, the BCL2 family of anti-apoptotic proteins (such as Bcl-2), inhibitor of apoptosis (IAP) proteins, MDM2, p53, TRAIL and caspases. Exemplary targets include B-cell CLL/lymphoma 2, Caspase 3, CD4 molecule, Cytosolic ovarian carcinoma antigen 1, Eukaryotic translation elongation factor 2, Farnesyltransferase, CAAX box, alpha; Fc fragment of IgE; Histone deacetylase 1; Histone deacetylase 2; Interleukin 13 receptor, alpha 1; Phosphodiesterase 2A, cGMP-stimulated Phosphodiesterase 5A, cGMP-specific; Protein kinase C, beta 1; Steroid 5-alpha-reductase, alpha polypeptide 1; 8.1.15 Topoisomerase (DNA) I; Topoisomerase (DNA) II alpha; Tubulin, beta polypeptide; and p53 protein.

In certain embodiments, the compounds described herein, *e.g.*, EGCG, are naturally-occurring and may, *e.g.*, be isolated from nature. Accordingly, in certain embodiments, a compound is used in an isolated or purified form, *i.e.*, it is not in a form in which it is naturally occurring. For example, an isolated compound may contain less than about 50%, 30%, 10%, 1%, 0.1% or 0.01% of a molecule that is associated with the compound in nature. A purified preparation of a compound may comprise at least about 50%, 70%, 80%, 90%, 95%, 97%, 98% or 99% of the compound, by molecule number or by weight. Compositions may comprise, consist essentially of consist of one or more compounds described herein. Some compounds that are naturally occurring may also be synthesized in a laboratory and may be referred to as “synthetic.” Yet other compounds described herein are non-naturally occurring.

In certain embodiments, the chemotherapeutic drug is in a preparation from a natural source, *e.g.*, a preparation from green tea.

Pharmaceutical compositions comprising 1, 2, 3, 4, 5 or more chemotherapeutic drugs or pharmaceutically acceptable salts thereof are also provided herein. A pharmaceutical composition may comprise a pharmaceutically acceptable carrier. A composition, *e.g.*, a pharmaceutical composition, may also comprise a vaccine, *e.g.*, a DNA vaccine, and optionally 1, 2, 3, 4, 5 or more vectors, *e.g.*, other DNA vaccines or other constructs, *e.g.*, described herein.

Compounds may be provided with a pharmaceutically acceptable salt. The term "pharmaceutically acceptable salts" is art-recognized, and includes relatively non-toxic, inorganic and organic acid addition salts of compositions, including without limitation, therapeutic agents, excipients, other materials and the like. Examples of pharmaceutically acceptable salts include those derived from mineral acids, such as hydrochloric acid and sulfuric acid, and those derived from organic acids, such as ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like. Examples of suitable inorganic bases for the formation of salts include the hydroxides, carbonates, and bicarbonates of ammonia, sodium, lithium, potassium, calcium, magnesium, aluminum, zinc and the like.

5 Salts may also be formed with suitable organic bases, including those that are non-toxic and strong enough to form such salts. For purposes of illustration, the class of such organic bases may include mono-, di-, and trialkylamines, such as methylamine, dimethylamine, and triethylamine; mono-, di- or trihydroxyalkylamines such as mono-, di-, and triethanolamine; amino acids, such as arginine and lysine; guanidine; N-

10 methylglucosamine; N-methylglucamine; L-glutamine; N-methylpiperazine; morpholine; ethylenediamine; N-benzylphenethylamine; (trihydroxymethyl)aminoethane; and the like.

15 See, for example, *J. Pharm. Sci.*, 66:1-19 (1977).

Also provided herein are compositions and kits comprising one or more DNA vaccines and one or more chemotherapeutic drugs, and optionally one or more other constructs described herein.

Therapeutic compositions and their administration

A vaccine composition comprising a nucleic acid, a particle comprising the nucleic acid or a cell expressing this nucleic acid, may be administered to a mammalian subject.

25 The vaccine composition may be administered in a pharmaceutically acceptable carrier in a biologically-effective and/or a therapeutically-effective amount.

Certain conditions as described herein are disclosed in the Examples. The composition may be given alone or in combination with another protein or peptide such as an immunostimulatory molecule. Treatment may include administration of an adjuvant, 30 used in its broadest sense to include any nonspecific immune stimulating compound such as an interferon. Adjuvants contemplated herein include resorcinols, non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecyl polyethylene ether.

A therapeutically effective amount is a dosage that, when given for an effective period of time, achieves the desired immunological or clinical effect.

A therapeutically active amount of a nucleic acid encoding the fusion polypeptide may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the peptide to elicit a desired response in the individual. 5 Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. A therapeutically effective amount of the protein, in cell associated form may be stated in 10 terms of the protein or cell equivalents.

Thus an effective amount of the vaccine may be between about 1 nanogram and about 1 gram per kilogram of body weight of the recipient, between about 0.1 μ g/kg and about 10mg/kg, between about 1 μ g/kg and about 1 mg/kg. Dosage forms suitable for internal administration may contain (for the latter dose range) from about 0.1 μ g to 100 μ g 15 of active ingredient per unit. The active ingredient may vary from 0.5 to 95% by weight based on the total weight of the composition. Alternatively, an effective dose of cells transfected with the DNA vaccine constructs of the present invention is between about 10^4 and 10^8 cells. Those skilled in the art of immunotherapy will be able to adjust these doses without undue experimentation.

20 In certain embodiments, the routes of administration of the DNA may include (a) intratumoral, peritumoral, and/or intradermal “gene gun” delivery wherein DNA-coated gold particles in an effective amount are delivered using a helium-driven gene gun (BioRad, Hercules, CA) with a discharge pressure set at a known level, *e.g.*, of 400 p.s.i.; (b) intramuscularly (i.m.) injection using a conventional syringe needle; and (c) use of a 25 needle-free biojector such as the Biojector 2000 (Bioject Inc., Portland, OR) which is an injection device consisting of an injector and a disposable syringe. The orifice size controls the depth of penetration. For example, 50 μ g of DNA may be delivered using the Biojector with no. 2 syringe nozzle.

Other routes of administration include the following. The term “systemic 30 administration” refers to administration of a composition or agent such as a DNA vaccine as described herein, in a manner that results in the introduction of the composition into the subject’s circulatory system or otherwise permits its spread throughout the body. “Regional” administration refers to administration into a specific, and somewhat more

limited, anatomical space, such as intraperitoneal, intrathecal, subdural, or to a specific organ. "Local administration" refers to administration of a composition or drug into a limited, or circumscribed, anatomic space, such as intratumoral injection into a tumor mass, subcutaneous injections, intradermal or intramuscular injections. Those of skill in the art 5 will understand that local administration or regional administration may also result in entry of a composition into the circulatory system i.e., rendering it systemic to one degree or another. Other routes of administration include oral, intranasal or rectal or any other route known in the art.

For accomplishing the objectives of the present invention, nucleic acid therapy may 10 be accomplished by direct transfer of a functionally active DNA into mammalian somatic tissue or organ *in vivo*. DNA transfer can be achieved using a number of approaches described below. These systems can be tested for successful expression *in vitro* by use of a selectable marker (e.g., G418 resistance) to select transfected clones expressing the DNA, followed by detection of the presence of the antigen-containing expression product (after 15 treatment with the inducer in the case of an inducible system) using an antibody to the product in an appropriate immunoassay.

The DNA molecules, *e.g.*, encoding a fusion polypeptides, may also be packaged into retrovirus vectors using packaging cell lines that produce replication-defective retroviruses, as is well-known in the art (e.g., Cone, R.D. *et al.*, *Proc Natl Acad Sci USA* 20 81:6349-53, 1984; Mann, RF *et al.*, *Cell* 33:153-9, 1983; Miller, AD *et al.*, *Molec Cell Biol* 5:431-7, 1985; Sorge, J, *et al.*, *Molec Cell Biol* 4:1730-7, 1984; Hock, RA *et al.*, *Nature* 320:257, 1986; Miller, AD *et al.*, *Molec Cell Biol* 6:2895-2902 (1986). Newer packaging cell lines which are efficient and safe for gene transfer have also been described (Bank *et al.*, US Pat. 5,278,056, incorporated by reference).

25 The above approach can be utilized in a site specific manner to deliver the retroviral vector to the tissue or organ of choice. Thus, for example, a catheter delivery system can be used (Nabel, EG *et al.*, *Science* 244:1342 (1989)). Such methods, using either a retroviral vector or a liposome vector, are particularly useful to deliver the nucleic acid to be expressed to a blood vessel wall, or into the blood circulation of a tumor.

30 Depending on the route of administration, the composition may be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions which may inactivate the compound. Thus it may be necessary to coat the composition with, or co-administer the composition with, a material to prevent its

inactivation. For example, an enzyme inhibitors of nucleases or proteases (e.g., pancreatic trypsin inhibitor, diisopropylfluorophosphate and trasylool) or in an appropriate carrier such as liposomes (including water-in-oil-in-water emulsions as well as conventional liposomes (Strejan *et al.*, *J. Neuroimmunol* 7:27, 1984).

5 Other pharmaceutically acceptable carriers for the nucleic acid vaccine compositions according to the present invention are liposomes, pharmaceutical compositions in which the active protein is contained either dispersed or variously present in corpuscles consisting of aqueous concentric layers adherent to lipidic layers. The active protein may be present in the aqueous layer and in the lipidic layer, inside or outside, or, in 10 any event, in the non-homogeneous system generally known as a liposomal suspension. The hydrophobic layer, or lipidic layer, generally, but not exclusively, comprises phospholipids such as lecithin and sphingomyelin, steroids such as cholesterol, more or less ionic surface active substances such as dicetylphosphate, stearylamine or phosphatidic acid, and/or other materials of a hydrophobic nature. Those skilled in the art will appreciate 15 other suitable embodiments of the present liposomal formulations.

A chemotherapeutic drug may be administered in doses that are similar to the doses that the chemotherapeutic drug is used to be administered for cancer therapy. Alternatively, it may be possible to use lower doses, *e.g.*, doses that are lower by 10%, 30%, 50%, or 2, 5, or 10 fold lower. Generally, the dose of chemotherapeutic agent is a 20 dose that is effective to increase the effectiveness of a DNA vaccine, but less than a dose that results in significant immunosuppression or immunosuppression that essentially cancels out the effect of the DNA vaccine.

The route of administration of chemotherapeutic drugs may depend on the drug. For use in the methods described herein, a chemotherapeutic drug may be used as it is 25 commonly used in known methods. Generally, the drugs will be administered orally or they may be injected. The regimen of administration of the drugs may be the same as it is commonly used in known methods. For example, certain drugs are administered one time, other drugs are administered every third day for a set period of time, yet other drugs are administered every other day or every third, fourth, fifth, sixth day or weekly. The 30 Examples provide exemplary regimens for administrating the drugs, as well as DNA vaccines.

The compositions of the present invention, may be administered simultaneously or subsequently. When administered simultaneously, the different components may be

administered as one composition. Accordingly, also provided herein are compositions, *e.g.*, pharmaceutical compositions comprising one or more agents.

In one embodiment, a subject first receives one or more doses of chemotherapeutic drug and then one or more doses of DNA vaccine. In the case of DMXAA, it may be preferable to administer to the subject a dose of DNA vaccine first and then a dose of chemotherapeutic drug. One may administer 1, 2, 3, 4, 5 or more doses of DNA vaccine and 1, 2, 3, 4, 5 or more doses of chemotherapeutic agent.

A method may further comprise subjecting a subject to another cancer treatment, *e.g.*, radiotherapy, an anti-angiogenesis agent and/or a hydrogel-based system.

As used herein “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

Pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Pharmaceutical compositions suitable for injection include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. Isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride may be included in the pharmaceutical composition. In all cases, the composition should be sterile and should be fluid. It should be stable under the conditions of manufacture and storage and must include preservatives that prevent contamination with microorganisms such as bacteria and fungi. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.

The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.

Prevention of the action of microorganisms in the pharmaceutical composition can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.

Compositions may be formulated in dosage unit form for ease of administration and 5 uniformity of dosage. Dosage unit form refers to physically discrete units suited as unitary dosages for a mammalian subject; each unit contains a predetermined quantity of active material (e.g., the nucleic acid vaccine) calculated to produce the desired therapeutic effect, in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique 10 characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of, and sensitivity of, individual subjects.

For lung instillation, aerosolized solutions are used. In a sprayable aerosol preparations, the active protein may be in combination with a solid or liquid inert carrier 15 material. This may also be packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant. The aerosol preparations can contain solvents, buffers, surfactants, and antioxidants in addition to the protein of the invention.

Diseases that may be treated as described herein include hyper proliferative diseases, e.g., cancer, whether localized or having metastasized. Exemplary cancers 20 include head and neck cancers and cervical cancer. Any cancer can be treated provided that there is a tumor associated antigen that is associated with the particular cancer. Other cancers include skin cancer, lung cancer, colon cancer, kidney cancer, breast cancer, prostate cancer, pancreatic cancer, bone cancer, brain cancer, as well as blood cancers, e.g., myeloma, leukemia and lymphoma. Generally, any cell growth can be treated provided that 25 there is an antigen associated with the cell growth, which antigen or homolog thereof can be encoded by a DNA vaccine.

Treating a subject includes curing a subject or improving at least one symptom of the disease or preventing or reducing the likelihood of the disease to return. For example, treating a subject having cancer could be reducing the tumor mass of a subject, e.g., by 30 about 10%, 30%, 50%, 75%, 90% or more, eliminating the tumor, preventing or reducing the likelihood of the tumor to return, or partial or complete remission.

All references cited herein are all incorporated by reference herein, in their entirety, whether specifically incorporated or not. All publications, patents, patent applications,

GenBank sequences and ATCC deposits, cited herein are hereby expressly incorporated by reference for all purposes. In particular, all nucleotide sequences, amino acid sequences, nucleic constructs, DNA vaccines, methods of administration, particular orders of administration of DNA vaccines and agents that are described in the patents, patent 5 applications and other publications referred to herein or authored by one or more of the inventors of this application are specifically incorporated by reference herein. In case of conflict, the definitions within the instant application govern.

Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed within a wide range of equivalent parameters, 10 concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation.

The present description is further illustrated by the following examples, which should not be construed as limiting in any way.

15 EXAMPLES

Example 1: Material and Methods For Examples 2-6

A. Mice

Female C57BL/6 mice (H-2K^b and I-A^b), 5 to 6 weeks of age, were purchased from 20 National Cancer Institute (Frederick, MD). Transgenic mice, OT-1, that express TCR specific for ovalbumin peptide, SIINFEKL, were purchased from The Jackson Laboratory. All of the mice were maintained under specific pathogen-free conditions in the animal facility at Johns Hopkins Hospital (Baltimore, MD). Animals were used in compliance with institutional animal health care regulations, and all animal experimental procedures 25 were approved by the Johns Hopkins Institutional Animal Care and Use Committee.

B. Cell lines

The production and maintenance of TC-1 cells or TC-1-luciferase transduced (TC-1 luc) cells have been described previously (Lin *et al.*, *Cancer. Res.*, 56:21-6 (1996); Kim *et* 30 *al.*, *Human Gene Ther.*, 18:575-88 (2007)). Mouse melanoma cell B16/F10 and thymoma cells EL4 (H-2^b) were purchased from ATCC (Rockville, MD, USA). For the generation of CTLs specific for H-2K^b-OVA, 1x10⁷ EG7 cells (EL4 cells transfected with ovalbumin cDNA) were irradiated (10,000 rad) and cultured for 6 days in complete RPMI-1640 medium with 1x10⁷ spleen cells from OT-1 mice. All cell lines were grown in RPMI-1640,

supplemented with 10% (v/v) fetal bovine serum, 50 U/ml penicillin/streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate, 2 mM nonessential amino acids, and 0.4 mg/ml G418 at 37°C with 5% CO₂.

5 **C. Plasmid DNA constructs**

The generation of recombinant plasmid pcDNA3 encoding CRT/E7 (p-CRT/E7) or recombinant pcDNA3 encoding ovalbumin (p-OVA) has been described previously (Kim *et al.*, *J. Clin. Invest.*, 112:109-17 (2003); Peng *et al.*, *J. Biomed. Sci.*, 12:689-700 (2005)). The accuracy of the DNA construct was confirmed by DNA sequencing. For the gene gun-mediated intradermal vaccination, 2 µg/mouse of recombinant plasmid DNA were delivered to the shaved abdominal region of C57BL/6 mice using a helium-driven gene gun (BioRad, Hercules, CA, USA) with a discharge pressure of 400 p.s.i., according to a previously described protocol (Chen *et al.*, *Cancer Res.*, 60:1035-42 (2000)).

15 **D. Recombinant vaccinia viruses**

The wild type vaccinia virus (Vac-WT) was prepared as described previously (Wu *et al.*, *Proc. Natl. Acad. Sci. U S A*, 92:11671-5 (1995)). The luciferase-expressing vaccinia virus (Vac-luc) was generated using a previously described protocol. It contains two reporter genes (luc and lacZ) inserted into the thymidine kinase region of VV (tk-) as described (Chen *et al.*, *J. Immunotherapy*, 24:46-57 (2001)). The vaccinia virus expressing the full-length chicken OVA (Vac-OVA) was generated using a previously described protocol (Norbury *et al.*, *J. Immunol.*, 166:4355-62 (2001)). The generation of recombinant vaccinia virus encoding calreticulin (CRT) linked to a model tumor antigen HPV-16 E7 (Vac-CRT/E7) was performed using a protocol similar to what has been described earlier (Earl *et al.*, *AIDS Res. Hum. Retroviruses*, 9:589-94 (1993)). The generation of recombinant vaccinia virus expressing green fluorescent protein (Vac-GFP) was performed using a protocol similar to what has been described earlier (Ward *et al.*, *Methods Mol. Biol.*, 269:205-18 (2004)).

30 **E. *In vivo* bioluminescence imaging**

Viral replication levels were quantitatively compared within the tumor administered through different routes of injection. TC-1 tumor bearing mice (tumor size = 8-10mm) were administered by either intraperitoneal (i.p.) or intra-tumoral (i.t.) injection of 1x10⁷ pfu/mouse of vaccinia-luc in 200 µL phosphate-buffered saline. Bioluminescence imaging

was conducted on days 1, 3, and 7 after virus injection on a cryogenically cooled IVIS system (Xenogen/Caliper Life Sciences). The region of interest (ROI) as manually drawn over tumor areas by using Living Image software 2.5 (Xenogen/Caliper Life Sciences).

5 **F. Characterization of CD31⁺ cells infected by vaccinia**

The frequency of CD31⁺ cells infected by vaccinia virus after TC-1 tumor bearing mice (tumor size = 8-10mm) were administered by either intraperitoneal (i.p.) or intra-tumoral (i.t.) injection of 1x10⁷ pfu vaccinia-GFP in 200 µL phosphate-buffered saline were characterized. Tumor cells were harvested 24 hours after viral injection, made into single cell suspensions, and subjected to CD31 staining.

In order to evaluate for killing of CD31⁺ cells, TC-1 tumors were grown in C57BL/6 mice and harvested as tumor size reached 8-10 mm. Tumors were dissociated into single cell suspensions and seeded (3x10⁵/well) into 24-well microtiter plate in complete medium. At 24 hours, Vac-WT or Vac-OVA at 0.5 MOI were added to each well, and at 48 hours, the complete medium was changed and activated OT-1 T cells were added to each well at an effector-to-target ratio of 1:1 (E/T = 1:1). Cells were then harvested 4 hours later and stained with PE anti-mouse CD31 mAb and 7-AAD, and analyzed by flow cytometry using the FACSCalibur flow cytometer, and CellQuest software (Becton Dickinson, San Jose, CA). Data are presented as absolute numbers of CD31⁺7-AAD⁻ cells per 3x10⁵ cells.

20 **G. Heterologous prime-boost immunization**

Groups of mice (five per group) were inoculated with either B16/F10 cells or TC-1 cells (5x10⁴/mouse) at Day 0. Mice were then primed with 2 µg of either control pcDNA3, p-OVA or p-CRT/E7 DNA by gene-gun at day 5, and were boosted with i.t. injection (1x10⁷ pfu/mouse, in 200 uL PBS) of Vac-WT, Vac-OVA ,or Vac-CRT/E7 at day 12.

H. Evaluation of frequency of E7-specific CD8⁺ T cells by intracellular cytokine staining and flow cytometry analysis

For characterization of E7-specific CD8⁺ T cells, both splenocytes and tumor xenografts were harvested 1 week after last immunization. Prior to intracellular cytokine staining, 2x10⁶ pooled splenocytes and pooled tumors from each treatment group were separately incubated for 16 hours with either an H-2K^b-restricted peptide (SIINFEKL; 1.0 µM) or an I-A^b-restricted peptide (LSQAVHAAHAEINEAGR; 1.0 µM). In addition, 2x10⁶ pooled splenocytes and pooled tumors from each treatment group were incubated for

16 hours with 1 μ g/ml of E7 peptide (aa 49-57) containing an MHC class I epitope for detecting E7-specific CD8+ T cell precursors (Feltkamp *et al.*, Eur. J Immunol., 23:2242-9 (1993)). Cells were then harvested, stained for CD8 and IFN- γ using previously described standard protocols (Cheng *et al.*, J Clin. Invest., 108:669-78 (2001)). Samples were 5 analyzed on a FACSCalibur flow cytometer, using CellQuest software (Becton Dickinson, San Jose, CA). All of the analyses shown were carried out on a gated lymphocyte population.

I. *In vitro* cytotoxicity assay

10 Luciferase-expressing TC-1 tumor cells were added to 96-well plates at a dose of 2×10^4 /well. After 24 hours, Vac-WT or Vac-OVA (MOI = 0.5) were added to each well. At 48 hours, the complete medium was changed and activated OT-1 T cells at an E:T ratio of 1:1 were added to each well. Bioluminescence imaging was performed 4 hours later. The degree of CTL-mediated killing of the tumor cells was indicated by the decrease of 15 luminescence activity using the IVIS luminescence imaging system series 200. Bioluminescence signals were acquired for 10 seconds.

J. Statistical analysis

20 Statistical analysis was performed using Prism 3.0 software (GraphPad, San Diego, USA). All data are expressed as means \pm standard deviation (SD) and are representative of at least two independent experiments. Comparisons between individual data points were made using a Student's *t*-test or repeated measure ANOVA (analysis of variance) test, as appropriate. Tumor size was measured during the treatment twice a week by digital calipers and tumor volume (mm^3) was calculated using the following equation: (tumor 25 length x width x height) / 2. Death of mouse was arbitrarily defined as tumor diameter greater than 2 cm. Differences in survival between experimental groups were analyzed using the Log rank test. A *p*-value of ≤ 0.05 was set for the significance of difference among groups.

30

Example 2: Tumor-bearing mice primed with DNA encoding a foreign antigen and treated with intratumoral injection of vaccinia virus encoding the same foreign antigen led to significant therapeutic anti-tumor effects

Intratumoral injection of vaccinia encoding a marker gene, such as luciferase, was recently demonstrated to result in significant expression of luciferase within the tumor, indicating that intratumoral injection of vaccinia can lead to significant viral infection of the tumor cells (Figure 1). Thus, in order to determine the antitumor effects generated in tumor-bearing mice primed with DNA encoding a foreign antigen, such as OVA, and treated with intratumoral injection of vaccinia virus encoding the same foreign antigen, groups of C57BL/6 mice (5 per group) were first challenged with B16 tumor cells and then primed with control pcDNA3 alone or pcDNA3 encoding ovalbumin (p-OVA). One week later, mice were treated with intratumoral injections of either wild-type vaccinia (Vac-WT) or vaccinia encoding OVA (Vac-OVA). Tumor-bearing mice treated with 1X PBS were used as negative controls. A graphical representation of the treatment regimen is depicted in Figure 2A. As shown in Figure 2B, tumor-bearing mice primed with the p-OVA followed by intratumoral Vac-OVA injection showed the best therapeutic antitumor effects compared to treatment with the other prime-boost regimens. Furthermore, tumor-bearing mice primed with the p-OVA prime followed by intratumoral Vac-OVA injection showed improved survival compared to treatment with the other therapeutic regimens ($p < 0.01$) (Figure 2C). Thus, the data indicate that the treatment with p-OVA followed by intratumoral Vac-OVA injection produced significant therapeutic anti-tumor effects and long-term survival in B16 tumor-bearing mice.

The same therapeutic approach was further tested using another tumor model, TC-1. Groups of C57BL/6 mice (5 per group) were first challenged with TC-1 tumor cells and then primed them with control pcDNA3 or p-OVA. One week later, mice were treated with either Vac-WT or Vac-OVA by intratumoral injection. Tumor-bearing mice treated with PBS were used as negative controls. A graphical representation of the treatment regimen is depicted in Figure 3A. As shown in Figure 3B, tumor-bearing mice treated with the p-OVA followed by intratumoral Vac-OVA injection showed the best therapeutic antitumor effects compared to treatment with the other prime-boost regimens. Furthermore, tumor-bearing mice treated with the p-OVA followed by intratumoral Vac-OVA injection showed improved survival compared to treatment with the other therapeutic regimens ($p < 0.01$; Figure 3C). Thus, the data indicated that the treatment with p-OVA followed by intratumoral Vac-OVA injection produced significant therapeutic anti-tumor effects and long-term survival in TC-1 tumor-bearing mice.

The therapeutic approach was further tested using an antigenic system specific to TC-1 tumor cells, specifically E7. It was found that vaccination with CRT/E7 DNA vaccine intradermally followed by intratumoral injection of vaccinia encoding CRT/E7 also generated significant therapeutic anti-tumor effects and long-term survival in TC-1 tumor-bearing mice (Figure 4). Taken together, the data demonstrate that the treatment with a foreign antigen-specific DNA vaccine followed by intratumoral injection of vaccinia encoding the same foreign antigen produced significant therapeutic anti-tumor effects and long-term survival in tumor-bearing mice in two different tumor models.

10 **Example 3: Tumor-bearing mice primed with DNA encoding foreign antigen and treated with intratumoral injection of vaccinia encoding the same foreign antigen leads to significant number of foreign antigen-specific CD8+ T cells**

In order to determine the antigen-specific CD8⁺ T cell immune response against OVA in tumor-bearing mice using the DNA prime and intratumoral viral boost model, 15 groups of C57BL/6 mice (5 per group) were first challenged with B16 tumor cells and then treated with either pcDNA3 or p-OVA followed by intratumoral injection with either Vac-WT or Vac-OVA, as previously described in Figure 2. Tumor-bearing mice treated with 1X PBS were used as negative controls. Cells were harvested from the spleens and tumors of vaccinated mice 7 days after vaccinia injection and were characterized for the presence 20 of OVA-specific CD8⁺ T cells using intracellular cytokine staining for IFN- γ followed by flow cytometry analysis. As shown in Figure 5, tumor-bearing mice that were treated with p-OVA followed by intratumoral Vac-OVA injection generated a significantly higher numbers/percentages of OVA-specific CD8⁺ T cells both in the spleens as well as tumors compared to tumor-bearing mice treated with the other regimens.

25 The antigen-specific immune responses elicited in another tumor model, TC-1, which uses a different antigenic system, E7, were also determined. Groups of C57BL/6 mice (5 per group) were first challenged with TC-1 tumor cells and then primed them with either pcDNA3 or p-CRT/E7 DNA vaccine intradermally. One week later, mice were treated with either Vac-WT or Vac-CRT/E7 by either intraperitoneal or intratumoral 30 injection. Tumor-bearing mice treated with PBS were used as negative controls. It was observed that tumor-bearing mice that were treated with p-CRT/E7 DNA followed by intratumoral Vac-CRT/E7 injection generated a significantly higher number of E7-specific CD8⁺ T cells both in the spleens as well as tumors compared to tumor-bearing mice treated

with the other regimens (Figure 6). Taken together, the data indicate that treatment of tumor-bearing mice with a foreign antigen-specific DNA vaccine followed by intratumoral injection of vaccinia encoding the same foreign antigen leads to the strongest antigen-specific CD8+ T cell immune responses in the spleens and tumors.

5 OVA-specific CD4⁺ T cell immune responses in tumor-bearing mice treated with p-OVA followed by intratumoral Vac-OVA injection were also determined. It was found that while the OVA-specific CD4⁺ T cell immune responses in the spleens of treated mice were not significantly different from those in tumor-bearing mice treated with the other regimens, the OVA-specific CD4⁺ T cell immune responses within the tumors of treated 10 mice were significantly higher compared to those in tumor-bearing mice treated with the other regimens (Figure 7). Thus, the data indicate that treatment with p-OVA followed by intratumoral Vac-OVA injection leads to increased OVA-specific CD4⁺ T cell immune responses in the tumors, but not in the spleens of tumor-bearing mice.

15 In order to determine the subset of immune cells that are important for the observed antitumor effects, *in vivo* antibody depletion experiments were performed in tumor-bearing mice treated with the p-OVA followed by intratumoral Vac-OVA injection. It was found that mice depleted of CD8⁺ T cells showed a significant reduction in survival compared to treated mice without depletion in both tumor models (Figure 8). Furthermore, depletion of 20 CD4⁺ T cells showed a slight reduction in survival, although not as significant as CD8⁺ T cell depletion. Taken together, the data indicate that CD8⁺ T cells, as well as CD4⁺ T cells, play an important role in the antitumor effects observed in mice treated with p-OVA followed by intratumoral Vac-OVA injection.

Example 4: Treatment with OVA expressing vaccinia not only kills the tumor cells directly, but also renders tumor cells more susceptible to killing by OVA-specific T cells

25 In order to determine if treatment of tumor cells with Vac-OVA renders tumor cells more susceptible to viral oncolysis as well as OVA-specific T cell-mediated killing, a cytotoxicity assay was performed using luciferase-expressing TC-1 tumor cells. TC-1/luc tumor cells were plated on Day 0 and treated with either Vac-OVA or Vac-WT on Day 1. The cells were then treated with or without OVA-specific CD8+ T cells (OT-1 T cells) on 30 Day 2 as shown in Figure 9A. Four hours later, the CTL-mediated killing of the TC-1 tumor cells in each well was monitored using bioluminescent imaging system. The degree

of CTL-mediated killing of the tumor cells was indicated by the decrease of luminescence activity. As shown in Figure 9B, it was observed that tumor cells incubated with Vac-WT or Vac-OVA alone demonstrated a significant reduction in luciferase activity, indicating that tumor killing was contributed by viral oncolysis. Furthermore, the lowest luciferase activity was observed in TC-1 cells treated with Vac-OVA in conjunction with OT-1 T cells, but not in cells treated with Vac-WT. The data indicates that the increased tumor lysis is contributed by OVA-specific cytotoxic T cell-mediated killing. Taken together, the data indicate that the treatment of tumor cells with Vac-OVA and OT-1 cells can lead to tumor lysis by a combination of viral oncolysis and OVA-specific cytotoxic T cell-mediated killing.

Example 5: Intratumoral injection of vaccinia leads to infection of CD31+ non-tumor cells by vaccinia

It was further investigated whether Vac-OVA treatment could exert cytotoxic effects on the surrounding non-tumor cells, including CD31⁺ endothelial and stromal cells. In order to determine the number of CD31⁺ non-tumor cells infected by vaccinia in tumor-bearing mice, groups of C57BL/6 mice (5 per group) were subcutaneously challenged with TC-1 tumor cells and treated with either intratumoral (i.t.) or intraperitoneal (i.p.) injection with Vac-GFP. Tumor cells were harvested 24 hours after vaccinia virus injection, stained for CD31 and characterized by flow cytometry analysis. As shown in Figure 10A, the percentage of CD31⁺ non-tumor cells infected with Vac-GFP was significantly higher in tumor-bearing mice injected intratumorally with Vac-GFP compared to mice injected intraperitoneally or mice treated with PBS. Thus, the data indicate that intratumoral injection of vaccinia leads to increased infection of CD31+ non-tumor cells by vaccinia compared to intraperitoneal injection.

Example 6: Treatment with vaccinia-OVA not only kills the surrounding CD31+ stromal cells in the tumor microenvironment directly but also renders them more susceptible to killing by OVA-specific T cells

It was further determined if treatment of explanted tumor injected with Vac-OVA would render the CD31⁺ non-tumor cells derived from the surrounding tumor stroma more susceptible to viral oncolysis and to OVA-specific CD8⁺ T cell-mediated killing. Therefore, explanted TC-1 tumor cells were plated in 96-well plates on day 0 and treated them with Vac-OVA or Vac-WT on day 1. The cells were then treated with or without

OVA-specific CD8⁺ T cells (OT-1 T cells) on day 2. Four hours later, the cells were analyzed by flow cytometry analysis for expression of CD31 and 7-AAD. As shown in Figure 10B, it was observed that CD31⁺ cells incubated with Vac-WT or Vac-OVA alone demonstrated a significant reduction in luciferase activity, indicating that killing was contributed by viral oncolysis. Furthermore, the lowest luciferase activity was observed in CD31⁺ cells treated with Vac-OVA and OT-1 T cells, but not in cells treated with Vac-WT, suggesting that the increased tumor lysis is contributed by OVA-specific cytotoxic T cell-mediated killing. Taken together, the data indicates that the treatment of CD31⁺ cells with Vac-OVA and OT-1 cells can lead to lysis by a combination of viral oncolysis and OVA-specific cytotoxic T cell-mediated killing.

CLAIMS

1. A method of inducing or enhancing an antigen-specific immune response in a mammal, comprising the steps of:

5 (a) priming the mammal by administering to the mammal an effective amount of a nucleic acid composition encoding the antigen or a biologically active homolog thereof; and

(b) boosting the mammal by administering to the mammal an effective amount of an oncolytic virus comprising a nucleic acid encoding the antigen or the biologically active homolog thereof,

10 thereby inducing or enhancing the antigen-specific immune response.

2. The method of claim 1, wherein the antigen is a tumor-associated antigen (TAA).

15 3. The method of claim 1, wherein the antigen is foreign to the mammal.

4. The method of claim 1, wherein the antigen is selected from the group consisting of ovalbumin, HPV E6, and HPV E7.

20 5. The method of claim 4, wherein the antigen comprises an ovalbumin protein comprising an amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:139.

6. The method of claim 4, wherein the antigen comprises an HPV E7 protein

25 comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of LSRHFMHQKRTAMFQDPQERPRKLPQ and AMFQDPQERPRKLPQLCTELQTTIHDIILEC.

7. The method of claim 4, wherein the antigen comprises an HPV E7 protein

30 comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of PTLHEYMLDLQPETTDLYCYEQ, HEYMLDLQPET, TLHEYMLDLQPETTD, EYMLDLQPETTDLY, DEIDGPAGQAEPDRAHY and GPAGQAEPDRAHYNI.

35 8. The method of claim 1, wherein the nucleic acid composition is a DNA vaccine.

9. The method of claim 1, wherein the nucleic acid composition is administered from the group consisting of intradermally, intraperitoneally, and intravenously.

5 10. The method of claim 1, wherein the mammal is a human having a tumor and wherein the nucleic acid composition is administered intratumorally or peritumorally.

11. The method of claim 1, wherein the oncolytic virus is selected from the group consisting of vaccinia virus, adenovirus, herpes simplex virus, poxvirus, vesicular 10 stomatitis virus, measles virus, Newcastle disease virus, influenza virus, and reovirus.

12. The method of claim 1 or 11, wherein the oncolytic virus is thymidine kinase negative.

15 13. The method of claim 13, wherein the oncolytic virus is administered from the group consisting of intradermally, intraperitoneally, and intravenously.

14. The method of claim 1, wherein the mammal is a human having a tumor and wherein the oncolytic virus is administered intratumorally or peritumorally.

20 15. The method of claim 1, wherein the nucleic acid composition is present within an oncolytic virus.

25 16. The method of claim 15, wherein the oncolytic virus of step (a) is the same as or is different from the oncolytic virus of step (b).

17. The method of claim 1 or 16, wherein step (a) is performed before step (b), step (a) and step (b) are performed at the same time, or step (a) is performed after step (b).

30 18. The method of claim 1 or 16, wherein step (a) and/or step (b) is repeated at least once.

19. The method of claim 1 or 16, wherein the dosage used in step (a) and/or step (b) is 1×10^7 pfu.

20. The method of claim 1, wherein the antigen-specific immune response is greater in magnitude than an antigen-specific immune response induced by administration of the nucleic acid composition alone.

5 21. The method of claim 1, wherein the antigen-specific immune response is mediated at least in part by CD8⁺ cytotoxic T lymphocytes (CTL).

22. The method of claim 1, wherein the antigen-specific immune response is mediated at least in part by CD8⁻ cytotoxic T lymphocytes (CTL).

10 23. The method of claim 1, wherein the antigen-specific immune response is mediated at least in part by peritumoral stromal cells.

15 24. The method of claim 1, further comprising administering an effective amount of a chemotherapeutic agent.

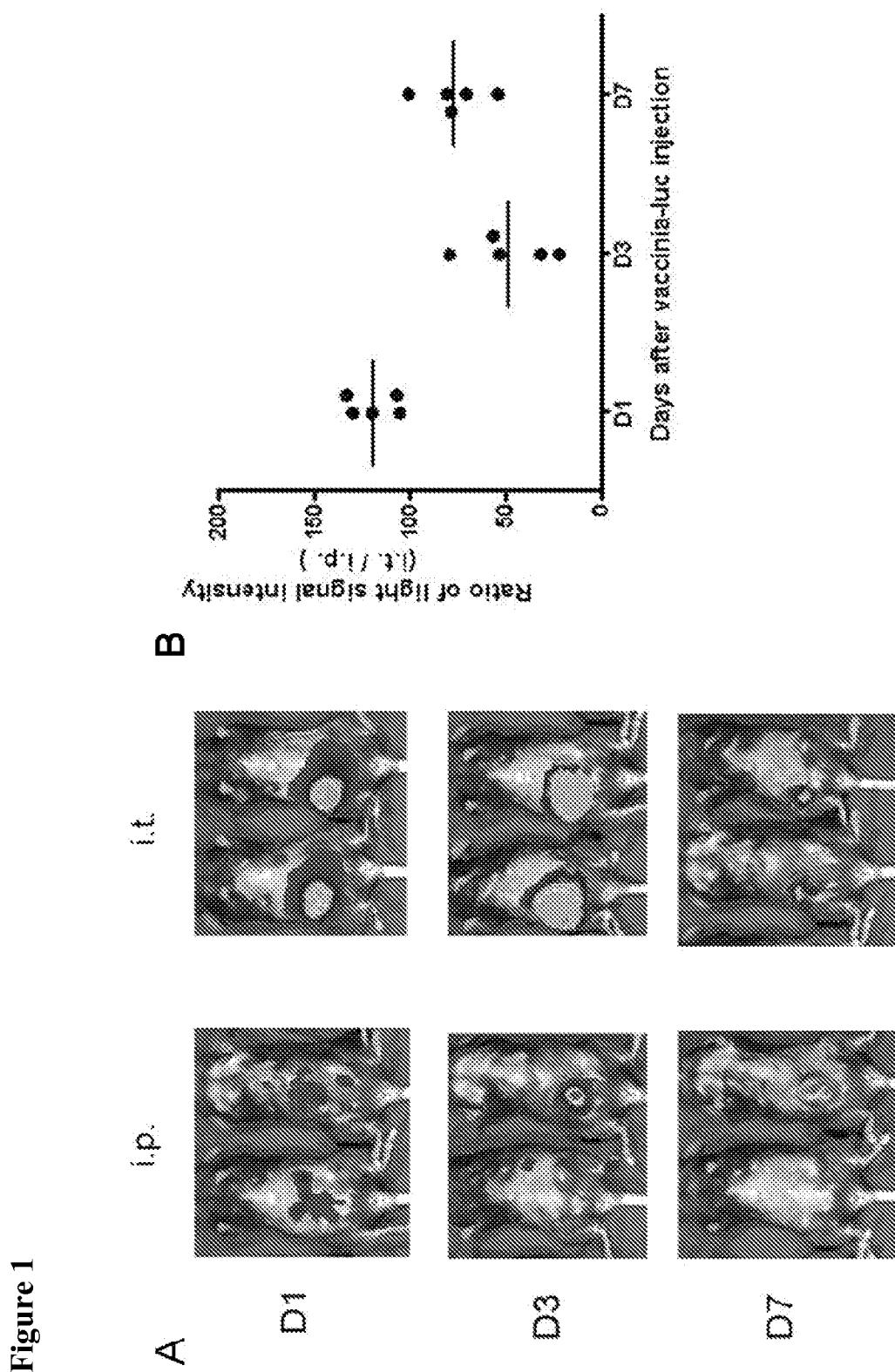
25. The method of claim 1, further comprising screening the mammal for the presence of antibodies against the antigen.

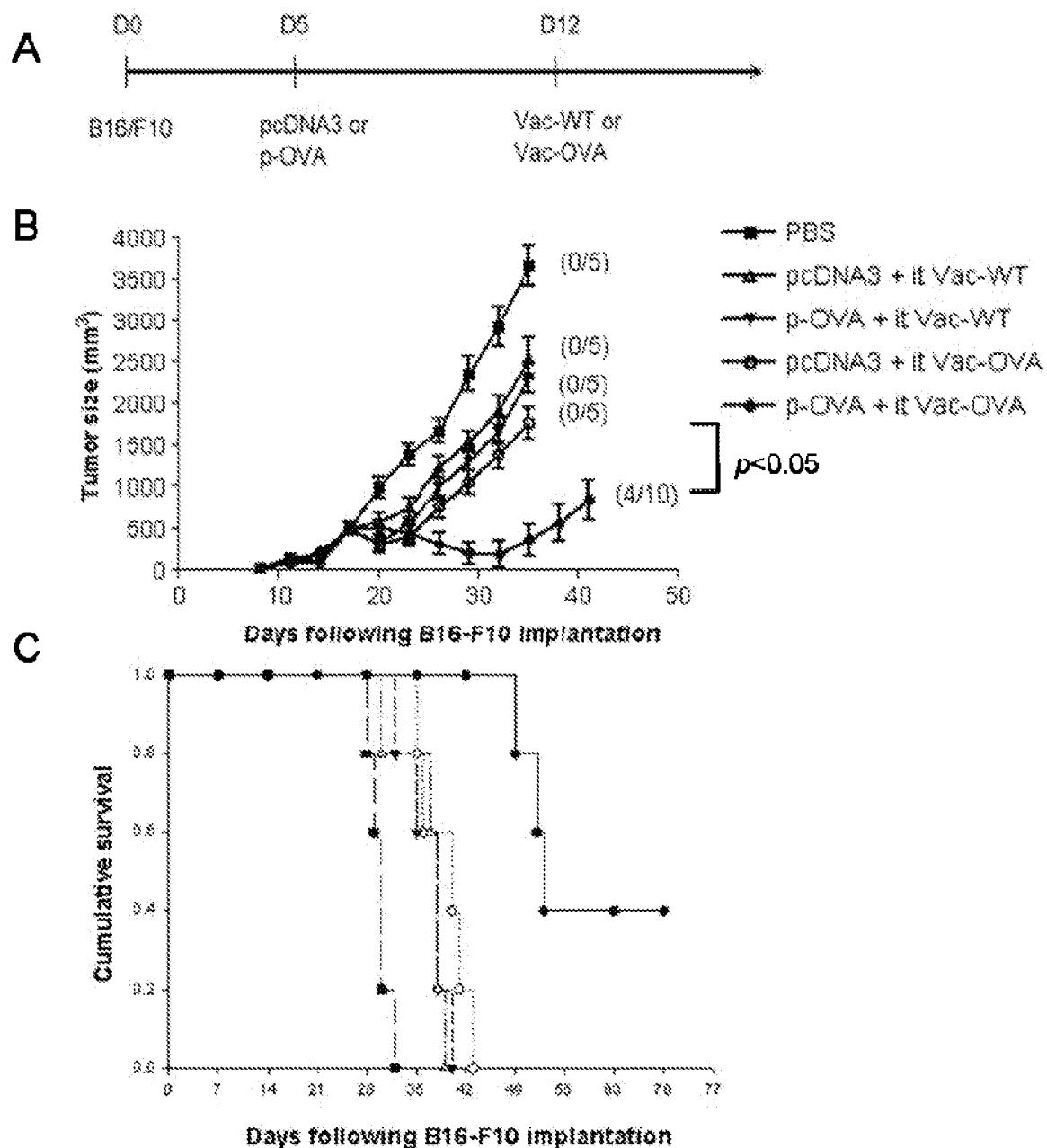
20 26. The method of claim 1, wherein the mammal is a human.

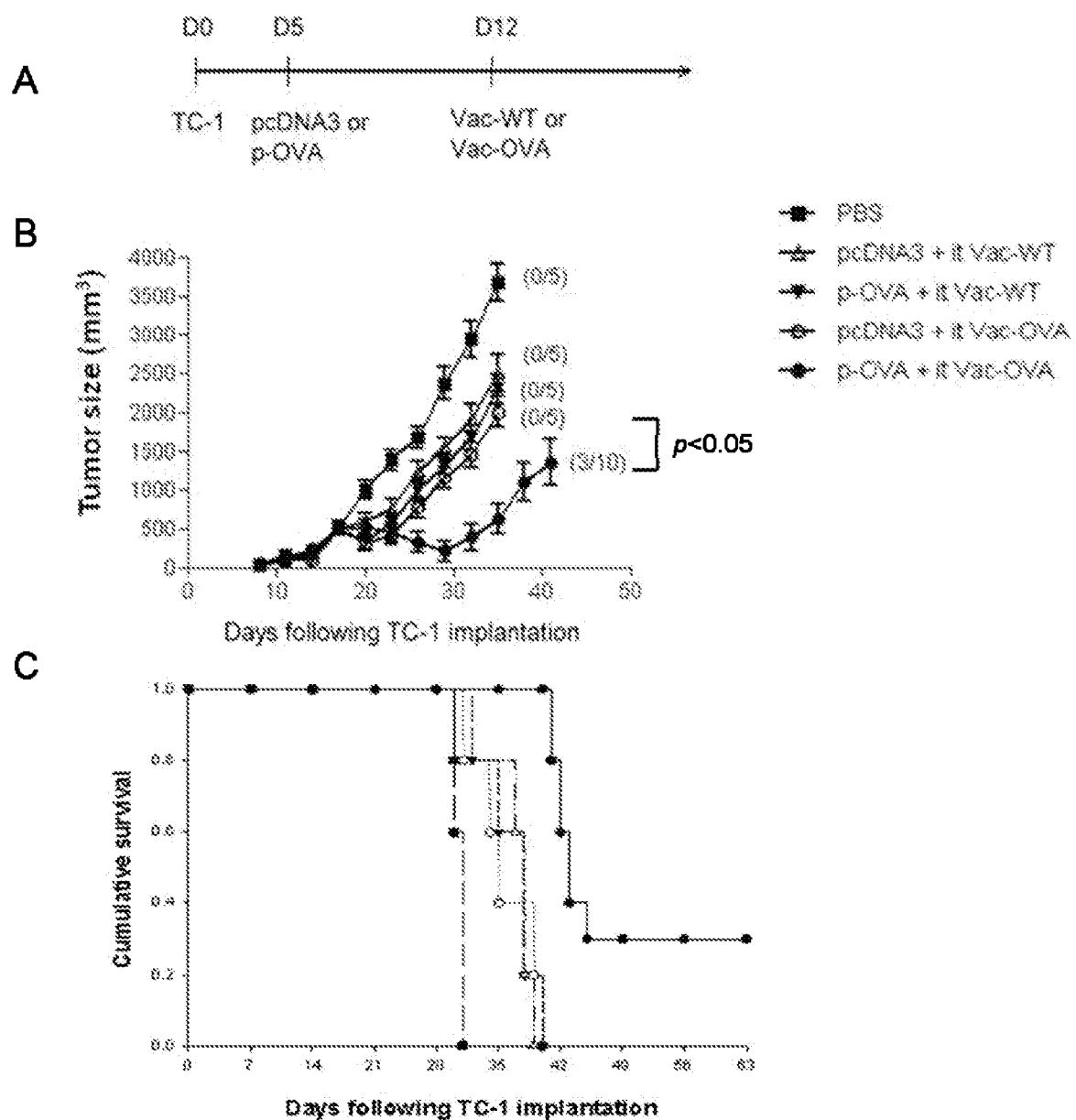
27. The method of claim 1, wherein the mammal is afflicted with cancer.

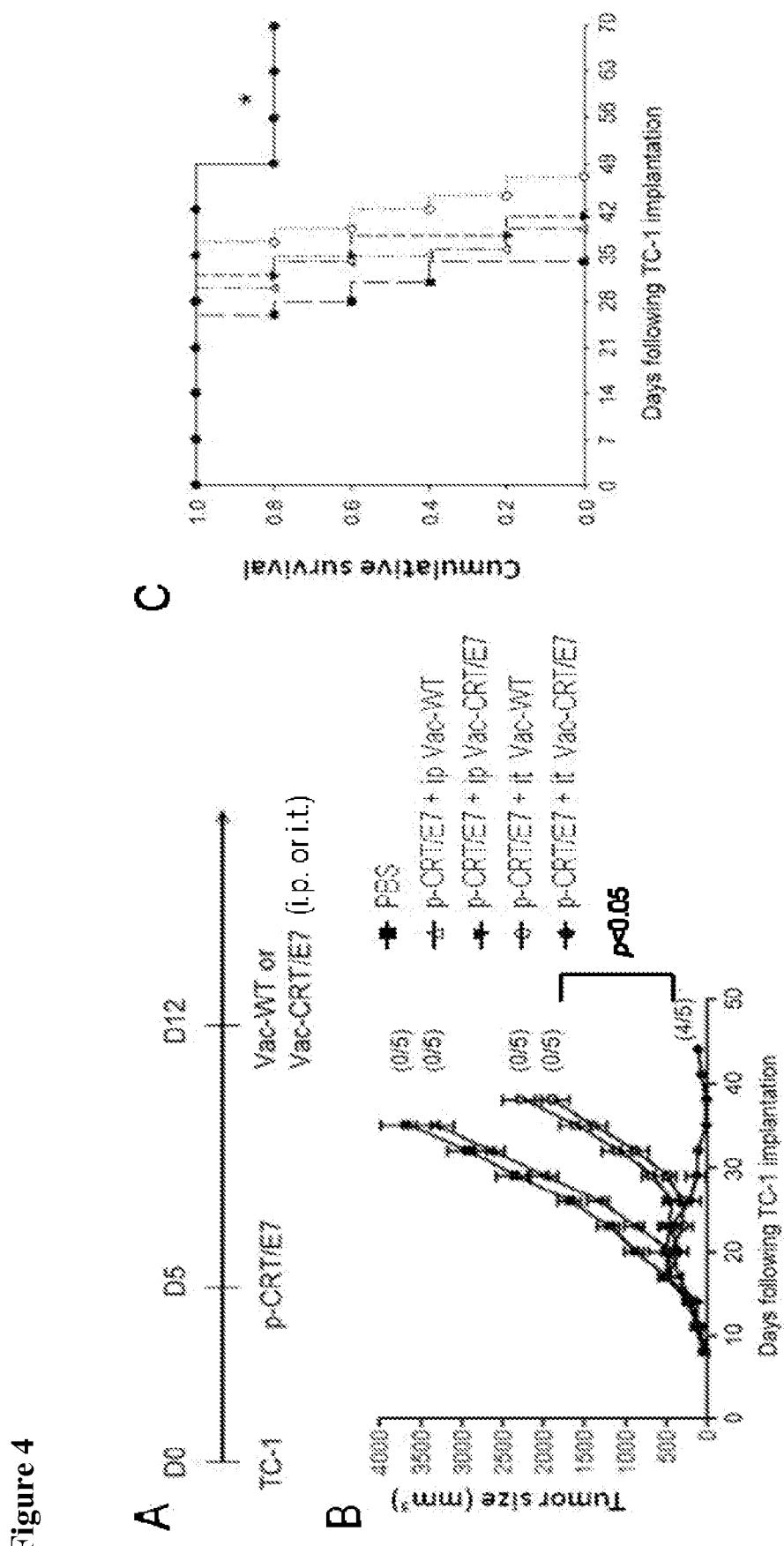
28. A method for treating or preventing advanced stage cancer in a mammal comprising

25 (a) priming the mammal by administering to the mammal an effective amount of a nucleic acid composition encoding the antigen or a biologically active homolog thereof; and


30 (b) boosting the mammal by administering to the mammal an effective amount of an oncolytic virus comprising a nucleic acid encoding the antigen or the biologically active homolog thereof, thereby inducing or enhancing the antigen-specific immune response.


29. The method of claim 28, wherein the advanced stage cancer is melanoma or thymoma.


30. A kit comprising a priming composition and a boosting composition, the kit comprising;


(a) a priming composition comprising DNA encoding an immunogenic foreign antigen and a pharmaceutically acceptable carrier; and

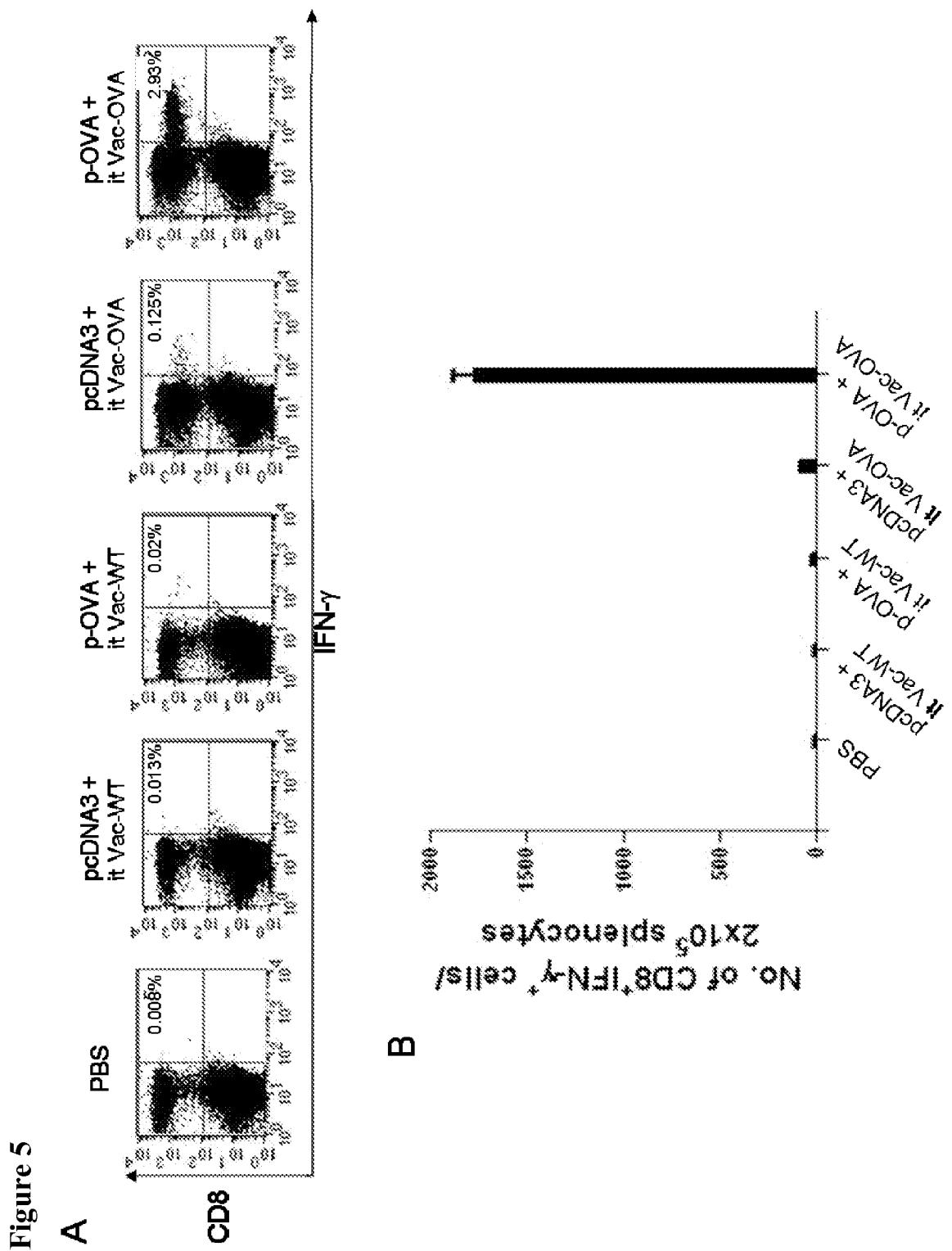

5 (a) a boosting composition comprising a virus encoding said foreign antigen and a pharmaceutically acceptable carrier.

Figure 2

Figure 3

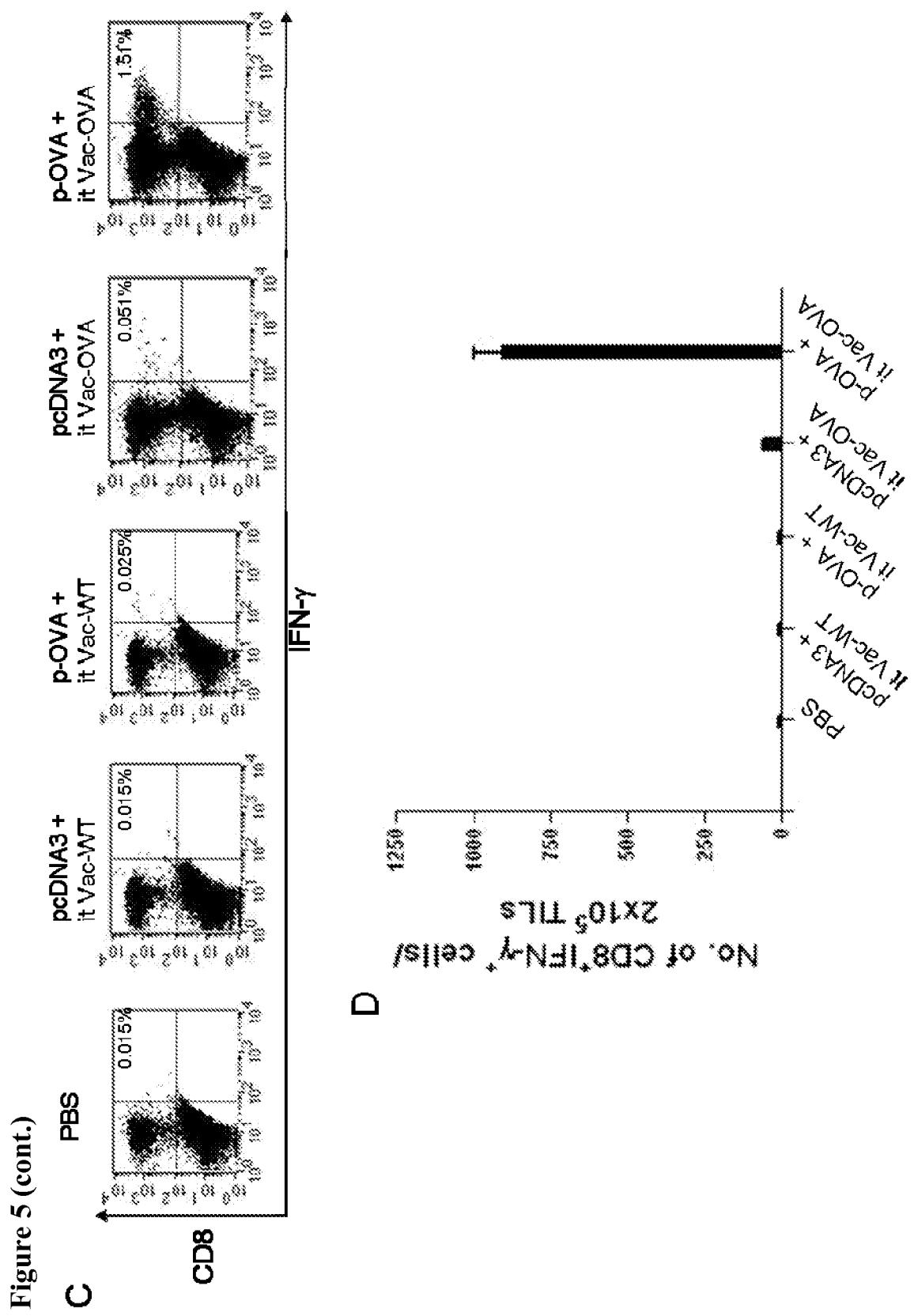


Figure 5 (cont.)

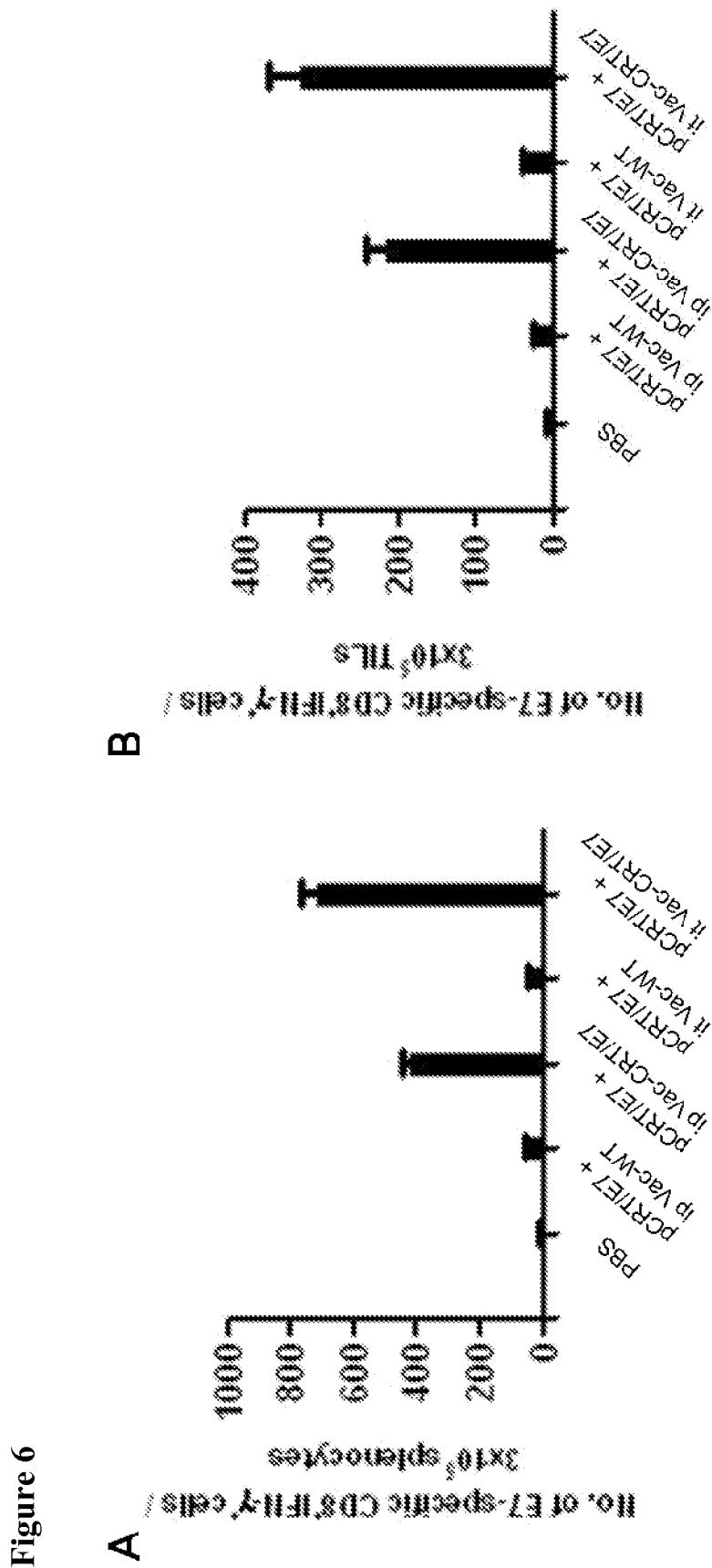


Figure 6

Figure 7

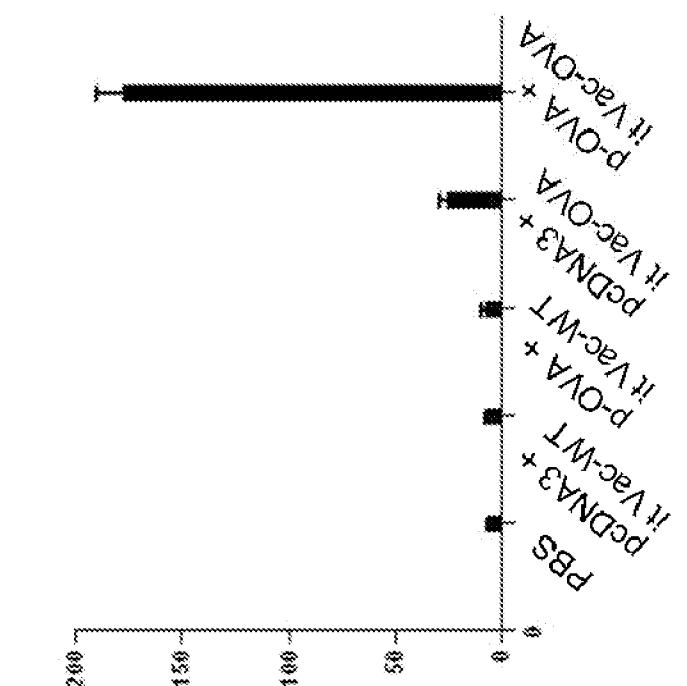
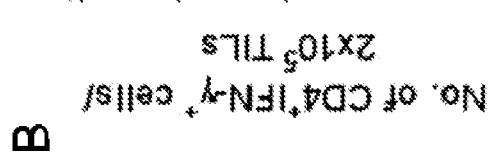
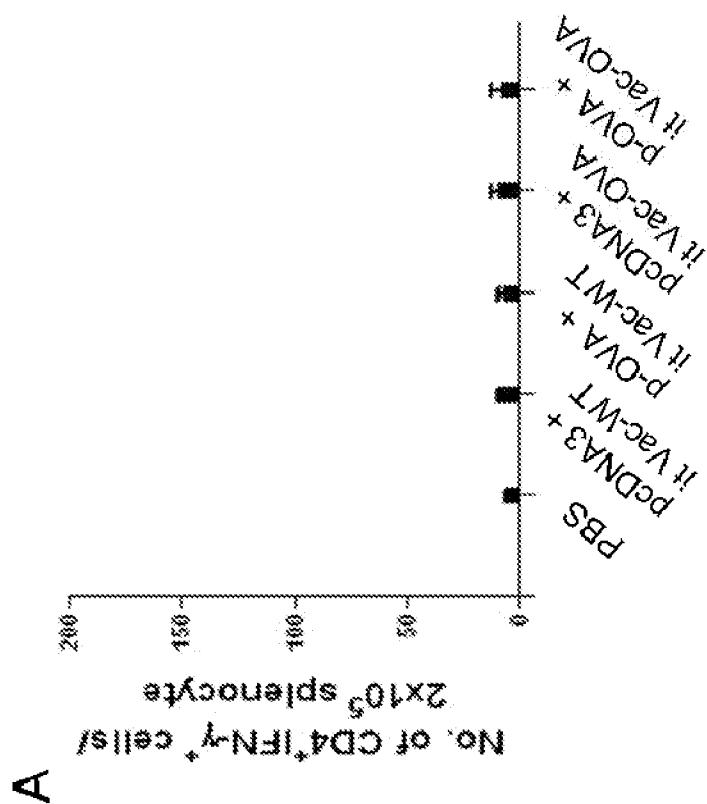
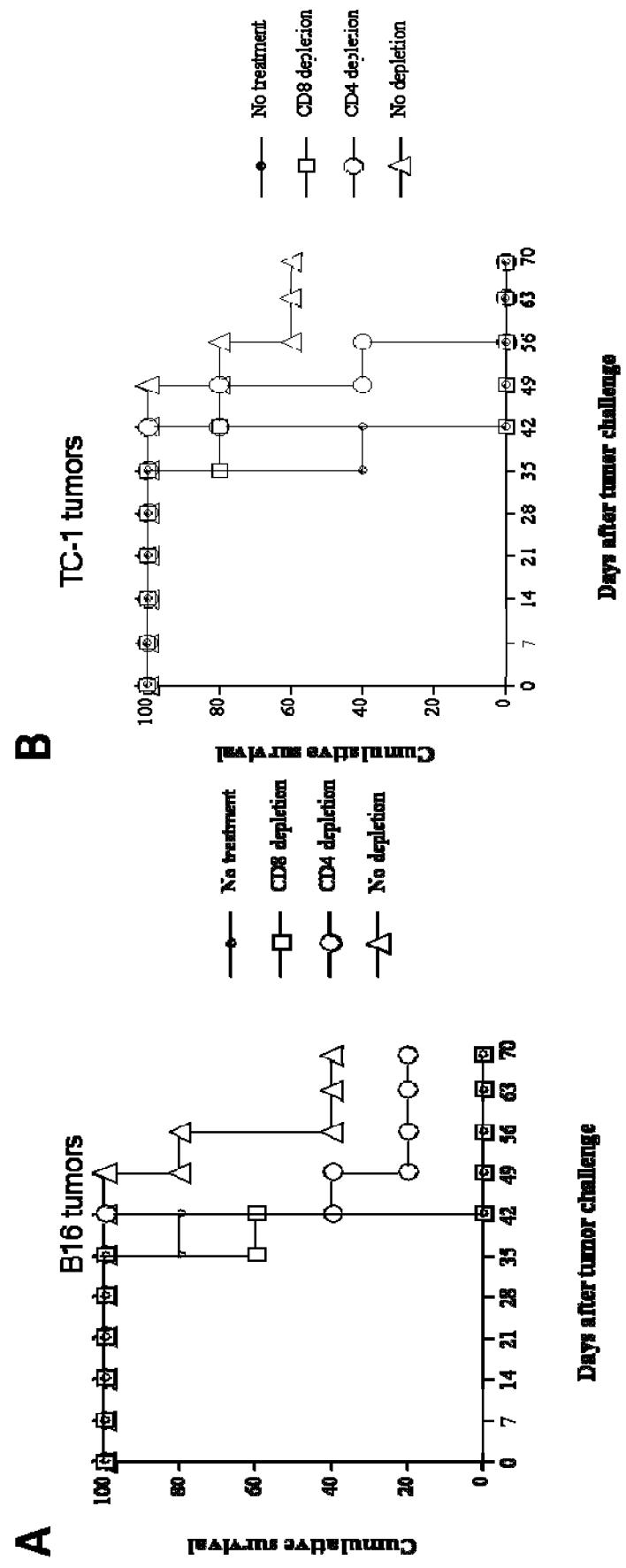
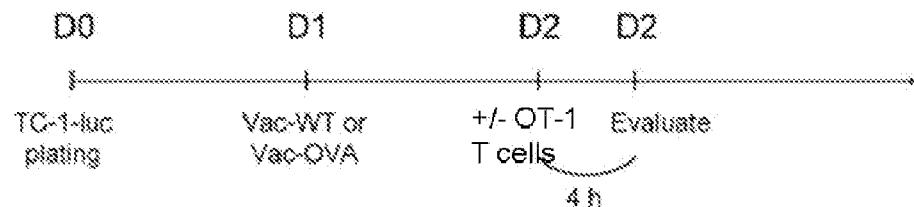
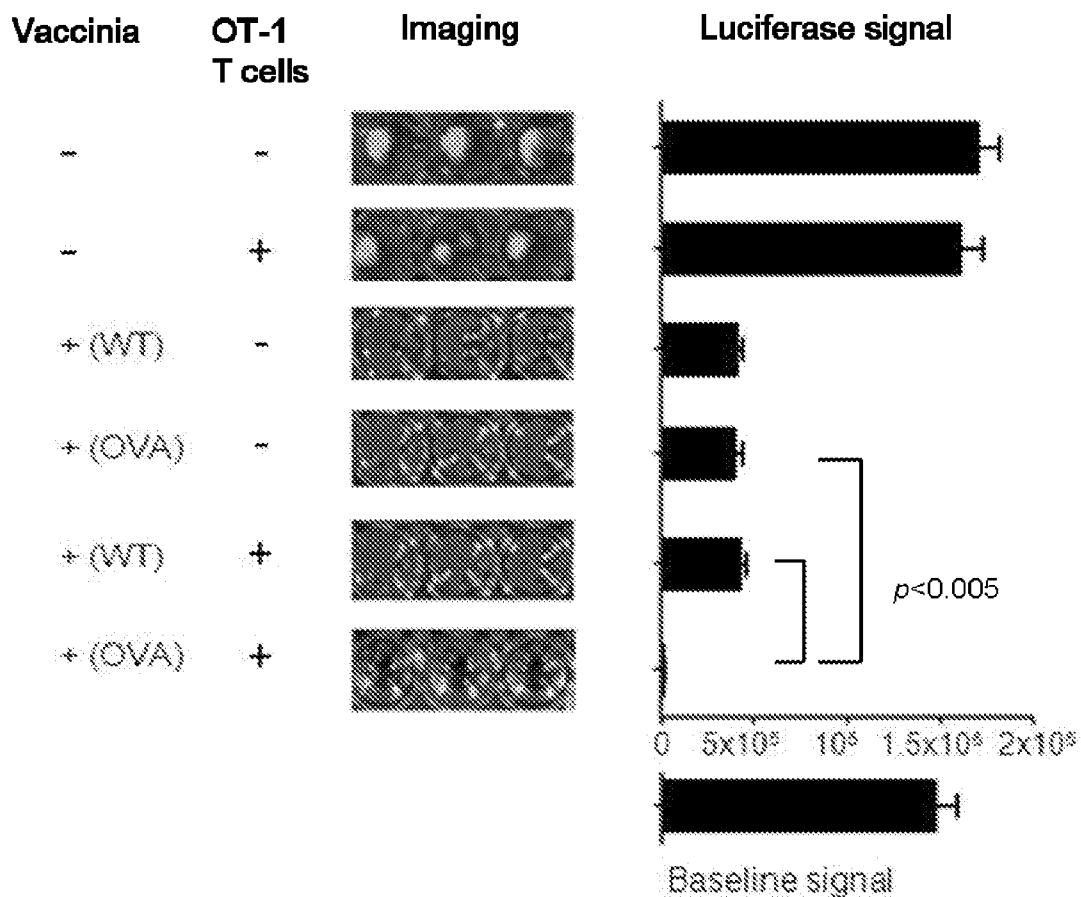
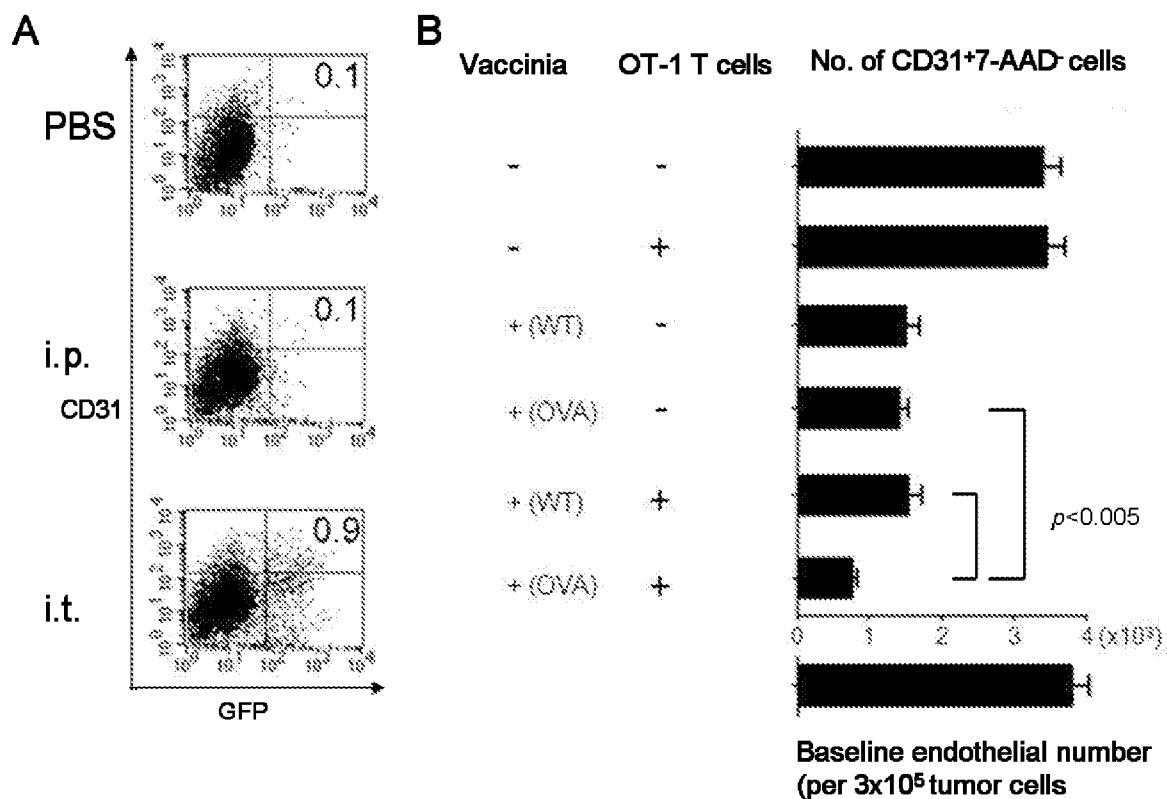








Figure 8

Figure 9**A****B**

Figure 10