发明名称
一种低糖果酱及其制备方法

摘要
本发明提供一种低糖果酱，其是以脱水果肉、甜味剂、碳酸钙、酸度调节剂、增稠剂等组成。并提供了一种制备上述低糖果酱方法，经过水果原料的预处理、渗透脱水、打浆、加入配料进行加热搅拌得果酱成品。本发明是以渗透脱水后的果肉为原料制备果酱，降低了加热的能耗，节约了果酱生产时间，更好地保持水果原有的品质；而且添加了魔芋精粉和碳酸钙，降低了含糖量和热量，增加了果酱中膳食纤维含量和钙含量，提高了产品的保健作用，有益于人体健康。
1. 一种低糖果酱，其特征在于：它是由下列原料按其重量百分比组成的：
 脱水果肉：95～99%；
 甜味剂：0.01～0.04%；
 碳酸钙：0.05～0.5%；
 酸度调节剂：0.2～1.0%；
 增稠剂：0.5～2%；
 着色剂：0～0.06%。
2. 根据权利要求1所述的一种低糖果酱，其特征在于：所述酸度调节剂为柠檬酸或苹果酸。
3. 根据权利要求1所述的一种低糖果酱，其特征在于：所述增稠剂为魔芋精粉或魔芋粉与黄原胶的混合物；所述着色剂为红曲米粉或红曲红。
4. 根据权利要求1所述的一种低糖果酱，其特征在于：所述甜味剂为三氯蔗糖或纽甜。
5. 一种制备如权利要求1～4所述的任一种低糖果酱的方法，其特征在于：包括如下步骤：
 (1) 水果原料的预处理：挑选新鲜的水果进行清洗、去蒂、去皮、去核，并切块得果肉；
 (2) 渗透脱水：将果肉与渗透液按重量比1：3～10的比例浸泡在渗透液中，在40～

6. 根据权利要求4所述的方法，其特征在于：所述步骤(2)中渗透液是以蔗糖、葡萄糖或转化糖的一种配成50～70wt%的溶液。
7. 根据权利要求4所述的方法，其特征在于：所述步骤(2)中渗透脱水是用脉冲真空处理或持续真空处理1～5小时，其真空度为0.05～0.08Mpa。
一种低糖果酱及其制备方法

技术领域
[0001] 本发明涉及食品技术领域，具体涉及一种低糖果酱及其以渗透脱水为基础的制备方法。
[0002]

背景技术
[0003] 将新鲜水果制成美味可口、营养丰富的果酱，既可直接食用，也可涂抹在馒头、面包或吐司上食用，深受消费者喜爱。大多数水果都可制果酱，如草莓、蓝莓、葡萄、苹果、桃、梨、枇杷、杏子、芒果、榴莲、菠萝等。传统果酱是以新鲜水果为原料直接生产，新鲜水果含水量高，需要长时间加热熬煮浓缩，这样导致营养成分和风味的严重破坏，同时也浪费能源。传统方法生产果酱主要有以下三方面问题：

1. 在制作果酱过程中为了改善果酱的口感而加入了占总量的40%－60%的蔗糖，使果酱中含糖量很高，对患有高血糖和糖尿病的人群不宜食用，摄入过多的高糖食物还增加患肥胖症的风险。

2. 果酱是以新鲜水果为原料直接生产，由于新鲜水果中含有大量的水分，在制作果酱过程中需要长时间加热熬煮，以脱去大部分水分，最后浓缩成胶状物才制得果酱。长时间的高温熬煮会使水果中的营养成分被破坏，色泽和风味也会受到影响。同时也造成能源的浪费。

3. 传统果酱生产主要以果胶作果胶凝剂、增稠剂和稳定剂，果胶需先浸泡在其中20倍的水中长达24小时后才能形成粘稠状果胶液体（参见专利文献CN101223945B），然后再将果胶液倒入新鲜水果中进行熬煮。由于新鲜水果中本身含有大量水分，加入果胶溶液，进一步增加了果酱制备原料中的水份含量，相应地增加了果酱熬煮浓缩的时间与难度，以及能源的浪费。

[0004] 发明内容

[0007] 本发明的目的就是要解决上述不足，提供一种低糖、高营养的新型果酱，本发明的另一个目的是提供本低糖果酱的高效、节能制备方法。

[0008] 为了达到上述目的，本发明的低糖果酱是由下列原料按其重量百分比组成：

- 脱水果肉: 95 － 99%；
- 甜味剂: 0.01 － 0.04%；
- 碳酸钙: 0.05 － 0.5%；
- 酸度调节剂: 0.2 － 1.0%；
- 增稠剂: 0.5 － 2%；
- 着色剂: 0 － 0.06%。

[0009] 上述方案的优选方案是，所述酸度调节剂为柠檬酸或苹果酸。
说明书

[0010] 上述方案的优选方案是，所述增稠剂为魔芋精粉或魔芋精粉与黄原胶的混合物；所述着色剂为红曲米粉或红曲红。

[0011] 所述甜味剂为三氯蔗糖或甘甜。

[0012] 其中作为果酱的增稠剂或胶凝剂的魔芋精粉是用魔芋块茎加工而成的干粉，其主要活性成分为魔芋葡甘聚糖，约占干粉重的 50 ％ 〜 80 ％。魔芋精粉中含大量的维生素钙、磷、钾、钠、镁、铁、锌、硒等，并含有 74 ％以上膳食纤维。所以它是一种理想的膳食纤维，有“膳食纤维之王”之美称，并具有奇特的保健功能和食疗作用，具有降血压、降胆固醇、预防糖尿病、结肠癌和痔疮以及减肥、健美等功能。

[0013] 制备上述果酱的方法，包括如下步骤：

（1）水果原料的预处理：挑选新鲜的水果经过清洗、去蒂、去皮、去核，并切块得果肉；

（2）渗透脱水：将果肉与渗透液按重量比 1 ：3 〜 10 的比例浸泡在渗透液中，在 40 〜 65 ℃条件下进行真空渗透脱水，然后捞起、沥干；

（3）将经（2）处理后的果肉放入打浆机中制成果浆；

（4）将果浆加入带有搅拌的夹层锅中，按配方加入三氯蔗糖、碳酸钙、酸度调节剂与增稠剂，温度为 80 〜 100 ℃，均匀搅拌 5 〜 20 分钟成酱体；

（5）将（4）中酱体趁热装瓶，密封后进行高温灭菌，再迅速冷却到 30 〜 40 ℃即得果酱成品。

[0014] 上述方案的优选方案是，所述步骤（2）中渗透液是以蔗糖、葡萄糖或转化糖的一种配成 50 〜 70 wt % 的溶液。

[0015] 上述方案的优选方案是，所述步骤（2）中渗透脱水是用脉冲真空处理或持续真空处理 1 〜 5 小时，其真空度为 0.05 〜 0.08Mpa。

[0016] 本发明相比于现有技术具有如下有益效果：

1. 本发明是以渗透脱水后的果肉为原料制备果酱，高效快捷地脱去果肉中 20 〜 40% 的水分，制备果酱的过程不需再进行长时间熬煮浓缩，加热的能耗降低。

[0017] 2. 本发明是采用 50 〜 70 wt % 的蔗糖、葡萄糖或转化糖溶液的一种作为渗透剂，在 40 〜 65 ℃低温条件下进行渗透脱水，较现有 100 ℃以上的高温熬煮浓缩，减少了对水果营养成分、色泽、风味的破坏，能更好地保持水果原有的品质。

[0018] 3. 除了渗透脱水过程使用了糖，在果酱配方中没有加入糖，只以安全卫生的高倍甜味剂三氯蔗糖调整果酱的口感，所以本发明的果酱产品含糖量低，热量低，采用斐林氏法测得其含糖量仅为 14 〜 17 %；并且增加了碳酸钙，提高了果酱中钙含量，有益于人体健康。

[0019] 4. 以魔芋精粉作为主要胶凝剂与增稠剂，提高产品的保健作用，并改善酱体的组织形态和口感。

[0020] 5. 由于魔芋精粉是直接加入果浆中进行加热搅拌，而不需要提前用多倍水进行长时间溶解，减少了果酱制备过程中熬煮难度，大大节约了果酱生产时间。

[0021] 具体实施方式

[0022] 下面结合实施例对本发明做进一步的阐述。

[0023] 实施例一、草莓果酱：
原料组成质量百分比如下：
脱水的草莓果肉：97.62%；
三氯蔗糖：0.02%；
碳酸钙：0.1%；
柠檬酸：0.2%；
魔芋粉：1.5%；
黄原胶：0.5%；
红曲米：0.06%。

生产方法：将新鲜草莓去果柄及萼片，清洗，再用3倍草莓果肉重量的65%蔗糖溶液将草莓果肉浸泡其中，在50°C真空度为0.08Mpa的真空罐中浸泡1小时，渗透脱水后，将草莓果肉捞起，沥干糖液；然后将草莓果肉放置破碎机中进行打浆制得果浆。将果浆放入带搅拌的夹层锅中，按上述配方加入三氯蔗糖、碳酸钙、柠檬酸、魔芋粉、黄原胶、红曲米，加热到90°C，充分搅拌5分钟后至魔芋粉完全溶解并形成均匀的酱体；将其趁热装罐，密封后用85°C高温进行杀菌15分钟，然后冷却得草莓果酱。采用斐林氏法测得其含糖量为14%。

实施例二、草莓果酱：
原料组成质量百分比如下：
脱水的草莓果肉：98.4%；
纽甜：0.01%；
碳酸钙：0.05%；
柠檬酸：1.0%；
魔芋粉：0.5%；
红曲红：0.04%。

生产方法：将新鲜草莓去果柄及萼片，清洗，再用4倍草莓果肉重量的50%蔗糖溶液将草莓果肉浸泡其中，在40°C常压的真空罐中浸泡2小时，渗透脱水后，将草莓果肉捞起，沥干糖液；然后将草莓果肉放置破碎机中进行打浆制得果浆。将果浆放入带搅拌的夹层锅中，按上述配方加入纽甜、碳酸钙、柠檬酸、魔芋粉、红曲红，并加热到80°C，充分搅拌10分钟后至魔芋粉完全溶解并形成均匀的酱体；将其趁热装罐，密封后用85°C高温进行杀菌15分钟，然后冷却得草莓果酱。采用斐林氏法测得其含糖量为15%。

实施例三、蓝莓果酱：
原料组成质量百分比如下：
脱水的蓝莓果肉：97.38%；
三氯蔗糖：0.04%；
碳酸钙：0.08%；
柠檬酸：0.5%；
魔芋粉：1.5%；
黄原胶：0.5%。
生产方法：挑选新鲜蓝莓进行清洗；再用 5 倍蓝莓果肉重量的 70% 蔗糖溶液将蓝莓果肉浸泡其中，在 40℃、真空度为 0.08Mpa 的真空罐中处理 3 小时后，将蓝莓果肉捞起，沥干糖液；然后将蓝莓果肉放置破碎机中进行打浆，制得果浆；将果浆放入带搅拌的夹层锅中，按上述配方加入三氯蔗糖、碳酸钙、柠檬酸、魔芋精粉、黄原胶，并加热到 85℃，充分搅拌 10 分钟后至魔芋精粉完全溶解并形成均匀的酱体；将其趁热装罐，密封后用 85℃高温进行杀菌 15 分钟，然后冷却得蓝莓果酱。采用斐林氏法测得其含糖量为 14%。

实施例四、枇杷果酱
原料组成质量百分比如下：
脱水的枇杷果肉：97.78%；
三氯蔗糖：0.02%；
碳酸钙：0.2%；
柠檬酸：0.5%；
魔芋精粉：1.0%；
黄原胶：0.5%。

生产方法：是将新鲜的枇杷去皮和籽，并清洗，再用 3 倍枇杷果肉重量的 65% 蔗糖溶液将枇杷果肉浸泡其中，在 40℃、0.06Mpa 的真空罐中处理 5 小时后，将枇杷果肉捞起，沥干糖液；然后将枇杷果肉放置破碎机中进行打浆，制得果浆；将果浆放入带搅拌的夹层锅中，按上述配方加入三氯蔗糖、碳酸钙、柠檬酸、魔芋精粉、黄原胶，并加热到 95℃，充分搅拌 20 分钟后至魔芋精粉完全溶解并形成均匀的酱体；将其趁热装罐，密封后用 85℃高温进行杀菌 15 分钟，然后冷却得枇杷果酱。采用斐林氏法测得其含糖量为 17%。

实施例五、杏子果酱
原料组成质量百分比如下：
脱水的杏子果肉：97.56%；
三氯蔗糖：0.04%；
碳酸钙：0.5%；
苹果酸：0.4%；
魔芋精粉：1.0%；
黄原胶：0.5%。

生产方法：挑选新鲜杏子进行清洗，再用 10 倍杏子果肉重量的 60% 蔗糖溶液将杏子果肉浸泡其中，在 65℃，真空度为 0.06Mpa 的真空罐中浸泡 2 小时后，将杏子果肉捞起，沥干糖液；然后将杏子果肉放置破碎机中进行打浆，制得果浆；将果浆放入带搅拌的夹层锅中，按上述配方加入三氯蔗糖、碳酸钙、苹果酸、魔芋精粉、黄原胶，并加热到 100℃，充分搅拌 15 分钟后至魔芋精粉完全溶解并形成均匀的酱体；将其趁热装罐，密封后用 85℃高温进行杀菌 30 分钟，然后冷却得杏子果酱。采用斐林氏法测得其含糖量为 15%。

上述所述仅仅是对本发明的优选实施方式进行描述，并非对本发明的范围进行限定。在不脱离本发明设计精神的前提下，本领域普通技术人员对本发明技术方案做出的各种变形和改进，均应落入本发明的权利要求书确定的保护范围内。