PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION Y
International Bureau -

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

(11) International Publication Number:

WO 99/14664

GOGF 9/32, 9/38 Al .)
(43) International Publication Date: 25 March 1999 (25.03.99)
(21) International Application Number: PCT/US98/18673 | (81) Designated States: IL, JP, KR, European patent (AT, BE, CH,
CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 4 September 1998 (04.09.98) PT, SE).
(30) Priority Data: Published
08/928,444 12 September 1997 (12.09.97) US With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: SIEMENS MICROELECTRONICS, INC. amendments.
[US/US]; 10950 North Tantau Avenue, Cupertino, CA
95014-0716 (US).
(72) Inventors: FLECK, Rod, H.; 1510 Alison Avenue, Mountain
View, CA 94040 (US). MATTELA, Venkat;, 1063 Morse
Avenue #22-202, Sunnyvale, CA 94089 (US). CHESTERS,
Eric; 513 Drucilla Drive, Mountain View, CA 94040 (US).
AFSAR, Muhammad; 792 Pineview Drive, San Jose, CA
95127 (US).
(74) Agents: GRUBERT, Andreas et al.; Siemens Corporation,
Intellectual Property Dept., 186 Wood Avenue South, Iselin,
NJ 08830 (US).
(54) Title: DATA PROCESSING DEVICE
(57) Abstract
| CACHE SUBSYSTEM j-13
The data processing device according to the invention
comprises an instruction providing unit having an input and N
an output, a pipeline unit for processing data having input PC UPDATE LOOP CACHE / BTB 3 s
and output stages, a loop pipeline unit for processing a loop AND CONTROL
instruction having input and output stages, said input stages 4
of said pipeline units being coupled to said output of said
instruction providing unit, said instruction providing unit
providing data for said pipelines, and said pipeline units
processing said data independently.
—»{ PRE-DECODE
INSTRUCTION DEMUX
(8] ! 9
PROTECTION
RES coNTROL
1 1"
e e
i i)t
! 1! 1t 1
) 1 ! 1] (14
\ ! IR !
ADDRE?TSI' AO%’;SS ! ! ! 11 } | PIPELINE
il
B oo PORT | e] [z] (EX
! 1! [} '
i 'PPE | LSpipg ! 1LOOP PIPE]

og———"

AL
AM
AT
AU
AZ
BA
BB

BE
BF

BG
BJ

BY
CA
CF
CG
CH
CI
cM

cu
cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
1L
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/14664 PCT/US98/18673

DATA PROCESSING DEVICE

BACKGROUND OF THE INVENTION

The present invention relates to a data processing device having a
pipeline structure. Pipeline structures are well known, and used in
microprocessors and microcontrollers. To work most efficiently, a pipeline is
filled up with a sequence of instructions. Once the sequence is interrupted,
the pipeline is filled up again. This causes a loss of processing speed for the
microprocessor. Such interrupts occur mainly when a jump, branch or loop
instruction is executed, because the following instruction is often not the
instruction which follows the jump, branch or loop instruction.

Jump and branch instructions generally depend on a condition for its
decision whether or not a jump or branch is to be executed. On the other
hand, a loop instruction includes a parameter which indicates the number of
times the loop is executed and a parameter which indicates the beginning of
the loop. in particular, digital signal processors are often using loop
instructions. Therefore, loop instructions can have an important influence on
the resulting execution speed of a processor or a data processing unit. It is
therefore an object of the present invention to provide a data processing

device with means to execute ioop instructions as fast as possible.

SUMMARY OF THE INVENTION

The present invention provides, in one embodiment, a data processing
device which comprises an instruction fetch unit (e.g., comprising an
instruction demultiplexer) having at least an input and an output, a pipeline
unit for processing data having at least input and output stages, and a loop
pipeline unit for processing a loop instruction having at ieast input and output
stages. The input stages of the pipeline units are connected to the output of
the instruction providing unit which provides data for all pipeline units. The
pipeline units are able to process the provided data independently in parallel.
The loop pipeline can be a pipeline with a functionality only directed to the
special loop instruction. It therefore does not necessarily need all the
operating units of a regular pipeline. The loop pipeline handies the zero
overhead loops, such that during the repetition of a loop, no branch or jump

WO 99/14664 PCT/US98/18673 -

2

instruction and no condition testing are executed in the main pipeline. The
loop pipeline is used to fold out the loop instruction from the execution flow
allowing a loop instruction to be performed in parallel, for example, with an
integer and load/store operation.

In a further embodiment, a loop instruction cache is provided which
caches the loop instruction. Thus, no fetch unit in the loop pipeline is
necessary. A multiplexer can be provided which supplies either the instruction
sequence or the cached loop instruction to the instruction providing unit.

A method of executing a loop comprises the steps of: if a loop
instruction occurs for the first time, then the loop instruction is executed in
said pipeline unit and thereby the loop related data are stored in a loop target
buffer, During execution of the loop, the loop instruction is executed in the
loop pipeline and the instructions included in the loop are executed in the
pipeline unit in parallel. Thus, during execution of the loop no overhead
occurs. In other words, the loop instruction proper never appears in the
instruction pipeline unit, because it is issued in parallel with other instructions
to the loop pipeline. When a loop instruction is encountered, the loop
instruction is fetched and issued to the load store pipeline. However, on
subsequent loop iterations the loop instruction is executed in the loop

pipeline. Therefore, loops can be executed very fast with zero overhead.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a functional block diagram of an instruction fetch
module according to the present invention,
Figure 2 shows a loop target buffer in more detail,
Figure 3 shows a loop execution unit, the loop cache buffer and the
program counter update and control unit in more detail,
Figure 4 depicts a table showing the content of the pipelines during the

first iteration of the loop,
Figure 5 depicts a table showing the content of the pipelines during the

second and following iterations of the loop, and
Figure 6 depicts a table showing the content of the pipelines during the

exit of the loop.

WO 99/14664 PCT/US98/18673

3
DESCRIPTION OF THE PREFERRED EMBODIMENT

The loop instructions are designed to optimize inner loops in, for
example, digital signal processor algorithms, etc. A set of dedicated hardware
is associated with the ioop instructions. This set of dedicated hardware
implements zero overhead loops.

Such hardware can inciude an instruction fetch moduie which is an
integral part of a preferred embodiment of a microcontroller and schematically
shown in Figure 1. For a better overview, Figure 1 shows only the main
connections between the main units. In the preferred embodiment, this
instruction fetch module 1 comprises three pipeline units 10, 11 and 12.
However, the microprocessor may have oniy one main pipeline or the main
pipeline may consist of a plurality of pipelines.

The first unit represents the integer pipeline 10 and comprises three
stages, namely, a decode stage 10a, an execute stage 10b and a write back
stage 10c. However, the present invention is not limited to a certain number
of pipeline stages. The second unit represents the load/store pipeline 11 and
also comprises three stages, namely, a decode stage 11a, an execute stage
11b and a write back stage 11c. The third unit represents the loop pipeiine 12
and comprises two stages, namely, a decode/execute stage 12a and a write
back stage 12c.

An instruction demultiplexer 7, representing the instruction providing
unit, provides the different pipeline units 10, 11 and 12 with their respective
instructions. This instruction demultiplexer 7 is controiled by an issue control
unit 9 which is coupled to a pipeline control unit 14. The instruction
demultiplexer 7 is coupled to the output of a multipiexer 5 which either
forwards an instruction from a cache subsystem 13 or from a loop cache
buffer unit 3. The loop cache buffer unit 3 is coupled to a program control
update and control unit 2 which is also coupled to the cache subsystem 13.
As part of the loop pipeiine 12, a loop execution unit 4 is on one hand coupied
to the program counter update and control unit 2 and on the other hand to the
loop cache buffer 3. The loop cache buffer 3 can also contain a branch target
buffer (BTB). The output of the multipiexer 5 is connected to an input of a pre-
decoder 6 which has an output which is connected to the instruction

demultiplexer 7. Furthermore, the pre-decoder 6 is coupled to the program

WO 99/14664 PCT/US98/18673

4
counter update and control unit 2. A protection register 8 is coupled to the

program counter update and control unit 2 and to the three pipelines 10, 11
and 12. Further port connections between the program counter update and
control unit 2 and the protection register 8 are shown in Figure 1.

This unit 1 is responsible for feeding instructions to the different
pipelines 10, 11 and 12. The main pipelines 10 and 11 of this embodiment
have four stages. The first stage is formed by the instruction demultiplexer 7,
the pre-decoder 6 and the logic connecting the pipelines 10, 11 and 12 with
the cache subsystem 13. This stage is generally referred to as the fetch stage
which issues the instructions to the respective main pipelines 10 and 11. The
second stage is depicted by the units 10a and 11a and referred to as the
decode stage where the instructions are decoded. The third stage is depicted
by units 10b and 11b and referred to as the execute stage where the
instructions are executed. In other words, the operation proper is performed
by, for example, caiculation of an address in a load/store instruction, or
performing a multiplication. The fourth stage is depicted by units 10c and 11c
and referred to as the write back stage where the results of the respective
operation is written back to, for example, the register file or a memory
location.

In this specific embodiment, whenever a loop instruction occurs for the
first time, it is executed as a normal instruction in the load/store pipeline 11.
During decoding in the decode stage 11a, the loop target is calculated, the
new program counter is set, and the value for the loop count is loaded from a
register of the register file addressed by the loop instruction. During the
following execute stage 11b, the loop cache buffer 3 is updated and the new
loop count value is written back to the register file. However, in another
embodiment, the loop pipeline could be a fully operable pipeline which
handies the complete execution of loop instructions in paraliel with the other
pipelfnes.

Figure 2 shows the special register which is part of the loop cache
buffer 3. A first portion 3a of the register content represents the previous
instruction address. A second portion 3b represents the target instruction
address. A third portion 3¢ represents the loop instruction size and a fourth

portion 3d indicates that the entries are valid. Preferably, the size of the

WO 99/14664
PCT/US98/18673 -
5
address portions 3a and 3b complies with the respective address range or

program counter. The loop instruction size portion 3¢ indicates the word size
of the loop instruction. A loop instruction may be, for example, a 16 bit or a 32
bit instruction. Depending on this information, the address of the following
instruction will be calculated. In other words, the instruction size value will be
added to the current program counter value to get the address of the following
instruction in the sequence. In the last pipeline stage 11c, the new value for
the loop count is written back into the respective register.

Figure 3 shows parts of the program counter update and control unit 2,
parts of loop target buffer 3, and parts of loop execution unit 4 in more detail.
Same elements have the same numerais. The loop target buffer 3 contains
the register 3a, 3b, 3c, 3d shown in Figure 2. In addition, a register 3e is
provided which stores the loop instruction detected during the first iteration.
Numeral 2a depicts the program counter (PC) of the program counter update
and control unit 2. Some parts of the loop execution unit 4 are considered as
to be elements of the loop pipe unit 12. These are, for example, a comparator
4d which compares the content of the loop count value register 4b with zero
and a decrementer 4c connected to the loop count value register 4b which
decrements the loop count value 4b each time the loop has been executed.
The comparator 4d generates a signal which is fed to the program counter
update and control unit 2. Additionally, an address comparator 4a is provided
which compares the previous instruction address 3a of the loop cache buffer
3 with the actual program counter 2a. The address comparator 4a generates
a signal which is fed to the program counter update and control unit 2. The
program counter update and control unit 2 caiculates and/or sets a new
program counter depending on the signal of the comparators 4a and 4d. To
calculate a new address or to set a new target address, the program counter
update and control unit 2 gets the target instruction address from the portion
3b and the instruction size from the portion 3c in the special register of the
loop cache buffer 3.

After processing the loop for the first time, the loop cache buffer 3 is
set. In other words, the target address is stored in register portion 3b, the
previous instruction address is stored in register portion 3a, and the loop

instruction size is stored in register portion 3c. Also, register portion 3¢ which

WO 99/14664 PCT/US98/18673 -

6
can be a flag, is set to indicate that the entries are valid. in addition, the loop

instruction itself is stored in a register 3e which outputs its content to the
multipiexer 5. This multiplexer is controlled by the output signal of the
comparator 4a.

During the loop execution, unit 4 compares the content of the program
counter 2a with the content of the register portion 3a which indicates the
previous instruction address. If there is a match then the output signal of
comparator 4a sets the following program counter value to the target
instruction address stored in register portion 3b and the loop instruction is
injected into the loop pipeline 12 from the register 3e in the loop cache buffer
3 through the muitiplexer 5. Thus, the loop instruction is not executed in the
load/store pipeline 11. The loop pipeline 12 does not need a fetch stage,
because the loop instruction is cached in register 3e during the execution of
the loop. During the next cycles, the first instruction or the first two instructions
of the loop are executed in the integer pipeline 10 and/or the load/store
pipeline 11. While this is happening, the loop instruction is executed in
paraliel in the loop pipeline 12. During the execution stage, the loop count
value is fetched from the register of the register file indicated by the loop
instruction. The loop value is then decremented by the decrementer 4c and
compared to zero by the comparator 4d. During the following cycle (write
back), the result of the new loop count vaiue is written back to the respective
register in the register file. If the comparator result indicates a match, a signal
is sent to the program counter update and control unit 2 to indicate that this is
the last time the loop is executed. Also, the flag 3d indicating a valid entry is
reset. This also prevents the multiplexer 5 from being controlied further by
comparator 4a. Because this happens when some instructions of the loop are
already loaded into the pipeline units, it is necessary to replace these
instructions loaded into the fetch and decode stages of the pipeline units 10
and 11 with no operation instructions (NOP). Also, if comparator 4a outputs a
match signal, a new target address is calculated by adding the value of loop
instruction size register portion 3c to the program counter value, and this new
address will be stored in the program counter. This causes the fetch stage

10a, 11a of the pipeline units to fetch the respective new target instruction(s).

WO 99/14664 PCT/US98/18673 -

7
The execution of a loop in a program will be explained in more detail in

accordance to a sample program. The sample program contains the following

sequence:

loop_start:
add do, d0, 1 :instruction A1
id.w d1, [a0+)4 ;instruction L1
add do, d0, d1 ;instruction A2
st.w [a1+}4,d0 ;instruction L2
loop a8, loop_start ;instruction B
add d4, d4, 2 ;instruction N

This exampie program contains three different kinds of instructions.
The microcontroller of this embodiment is capable of executing up to three
instructions in parallel. Two instructions can be issued in parallel with the
main pipeline units 10 and 11. The first type, load/store instructions, move
data from the register file to the memory/peripherals or vice versa. Also, data
can be transferred in between the register file or in between
memory/peripherals. The second type, integer instructions, process data in a
definable manner, such as calculating, manipulating single bits, calculating
conditions, etc. The integer instructions A1, A2 and N from the demonstration
program are executed in the integer pipeline unit 10. The load/store
instructions L1 and L2 from the demonstration program are executed in the
load/store pipeline unit 11. For an optimized program flow, an instruction pair
(a load/store instruction and a integer instruction) are always issued to the
pipelines 10 and 11 in parallel. In other words, two instructions of the same
type never follow each other. The above mentioned demonstration program
shows such an arrangement. If two instructions of the same kind have to
follow each other, a no operation instruction (NOP) is issued to the respective
other pipeline unit. The third pipeline 12 can only execute one type of
instruction, namely the loop instruction B. The instruction B is kind of a
load/store instruction. Therefore, it is executed either in the load/store pipeline

unit 11 or the loop pipeline unit 12.

WO 99/14664 PCT/US98/18673 -

8

Figure 4 shows a table with the first iteration of the loop. The numerals
A1, A2, L1, L2, B and N indicate the instructions issued to the pipeline,
whereas a_’-" indicates a no operation instruction (NOP). On this first iteration
of the loop in cycle C1, instructions A1 and L1 are in the decode stages 10b
and 11b, and instructions A2 and L2 are in the fetch stages 10a and 11a,
respectively. In the following cycle C2, the instructions A1 and L1 are
forwarded to the execution stages 10c and 11c and the loop instruction B is
issued for the first time to the load/store pipeline stage 11a and the following
instruction N is issued to the fetch stage 10a. In the next cycle C3, the loop
instruction B is decoded and a new program counter containing the target
loop address (loop_start) is calculated. At the same time, no operation
instructions (NOP) replace the decode and fetch stage contents of the integer
pipeline and the fetch stage of the load/store pipeline. In the next cycle C4,
the new program counter resuits in an issue of instructions A1 and L1 to the
respective fetch stages of the integer and the load/store pipelines 10, 11.
During the execution of the loop instruction B, the loop target buffer is
updated as described above.

Figure 5 shows the second and subsequent iterations of the loop. The
loop body, consisting of instructions A1, L1, A2, and L2, is executed normally
until the instruction or instruction pair prior to the loop is fetched and the
address in PC 2 matches the address stored in the register portion 3a of the
loop target buffer 3. When this condition is detected, the loop target address
is read from register portion 3b of the loop cache buffer 3 and is used as the
new address in PC 2. The loop target instructions are fetched on the foliowing
cycle and are issued to the decode stage along with the cached loop
instruction which is issued to the loop pipeline 12 in cycle C7, C9, etc. The
loop is then executed in the decode phase using the comparator 4d and the
decrementer 4c. If the loop is taken, then both the integer pipeiine 10 and the
load/store pipeline 11 will be in the normal state and the first two instructions
of the loop will be issued to the execute stage. If the loop is not taken, then
the two major pipelines 10 and 11 will be placed into the cancel state and the

instruction demultiplexer 7 will be setup to fetch the first instruction after the

loop.

WO 99/14664 PCT/US98/18673 -

9

Figure 6 shows this scenario. In cycle CN+1 the decrementer 4c
decrements the loop count value and the result is equal to zero. Therefore,
comparator 4d generates a signals which causes a cancellation of the fetch
and decode contents of the integer and load/store pipeline stages, and a
caiculation of the new subsequent program counter (PC). In cycle CN+2, this
causes the instruction N following the loop to be issued to the integer pipeline
10. The processing of further instructions is not shown in Figure 6.

in the preferred embodiment and the above example program, the
actual program counter is compared to the address of the instruction A2,
which represents the last instruction pair before the loop instruction B. Any
other address in between the loop can be used for this purpose. For example,
the beginning address of the loop (loop_start) could be used for triggering the
issue of the loop instruction. Nevertheless, using the instruction address
before the loop instruction has the advantage that, when the loop instruction
is executed from the register 3e of loop target buffer 3, the loop instruction is
injected with the target instruction and is therefore the oidest instruction in the
pipeline. Thus, no additional means for handling exception routines are

necessary.

WO 99/14664 PCT/US98/18673 -

10
Claims:

1. Data processing device comprising:

an instruction providing unit having an input and an output;

a pipeline unit for processing data having input and output stages;

a loop pipeline unit for processing a loop instruction having input and
output stages;

said input stages of said pipeline units being coupled to said output of
said instruction providing unit, said instruction providing unit providing data for
said pipelines; and

said pipeline units processing said data independently.

2. Data processing device according to claim 1 further comprising
a loop cache buffer having an input and an output, said output being coupled

to said input of said instruction providing unit.

3. Data processing device according to claim 2, wherein said loop
cache buffer comprises a register, said register providing storing capacity for
a loop instruction address, a loop target instruction and a program counter

vaiue following the target instruction.

4, Data processing device according to claim 2, wherein said loop
cache buffer comprises a register, said register providing storing capacity for
a previous instruction address and a target instruction address.

5. Data processing device according to claim 4, wherein said

register in addition provides storing capacity for an instruction size value.

6. Data processing device according to claim 2 further comprising
an instruction multiplexer with two inputs and an output, one of said inputs
being fed with a instruction sequence, said output being connected to said

instruction providing unit, said loop cache buffer comprises at least a register,

WO 99/14664 PCT/US98/18673 -

11

said register providing storing capacity for at least a loop instruction, said

register being coupled to the other input.

7. Data processing device according to claim 2 further comprising
a branch target buffer having an input and an output, said output being

connected to said input of said instruction providing unit.

8. Data processing device according to claim 7, wherein said
branch target buffer comprises a register, said register providing storing

capacity for a program counter data and a predicted program counter data.

9. Data processing device according to claim 1 further comprising
a second pipeline unit for loading and storing data having input and output
stages, said input stage of said second pipeline unit is connected to said

output of said instruction providing unit.

10. Data processing device according to claim 1, wherein said loop
pipeline unit comprises storing means for storing a loop counter vaiue and

means for comparing and decrementing said loop counter value.

11. A Method for executing a loop instruction which is part of a
instruction stream in a data processing device for processing instructions,
said data processing device having an instruction providing unit with an input
and an output, a first pipeline unit for processing data with input and output
stages, a second pipeline unit for processing a loop instruction with input and
output stages, said input stages of said pipeline units are connected to said
output of said instruction providing unit, said instruction providing unit
providing instructions for said pipelines; the method comprises the step of:
pre-decoding said instruction stream and providing said first pipeline with the
respective instructions and extracting a loop instruction out of the instruction
stream and issuing said instruction to said second pipeline unit, said loop
instruction being executed in parallel with said other instructions of said

instruction stream.

WO 99/14664 PCT/US98/18673 -

12
12. Method according to claim 11, wherein said first pipeline

comprises two independent pipeline units, the method comprises the step of:
pre-decoding said instruction stream, and if possible distributing instructions
in parallel to said independent pipeline units of said first pipeline, and if not
possible distributing one instruction to one pipeline unit and a no operation

instruction to the other pipeline unit.

13. Method according to claim 11, wherein the method further
comprises the steps of:

caching said loop instruction in a cache register, and

issuing said loop instruction from said cache register to said second

pipeline.

14. A Method for executing a loop instruction including a loop target
address and a loop counter value in a data processing device for processing
instructions having a program counter, an instruction providing unit with an
input and an output, a loop target buffer being connected to said instruction
providing unit, a pipeline unit for processing data with input and output stages,
a loop pipeline unit for processing a loop instruction with input and output
stages, said input stages of said pipeline units are connected to said output of
said instruction providing unit, said instruction providing unit providing
instructions for said pipelines; the method comprises the step of:

if a loop instruction occurs for the first time, executing said loop
instruction in said pipeline unit and thereby storing loop related data in said
loop target buffer;

wherein executing said loop, processing said loop instruction in said

loop pipeline and the instructions included in said loop in the pipeline unit

occurs in parallel.

15. Method according to claim 14, wherein said loop instruction is

issued to the loop pipeline at the beginning of each loop.

16. Method according to claim 14, wherein said loop instruction is

issued to the loop pipeline at the end of each loop.

WO 99/14664 PCT/US98/18673

13

17. Method according to claim 14, wherein said loop related data
include a loop instruction address, said loop target address and a program

counter value following the target instruction.

18. Method according to claim 17, wherein said loop related data

include further said loop instruction.

19. Method according to claim 14, wherein said loop related data

include a previous instruction address and a target instruction address.

20. Method according to claim 19, wherein said loop related data

include further said loop instruction.

21. Method according to claim 14, wherein the loop instruction is

decoded and executed in a first stage and written back in a second stage.

22. Method according to claim 21, wherein in said first stage, the

loop counter value is decremented and compared to zero.

23. Method according to claim 22, wherein in the second stage, said

counter value is written back.

WO 99/14664

PCT/US98/18673

1/4

| CACHE SUBSYSTEM 13
A
2\ \4
PC UPDATE "] LOOP CACHE / BTB & !
AND CONTROL |«
A A
r _____ 7
| oop |4
7| EXECUTION |
|
| LOOP PIPE]
_________ 4 \
\ MUX //5
5
> PRE-DECODE |«
/7
> INSTRUCTION DEMUX |
\ 4 (8 l (9
PROTECTION . . SSUE
REG. CONTROL
A
10 11 11
{_________(_l m- ""‘S'i r- -G
|
| [10a HNENINEEEE
A e | 14
Y ' . v (
biqob it b | !
ADDRESS DP!I ! — | | — ! | | | PIPELINE
BI-DIRECT ~ ACCESS | ¥ || || CONTROL
PORT PORT | 10 | !y [Me J 1112 |,
' P! | !
: IPIPE :: LSpipE ::LOOPPIPE:

WO 99/14664 PCT/US98/18673

2/4

(38 (Bb (3C (3d

PREV. INSTR. ADDR | TARGET INSTR. ADDR | LOOP INSTR. SIZE v

Fil= ==

3
_ oo TT T T T T T _(___[
| !
2 ¢ : Je |
- { l :
|
2 " NN % Jad] |
i s s — .
A A
r——""="7~-"~"~~"~T=7=777=7—7—~ —l
: y e l
: COMP |
' A I
: |
|
; : Y 5
I . S MUX
| |
: !
! l 4 4c !
! y (% ¢ |
: LOOP COUNT f«— DECREMENT | |
i |
: y I "
: COMP. [~4d ,’"
| T |
| |
: ||Oll -_;

WO 99/14664

3/4

PCT/US98/18673

FETCH A2 N A1 A2
INTEGER DECODE Al A2 - - Al
PIPE EXECUTE - Al A2 - -
WRITE BACK - At A2
FETCH L2 B - L1 L2
LOAD/STORE | DECODE L1 L2 B - L1
PIPE EXECUTE - L1 L2 B -
WRITEBACK - L1 L2 B
LOOP DECODE
PIPE WRITEBACK
Ct C2 C3 C4 C5
HFils <
FETCH A1 A2 Al A2
INTEGER DECODE A2 Al A2 A
PIPE EXECUTE Al A2 Al A2
WRITE BACK - Al A2 A1
FETCH L1 L2 L1 L2
LOAD/STORE | DECODE L2 L1 L2 L1
PIPE EXECUTE L1 L2 L1 L2
WRITEBACK - L1 L2 L1
LOOP DECODE B - B
PIPE WRITEBACK - B -
Cé C7 C8 C9 C10

FIIs__Tm

WO 99/14664 PCT/US98/18673

4/ 4

FETCH Al - N
DECODE A2 - -
EXECUTE Al A2 -
WRITE BACK A2 Al A2
FETCH L1
DECODE L2 -
EXECUTE L1 L2
WRITEBACK L2 L1
DECODE . B .
WRITEBACK B - B

CN CN+1 CN+2

FiIls s

INTERNATIONAL SEARCH REPORT

inter anat Application No

PCT/US 98/18673

A._CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F9/32 G06F9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such decuments are included inthe fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 485 629 A (DULONG CAROLE) 1,11
16 January 1996 .
Y see the whole document 2,6,9,
10,13-16
Y EP 0 742 518 A (MATSUSHITA ELECTRIC IND CO 2,6,9,
LTD) 13 November 1996 10,13-16
see summary, figure 4
A R.G. WEDIG AND M.A. ROSE: "The reduction 1-3,6,9,
of branch instruction execution overhead 10,13-16
using structured control flow"
11TH INTERNATIONSL SYMPOSIUM ON COMPUTER
ARCHITECTURE, 5 - 7 June 1984, pages
119-125, XP000212034
ann arbor,mi,us
see sections 3, 4.2, 5.1, 5.2
-/-=
Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : .

. T later document published after the internationai filing date

or priority date and not in conflict with the application but

cited to understand the principle or theory undenrying the
invention

"X" document of particular relevance; the claimed invention

“A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international

filing date cannot be considered novel or cannot be considered to
"L dochuw‘ent whigh may ’lgironl aoubts ‘on priority cle\fim(s) or involve an inventive step when the document is taken alone
which is cited to establish the pubtication date of another " document of : . i : "
A) . particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or mors other such docu-
other means ments, such combination being obvious to a person skilled
“P" document published prior to the intemational filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the international search report
18 January 1999 29/01/1999
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016 Klocke, L

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intei >nal Application No

PCT/US 98/18673

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

EP 0 623 874 A (IBM) 9 November 1994
see the whole document
"BRANCH BUFFERING"
IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 36, no. 5, 1 May 1993, pages 129-131,
XP000408936
US 3 593 306 A (TOY WING N) 13 July 1971
see the whole document

US 5 131 086 A (CIRCELLO JOSEPH C ET AL)
14 July 1992
see the whole document

1,11,14

2,7

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

inte

‘onal Application No

PCT/US 98/18673

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5485629 A 16-01-1996 NONE

EP 0742518 A 13-11-1996 JP 8314719 A 29-11-1996
CN 1138175 A 18-12-1996
us 5850551 A 15-12-1998

EP 0623874 A 09-11-1994 JP 2643087 B 20-08-1997
JP 6332699 A 02-12-1994
us 5634047 A 27-05-1997

US 3593306 A 13-07-1971 BE 753749 A 31-12-1970
DE 2036729 A 04-02-1971
FR 2055396 A 07-05-1971
GB 1315832 A 02-05-1973
NL 7010710 A 27-01-1971
SE 353804 B 12-02-1973

US 5131086 A 14-07-1992 us 5101341 A 31-03-1992

Form PCT/ISA/210 {patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

