(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(51) Internationale Patentklassifikation:
C07D 239/47, 403/04, 409/06, 409/14, A61K 31/513, A61P 25/28

(21) Internationales Aktenzeichen:
PCT/EP2004/014872

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:
deutsch

(26) Veröffentlichungssprache:
deutsch

(30) Angaben zur Priorität:

(74) Gemeinsamer Vertreter: BAYER HEALTHCARE AG; Law and Patents, Patents and Licensing, 51368 Leverkusen (DE).

Veröffentlicht:
mit internationalem Recherchenbericht
vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Titel: 6-AMINO-5-CYANO-PYRIMIDINE-4-ONES USED FOR IMPROVING PERCEPTION, POWER OF CONCENTRATION, LEARNING EFFICIENCY, AND/OR MEMORY POWER

(54) Bezeichnung: 6-AMINO-5-CYANO-PYRIMIDIN-4-ONE ZUR VERBESSERUNG VON Wahrnehmung, Konzentration-, Lern- und/oder Gedächtnisleistung

Die US 5,002,949 offenbart Cyanopyrimidinone zur Inhibierung von weißen Thrombusformationen.

In WO 02/06288 werden Cyanopyrimidinone mit mGluR antagonistischer Wirkung beschrieben.

In WO 95/10506 offenbart Cyanopyrimidinone zur Behandlung von Depression und der Alzheimer'schen Krankheit.
In EP 130735 werden Cyanopyrimidine als cardiotonische Reagentien beschrieben.

Die vorliegende Erfindung betrifft Verbindungen der Formel

![Chemical Structure](image)

in welcher

A Phenyl, Heteroaryl oder eine Gruppe der Formel

wobei Phenyl und Heteroaryl gegebenenfalls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Heteroaryl, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Trifluormethyl, Trifluormethoxy, Benzylxyloxy und Benzyl substituiert sind,

wobei C₁-C₆-Alkyl gegebenenfalls mit einer Gruppe der Formel -NR³R⁴, in welcher R³ C₁-C₆-Alkyl und R⁴ Wasserstoff oder C₁-C₆-Alkoxy(C₁-C₆)-alkyl bedeuten, und

Heteroaryl gegebenenfalls mit C₁-C₆-Alkoxy substituiert ist,

R¹ C₃-C₅-Cycloalkyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy(C₁-C₆)-alkyl, Benzyl oder eine Gruppe der Formel

![Chemical Structure](image)

wobei C₃-C₅-Cycloalkyl gegebenenfalls mit Hydroxy, C₁-C₆-Alkyl oder Trifluormethyl,

C₁-C₆-Alkyl gegebenenfalls mit Heteroaryl, C₃-C₅-Cycloalkyl oder Hydroxy,

und Benzyl gegebenenfalls mit C₁-C₆-Alkoxy oder Halogen substituiert ist,

R² Wasserstoff,
oder

\[R^1 \text{ und } R^2 \text{ zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein } 5- \text{ bis } 6-
\text{gliedriges Heterocykl bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe C}_{1-6}-\text{Alkyl, Hydroxy, Cyano, Oxo, Heteroaryl, Benzyl, Formyl, C}_{1-6}-\text{Alkylcarbonyl und einer der folgenden Gruppen}
\]

\[
\begin{align*}
&\text{, die über die beiden Sauerstoffatome an eines der Kohlenstoffatome im Heterocyclus gebunden sind, substituiert ist,}
&\text{wobei C}_{1-6}-\text{Alkyl gegebenenfalls mit Hydroxy oder Heteroaryl substituiert ist,}
\end{align*}
\]

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

Als Salze sind im Rahmen der Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanol-
amin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzyamin, N-Methylmorpholin, Dehydroabietylamin, Arginin, Lysin, Ethylendiamin und Methyliiiperidin.

Als Solvate werden im Rahmen der Erfindung solche Formen der Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt.

Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:

\(C_1-C_6-Alkyl \) steht für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6, bevorzugt 1 bis 4 Kohlenstoffatomen. Bevorzugte Beispiele umfassen Methyl, Ethyl, n-Propyl, Isopropyl, 2-Butyl, tert.-Butyl, 2-Pentyl, 3-Pentyl und n-Hexyl.

\(C_1-C_6-Alkoxy \) steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6, bevorzugt 1 bis 4, besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen. Bevorzugte Beispiele umfassen Methoxy, Ethoxy, n-Propanoxy, Isopropanoxy, tert.-Butoxy, n-Pentoxy und n-Hexaoxy.

\(C_1-C_6-Alkoxy(C_1-C_6)-alkyl \) steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6, bevorzugt 1 bis 4, besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen, der an einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6, bevorzugt 1 bis 4, besonders bevorzugt mit 2 bis 3 Kohlenstoffatomen gebunden ist. Bevorzugte Beispiele umfassen Methoxymethyl, 2-Methoxyethyl, Ethoxymethyl und 2-Ethoxyethyl.

\(C_1-C_6-Alkylcarbonyl \) steht für einen geradkettigen oder verzweigten Alkylcarbonylrest mit 1 bis 6, bevorzugt 1 bis 4 und besonders bevorzugt 1 bis 3 Kohlenstoffatomen. Bevorzugte Beispiele umfassen Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, Isopropylcarbonyl und tert.-Butylcarbonyl.

3- bis 8-gliedriges Cycloalkyl steht für gesättigte Cycloalkylreste mit 3 bis 8, bevorzugt 3 bis 6 und besonders bevorzugt 5 bis 6 Kohlenstoffatomen im Cyclus. Bevorzugte Beispiele umfassen Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl.

Halogen steht für Fluor, Chlor, Brom und Iod. Bevorzugt sind Fluor, Chlor, Brom, besonders bevorzugt Fluor und Chlor.

Heteroaryl steht für einen aromatischen, monocyclischen Rest mit 5 bis 6 Ringatomen und bis zu 3 Heteroatomen aus der Reihe S, O und/oder N. Bevorzugt sind 5- bis 6-gliedrige Heteroaryle mit bis zu 2 Heteroatomen. Der Heteroarylrest kann über ein Kohlenstoff- oder Stickstoffatom gebunden

Wenn Reste in den erfindungsgemäßen Verbindungen gegebenenfalls substituiert sind, ist, soweit nicht anders spezifiziert, eine Substitution mit bis zu drei gleichen oder verschiedenen Substituenten bevorzugt.

Eine weitere Ausführungsform der Erfindung betrifft Verbindungen der Formel (I), in welcher

\[
\begin{array}{c}
\text{A} \\
\end{array}
\]

Phenyl, Heteroaryl oder eine Gruppe der Formel

wobei Phenyl und Heteroaryl gegebenenfalls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Heteroaryl, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, Trifluormethoxy, Benzylxyx und Benzyl substituiert sind,

wobei C₁-C₄-Alkyl gegebenenfalls mit einer Gruppe der Formel \(-\text{NR}^3\text{R}^4\), in welcher \(\text{R}^3\) C₁-C₄-Alkyl und \(\text{R}^4\) Wasserstoff oder C₁-C₄-Alkoxy(C₁-C₄)-alkyl bedeuten, und

Heteroaryl gegebenenfalls mit C₁-C₄-Alkoxy substituiert ist,

\(\text{R}^1\) C₃-C₆-Cy cloalkyl, C₁-C₄-Alkyl, C₁-C₄-Alkoxy(C₁-C₄)alkyl, Benzyl oder eine Gruppe der

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\end{array}
\]

Formel

wobei C₃-C₆-Cy cloalkyl gegebenenfalls mit Hydroxy, C₁-C₄-Alkyl oder Trifluormethyl,
C₁-C₄-Alkyl gegebenenfalls mit Heteroaryl, C₃-C₆-Cycloalkyl oder Hydroxy,

und Benzyl gegebenenfalls mit C₁-C₄-Alkoxy oder Halogen substituiert ist,

R² Wasserstoff,

oder

5 R¹ und R² zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-
gliedriges Heterocycl bilden, welches gegebenenfalls mit bis zu 2 Substituenten
unabhängig voneinander ausgewählt aus der Gruppe C₁-C₄-Alkyl, Hydroxy,
Cyano, Oxo, Heteroaryl, Benzyl, Formyl, C₁-C₄-Alkylcarbonyl und einer der
folgenden Gruppen

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]

10, die über die beiden Sauerstoffatome an eines der
Kohlenstoffatome im Heterocyclus gebunden sind, substituiert ist,

wobei C₁-C₄-Alkyl gegebenenfalls mit Hydroxy oder Heteroaryl
substituiert ist,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

15 Eine weitere Ausführungsform der Erfindung betrifft Verbindungen der Formel (I), in welcher

\[
\begin{align*}
\text{A} & \quad \text{Phenyl, Thiencycl oder eine Gruppe der Formel}
\end{align*}
\]

wobei Phenyl und Thiencycl gegebenenfalls mit bis zu 2 Resten unabhängig
voneinander ausgewählt aus der Gruppe Pyridyl, Fluor, Chlor, Brom, C₁-C₄-Alkyl,
C₁-C₄-Alkoxy, Trifluormethyl, Trifluormethoxy, Benzylxoy und Benzyl
substituiert sind,

20 wobei C₁-C₄-Alkyl gegebenenfalls mit einer Gruppe der Formel -NR³R⁴, in
welcher R³ C₁-C₄-Alkyl und R⁴ Wasserstoff oder C₁-C₄-Alkoxy(C₁-C₄)-
alkyl bedeuten, und
Pyridyl gegebenenfalls mit C₁-C₄-Alkoxy substituiert ist,

\[R^1 \quad \text{C}_3-\text{C}_6-\text{Cycloalkyl, C}_1-\text{C}_4-\text{Alkyl, C}_1-\text{C}_4-\text{Alkoxy(C}_1-\text{C}_4)\text{alkyl, Benzyl oder eine Gruppe der} \]

\[\text{Formel} \]

wobei C₃-C₆-Cycloalkyl gegebenenfalls mit Hydroxy, C₁-C₄-Alkyl oder Trifluormethyl,

5 C₁-C₄-Alkyl gegebenenfalls mit Pyridyl, C₃-C₆-Cycloalkyl oder Hydroxy,

und Benzyl gegebenenfalls mit C₁-C₄-Alkoxy, Fluor, Chlor oder Brom substituiert ist,

\[R^2 \quad \text{Wasserstoff,} \]

10 oder

\[R^1 \text{ und } R^2 \quad \text{zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-} \]

gliedriges Heterocycl mal ausgewählt aus der Gruppe Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpholinyl bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe C₁-C₄-Alkyl,

15 Hydroxy, Cyano, Oxo, Heteroaryl, Benzyl, Formyl, C₁-C₄-Alkylcarbonyl und einer der folgenden Gruppen

\[\text{, die über die beiden Sauerstoffatome an eines der} \]

Kohlenstoffatome im Heterocyclus gebunden sind, substituiert ist,

wobei C₁-C₄-Alkyl gegebenenfalls mit Hydroxy oder Pyridyl substituiert ist,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

Eine weitere Ausführungsform der Erfindung betrifft Verbindungen der Formel (I), in welcher
A Phenyl, Thiényl oder eine Gruppe der Formel

wobei Phenyl gegebenenfalls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Pyridyl, Fluor, Chlor, Methyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Benzylxyloxy und Benzyl substituiert ist,

wobei Methyl gegebenenfalls mit einer Gruppe der Formel -NR²R⁴, in welcher R² Methyl und R⁴ Wasserstoff oder 2-Methoxyethyl bedeuten, und Pyridyl gegebenenfalls mit Methoxy substituiert ist,

R¹ C₃-C₅-Cycloalkyl, Methyl, Ethyl, Propyl, 2-Methoxyethyl, Benzyl oder eine Gruppe der

Formel

wobei C₃-C₅-Cycloalkyl gegebenenfalls mit Hydroxy, Methyl oder Trifluormethyl, Methyl, Ethyl, Propyl gegebenenfalls mit Pyridyl, Cyclopropyl oder Hydroxy,

und Benzyl gegebenenfalls mit Methoxy, Ethoxy, Fluor oder Chlor substituiert ist,

R² Wasserstoff,

oder

R¹ und R² zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-gliedriges Heterocyclen ausgewählt aus der Gruppe Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpholinyl bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Ethyl, Propyl, tert.-Butyl, Hydroxy, Cyano, Oxo, Pyridyl, Benzyl, Formyl, Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl und einer der folgenden Gruppen
, die über die beiden Sauerstoffatome an eines der Kohlenstoffatome im Heterocylus gebunden sind, substituiert ist,

wobei Methyl, Ethyl und Propyl gegebenenfalls mit Hydroxy oder Pyridyl substituiert sind,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I) gefunden, dadurch gekennzeichnet, dass man entweder

[A] eine Verbindung der Formel

\[
\begin{align*}
&\text{H}_3\text{C}-\text{O}-
\end{align*}
\]

\[
\begin{align*}
&\text{H}_2\text{C}-\text{CN}
\end{align*}
\]

(II),

zunächst mit einer Verbindung der Formel

\[
\text{HNR}^1\text{R}^2
\]

(III),

in welcher

\[\text{R}^1 \text{ und } \text{R}^2 \text{ die oben angegebenen Bedeutungen aufweisen,}\]

bei erhöhter Temperatur in einem inerten Lösemittel oder auch in Abwesenheit eines Lösemittels in eine Verbindung der Formel

\[
\begin{align*}
&\text{H}_3\text{C}-\text{O}-
\end{align*}
\]

\[
\begin{align*}
&\text{H}_3\text{C}-\text{CN}
\end{align*}
\]

\[
\begin{align*}
&\text{H}_3\text{C}-\text{S}-\text{N}^{\text{R}^2}
\end{align*}
\]

(IV),

in welcher
R1 und R2 die oben angegebenen Bedeutungen aufweisen,

überführt und diese dann in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel

\[\text{NH} \quad \text{x HX} \quad \text{NH}_2 \]

\[X = \text{Cl}, \text{Br} \text{ oder I} \quad \text{(V)}, \]

in welcher

A die oben angegebenen Bedeutungen aufweist,

umsetzt

oder in veränderter Reihenfolge der Reaktionspartner

[B] eine Verbindung der Formel (II) zunächst mit einer Verbindung der Formel (V) in einem inerten Lösungsmittel in Gegenwart einer Base in eine Verbindung der Formel

\[\text{O} \quad \text{CN} \]

\[\text{HN} \quad \text{CN} \]

\[\text{A} \quad \text{CH}_3 \quad \text{S} \]

\[\text{(VI)}, \]

in welcher

A die oben angegebenen Bedeutungen aufweist,

überführt und diese dann bei erhöhter Temperatur in einem inerten Lösungsmittel oder auch in Abwesenheit eines Lösungsmittels mit einer Verbindung der Formel (III) umsetzt,

und die jeweils resultierenden Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren zu ihren Solvaten, Salzen und/oder Solvaten der Salze umsetzt.

Die Verbindung der Formel (II) ist literaturbekannt (R. Gompper, W. Toepfl, Chem. Ber. 1962, 95, 2861-2870). Die Verbindungen der Formeln (III) und (V) sind kommerziell erhältlich, literatur-

Die Reaktion erfolgt im Allgemeinen in einem Temperaturbereich von +70°C bis +200°C, bevorzugt in einem Temperaturbereich von +100°C bis +150°C. Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Die Verbindung der Formel (III) wird hierbei in einer Menge von 1 bis 2 Mol, bevorzugt in einer äquivalenten Menge von 1 Mol, bezogen auf 1 Mol der Verbindung der Formel (II), eingesetzt.

Die Reaktion erfolgt im Allgemeinen in einem Temperaturbereich von +50°C bis +150°C, bevorzugt in einem Temperaturbereich von +70°C bis +100°C. Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Die Verbindung der Formel (III) wird hierbei in einer Menge von 1 bis 10 Mol, bevorzugt in einem Überschuss von 3 bis 10 Mol, bezogen auf 1 Mol der Verbindung der Formel (VI), eingesetzt.

Die Reaktion erfolgt im Allgemeinen in einem Temperaturbereich von +50°C bis +150°C, bevorzugt in einem Temperaturbereich von +70°C bis +100°C. Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Die Base wird hierbei in einer Menge von 1.5 bis 4 Mol, bevorzugt in einer Menge von 1.5 bis 2 Mol, bezogen auf 1 Mol der Verbindung der Formel (IV) bzw. (II), eingesetzt. Die Verbindung der Formel (V) wird in einer Menge von 1 bis 1.5 Mol, bevorzugt in einer Menge von 1.2 Mol, bezogen auf 1 Mol der Verbindung der Formel (IV) bzw. (II), eingesetzt.

Das erfindungsgemäße Verfahren kann durch die folgenden Formelschemata beispielhaft erläutert werden:

Schema I:

\[
\begin{align*}
\text{NH} & \quad \text{NH}_2 \\
A & \quad x \text{HX} \\
\end{align*}
\]

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{CN} & \quad \text{CN} \\
\text{S} & \quad \text{S} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{a)} & \quad \text{HNN} \\
A & \quad \text{CN} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{R}^1 & \quad \text{N} \\
\text{R}^2 & \quad \text{H} \\
\text{a)} & \quad \text{HN} \\
A & \quad \text{CN} \\
\text{R}^1 & \quad \text{R}^2 \\
\end{align*}
\]

\[
X = \text{Cl, Br}
\]

a) Ethanol, Triethylamin, 5-16 h Rückfluss; b) Acetonitril, 85-90°C, 1-7 Tage.
Schema II:

\[
\begin{align*}
\text{H}_3\text{C-O-C-CN} & \quad \text{R}^1\text{N-R}^2 \\
\text{S-S} & \quad \text{a)} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\hline
\text{N-H} & \quad \text{NH}_2 \\
\text{A} & \quad \text{x HX} \\
\text{b)} & \\
\text{A} & \quad \text{R}^1\text{N-R}^2
\end{align*}
\]

\[X = \text{Cl, Br}\]

a) 1. Toluol, Bortrifluorid-Etherat, RT, 30 min.; 2. Amin-Komponente \(\text{R}^1\text{R}^2\text{NH}\), 150°C, 16 h; oder:

5 Schmelze der Ausgangsverbindungen bei 150°C, 1-16 h; b) DMF, Triethylamin, 100°C, 16 h oder DMF, Kaliumcarbonat, 90°C, 16 h.

Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum. Sie zeichnen sich insbesondere durch eine Inhibition von PDE9A aus.

Überraschenderweise wurde gefunden, dass die erfindungsgemäßen Verbindungen zur Herstellung von Arzneimitteln zur Verbesserung der Wahrnehmung, Konzentrationsleistung, Lernleistung oder Gedächtnisleistung geeignet sind.

15 Besonders eignen sich die erfindungsgemäßen Verbindungen zur Verbesserung der Wahrnehmung, Konzentrationsleistung, Lernleistung, oder Gedächtnisleistung nach kognitiven Störungen, wie sie insbesondere bei Situationen/Krankheiten/Syndromen auftreten wie „Mild cognitive impairment“, Altersassozierte Lern- und Gedächtnisstörungen, Altersassozierte Gedächtnisverluste, Vaskuläre Demenz, Schädel-Hirn-Trauma, Schlaganfall, Demenz, die nach Schlaganfällen auftritt („post stroke dementia“), post-traumatische Demenz, allgemeine Konzentrationsstörungen, Kon-
zentrationssstörungen in Kindern mit Lern- und Gedächtnisproblemen, Alzheimer'sche Krankheit, Demenz mit Lewy-Körperchen, Demenz mit Degeneration der Frontallappen einschließlich des Pick's Syndroms, Parkinson'sche Krankheit, Progressive nuclear palsy, Demenz mit corticobasaler Degeneration, Amyotrope Lateralsklerose (ALS), Huntington'sche Krankheit, Multiple Sklerose, Thalamische Degeneration, Creutzfeld-Jacob-Demenz, HIV-Demenz, Schizophrenie mit Demenz oder Korsakow-Psychose.

Die in vitro-Wirkung der erfindungsgemäßen Verbindungen kann mit folgenden biologischen Assays gezeigt werden:

PDE-Inhibition

Die Testsubstanzen werden zur Bestimmung ihrer in vitro Wirkung an PDE9A in 100% DMSO aufgelöst und seriell verdünnt. Typischerweise werden Verdünnungsreihen von 200 μM bis 1.6 μM hergestellt (resultierende Endkonzentrationen im Test: 4 μM bis 0.032 μM). Jeweils 2 μL der verdünnten Substanzlösungen werden in die Vertiefungen von Mikrotiterplatten (Isoplate; Wallac Inc., Atlanta, GA) vorgelegt. Anschließend werden 50 μL einer Verdünnung des oben beschriebenen PDE9A-Präparates hinzugefügt. Die Verdünnung des PDE9A-Präparates wird so gewählt, dass während der späteren Inkubation weniger als 70% des Substrates umgesetzt wird (typische Verdünnung: 1:10000; Verdünnungspuffer: 50 mM Tris/HCl pH 7.5, 8.3 mM MgCl₂, 1.7 mM EDTA, 0.2% BSA). Das Substrat, [8-3H] guanosine 3', 5'-cyclic phosphate (1 μCi/μL; Amersham Pharmacia Biotech., Piscataway, NJ) wird 1:2000 mit Assaypuffer (50 mM Tris/HCl pH 7.5, 8.3 mM MgCl₂, 1.7 mM EDTA) auf eine Konzentration von 0.0005 μCi/μL verdünnt.
Durch Zugabe von 50 μL (0.025 μCi) des verdünnten Substrates wird die Enzymreaktion schließlich gestartet. Die Testansätze werden für 60 min bei Raumtemperatur inkubiert und die Reaktion durch Zugabe von 25 μL eines in Assaypuffer gelösten PDE9A-Inhibitors (z.B. der Inhibitor aus Herstellbeispiel 1, 10 μM Endkonzentration) gestoppt. Direkt im Anschluss werden 25 μL einer Suspension mit 18 mg/mL Yttrium Scintillation Proximity Beads (Amersham Pharmacia Biotech., Piscataway, NJ) hinzugefügt. Die Mikrotiterplatten werden mit einer Folie versiegelt und für 60 min bei Raumtemperatur stehengelassen. Anschließend werden die Platten für 30 s pro Vertiefung in einem Microbeta Szintillationzähler (Wallac Inc., Atlanta, GA) vermessen. IC₅₀-Werte werden anhand der graphischen Auftragung der Substanzkonzentration gegen die prozentuale Inhibition bestimmt.

Repräsentative Beispiele für die selektiv PDE9A-inhibierende Wirkung der erfindungsgemäßen Verbindungen sind anhand der IC₅₀-Werte in den Tabellen 1 bis 3 aufgeführt:

Tabellen 1-3: Inhibition von PDE-Isoenzymen (human) durch Beispiele 38, 112 und 113
Tabelle 1: Beispiel 38

<table>
<thead>
<tr>
<th>Isoenzym</th>
<th>IC<sub>50</sub> [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE1C</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE2A</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE3B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE4B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE7B</td>
<td>2200</td>
</tr>
<tr>
<td>PDE8A</td>
<td>4000</td>
</tr>
<tr>
<td>PDE9A</td>
<td>5</td>
</tr>
<tr>
<td>PDE10A</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE11</td>
<td>> 4000</td>
</tr>
</tbody>
</table>

Tabelle 2: Beispiel 112

<table>
<thead>
<tr>
<th>Isoenzym</th>
<th>IC<sub>50</sub> [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE1C</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE2A</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE3B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE4B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE7B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE8A</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE9A</td>
<td>5</td>
</tr>
<tr>
<td>PDE10A</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE11</td>
<td>> 4000</td>
</tr>
</tbody>
</table>

Tabelle 3: Beispiel 113

<table>
<thead>
<tr>
<th>Isoenzym</th>
<th>IC<sub>50</sub> [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE1C</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE2A</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE3B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE4B</td>
<td>> 4000</td>
</tr>
<tr>
<td>PDE7B</td>
<td>> 4000</td>
</tr>
<tr>
<td>Isoenzym</td>
<td>IC50 [nM]</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PDE8A</td>
<td>>4000</td>
</tr>
<tr>
<td>PDE9A</td>
<td>15</td>
</tr>
<tr>
<td>PDE10A</td>
<td>>4000</td>
</tr>
<tr>
<td>PDE11</td>
<td>1500</td>
</tr>
</tbody>
</table>

Langzeitpotenzierung

Langzeitpotenzierung wird als einzelluläres Korrelat für Lern- und Gedächtnisvorgänge angesehen. Zur Bestimmung, ob PDE9-Inhibition einen Einfluss auf Langzeitpotenzierung hat, kann folgende Methode angewandt werden:

Rattenhippokampi werden in einen Winkel von etwa 70 Grad im Verhältnis zur Schnittklinge plaziert (Chopper). In Abständen von 400 μm wird der Hippokampus zerschnitten. Die Schnitte werden mit Hilfe eines sehr weichen, stark benetzten Pinsels (Marderhaar) von der Klinge genommen und in ein Glasgefäß mit carbogenisierter gekühlter Nährösung (124 mM NaCl, 4.9 mM KCl, 1.3 mM MgSO4 x 7 H2O, 2.5 mM CaCl2 wasserfrei, 1.2 mM KH2PO4, 25.6 mM NaHCO3, 10 mM Glucose, pH 7.4) überführt. Während der Messung befinden sich die Schnitte in einer temperierten Kammer unter einem Flüssigkeitsspiegel von 1-3 mm Höhe. Die Durchflussrate beträgt 2.5 ml/min. Die Vorbeigasung erfolgt unter geringen Überdruck (etwa 1 atm) sowie über eine Mikrokanüle in der Vorkammer. Die Schnittkammer ist mit der Vorkammer so verbunden, dass eine Minizirkulation aufrechterhalten werden kann. Als Antrieb der Minizirkulation wird das durch die Mikrokanüle ausströmende Carbogen eingesetzt. Die frisch präparierten Hippokampus- schnitte werden mindestens 1 Stunde bei 33°C in der Schnittkammer adaptiert.

Die Reizstärke wird so gewählt, dass die fokalen exzitatorischen postsynaptischen Potentiale (fEPSP) 30 % des maximalen exzitatorischen postsynaptischen Potentials (EPSP) betragen. Mit Hilfe einer monopolaren Stimulationselektrode, die aus lackiertem Edelstahl besteht und eines stromkonstanten, biphasischen Reizgenerators (AM-Systems 2100), werden lokal die Schaffer-Kollateralen erregt (Spannung: 1-5 V, Impulsbreite einer Polarisität 0.1 ms, Gesamtimpuls 0.2 ms). Mit Hilfe von Glaselektroden (Borosilikatglas mit Filament, 1-5 MΩhm, Durchmesser: 1.5 mm, Spitzendurchmesser: 3-20 μm), die mit normaler Nährösung gefüllt sind, werden aus dem Stratum radiatum die exzitatorischen postsynaptischen Potentiale (fEPSP) registriert. Die Messung der Feldpotentiale geschieht gegenüber einer chlorierten Referenceelektrode aus Silber, die sich am Rande der Schnittkammer befindet, mit Hilfe eines Gleichspannungsverstärkers. Das Filtern der Feldpotentiale erfolgt über einen Low-Pass Filter (5 kHz). Für die statistische Analyse der
Experimente wird der Anstieg (slope) der fEPSPs (fEPSP-Anstieg) ermittelt. Die Aufnahme, Analyse und Steuerung des Experimentes erfolgt mit Hilfe eines Softwareprogrammes (PWIN), welches in der Abteilung Neurophysiologie entwickelt worden ist. Die Mittelwertbildung der fEPSP-Anstiegswerte zu den jeweiligen Zeitpunkten und die Konstruktion der Diagramme erfolgt mit Hilfe der Software EXCEL, wobei ein entsprechendes Makro die Aufnahme der Daten automatisiert.

Superfusion der Hippokampusschnitte mit einer 10 μM Lösung der erfindungsgemäßen Verbindungen führt zu einer signifikanten Steigerung der LTP.

Die in vivo-Wirkung der erfindungsgemäßen Verbindungen kann zum Beispiel wie folgt gezeigt werden:

Sozialer Wiedererkennungstest

Der Soziale Wiedererkennungstest ist ein Lern- und Gedächtnistest. Er misst die Fähigkeit von Ratten, zwischen bekannten und unbekannten Artgenossen zu unterscheiden. Deshalb eignet sich dieser Test zur Prüfung der lern- oder gedächtnisverbessernden Wirkung der erfindungsgemäßen Verbindungen.

Adulte Ratten, die in Gruppen gehalten werden, werden 30 min vor Testbeginn einzeln in Testkäfige gesetzt. Vier min vor Testbeginn wird das Testtier in eine Beobachtungsbox gebracht. Nach dieser Adaptionstzeit wird ein juveniles Tier zu dem Testtier gesetzt und 2 min lang die absolute Zeit gemessen, die das adulte Tier das Junge inspiziert (Trial 1). Gemessen werden alle deutlich auf das Jungtier gerichteten Verhaltensweisen, d.h. ano-genitale Inspektion, Verfolgen sowie Fellpflege, bei denen das Alttier einen Abstand von höchstens 1 cm zu dem Jungtier hatte. Danach wird das Juvenile herausgenommen, das Adulte mit einer erfindungsgemäßen Verbindung oder Vehikel behandelt und anschließend in seinen Heimkäfig zurückgesetzt. Nach einer Retentionszeit von 24 Stunden wird der Test wiederholt (Trial 2). Eine verringerte Soziale Interaktionszeit im Vergleich zu Trial 1 zeigt an, dass die adulte Ratte sich an das Jungtier erinnert.

Die adulten Tiere werden entweder in einem festgelegten Zeitabstand (z.B. 1 Stunde) vor Trial 1 oder direkt im Anschluss an Trial 1 entweder mit Vehikel (10% Ethanol, 20% Solutol, 70% physiologische Kochsalzlösung) oder 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg bzw. 3.0 mg/kg erfindungsgemäßer Verbindung, gelöst in 10% Ethanol, 20% Solutol, 70% physiologische Kochsalzlösung intraperitoneal injiziert. Vehikel behandelte Ratten zeigen keine Reduktion der sozialen Interaktionszeit in Trial 2 verglichen mit Trial 1. Sie haben folglich vergessen, dass sie schon einmal Kontakt mit dem Jungtier hatten. Überraschenderweise ist die soziale Interaktionszeit im zweiten
Durchgang nach Behandlung mit den erfindungsgemäßen Verbindungen signifikant gegenüber den Vehikel behandelten reduziert. Dies bedeutet, dass die substanzbehandelten Ratten sich an das juvenile Tier erinnert haben und somit die erfindungsgemäßen Verbindungen eine verbesserte Wirkung auf Lernen und Gedächtnis aufweist.

Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90 Gew.-% der Gesamt mieszung vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgietnitteln und/oder Dispergiermitteln hergestellt, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal oder parenteral, insbesondere perlingual oder intravenös. Sie kann aber auch durch Inhalation über Mund oder Nase, beispielsweise mit Hilfe eines Sprays, oder topisch über die Haut erfolgen.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, Mengen von etwa 0,001 bis 10, bei oraler Anwendung vorzugsweise etwa 0,005 bis 3 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen.

Soweit nicht anders angegeben, beziehen sich alle Mengenangaben auf Gewichtsprozente. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig-/flüssig-Lösungen beziehen sich jeweils auf das Volumen. Die Angabe "w/v" bedeutet "weight/volume" (Gewicht/Volumen). So bedeutet beispielsweise "10% w/v": 100 ml Lösung oder Suspension enthalten 10 g Substanz.
Abkürzungen:

- DCI: direkte chemische Ionisation (bei MS)
- DMSO: Dimethylsulfoxid
- d. Th.: der Theorie (bei Ausbeute)
- ESI: Elektrospray-Ionisation (bei MS)
- Fp.: Schmelzpunkt
- h: Stunde(n)
- HPLC: Hochdruck-, Hochleistungsflüssigchromatographie
- LC-MS: Flüssigchromatographie-gekoppelte Massenspektroskopie
- min: Minute(n)
- MS: Massenspektroskopie
- NMR: Kernresonanzspektroskopie
- R_f: Retentionsindex (bei DC)
- RT: Raumtemperatur
- R_t: Retentionszeit (bei HPLC)

LC-MS- und HPLC-Methoden:

Methode 1:

Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Grom-Sil 120 ODS-4 HE, 50 mm x 2.0 mm, 3 µm; Eluent A: 1 l Wasser + 1 ml 50 %-ige Ameisensäure, Eluent B: 1 l Acetonitril + 1 ml 50 %-ige Ameisensäure; Gradient: 0.0 min 100 % A → 0.2 min 100 % A → 2.9 min 30 % A → 3.1 min 10 % A → 4.5 min 10 % A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.
Methode 2:

Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Grom-Sil 120 ODS-4 HE, 50 mm x 2.0 mm, 3 μm; Eluent A: 1 l Wasser + 1 ml 50 %-ige Ameisensäure, Eluent B: 1 l Acetonitril + 1 ml 50 %-ige Ameisensäure; Gradient: 0.0 min 100 % A → 0.2 min 100 % A → 2.9 min 30 % A → 3.1 min 10 % A → 4.5 min 10% A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

Methode 3:

Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50 %-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50 %-ige Ameisensäure; Gradient: 0.0 min 90 % A, Fluss 1 ml/min → 2.5 min 30 % A, Fluss 2 ml/min → 3.0 min 5 % A, Fluss 2 ml/min → 4.5 min 5 % A, Fluss 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 4:

Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50 %-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50 %-ige Ameisensäure; Gradient: 0.0 min 90 % A, Fluss 1 ml/min → 2.5 min 30 % A, Fluss 2 ml/min → 3.0 min 5 % A, Fluss 2 ml/min → 4.5 min 5 % A, Fluss 2 ml/min; Ofen: 50°C; UV-Detektion: 208-400 nm.

Methode 5:

Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50 %-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50 %-ige Ameisensäure; Gradient: 0.0 min 90 % A, Fluss 1 ml/min → 2.5 min 30 % A, Fluss 2 ml/min → 3.0 min 5 % A, Fluss 2 ml/min → 4.5 min 5 % A, Fluss 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 6:

Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50 %-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50 %-ige Ameisensäure; Gradient: 0.0 min 90 % A, Fluss 1 ml/min → 2.5 min 30 % A, Fluss 2 ml/min → 3.0 min 5 % A, Fluss 2 ml/min → 4.5 min 5 % A, Fluss 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
Methode 7:
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 µm; Eluent A: Wasser + 500 µl 50 %-ige Ameisensäure / l, Eluent B: Acetonitril + 500 µl 50 %-ige Ameisensäure / l; Gradient: 0.0 min 0 % B → 2.9 min 70 % B → 3.1 min 90 % B → 4.5 min 90 % B; Ofen: 50°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 8:
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 µm; Eluent A: Wasser + 500 µl 50 %-ige Ameisensäure / l, Eluent B: Acetonitril + 500 µl 50 %-ige Ameisensäure / l; Gradient: 0.0 min 5 % B → 2.0 min 40 % B → 4.5 min 90 % B → 5.5 min 90 % B; Fluss: 0.0 min 0.75 ml/min → 4.5 min 0.75 ml/min → 5.5 min 1.25 ml/min; Ofen: 45°C; UV-Detektion: 210 nm.

Methode 9:
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 µm; Eluent A: Wasser + 500 µl 50 %-ige Ameisensäure / l, Eluent B: Acetonitril + 500 µl 50 %-ige Ameisensäure / l; Gradient: 0.0 min 0 % B → 0.2 min 0 % B → 2.9 min 70 % B → 3.1 min 90 % B → 4.5 min 90 % B; Ofen: 45°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 10:
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Merck Chromolith SpeedROD RP-18e 50 mm x 4.6 mm; Eluent A: Wasser + 500 µl 50 %-ige Ameisensäure / l, Eluent B: Acetonitril + 500 µl 50 %-ige Ameisensäure / l; Gradient: 0.0 min 10 % B → 3.0 min 95 % B → 4.0 min 95 % B; Ofen: 35°C; Fluss: 0.0 min 1.0 ml/min → 3.0 min 3.0 ml/min → 4.0 min 3.0 ml/min; UV-Detektion: 210 nm.

Methode 11:
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Uptisphere C 18 50 mm x 2.0 mm, 3.0 µm; Eluent B: Acetonitril + 0.05 % Ameisensäure, Eluent A: Wasser + 0.05 % Ameisensäure; Gradient: 0.0 min 5 % B → 2.0 min 40 % B → 4.5 min 90 % B → 5.5 min 90 % B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min → 4.5 min 0.75 ml/min → 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.
Methode 12:

Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x 2 mm, 3.5 µm; Eluent A: 5 ml HClO₄ / 1 Wasser, Eluent B: Acetonitril; Gradient: 0 min 2% B → 0.5 min 2% B → 4.5 min 90 % B → 6.5 min 90 % B; Fluss: 0.75 ml/min; Temperatur: 30°C; UV-Detektion: 210 nm.

Methode 13:

Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 125 mm x 4 mm, 5 µm; Eluent A: 5 ml HClO₄ / 1 Wasser, Eluent B: Acetonitril; Gradient: 0 min 2 % B → 0.5 min 2 % B → 4.5 min 90 % B → 6.5 min 90% B; Fluss: 0.75 ml/min; Temperatur: 30°C; UV-Detektion: 210 nm.
Ausgangsverbindungen:

5 Beispiel 1A

2-(3,4-Dichlorphenyl)ethanamidin-Hydrochlorid

![Chemical Structure](attachment:chemical_structure.png)

Unter einer Argonatmosphäre werden 2.88 g (54 mmol) Ammoniumchlorid in 50 ml Toluol suspendiert und auf 0°C abgekühlt. Nach Zutropfen von 27 ml einer 2 M Trimethylaluminiumlösung in Toluol wird das Gemisch auf Raumtemperatur erwärmt und 1.5 h nachgerührt. Es werden 5 g (27 mmol) 3,4-Dichlorphenylacetonitril zugegeben und der Ansatz über Nacht bei 80°C gerührt. Nach Abkühlen auf 0°C werden 50 ml Methanol zugetropft. Das Produkt wird vom ausgefallenen Feststoff durch Absaugen getrennt und der Filterkuchen mehrfach mit Methanol gewaschen. Die vereinigten Filtrate werden bis zur Trockene eingeengt, der Rückstand dann in Dichlormethan/Methanol 10:1 aufgeschlängelt und wiederum abgesaugt. Das Filtrat ergibt nach Einengen 6.2 g (77% d. Th.) der Titelverbindung.

MS (ESIpos): m/z = 203 [M+H]^+.
Beispiel 2A

6-Methoxypyridin-3-ylboronsäure

1 g (5.32 mmol) 5-Brom-2-methoxypyridin wird in 10 ml absolutem Tetrahydrofuran gelöst und auf -78°C abgekühlt. Nach Zugabe von 0.4 g (6.38 mmol) einer 1.6 M n-Butyllithium-Lösung in Hexan entsteht eine gelbe Lösung, die 30 min bei der gegebenen Temperatur gerührt wird. Nach Zugabe von 3 g (15.9 mmol) Triisopropylborat wird eine weitere Stunde gerührt, wobei sich die Lösung auf -20°C erwärmt. Man versetzt mit Wasser und rührt über Nacht nach. Die Rohlösung wird mit 1 N Salzsäure auf pH 5 angesäuert und zweimal mit Ethylacetat extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, filtriert und eingeengt, wobei ein hellbrauner Feststoff erhalten wird, der mit Diethylether aufgeschlämmt und filtriert wird. Es werden 0.38 g (47 % d. Th.) des Produktes isoliert.

MS (ESIpos): m/z = 154 [M+H]+

1H-NMR (DMSO-d6, 300 MHz): δ = 3.83 (s, 3H), 6.76 (d, 1H), 8.0 (dd, 1H), 8.52 (s, 1H).

Beispiel 3A

Methyl [2-(6-methoxypyridin-3-yl)phenyl]acetat

1.35 g (5.89 mmol) Methyl (2-bromphenyl)acetat werden mit 1 g (6.55 mmol) 6-Methoxypyridin-3-ylboronsäure und 1.98 g (13.09 mmol) Cäsiumfluorid unter Argon in 20 ml 1,2-Dimethoxyethan vorgelegt. Nach Zugabe von 0.22 g (0.19 mmol) Tetrakis(triphenylphosphin)palladium(0) wird die Reaktionsmischung 4 h bei 100°C gerührt. Nach Abkühlen auf Raumtemperatur wird eine
Mischung aus Ethylacetat und Wasser zugesetzt und mit Ethylacetat extrahiert. Nach Trocknen der organischen Phase über Magnesiumsulfat und Entfernen des Lösungsmittels im Vakuum wird der Rückstand säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 9:1). Es werden 1.1 g (68% d. Th.) des Produktes erhalten.

LC-MS (Methode 5): $R_t = 2.1$ min., MS (ESIpos): $m/z = 258 \ [M+H]^+$

1H-NMR (DMSO-d$_6$, 300 MHz): $\delta = 3.51$ (s, 3H), 3.63 (s, 2H), 3.9 (s, 3H), 6.89 (d, 1H), 7.26 (m, 1H), 7.38 (m, 3H), 7.63 (dd, 1H), 8.08 (m, 1H).

Beispiel 4A

2-[(6-Methoxypyridin-3-yl)phenyl]ethanimidamid-Hydrochlorid

Unter einer Argonatmosphäre werden 1.14 g (21.37 mmol) Ammoniumchlorid in 20 ml Toluol suspendiert und auf 0°C abgekühlt. Nach Zutropfen von 10.7 ml einer 2 M Trimethylaluminium-Lösung in Toluol wird das Gemisch auf Raumtemperatur erwärmt und 1.5 h nachgerührt. Es werden 1.1 g (4.27 mmol) Methyl [2-(6-methoxypyridin-3-yl)phenyl]acetat zugegeben und der Ansatz zwei Tage bei 80°C gerührt. Nach Abkühlen auf 5°C werden 50 ml Methanol zugetropft. Das Produkt wird vom ausgefallenen Feststoff durch Absaugen getrennt und der Filterkuchen mehrfach mit Methanol gewaschen. Die vereinigten Filtrate werden bis zur Trockene eingeengt, der Rückstand dann in Dichlormethan/Methanol 10:1 aufgeschlängelt und wiederum abgesaugt. Das Filtrat ergibt nach Einengen 0.5 g (46% d. Th.) der Titelverbindung.

LC-MS (Methode 5): $R_t = 0.94$ min., MS (ESIpos): $m/z = 242 \ [M+H]^+$

1H-NMR (DMSO-d$_6$, 300 MHz): $\delta = 3.79$ (s, 2H), 3.9 (s, 3H), 6.89 (d, 1H), 7.31 (m, 2H), 7.46 (m, 2H), 7.68 (dd, 1H), 8.12 (m, 1H), 8.72 (s, 1H), 8.8 (s, 2H).
Beispiel 5A

2-[(6-Methoxypyridin-3-yl)benzyl]-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

0.55 g (1.96 mmol) 2-[(6-Methoxypyridin-3-yl)phenyl]ethanimidamid-Hydrochlorid werden mit 0.4 g (1.96 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enoat und 0.79 g (7.81 mmol) Triethylamin in 20 ml Dioxan gelöst und über Nacht bei 90°C gerührt. Anschließend wird das Lösungsmittel bis auf ca. 2 ml im Vakuum entfernt und die verbleibende Lösung mit Acetonitril versetzt, wobei das Produkt ausfällt. Nach Filtration wird mit Acetonitril und Methanol gewaschen und das Produkt im Hochvakuum getrocknet. Man erhält 276 mg (38% d. Th.) der Titelverbindung.

LC-MS (Methode 5): R_t = 2.08 min., MS (ESIpos): m/z = 365 [M+H]⁺

¹H-NMR (DMSO-d₆, 300 MHz): δ = 2.31 (s, 3H), 3.9 (s, 3H), 3.98 (s, 2H), 6.89 (d, 1H), 7.28 (m, 1H), 7.39 (m, 3H), 7.63 (dd, 1H), 8.08 (m, 1H).

Beispiel 6A

2-Benzyl-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidincarbonitril

100 mg (0.59 mmol) 2-Phenylethanamid-Hydrochlorid werden mit 119 mg (0.59 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enoat und 237 mg (2.34 mmol) Triethylamin in 2 ml Ethanol gelöst und 5 h bei 70°C gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt, der
Rückstand in 50 ml Dichlormethan aufgenommen und mit 2 M Salzsäure gewaschen. Nach Trocknen der organischen Phase über Magnesiumsulfat wird das Lösungsmittel im Vakuum entfernt und der Rückstand an Kieselgel flash-chromatographiert (Laufmittel: Dichlormethan/ Methanol 200:1, 100:1). Man erhält 75 mg (50% d. Th.) der Titelverbindung.

HPLC (Methode 12): R_t = 4.2 min.

MS (ESIpos): m/z = 258 [M+H]^+.

Beispiel 7A

2-(3-Methylbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

1.45 g (9.83 mmol) 2-(3-Methylphenyl)ethanamidin-Hydrochlorid werden mit 2 g (9.83 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enocat und 2 g (19.67 mmol) Triethylamin in 40 ml Ethanol gelöst und 5 h bei 70°C gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt und der Rückstand mittels präparativer HPLC gereinigt. Es werden 0.4 g (15 % d. Th.) des Produkts erhalten.

LC-MS (Methode 2): R_t = 2.83 min., MS (ESIpos): m/z = 272 [M+H]^+

^1H-NMR (DMSO-d_6, 300 MHz): δ = 2.25 (s, 3H), 2.50 (s, 3H), 3.91 (s, 2H), 7.19 (m, 4H).

Beispiel 8A

2-(2-Methylbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril
3 g (16.45 mmol) 2-(2-Methylphenyl)ethanamidin-Hydrochlorid werden mit 3.3 g (16.45 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enoat und 6.6 g (64.9 mmol) Triethylamin in 60 ml Dioxan gelöst und über Nacht bei 90°C gerührt. Nach dem Absfiltrieren der Triethyammoniumsalze wird das Filtrat eingeengt und der Rückstand mit Dichlormethan verrieben. Es werden 3.6 g (81 % d. Th.) des Produkts erhalten.

LC-MS (Methode 10): R_t = 2.13 min., MS (ESIpos): m/z = 272 [M+H]^+.

Beispiel 9A

2-(2-Fluorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

![Chemical Structure Image]

3.5 g (18.5 mmol) 2-(2-Fluorphenyl)ethanamidin-Hydrochlorid werden mit 3.8 g (18.5 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enoat und 7.5 g (74.2 mmol) Triethylamin in 50 ml Dioxan gelöst und über Nacht bei 90°C gerührt. Nach dem Absfiltrieren der Triethyammoniumsalze wird das Filtrat eingeengt und der Rückstand in Ethylacetat aufgenommen. Das Produkt wird durch Zugabe von 1 N Salzsäure und Wasser ausgefüllt. Es werden 3.8 g (75 % d. Th.) der Titelverbindung erhalten.

LC-MS (Methode 10): R_t = 2.03 min., MS (ESIpos): m/z = 276 [M+H]^+

^1H-NMR (DMSO-d6, 300 MHz): δ = 2.31 (s, 3H), 4.06 (s, 2H), 7.19 (m, 2H), 7.41 (m, 2H).

Beispiel 10A

2-(2-Ethoxybenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

![Chemical Structure Image]
4.2 g (19.7 mmol) 2-(2-Ethoxyphenyl)ethanamidin-Hydrochlorid werden mit 4.0 g (19.7 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enoat und 7.9 g (78.7 mmol) Triethylamin in 80 ml Dioxan gelöst und über Nacht bei 90°C gerührt. Nach dem Ablösen der Triethylammoniumsalze wird das Filtrat eingeengt und der Rückstand in Ethylacetat aufgenommen. Das Produkt wird durch Zugabe von 1 N Salzsäure und Wasser ausgefällt. Es werden 5.3 g (90 % d. Th.) der Titelverbindung erhalten.

LC-MS (Methode 3): $R_t = 2.32$ min., MS (ESIpos): $m/z = 302$ [M+H]$^+$

1H-NMR (DMSO-d_6, 300 MHz): $\delta = 1.19$ (t, 3H), 2.30 (s, 3H), 3.99 (q, 2H + s, 2H), 6.93 (m, 2H), 7.27 (m, 2H).

Beispiel 11A

2-(3-Chlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 2A werden 0.5 g (2.00 mmol) 2-(3-Chlorphenyl)ethanamidin-Hydrobromid mit 0.41 g (2.00 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enoat und 0.81 g (8.01 mmol) Triethylamin zu 0.5 g (86 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.4$ min.

Beispiel 12A

2-(4-Chlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril
Analog zur Darstellung von Beispiel 2A werden 10 g (48.8 mmol) 2-(4-Chlorphenyl)ethanamidin-Hydrochlorid mit 9.91 g (48.8 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enooat und 19.7 g (195 mmol) Triethylamin zu 7.00 g (49 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): \(R_t = 4.35 \) min.

MS (ESIpos): \(m/z = 292 \) [M+H]⁺.

Beispiel 13A

2-(3,4-Dichlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 2A werden 1.00 g (4.17 mmol) 2-(3,4-Dichlorphenyl)ethanamidin-Hydrochlorid mit 0.85 g (4.17 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enooat und 1.69 g (16.7 mmol) Triethylamin zu 0.6 g (44 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): \(R_t = 4.7 \) min.

MS (DCI, NH₃): \(m/z = 343 \) [M+NH₄]⁺.

Beispiel 14A

2-(3-Fluorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 2A werden 100 mg (0.43 mmol) 2-(3-Fluorphenyl)ethanamidin-Hydrochlorid mit 87 mg (0.43 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enooat und 174 mg (1.72 mmol) Triethylamin zu 28 mg (24% d. Th.) der Titelverbindung umgesetzt.
HPLC (Methode 12): $R_t = 4.2$ min.

MS (ESIpos): $m/z = 276 \ [M+H]^+$.

Beispiel 15A

4-(Methylsulfanyl)-6-oxo-2-[3-(trifluormethyl)benzyl]-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 2A werden 0.5 g (2.10 mmol) 2-[3-(Trifluormethyl)phenyl]-ethanamidin-Hydrochlorid mit 0.43 g (2.10 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enooat und 0.85 g (8.38 mmol) Triethylamin zu 0.4 g (59% d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.4$ min.

MS (ESIpos): $m/z = 326 \ [M+H]^+$.

Beispiel 16A

4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 2A werden 3.10 g (17.6 mmol) 2-(3-Thienyl)ethanamidin-Hydrochlorid mit 3.57 g (17.6 mmol) Methyl 2-cyano-3,3-dimethylthioprop-2-enooat und 7.10 g (70.2 mmol) Triethylamin zu 2.19 g (47% d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.1$ min.

MS (ESIpos): $m/z = 263.9 \ [M+H]^+$.
Beispiel 17A

Methyl (2E/Z)-2-cyano-3-(cyclohexylamino)-3-methylthio-prop-2-enoat

0.6 g (2.9 mmol) Methyl 3,3-bis(methylthio)-2-cyanoacrylat werden mit 0.29 g (2.9 mmol) Cyclohexylamin in 20 ml Acetonitril 1 h bei Raumtemperatur gerührt. Die flüchtigen Bestandteile werden im Vakuum entfernt. Es werden 0.74 g (98 % d. Th.) des Produkts als gelbes Öl erhalten.

HPLC (Methode 12): $R_t = 4.85$ min.

MS (DCI, NH₃): $m/z = 254.9 [M+H]^+$, 272 [M+NH₃]^+.

Beispiel 18A

Methyl (2E/Z)-2-cyano-3-(cyclopentylamino)-3-methylthio-prop-2-enoat

0.3 g (1.47 mmol) Methyl 3,3-bis(methylthio)-2-cyanoacrylat werden mit 0.13 g (1.47 mmol) Cyclopentylamin in 3 ml Acetonitril 30 min auf 70°C erhitzt. Anschließend werden die flüchtigen Bestandteile im Vakuum entfernt. Man erhält 0.35 g (98 % d. Th.) des Produkts als gelbes Öl.

HPLC (Methode 12): $R_t = 4.6$ min.

MS (DCI, NH₃): $m/z = 241 [M+H]^+$, 258 [M+NH₃]^+.
Ausführungsbeispiele:

Die nachfolgenden Verbindungen werden nach dem in Schema I dargestellten allgemeinen Syntheseweg hergestellt:

Schema I:

\[
\begin{align*}
\text{NH} & \quad \text{NH}_2 \\
A & \quad x \; \text{HX}
\end{align*}
\]

\[
\begin{align*}
\text{H}_3\text{C} & - \text{O} - \text{CN} \\
\text{S} & \quad \text{S} \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

\[\xrightarrow{\text{a)}}\]

\[
\begin{align*}
\text{CN} & \quad \text{CN} \\
\text{A} & \quad \text{CH}_3
\end{align*}
\]

\[
\begin{align*}
\text{NH} & \quad \text{NH} \\
\text{R}^1 & \quad \text{R}^2
\end{align*}
\]

\[\xrightarrow{\text{b)}}\]

\[
\begin{align*}
\text{CN} & \quad \text{CN} \\
\text{A} & \quad \text{R}^1 \\
\text{R}^2
\end{align*}
\]

\[\ X = \text{Cl, Br} \]

a) Ethanol, Triethylamin, 5-16 h Rückfluss; b) Acetonitril, 85-90°C, 1-7 Tage.

Beispiel 1

2-(3,4-Dichlorbenzyl)-6-oxo-4-(1-piperidinyl)-1,6-dihydropyrimidin-5-carbonitril

100 mg (0.34 mmol) 2-(3,4-Dichlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin 5-carbonitril werden mit 261 mg (3.07 mmol) Piperidin 16 h bei 85°C gerührt. Nach Entfernen der flüchtigen Bestandteile im Vakuum wird der Rückstand mittels präparativer HPLC gereinigt. Es werden 42 mg (38 % d. Th.) der Titelverbindung erhalten.
HPLC (Methode 12): \(R_t = 4.8 \) min.

MS (ESIpos): \(m/z = 363 [M+H]^+ \)

\(^1\)H-NMR (DMSO-\(d_6 \), 200 MHz): \(\delta = 1.45-1.70 \) (m, 6H), 3.73-3.89 (m, 6H), 7.35 (dd, 1H), 7.57-7.66 (m, 2H), 11.1 (s, 1H).

Beispiel 2

2-Benzyl-6-oxo-4-(1-piperidinyl)-1,6-dihydropyrimidin-5-carbonitril

43 mg (0.17 mmol) 2-Benzyl-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril werden in 0.3 ml Acetonitril suspendiert und mit 42.7 mg (0.50 mmol) Piperidin 16 h bei 85°C gerührt. Im Anschluss wird das entstandene Rohprodukt mittels präparativer HPLC gereinigt. Es werden 11 mg (22 % d. Th.) der Titelverbindung erhalten.

HPLC (Methode 12): \(R_t = 4.3 \) min.

MS (ESIpos): \(m/z = 295 [M+H]^+ \)

\(^1\)H-NMR (CD\(_3\)OD, 300 MHz): \(\delta = 1.59-1.77 \) (m, 6H), 3.83 (s, 2H), 3.93 (t, 4H), 7.24-7.34 (m, 5H).

Beispiel 3

4-[4-(2-Hydroxyethyl)-1-piperidinyl]-2-(3-methylbenzyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

0.1 g (0.37 mmol) 2-(3-Methylbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril werden unter Argon mit 0.142 g (1.16 mmol) 2-(4-Piperidinyl)ethanol-1-ol in 3 ml Acetonitril sieben Tage auf 90°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Rohprodukt mittels präparativer HPLC gereinigt. Es werden 0.047 g (36 % d. Th.) der Titelverbindung als farbloser Feststoff erhalten.

LC-MS (Methode 7): R_t = 3.01 min., MS (ESIpos): m/z = 353 [M+H]^+

^1H-NMR (DMSO-d_6, 300 MHz): δ = 1.05 (m, 2H), 1.36 (m, 2H), 1.69 (m, 3H), 2.25 (s, 3H), 2.89 (t, 2H), 3.42 (t, 2H), 3.68 (s, 2H), 4.51 (d, 2H), 7.18 (m, 4H).

Beispiel 4

4-(Cyclopentylamino)-2-(3-methylbenzyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

[Chemical structure image]

0.1 g (0.37 mmol) 2-(3-Methylbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril werden unter Argon mit 0.31 g (3.65 mmol) Cyclopentylamin in 3 ml Acetonitril über Nacht auf 90°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Rohprodukt mittels präparativer HPLC gereinigt. Es werden 0.03 g (26 % d. Th.) der Titelverbindung als farbloser Feststoff erhalten.

LC-MS (Methode 10): R_t = 2.27 min., MS (ESIpos): m/z = 309 [M+H]^+.
Beispiel 5

4-[(2S)-2-(Hydroxymethyl)-1-pyrroldinyl]-2-(3-methylbenzyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

0.1 g (0.37 mmol) 2-(3-Methylbenzyl)-4-(methylsulfonyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril werden unter Argon mit 0.11 g (1.1 mmol) (S)-(+-)2-Pyrroldinmethanol in 3 ml Acetonitril fünf Tage auf 90°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Rohprodukt mittels préparativer HPLC gereinigt. Es werden 0.035 g (29 % d. Th.) der Titelverbindung als farbloser Feststoff erhalten.

LC-MS (Methode 7): Rₜ = 2.91 min., MS (ESIpos): m/z = 325 [M+H]⁺

¹H-NMR (DMSO-d₆, 300 MHz): δ = 1.94 (m, 4H), 2.28 (s, 2H), 3.76 (m, 3H), 3.70 (s, 2H), 3.81 (m, 2H), 4.4 (m, 1H), 7.15 (m, 4H), 12.34 (s, 1H).

Beispiel 6

4-[4-(2-Hydroxyethyl)-1-piperidinyl]-2-(2-methylbenzyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

0.1 g (0.37 mmol) 2-(2-Methylbenzyl)-4-(methylsulfonyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril werden unter Argon mit 0.14 g (1.1 mmol) 2-(4-Piperidinyl)ethanol in 3 ml Acetonitril fünf Tage auf 90°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Rohprodukt mittels préparativer HPLC gereinigt. Es werden 13 mg (10 % d. Th.) der Titelverbindung als farbloser Feststoff erhalten.
LC-MS (Methode 5): \(R_t = 1.74 \text{ min} \). MS (ESIpos): \(m/z = 353 \ [\text{M} + \text{H}]^+ \)

\(^1\)H-NMR (DMSO-d₆, 300 MHz): \(\delta = 1.06 \ (m, 2H), 1.34 \ (m, 2H), 1.68 \ (m, 3H), 2.30 \ (s, 3H), 3.00 \ (t, 2H), 3.42 \ (t, 2H), 3.80 \ (s, 2H), 4.51 \ (d, 2H), 7.16 \ (m, 4H), 12.33 \ (s, 1H) \).

Beispiel 7

2-(2-Fluorbenzyl)-4-{4-(2-hydroxyethyl)-1-piperidinyl}-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

0.1 g (0.37 mmol) 2-(2-Fluorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril werden unter Argon mit 0.14 g (1.1 mmol) 2-(4-Piperidinyl)ethan-1-ol in 3 ml Acetonitril sechs Tage auf 90°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Rohprodukt mittels präparativer HPLC gereinigt. Es werden 31 mg (24 % d. Th.) der Titelverbindung als farbloser Feststoff erhalten.

LC-MS (Methode 2): \(R_t = 2.94 \text{ min} \). MS (ESIpos): \(m/z = 357 \ [\text{M} + \text{H}]^+ \)

\(^1\)H-NMR (DMSO-d₆, 300 MHz): \(\delta = 1.01 \ (m, 2H), 1.33 \ (m, 2H), 1.67 \ (m, 3H), 2.97 \ (t, 2H), 3.41 \ (dd, 2H), 3.87 \ (s, 2H), 4.32 \ (t, 1H), 4.47 \ (d, 2H), 7.16 \ (m, 2H), 7.36 \ (m, 2H), 12.38 \ (s, 1H) \).

Beispiel 8

2-(2-Ethoxybenzyl)-4-{4-(2-hydroxyethyl)-1-piperidinyl}-6-oxo-1,6-dihydro-5-pyrimidincarbonitril

0.1 g (0.37 mmol) 2-(2-Ethoxybenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidincarbonitril werden unter Argon mit 0.13 g (0.99 mmol) 2-(4-Piperidinyl)ethan-1-ol in 3 ml Acetonitril
fünf Tage auf 90°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Rohprodukt mittels präparativer HPLC gereinigt. Es werden 45 mg (43 % d. Th.) der Titelverbindung als farbloser Feststoff erhalten.

LC-MS (Methode 6): R_t = 2.01 min., MS (ESIpos): m/z = 383 [M+H]^+

^1H-NMR (DMSO-d_6, 200 MHz): δ = 1.04 (m, 2H), 1.23 (t, 3H), 1.34 (m, 2H), 1.67 (m, 3H), 2.94 (t, 2H), 3.41 (t, 2H), 3.87 (s, 2H), 3.96 (q, 2H), 4.48 (d, 2H), 6.92 (m, 2H), 7.17 (m, 2H), 12.26 (s, 1H).

Beispiel 9

2-(3-Chlorbenzyl)-6-oxo-4-(propylamino)-1,6-dihydropyrimidin-5-carbonitril

![Chemical Structure](attachment:image.png)

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(3-Chlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 203 mg (3.43 mmol) n-Propylamin zu 12 mg (12 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): R_t = 4.4 min.

MS (ESIpos): m/z = 303 [M+H]^+

^1H-NMR (DMSO-d_6, 200 MHz): δ = 0.75 (t, 3H), 1.40 (m, 2H), 3.23 (m, 2H), 3.83 (s, 2H), 7.23-7.38 (m, 4H), 7.42 (s, 1H), 12.34 (s, 1H).
Beispiel 10

2-(3-Chlorbenzyl)-4-(cyclopentylamino)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(3-Chlorbenzyl)-4-(methyl-sulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 292 mg (3.43 mmol) Cyclopentylamin zu 10 mg (9 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.6$ min.

MS (ESIpos): $m/z = 329 \ [M+H]^+$

1H-NMR (DMSO-d_6, 200 MHz): $\delta = 1.38$-1.85 (m, 8H), 3.82 (s, 2H), 4.20-4.37 (m, 1H), 7.23-7.46 (m, 4H), 7.66-7.80 (s, 1H), 12.25-12.44 (s, 1H).

Beispiel 11

2-(3-Chlorbenzyl)-6-oxo-4-(1-pyrrolidinyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(3-Chlorbenzyl)-4-(methyl-sulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 244 mg (3.43 mmol) Pyrrolidin zu 29 mg (27 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.4$ min.

MS (ESIpos): $m/z = 315 \ [M+H]^+$
1H-NMR (DMSO-d$_6$, 200 MHz): $\delta = 1.80$-1.95 (m, 4H), 3.58-3.71 (m, 4H), 3.79 (s, 2H), 7.25-7.45 (m, 4H), 12.28-12.39 (s, 1H).

Beispiel 12

4-(4,4-Dimethylpiperidin-1-yl)-2-(3-chlorbenzyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 150 mg (0.51 mmol) 2-(3-Chlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 582 mg (5.14 mmol) 4,4-Dimethylpiperidin zu 96 mg (52 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.8$ min.

MS (ESI pos): $m/z = 357$ [M+H]$^+$

1H-NMR (DMSO-d$_6$, 200 MHz): $\delta = 0.96$ (s, 6H), 1.30-1.41 (m, 4H), 3.75-3.87 (m, 6H, s bei 3.81), 7.24-7.45 (m, 4H), 12.39 (s, 1H).

Beispiel 13

2-(3-Chlorbenzyl)-4-[(2-methoxyethyl)amino]-6-oxo-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(3-Chlorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 257 mg (3.43 mmol) 2-Methoxyethylamin zu 61 mg (56 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.0$ min.
MS (ESIpos): m/z = 319 [M+H]^+

1H-NMR (CDCl$_3$, 300 MHz): $\delta = 3.38$ (s, 3H), 3.53 (t, 2H), 3.75 (q, 2H), 3.88 (s, 2H), 6.00 (t, 1H), 7.25-7.31 (m, 3H), 7.38 (s, 1H), 12.56 (s, 1H).

Beispiel 14

2-(3-Chlorbenzyl)-4-(morpholin-4-yl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

![Chemical structure](image)

Analog zur Darstellung von Beispiel 1 werden 150 mg (0.51 mmol) 2-(3-Chlorbenzyl)-4-(methyl-sulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 448 mg (5.14 mmol) Morpholin zu 109 mg (63 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_s = 4.0$ min.

MS (ESIpos): m/z = 331 [M+H]^+

1H-NMR (DMSO-d$_6$, 200 MHz): $\delta = 3.59-3.69$ (t, 4H), 3.79-3.90 (m, 6H, s bei 3.82), 7.25-7.44 (m, 4H), 12.53 (s, 1H).

Beispiel 15

2-(3-Chlorbenzyl)-4-(4-methylpiperazin-1-yl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

![Chemical structure](image)

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(3-Chlorbenzyl)-4-(methyl-sulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 343 mg (3.43 mmol) N-Methylpiperazin zu 101 mg (84 % d. Th.) der Titelverbindung umgesetzt.
HPLC (Methode 12): $R_t = 3.5$ min.

MS (ESIpos): $m/z = 344$ [M+H]$^+$

1H-NMR (DMSO-$_d_6$, 200 MHz): $\delta = 2.18$ (s, 3H), 2.35 (t, 4H), 3.79-3.88 (m, 6H, s bei 3.82), 7.25-7.44 (m, 4H), 12.48 (s, 1H).

Beispiel 16

2-(3-Chlorbenzyl)-4-[(2-methoxybenzyl)amino]-6-oxo-1,6-dihydropyrimidin-5-carbonitril

![Chemical Structure](image)

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(3-Chlorbenzyl)-4-(methylsulfonyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 470 mg (3.43 mmol) 2-Methoxybenzylamin zu 37 mg (28 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.6$ min.

MS (ESIpos): $m/z = 381$ [M+H]$^+$

1H-NMR (DMSO-$_d_6$, 300 MHz): $\delta = 3.77$ (s, 2H), 3.79 (s, 3H), 4.52 (d, 2H), 6.84 (t, 1H), 6.92-6.99 (m, 2H), 7.12 (d, 1H), 7.19-7.33 (m, 4H), 8.14 (t, 1H), 12.39 (s, 1H).

Beispiel 17

2-(4-Chlorbenzyl)-4-(cyclobutylamino)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

![Chemical Structure](image)
Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(4-Chlorbenzyl)-4-(methyl-sulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 244 mg (3.43 mmol) Cyclobutylamin zu 15 mg (14 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): Rs = 4.5 min.

MS (ESIpos): m/z = 315 [M+H]⁺

¹H-NMR (DMSO-d₆, 300 MHz): δ = 1.50-1.67 (m, 2H), 2.03-2.15 (m, 4H), 3.79 (s, 2H), 4.37-4.51 (m, 1H), 7.31-7.43 (m, 4H), 8.00 (s, 1H), 12.33 (s, 1H).

Beispiel 18

2-(4-Chlorbenzyl)-6-oxo-4-(1-pyrroldinyl)-1,6-dihydropyrimidin-5-carbonitril

![Chemical structure](image)

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.34 mmol) 2-(4-Chlorbenzyl)-4-(methyl-sulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 244 mg (3.43 mmol) Pyrroldin zu 45 mg (42% d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): Rs = 4.4 min.

MS (ESIpos): m/z = 315 [M+H]⁺

¹H-NMR (CD₂OD, 300 MHz): δ = 1.88-2.03 (m, 4H), 3.69-3.86 (m, 6H, s bei 3.82), 7.25-7.35 (m, 4H).
Beispiel 19

4-(Cyclopentylamino)-2-(3-fluorbenzyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril

\[
\begin{align*}
\text{Analog zur Darstellung von Beispiel 1 werden 100 mg (0.36 mmol) 2-(3-Fluorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 309 mg (3.63 mmol) Cyclopentylamin zu 12 mg (11 \% d. Th.) der Titelverbindung umgesetzt.}
\end{align*}
\]

HPLC (Methode 12): \(R_t = 4.4 \text{ min.} \)

MS (ESIpos): \(m/z = 313 \ [M+H]^+ \)

\(^1H \)-NMR (DMSO-d_6, 200 MHz): \(\delta = 1.29-1.71 \) (m, 8H), 3.89 (s, 2H), 3.98-4.14 (m, 1H), 7.11-7.42 (m, 4H), 7.63-7.75 (s, 1H), 12.34-12.43 (s, 1H).

Beispiel 20

2-(3-Fluorbenzyl)-6-oxo-4-(1-piperidinyl)-1,6-dihydropyrimidin-5-carbonitril

\[
\begin{align*}
\text{Analog zur Darstellung von Beispiel 1 werden 100 mg (0.36 mmol) 2-(3-Fluorbenzyl)-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 309 mg (3.63 mmol) Piperidin zu 40 mg (35 \% d. Th.) der Titelverbindung umgesetzt.}
\end{align*}
\]

HPLC (Methode 12): \(R_t = 4.3 \text{ min.} \)

MS (ESIpos): \(m/z = 313 \ [M+H]^+ \)
1H-NMR (DMSO-d$_6$, 200 MHz): $\delta = 1.40$-1.66 (m, 6H), 3.66-3.76 (m, 4H), 3.76 (s, 2H), 7.12-7.42 (m, 4H), 12.27-12.41 (s, 1H).

Beispiel 21

6-Oxo-4-(1-piperidinyl)-2-[3-(trifluormethyl)benzyl]-1,6-dihydropyrimidin-5-carbonitril

![Chemical Structure]

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.31 mmol) 4-(Methylsulfanyl)-6-oxo-2-[3-(trifluormethyl)benzyl]-1,6-dihydropyrimidin-5-carbonitril mit 262 mg (3.07 mmol) Piperidin zu 26 mg (22 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.7$ min.

MS (ESIpos): m/z = 363 [M+H]$^+$

1H-NMR (DMSO-d$_6$, 200 MHz): $\delta = 1.43$-1.70 (m, 6H), 3.71-3.83 (m, 4H), 3.93 (s, 2H), 7.51-7.78 (m, 4H), 12.42 (s, 1H).

Beispiel 22

6-Oxo-4-(propylamino)-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

![Chemical Structure]

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 224 mg (3.80 mmol) n-Propylamin zu 14 mg (13 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 4.1$ min.

MS (ESIpos): m/z = 275.2 [M+H]$^+$
1H-NMR (DMSO-d_6, 300 MHz): δ = 0.79 (t, 3H), 1.46 (m, 2H), 3.29 (m, 2H), 3.81 (s, 2H), 7.06 (d, 1H), 7.33 (s, 1H), 7.49 (m, 1H), 7.87 (s, 1H), 12.27 (s, 1H).

Beispiel 23

4-(Cyclopropylamino)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 217 mg (3.80 mmol) Cyclopropylamin zu 44 mg (43 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 3.8$ min.

MS (ESIpos): m/z = 273 [M+H]$^+$

1H-NMR (DMSO-d_6, 300 MHz): δ = 0.60-0.78 (m, 4H), 2.84-2.98 (m, 1H), 3.80 (s, 2H), 7.08 (d, 1H), 7.35 (s, 1H), 7.49 (m, 1H), 7.85-8.05 (s, 1H), 12.32 (s, 1H).

Beispiel 24

4-(Cyclopentylamino)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 150 mg (0.57 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 485 mg (5.70 mmol) Cyclopentylamin zu 46 mg (26 % d. Th.) der Titelverbindung umgesetzt.
HPLC (Methode 12): R_t = 4.4 min.

MS (ESIpos): m/z = 301.2 [M+H]⁺

1H-NMR (DMSO-d₆, 300 MHz): δ = 1.40-1.91 (m, 8H), 3.81 (s, 2H), 4.36 (m, 1H), 7.07 (d, 1H), 7.34 (s, 1H), 7.50 (m, 1H), 7.65 (s, 1H), 12.28 (s, 1H).

5 **Beispiel 25**

6-Oxo-4-(1-pyrrolidinyl)-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 270 mg (3.80 mmol) Pyrrolidin zu 64 mg (59 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): R_t = 4.1 min.

MS (ESIpos): m/z = 287 [M+H]⁺

1H-NMR (DMSO-d₆, 300 MHz): δ = 1.80-1.96 (m, 4H), 3.60-3.76 (m, 4H), 3.78 (s, 2H), 7.08 (d, 1H), 7.35 (s, 1H), 7.48 (m, 1H), 12.27 (s, 1H).

10 **Beispiel 26**

4-(4-Methylpiperidin-1-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril
Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thiencylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 377 mg (3.80 mmol) 4-Methylpiperidin zu 65 mg (54 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): Rₜ = 4.5 min.

5 MS (ESIpos): m/z = 315 [M+H]⁺

¹H-NMR (DMSO-d₆, 300 MHz): δ = 0.91 (d, 3H), 1.05-1.18 (t, 2H), 1.62-1.77 (m, 3H), 3.06 (t, 2H), 3.80 (s, 2H), 4.61 (d, 2H), 7.07 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H), 12.32 (s, 1H).

Beispiel 27

4-(4,4-Dimethylpiperidin-1-yl)-6-oxo-2-(3-thiencylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thiencylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 430 mg (3.80 mmol) 4,4-Dimethylpiperidin zu 42 mg (34 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): Rₜ = 4.6 min.

15 MS (ESIpos): m/z = 329 [M+H]⁺

¹H-NMR (DMSO-d₆, 300 MHz): δ = 0.97 (s, 6H), 1.37 (t, 4H), 3.77-3.87 (m, 6H, s bei 3.80), 7.06 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H), 12.31 (s, 1H).

Beispiel 28

4-{4-(tert.-Butyl)piperidin-1-yl}-6-oxo-2-(3-thiencylmethyl)-1,6-dihydropyrimidin-5-carbonitril
Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 536 mg (3.80 mmol) 4-tert.-Butylpiperidin zu 57 mg (42 % d. Th.) der Titelverbindung umgesetzt.

5 HPLC (Methode 12): $R_t = 4.9$ min.

MS (ESIpos): $m/z = 357$ [M+H]$^+$

1H-NMR (DMSO-d_6, 200 MHz): $\delta = 0.82$ (s, 9H), 1.02-1.42 (m, 3H), 1.74 (d, 2H), 2.96 (t, 2H), 3.78 (s, 2H), 4.72 (d, 2H), 7.06 (d, 1H), 7.33 (s, 1H), 7.49 (m, 1H), 12.35 (s, 1H).

Beispiel 29

10 4-(4-Hydroxypiperidin-1-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 384 mg (3.80 mmol) Piperidin-4-ol zu 47 mg (39 % d. Th.) der Titelverbindung umgesetzt.

15 HPLC (Methode 12): $R_t = 3.50$ min.

MS (ESIpos): $m/z = 317$ [M+H]$^+$
1H-NMR (DMSO-d\textsubscript{6}, 200 MHz): \(\delta = 1.29-1.50\) (m, 2H), 1.72-1.90 (m, 2H), 3.42-3.60 (m, 2H), 3.68-3.86 (m, 3H, s bei 3.79), 4.10-4.26 (m, 2H), 4.83 (d, 1H, OH), 7.07 (d, 1H), 7.35 (s, 1H), 7.50 (m, 1H), 11.79-12.29 (s, 1H, NH).

Beispiel 30

5 4-[4-(2-Hydroxyethyl)piperidin-1-yl]-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 491 mg (3.80 mmol) 2-(4-Piperidinyl)-ethan-1-ol zu 64 mg (49 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): \(R_t = 3.70\) min.

MS (ESIpos): \(m/z = 345\) [M+H]\

1H-NMR (DMSO-d\textsubscript{6}, 300 MHz): \(\delta = 1.02-1.20\) (m, 2H), 1.32-1.42 (q, 2H), 1.68-1.81 (m, 3H), 3.05 (t, 2H), 3.44 (q, 2H), 3.80 (s, 2H), 4.34 (t, 1H, OH), 4.62 (d, 2H), 7.06 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H), 12.31 (s, 1H, NH).

Beispiel 31

4-[(2-Methoxyethyl)amino]-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}
Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 285 mg (3.80 mmol) 2-Methoxyethylamin zu 76 mg (69 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_t = 3.7$ min.

5 MS (ESIpos): $m/z = 291$ [M+H]$^+$

1H-NMR (DMSO-d_6, 300 MHz): $\delta = 3.20$ (s, 3H), 3.35-3.42 (m, 2H), 3.47-3.56 (m, 2H), 3.82 (s, 2H), 7.07 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H), 7.79 (s, 1H), 12.33 (s, 1H).

Beispiel 32

4-(1,4-Dioxaspiro[4.5]decan-8-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 544 mg (3.80 mmol) 1,4-Dioxaspiro[4.5]decan zu 65 mg (48 % d. Th.) der Titelverbindung umgesetzt.

15 HPLC (Methode 12): $R_t = 4.0$ min.

MS (ESIpos): $m/z = 359$ [M+H]$^+$

1H-NMR (DMSO-d_6, 300 MHz): $\delta = 1.70$ (t, 4H), 3.81 (s, 2H), 3.86-3.95 (m, 8H, s bei 3.92), 7.07 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H), 12.41 (s, 1H).

Beispiel 33

4-(7,11-Dioxaspiro[5.5]undecan-3-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril
Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 597 mg (3.80 mmol) 1,5-Dioxo-9-aza-spiro[5.5]undecan zu 86 mg (61 % d. Th.) der Titelverbindung umgesetzt.

5 HPLC (Methode 12): $R_t = 4.0$ min.

MS (ESIpos): $m/z = 373 [M+H]^+$

1H-NMR (DMSO-d_6, 200 MHz): $\delta = 1.56$ (m, 2H), 1.82-1.94 (m, 4H), 3.75-3.92 (m, 10H, s bei 3.80), 7.07 (d, 1H), 7.35 (s, 1H), 7.50 (m, 1H), 12.43 (br. s, 1H).

Beispiel 34

10 4-(4-Methylpiperazin-1-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 380 mg (3.80 mmol) N-Methylpiperazin zu 36 mg (30 % d. Th.) der Titelverbindung umgesetzt.

15 HPLC (Methode 12): $R_t = 3.2$ min.

MS (ESIpos): $m/z = 316 [M+H]^+$

1H-NMR (DMSO-d_6, 200 MHz): $\delta = 2.19$ (s, 3H), 2.37 (t, 4H), 3.77-3.91 (m, 6H, s bei 3.80), 7.07 (d, 1H), 7.35 (s, 1H), 7.50 (m, 1H), 12.43 (s, 1H).
Beispiel 35

6-Oxo-4-(piperazin-1-yl)-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 80 mg (0.30 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 326 mg (3.80 mmol) Piperazin zu 45 mg (49 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): R_t = 3.15 min.

MS (ESIpos): m/z = 302 [M+H]^+

^1H-NMR (DMSO-d_6, 200 MHz): δ = 2.75 (t, 4H), 3.76-3.82 (m, 6H, s bei 3.80), 7.06 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H).

Beispiel 36

4-(Benzylamino)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 407 mg (3.80 mmol) Benzylamin zu 43 mg (35 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): R_t = 4.3 min.

MS (ESIpos): m/z = 323 [M+H]^+
1H-NMR (DMSO-d_6, 200 MHz): $\delta = 3.80$ (s, 2H), 4.52 (d, 2H), 6.95 (d, 1H), 7.16-7.32 (m, 6H), 7.45 (m, 1H), 8.49 (t, 1H), 12.40 (s, 1H).

Beispiel 37

4-[(2-Methoxybenzyl)amino]-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

![Structure of the compound](image)

Analog zur Darstellung von Beispiel 1 werden 100 mg (0.38 mmol) 4-(Methylsulfanyl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril mit 521 mg (3.80 mmol) 2-Methoxybenzylamin zu 62 mg (46 % d. Th.) der Titelverbindung umgesetzt.

HPLC (Methode 12): $R_s = 4.4$ min.

MS (ESIpos): $m/z = 353$ [M+H]$^+$1

1H-NMR (DMSO-d_6, 300 MHz): $\delta = 3.75$ (s, 2H), 3.80 (s, 3H), 4.56 (d, 2H), 6.84-6.90 (m, 2H), 6.96-7.04 (m, 2H), 7.16 (s, 1H), 7.23 (t, 1H), 7.39 (m, 1H), 8.15 (t, 1H), 12.34 (s, 1H).

Beispiel 38

4-[4-(2-Hydroxyethyl)piperidin-1-yl]-2-[2-(6-methoxypyridin-3-yl)benzyl]-6-oxo-1,6-dihydropyrimidin-5-carbonitril

![Structure of the compound](image)
Analog zur Darstellung von Beispiel 1 werden 80 mg (0.22 mmol) 2-[2-(6-Methoxypyridin-3-yl)-benzyl]-4-(methylsulfanyl)-6-oxo-1,6-dihydropyrimidin-5-carbonitril mit 85 mg (0.65 mmol) 2-(4-Piperidinyl)ethan-1-ol zu 62 mg (63 % d. Th.) der Titelverbindung umgesetzt.
Die nachfolgende Verbindung wird nach dem in Schema II dargestellten allgemeinen Syntheseweg hergestellt:

Schema II:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{O} & \quad \text{CN} \\
\text{CH}_3 & \quad \text{S} & \quad \text{S} \\
\text{CH}_3 & \quad \text{R}^1 & \quad \text{R}^2 & \quad \text{NH} \\
\text{a)} & & \text{H}_3\text{C} & \quad \text{O} & \quad \text{CN} \\
\text{CH}_3 & \quad \text{S} & \quad \text{N} & \quad \text{R}^2 & \quad \text{R}^1
\end{align*}
\]

\[
\begin{align*}
\text{NH} & \quad \text{A} & \quad \text{NH}_2 \\
\text{b)} & & \text{x HX} & \Rightarrow & \text{A} & \quad \text{CN} & \quad \text{N} & \quad \text{R}^2 & \quad \text{N} & \quad \text{R}^1
\end{align*}
\]

5 \(X = \text{Cl}, \text{Br} \)

a) 1. Toluol, Bortrifluorid-Etherat, RT, 30 min.; 2. Amin-Komponente \(\text{R}^1\text{R}^2\text{NH} \), 150°C, 16 h; oder: Schmelze der Ausgangsverbindungen bei 150°C, 1-16 h; b) DMF, Triethylamin, 100°C, 16 h oder DMF, Kaliumcarbonat, 90°C, 16 h.

Beispiel 39

10 4-(Cyclohexylamino)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

69.5 mg (0.39 mmol) 2-(3-Thienyl)ethanamidin-Hydrochlorid werden mit 100 mg (0.39 mmol) Methyl (2E/Z)-2-cyano-3-(cyclohexylamino)-3-methylthio-prop-2-enoat und 159 mg (1.57 mmol)
Triethylamin in 0.5 ml DMF gelöst und über Nacht bei 100°C gerührt. Der abgekühlte Ansatz wird in wenig Wasser aufgenommen und mit Dichlormethan extrahiert. Die Dichlormethan-Phase wird über Natriumsulfat getrocknet, eingeengt und der Rückstand an Kieselgel flash-chromatographiert (Lauffmittel: Dichlormethan, dann Dichlormethan/ Methanol 200:1, 100:1). Es werden 23 mg (19 % d. Th.) des Produkts erhalten.

HPLC (Methode 12): $R_t = 4.55$ min.

MS (DCl, NH₃): $m/z = 315$ [M+H]⁺

1H-NMR (DMSO-d₆, 400 MHz): $\delta = 0.98$-1.43 (m, 5H), 1.53-1.74 (m, 5H), 3.78-3.94 (m, 3H, s bei 3.82), 7.06 (d, 1H), 7.33 (s, 1H), 7.50 (m, 1H), 7.54 (m, 1H), 12.28 (s, 1H).

Beispiel 40

4-(4-Formylpiperazin-1-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

Unter einer Argonatmosphäre werden 11.3 mg (0.17 mmol) Imidazol mit 33.6 mg (0.33 mmol) Triethylamin und 7.64 mg (0.17 mmol) Ameisensäure in 5 ml Dichlormethan vorgelegt und auf 0°C gekühlt. Dann wird eine Lösung von 21.1 mg (0.17 mmol) Oxalylchlorid in Dichlormethan zugepumpt und die Mischung im Anschluss 15 min lang gerührt. Es werden 50 mg (0.17 mmol) 6-Oxo-4-(piperazin-1-yl)-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril zugefügt und der Ansatz über Nacht bei RT gerührt. Dann wird mit 1 N Kaliumhydrogensulfat-Lösung gewaschen, die Dichlormethan-Phase über Natriumsulfat getrocknet, eingeengt und der Rückstand an Kieselgel flash-chromatographiert (Lauffmittel: Dichlormethan/Methanol 100:1, 80:1, 60:1). Man erhält 16 mg (29 % d. Th.) der Titelverbindung.

HPLC (Methode 12): $R_t = 3.4$ min.

MS (ESIpos): $m/z = 330$ [M+H]⁺
1H-NMR (DMSO-d₆, 200 MHz): δ = 3.42-3.54 (m, 4H), 3.79-3.94 (m, 6H, s bei 3.82), 7.09 (d, 1H), 7.36 (s, 1H), 7.51 (m, 1H), 8.06 (s, 1H), 12.55 (s, 1H).

Beispiel 41

4-(4-Acetilpiperazin-1-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

![Chemical structure](image)

50 mg (0.17 mmol) 6-Oxo-4-(piperazin-1-yl)-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril werden mit 34 mg (0.33 mmol) Triethylamin in DMF gelöst und mit 14.3 mg (0.18 mmol) Acetylichlorid über Nacht bei RT gerührt. Anschließend wird der Ansatz mit Dichlormethan verdünnt und mit Wasser gewaschen. Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet und der Rückstand an Kieselgel flash-chromatographiert (Laufmittel: Dichlormethan/Methanol 100:1, 80:1, 60:1). Man erhält 42 mg (74% d. Th.) der Titelverbindung.

HPLC (Methode 12): R_t = 3.5 min.

MS (ESIpos): m/z = 344 [M+H]⁺

1H-NMR (DMSO-d₆, 300 MHz): δ = 2.02 (s, 3H), 3.50-3.61 (m, 4H), 3.80-3.95 (m, 6H, s bei 3.82), 7.08 (d, 1H), 7.36 (s, 1H), 7.50 (m, 1H), 12.47 (s, 1H).

Beispiel 42

4-(4-Ethylpiperazin-1-yl)-6-oxo-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril

![Chemical structure](image)
50 mg (0.17 mmol) 6-Oxo-4-(piperazin-1-yl)-2-(3-thienylmethyl)-1,6-dihydropyrimidin-5-carbonitril werden mit 34 mg (0.33 mmol) Triethylamin in DMF gelöst, mit 19.9 mg (0.18 mmol) Bromethan versetzt und über Nacht bei RT gerührt. Dann wird der Ansatz mit Dichlormethan verdünnt und mit Wasser gewaschen. Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet und der Rückstand an Kieselgel flash-chromatographiert (Laufmittel: Dichlormethan/Methanol 100:1, 80:1, 60:1, 40:1). Man erhält 38 mg (70% d. Th.) der Titelverbindung.

HPLC (Methode 12): Rᵣ = 3.3 min.

MS (ESIpos): m/z = 330 [M+H]⁺

¹H-NMR (DMSO-d₆, 300 MHz): δ = 1.00 (t, 3H), 2.34 (q, 2H), 2.42 (t, 4H), 3.80 (s, 2H), 3.86 (t, 4H), 7.06 (d, 1H), 7.34 (s, 1H), 7.49 (m, 1H), 12.39 (s, 1H).

Die in der folgenden Tabelle aufgeführten Ausführungsbeispiele werden in Analogie zu den zuvor beschriebenen Beispielen hergestellt:

<table>
<thead>
<tr>
<th>Beispiel-Nr.</th>
<th>Struktur</th>
<th>LC-MS: m/z [M+H]⁺</th>
<th>Rᵣ [min]</th>
<th>HPLC- / LC-MS-Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td></td>
<td>344</td>
<td>4.8</td>
<td>12</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>302</td>
<td>4.2</td>
<td>12</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>344</td>
<td>4.8</td>
<td>12</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]+</td>
<td>R_t [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>330</td>
<td>4.6</td>
<td>12</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>299</td>
<td>1.99</td>
<td>10</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>357</td>
<td>1.83</td>
<td>6</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>371</td>
<td>3.17</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>329</td>
<td>1.45</td>
<td>5</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>337</td>
<td>3.19</td>
<td>2</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R_t [min]</td>
<td>HPLC- / LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>334</td>
<td>2.54</td>
<td>7</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>323</td>
<td>2.36</td>
<td>10</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>309</td>
<td>2.87</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>325</td>
<td>2.38</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>323</td>
<td>3.06</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>339</td>
<td>2.99</td>
<td>7</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>325</td>
<td>1.74</td>
<td>10</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>339</td>
<td>1.79</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>367</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>323</td>
<td>3.1</td>
<td>7</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>339</td>
<td>2.19</td>
<td>7</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC- / LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>337</td>
<td>3.3</td>
<td>7</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>391</td>
<td>2.6</td>
<td>4</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>295</td>
<td>2.75</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>311</td>
<td>1.73</td>
<td>10</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>281</td>
<td>3.18</td>
<td>7</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>295</td>
<td>2.73</td>
<td>7</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]$^+$</td>
<td>R_t [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>299</td>
<td>2.22</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>355</td>
<td>2.63</td>
<td>2</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>323</td>
<td>2.37</td>
<td>10</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>309</td>
<td>2.27</td>
<td>10</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>339</td>
<td>2.19</td>
<td>2</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R_t [min]</td>
<td>HPLC-/-LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>281</td>
<td>2.02</td>
<td>6</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>334</td>
<td>2.47</td>
<td>7</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>309</td>
<td>2.19</td>
<td>10</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>367</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>325</td>
<td>2.35</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>325</td>
<td>2.35</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>325</td>
<td>1.76</td>
<td>4</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R_t [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>295</td>
<td>3.24</td>
<td>7</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>329</td>
<td>1.69</td>
<td>10</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>299</td>
<td>3.19</td>
<td>7</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>338</td>
<td>1.88</td>
<td>10</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>327</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>371</td>
<td>1.95</td>
<td>10</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>329</td>
<td>1.63</td>
<td>10</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]$^+$</td>
<td>R_t [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>313</td>
<td>3.4</td>
<td>2</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>343</td>
<td>2.71</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>285</td>
<td>1.84</td>
<td>10</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>355</td>
<td>1.97</td>
<td>6</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>339</td>
<td>2.19</td>
<td>6</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]$^+$</td>
<td>R_t [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>255</td>
<td>1.61</td>
<td>6</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>324</td>
<td>3.2</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>358</td>
<td>4.5</td>
<td>12</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>329</td>
<td>4.7</td>
<td>12</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>301</td>
<td>4.3</td>
<td>12</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>329</td>
<td>4.6</td>
<td>12</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>346</td>
<td>3.2</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>344</td>
<td>3.4</td>
<td>12</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>372</td>
<td>3.9</td>
<td>12</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>316</td>
<td>4.3</td>
<td>13</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>303</td>
<td>3.8</td>
<td>12</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>393</td>
<td>3.5</td>
<td>12</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>379</td>
<td>3.5</td>
<td>12</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>392</td>
<td>3.8</td>
<td>12</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>317</td>
<td>1.46</td>
<td>5</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>339</td>
<td>2.42</td>
<td>6</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>353</td>
<td>2.54</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>367</td>
<td>2.63</td>
<td>6</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R_t [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>402</td>
<td>2.15</td>
<td>5</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>418</td>
<td>1.92</td>
<td>6</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>388</td>
<td>2.02</td>
<td>5</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>387</td>
<td>1.9</td>
<td>5</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>373</td>
<td>1.94</td>
<td>6</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R_t [min]</td>
<td>HPLC- / LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>345</td>
<td>1.84</td>
<td>6</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>357</td>
<td>2.61</td>
<td>6</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>421</td>
<td>1.99</td>
<td>5</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>379</td>
<td>1.89</td>
<td>6</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>396</td>
<td>1.18</td>
<td>5</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>440</td>
<td>1.03</td>
<td>5</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]+</td>
<td>Rt [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>412</td>
<td>0.92</td>
<td>5</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>424</td>
<td>1.46</td>
<td>5</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>365</td>
<td>2.31</td>
<td>5</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>395</td>
<td>1.85</td>
<td>5</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>353</td>
<td>1.54</td>
<td>5</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>323</td>
<td>1.89</td>
<td>5</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R_t [min]</td>
<td>HPLC- / LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>351</td>
<td>2.2</td>
<td>5</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>437</td>
<td>2.28</td>
<td>6</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>395</td>
<td>1.86</td>
<td>4</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>423</td>
<td>2.01</td>
<td>4</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>393</td>
<td>1.3</td>
<td>4</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>407</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: [M+H]^+ m/z</td>
<td>R_t [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>395</td>
<td>1.74</td>
<td>5</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>393</td>
<td>2.63</td>
<td>6</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>379</td>
<td>2.31</td>
<td>5</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>341</td>
<td>1.54</td>
<td>5</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>353</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>369</td>
<td>1.84</td>
<td>4</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC- LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>383</td>
<td>2.1</td>
<td>6</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>325</td>
<td>2.04</td>
<td>5</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>325</td>
<td>2.28</td>
<td>4</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>379</td>
<td>1.85</td>
<td>4</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>349</td>
<td>2.07</td>
<td>5</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>391</td>
<td>2.44</td>
<td>5</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>377</td>
<td>2.48</td>
<td>4</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>363</td>
<td>2.45</td>
<td>6</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>421</td>
<td>2.15</td>
<td>4</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>407</td>
<td>1.94</td>
<td>4</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>323</td>
<td>2.47</td>
<td>6</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>339</td>
<td>1.67</td>
<td>5</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>381</td>
<td>2.07</td>
<td>5</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>367</td>
<td>1.99</td>
<td>4</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td>229</td>
<td>1.98</td>
<td>6</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>323</td>
<td>2.53</td>
<td>6</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>337</td>
<td>2.65</td>
<td>6</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>401</td>
<td>2.59</td>
<td>6</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>Rₜ [min]</td>
<td>HPLC-/ LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>415</td>
<td>2.75</td>
<td>6</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>401</td>
<td>2.43</td>
<td>5</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>417</td>
<td>1.9</td>
<td>5</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>415</td>
<td>2.72</td>
<td>6</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td>445</td>
<td>1.97</td>
<td>5</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>417</td>
<td>1.82</td>
<td>5</td>
</tr>
<tr>
<td>Beispiel-Nr.</td>
<td>Struktur</td>
<td>LC-MS: m/z [M+H]^+</td>
<td>R<sub>t</sub> [min]</td>
<td>HPLC-/LC-MS-Methode</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td>459</td>
<td>2.2</td>
<td>5</td>
</tr>
</tbody>
</table>
Patentansprüche

1. Verbindungen der Formel

\[
\text{(I),}
\]

in welcher

\[
A \quad \text{Phenyl, Heteroaryl oder eine Gruppe der Formel}
\]

wobei Phenyl und Heteroaryl gegebenenfalls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Heteroaryl, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Trifluormethyl, Trifluormethoxy, Benzyloxy und Benzyl substituiert sind,

wobei C₁-C₆-Alkyl gegebenenfalls mit einer Gruppe der Formel -NR²R⁴, in welcher R³ C₁-C₆-Alkyl und R⁴ Wasserstoff oder C₁-C₆-Alkoxy(C₁-C₆)alkyl bedeuten, und

Heteroaryl gegebenenfalls mit C₁-C₆-Alkoxy substituiert ist,

\[
R¹ \quad \text{C₅-C₈-Cycloalkyl, C₁-C₆-Alkyl, C₁-C₆-Alkoxy(C₁-C₆)alkyl, Benzyl oder eine}
\]

Gruppe der Formel

wobei C₅-C₈-Cycloalkyl gegebenenfalls mit Hydroxy, C₁-C₆-Alkyl oder Trifluormethyl,

C₁-C₆-Alkyl gegebenenfalls mit Heteroaryl, C₅-C₈-Cycloalkyl oder Hydroxy,
und Benzyl gegebenenfalls mit C_1-C_6-Alkoxy oder Halogen substituiert ist,

R^2 Wasserstoff,

oder

R^1 und R^2 zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-gliedriges Heterocyclen bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe C_1-C_6-Alkyl, Hydroxy, Cyano, Oxo, Heteroaryl, Benzyl, Formyl, C_1-C_6-Alkyl-carbonyl und einer der folgenden Gruppen

, die über die beiden Sauerstoffatome an eines der Kohlenstoffatome im Heterocyclus gebunden sind, substituiert ist,

wobei C_1-C_6-Alkyl gegebenenfalls mit Hydroxy oder Heteroaryl substituiert ist,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

2. Verbindungen nach Anspruch 1, wobei

A Phenyl, Heteroaryl oder eine Gruppe der Formel

wobei Phenyl und Heteroaryl gegebenenfalls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Heteroaryl, Halogen, C_1-C_6-Alkyl, C_1-C_6-Alkoxy, Trifluormethyl, Trifluormethoxy, Benzylxyloxy und Benzyl substituiert sind,

wobei C_1-C_6-Alkyl gegebenenfalls mit einer Gruppe der Formel -NR^2R^3, in welcher R^2 C_1-C_6-Alkyl und R^3 Wasserstoff oder C_1-C_6-Alkoxy(C_1-C_6)alkyl bedeuten, und

Heteroaryl gegebenenfalls mit C_1-C_6-Alkoxy substituiert ist,
R\(^1\) C\(_3\)-C\(_6\)-Cycloalkyl, C\(_1\)-C\(_4\)-Alkyl, C\(_1\)-C\(_4\)-Alkoxy(C\(_1\)-C\(_4\))alkyl, Benzyl oder eine Gruppe der Formel

wobei C\(_3\)-C\(_6\)-Cycloalkyl gegebenenfalls mit Hydroxy, C\(_1\)-C\(_4\)-Alkyl oder Trifluormethyl,

C\(_1\)-C\(_4\)-Alkyl gegebenenfalls mit Heteroaryl, C\(_3\)-C\(_6\)-Cycloalkyl oder Hydroxy,

und Benzyl gegebenenfalls mit C\(_1\)-C\(_4\)-Alkoxy oder Halogen substituiert ist,

R\(^2\) Wasserstoff,

oder

R\(^1\) und R\(^2\) zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-gliedriges Heterocycl bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe C\(_1\)-C\(_4\)-Alkyl, Hydroxy, Cyano, Oxo, Heteroaryl, Benzyl, Formyl, C\(_1\)-C\(_4\)-Alkyl-carbonyl und einer der folgenden Gruppen

wobei C\(_1\)-C\(_4\)-Alkyl gegebenenfalls mit Hydroxy oder Heteroaryl substituiert ist,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

Verbindungen nach Ansprüchen 1 und 2, wobei
Phenyl, Thienyl oder eine Gruppe der Formel

wobei Phenyl und Thienyl gegebenenfalls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Pyridyl, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, Trifluormethoxy, Benziloxy und Benzyl substituiert sind,

wobei C₁-C₄-Alkyl gegebenenfalls mit einer Gruppe der Formel NR³R⁴, in welcher R³ C₁-C₄-Alkyl und R⁴ Wasserstoff oder C₁-C₄-Alkoxy(C₁-C₄)alkyl bedeuten, und

Pyridyl gegebenenfalls mit C₁-C₄-Alkoxy substituiert ist,

R¹ C₃-C₆-Cycloalkyl, C₁-C₄-Alkyl, C₁-C₄-Alkoxy(C₁-C₄)alkyl, Benzyl oder eine

Gruppe der Formel

wobei C₃-C₆-Cycloalkyl gegebenenfalls mit Hydroxy, C₁-C₄-Alkyl oder Trifluormethyl,

C₁-C₄-Alkyl gegebenenfalls mit Pyridyl, C₃-C₆-Cycloalkyl oder Hydroxy,

und Benzyl gegebenenfalls mit C₁-C₄-Alkoxy, Fluor, Chlor oder Brom substituiert ist,

R² Wasserstoff,

oder

R¹ und R² zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-gliedriges Heterocycl ausgewählt aus der Gruppe Pyrrolidinyl, Piperidinyl, Piperazinyl und Morphinyl bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der
Gruppe C₁-C₄-Alkyl, Hydroxy, Cyano, Oxo, Heteroaryl, Benzyl, Formyl, C₁-C₄-Alkylcarbonyl und einer der folgenden Gruppen

, die über die beiden Sauerstoffatome an eines der Kohlenstoffatome im Heterocyclus gebunden sind, substituiert ist,

wobei C₁-C₄-Alkyl gegebenenfalls mit Hydroxy oder Pyridyl substituiert ist,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

4. Verbindungen nach Ansprüchen 1, 2 und 3, wobei

wobei Phenyl, Thieryl oder eine Gruppe der Formel

Phenyl substitutions falls mit bis zu 2 Resten unabhängig voneinander ausgewählt aus der Gruppe Pyridyl, Fluor, Chlor, Methyl, Methoxy, Ethoxy, Trifuormethyl, Trifuormethoxy, Benzyloxy und Benzyl substituiert ist,

wobei Methyl gegebenenfalls mit einer Gruppe der Formel -NR³R⁴, in welcher R³ Methyl und R⁴ Wasserstoff oder 2-Methoxyethyl bedeuten, und

Pyridyl gegebenenfalls mit Methoxy substituiert ist,

R¹ C₃-C₆-Cycloalkyl, Methyl, Ethyl, Propyl, 2-Methoxyethyl, Benzyl oder eine

Gruppe der Formel

wobei C₃-C₆-Cycloalkyl gegebenenfalls mit Hydroxy, Methyl oder Trifuormethyl,
Methyl, Ethyl, Propyl gegebenenfalls mit Pyridyl, Cyclopropyl oder Hydroxy,

und Benzyl gegebenenfalls mit Methoxy, Ethoxy, Fluor oder Chlor substituiert ist,

\[R^2 \text{ : Wasserstoff,} \]

oder

\[R^1 \text{ und } R^2 \text{ zusammen mit dem Stickstoffatom, an dem sie gebunden sind, ein 5- bis 6-} \]

gliedriges Heterocycl ausgewählt aus der Gruppe Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpholinyl bilden, welches gegebenenfalls mit bis zu 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Ethyl, Propyl, tert.-Butyl, Hydroxy, Cyano, Oxo, Pyridyl, Benzyl, Formyl, Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl und einer der folgenden Gruppen

\[\text{, die über die beiden Sauerstoffatome an eines} \]

der Kohlenstoffatome im Heterocylus gebunden sind, substituiert ist,

wobei Methyl, Ethyl und Propyl gegebenenfalls mit Hydroxy oder Pyridyl substituiert sind,

bedeuten, sowie deren Salze, Solvate und/oder Solvate der Salze.

5. Verfahren zur Herstellung von Verbindungen der Formel (I), dadurch gekennzeichnet, dass man entweder

\[\text{[A] eine Verbindung der Formel} \]

\[\text{(II),} \]
zunächst mit einer Verbindung der Formel

\[\text{HNR}^1\text{R}^2 \quad (\text{III}), \]

in welcher

\(\text{R}^1 \) und \(\text{R}^2 \) die oben angegebenen Bedeutungen aufweisen,

bei erhöhter Temperatur in einem inerten Lösungsmittel oder auch in Abwesenheit eines Lösungsmittels in eine Verbindung der Formel

\[\text{H}_3\text{C} - \text{O} - \text{CN} \]
\[\text{H}_3\text{C} - \text{S} - \text{N} - \text{R}^2 \]
\[\text{R}^1 \]

(IV),

in welcher

\(\text{R}^1 \) und \(\text{R}^2 \) die oben angegebenen Bedeutungen aufweisen,

überführt und diese dann in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel

\[\text{NH} \]
\[\text{NH}_2 \]
\[\text{A} \times \text{HX} \]

(\(\text{X} = \text{Cl}, \text{Br} \) oder \(\text{I} \)),

in welcher

\(\text{A} \) die oben angegebenen Bedeutungen aufweist,

umsetzt

oder in veränderter Reihenfolge der Reaktionspartner

[B] eine Verbindung der Formel (II) zunächst mit einer Verbindung der Formel (V) in einem inerten Lösungsmittel in Gegenwart einer Base in eine Verbindung der Formel
in welcher

A die oben angegebenen Bedeutungen aufweist,

überführt und diese dann bei erhöhter Temperatur in einem inerten Lösungsmittel oder auch in Abwesenheit eines Lösungsmittels mit einer Verbindung der Formel (III) umsetzt,

und die jeweils resultierenden Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren zu ihren Solvaten, Salzen und/oder Solvaten der Salze umsetzt.

7. Arzneimittel enthaltend mindestens eine der Verbindungen nach einem der Ansprüche 1 bis 4 und mindestens einen pharmazeutisch verträglichen, im wesentlichen nichtgiftigen Träger oder Exzipienten.

9. Verwendung nach Anspruch 8, wobei die Störung eine Folge der Alzheimer'schen Krankheit ist.

12. Verfahren nach Anspruch 11, wobei die Störung eine Folge der Alzheimer'schen Krankheit ist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D239/47 C07D403/04 C07D409/06 C07D409/14 A61K31/513

A61P25/28

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D

Additional documentation searched other than minimum documentation to the extent that such documents are included in the files searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 130 735 A (AMERICAN HOME PRODUCTS CORP., USA) 9 January 1985 (1985-01-09) cited in the application siehe Beispiel 9, letzte Verbindung, Verfahren auf S. 10 und 11 und Ansprüche 5 und 10</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>BAGLI, JEHAN ET AL: "Chemistry and positive inotropic effect of pelrinone and related derivatives. A novel class of 2-methylpyrimidones as inotropic agents" JOURNAL OF MEDICINAL CHEMISTRY, 31(4), 814-23 CODEN: JMCAR; ISSN: 0022-2623, 1988, XP002300134 siehe Verbindung 25 in Tabelle 1 und Schema 1;</td>
<td>1-4, 6, 7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 *"A" document defining the general state of the art which is not considered to be of particular relevance
 *"E" earlier document but published on or after the international filing date
 *"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 *"O" document referring to an oral disclosure, use, exhibition or other means
 *"P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"Z" document member of the same patent family

Date of the actual completion of the international search: 10 May 2005

Name and mailing address of the ISA: European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epi nl, Fax: (+31-70) 340-3016

Date of mailing of the international search report: 19/05/2005

Authorized officer: Traeger-Goeldel, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 00/18758 A (MITSUBISHI CHEMICAL CORPORATION; WATANABE, KAZUTOSHI; ANDO, RYOICHI; S) 6 April 2000 (2000-04-06) siehe Ansprüche 1, 5 und 12, e.g Beispiele 77 bis 92, 237 und 238;</td>
<td>1-4, 6-12</td>
</tr>
<tr>
<td>Y</td>
<td>WO 02/098864 A (F. HOFFMANN-LA ROCHE AG) 12 December 2002 (2002-12-12) siehe Anspruch 1 und S. 3, Z. 11-14;</td>
<td>1-4, 6-12</td>
</tr>
<tr>
<td>Y</td>
<td>WO 95/10506 A (THE DU PONT MERCK PHARMACEUTICAL COMPANY) 20 April 1995 (1995-04-20) cited in the application siehe Definition der Reste V, Z, R1 und R3 in Anspruch 1</td>
<td>1-4, 6-12</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

 Although claims 11 and 12 relate to a method for treatment of the human or animal body, the search was carried out on the basis of the alleged effects of the compound or composition.

2. [] Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.

[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 4507304 A</td>
<td>26-03-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 38328 T</td>
<td>15-11-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 572856 B2</td>
<td>19-05-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2971084 A</td>
<td>03-01-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1232905 A1</td>
<td>12-12-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1248104 A2</td>
<td>03-01-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3474913 D1</td>
<td>08-12-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 309084 A</td>
<td>31-12-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0130735 A1</td>
<td>09-01-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8602694 A1</td>
<td>16-03-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 82004 A1</td>
<td>12-12-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 34465 A2</td>
<td>28-03-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIE 57728 B1</td>
<td>24-03-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60025974 A</td>
<td>07-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9001180 B1</td>
<td>27-02-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 21577 A</td>
<td>11-12-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 8404476 A</td>
<td>26-02-1986</td>
</tr>
</tbody>
</table>

WO 0018758	06-04-2000	AT 256123 T	15-12-2003
		AU 5759999 A	17-04-2000
		CA 2345065 A1	06-04-2000
		CN 1328552 A	26-12-2001
		DE 69913545 D1	22-01-2004
		DE 69913545 T2	16-09-2004
		DK 1115721 T3	19-04-2004
		ES 2214045 T3	01-09-2004
		WO 0018758 A1	06-04-2000
		JP 2002525366 T	13-08-2002
		PT 1115721 T	30-04-2004

WO 02098864	12-12-2002	BR 0210102 A	08-06-2004
		CA 2448602 A1	12-12-2002
		CN 1512988 A	14-07-2004
		WO 02098864 A1	12-12-2002
		EP 1397351 A1	17-03-2004
		JP 2004536814 T	09-12-2004
		MX PA03010822 A	17-02-2004
		US 2003060466 A1	27-03-2003

<p>| | | AU 8012294 A | 03-05-1995 |
| | | BR 9407799 A | 06-05-1997 |
| | | CA 2174080 A1 | 20-04-1995 |
| | | CN 1142817 A | 12-02-1997 |
| | | CZ 9601014 A3 | 13-11-1996 |
| | | FI 961599 A | 07-06-1996 |
| | | HR 940664 A1 | 31-12-1996 |
| | | HU 74464 A2 | 30-12-1996 |
| | | JP 9504520 T | 06-05-1997 |
| | | NO 961425 A | 12-06-1996 |
| | | NZ 274978 A | 27-04-1998 |
| | | PL 313973 A1 | 05-08-1996 |
| | | RU 2153494 C2 | 27-07-2000 |
| | | SK 47096 A3 | 01-10-1996 |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6342503 B1</td>
<td>29-01-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 9510506 A1</td>
<td>20-04-1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6107301 A</td>
<td>22-08-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA 9407921 A</td>
<td>11-04-1996</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGS/GEGENSTANDES

<table>
<thead>
<tr>
<th>IFK 7</th>
<th>C07D239/47</th>
<th>C07D403/04</th>
<th>C07D409/06</th>
<th>C07D409/14</th>
<th>A61K31/513</th>
</tr>
</thead>
</table>

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifizierung und der IPK

B. RECHERCHIERT GEWEBTE

Recherchiertes Mindestpräparat (Klassifikationssystem und Klassifikationsymbole)

| IPK 7 | C07D |

Recherchierte aber nicht zum Mindestpräparat gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

| EPO-Internal, CHEM ABS Data, BEILSTEIN Data, WPI Data |

C. ALS WESENTLICH ANGESEHEN AN GESICHEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BAGLI, JEHAN ET AL: "Chemistry and positive inotropic effect of peprinone and related derivatives. A novel class of 2-methylpyrimidones as inotropic agents" JOURNAL OF MEDICINAL CHEMISTRY, 31(4), 814-23 CODEN: JMCAR; ISSN: 0022-2623, 1988, XP002300134 siehe Verbindung 25 in Tabelle 1 und Schema 1;</td>
<td>1-4,6,7</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
 - A: Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - B: Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - C: Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung beeinflusst worden ist
 - D: Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - E: Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist

Datum des Abschlusses der internationalen Recherche

10. Mai 2005

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5816 PatentDivision 2 NL - 2280 HV Hilversum
Tel. (+31-70) 340-3040, Fax. 31 651 600 nl

Bevollmächtigter Bediensteter

Traegler-Goeldel, M
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 00/18758 A (MITSUBISHI CHEMICAL CORPORATION; WATANABE, KAZUTOSHI; ANDO, RYOICHI; S) 6. April 2000 (2000-04-06) siehe Ansprüche 1, 5 und 12, e.g Beispiele 77 bis 92. 237 und 238;</td>
<td>1-4,6-12</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.
 weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
 Obwohl die Ansprüche 11 und 12 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.

2. Ansprüche Nr.
 weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich

3. Ansprüche Nr.
 weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die Internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der Internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen enthalten.

<table>
<thead>
<tr>
<th>Bemerkungen hinsichtlich eines Widerspruchs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.</td>
</tr>
<tr>
<td>Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.</td>
</tr>
</tbody>
</table>

Formblatt PCT/SA210 (Fortsetzung von Blatt 1 (2)) (Januar 2004)
<table>
<thead>
<tr>
<th>Patentrechnbericht</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 4507304 A 26-03-1985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 38328 T 15-11-1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 572856B2 19-05-1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2971084 A 03-01-1985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1232905 A1 16-02-1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1248104 A2 03-01-1989</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3474913 D1 08-12-1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 309084 A 31-12-1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0130735 A 09-01-1985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8602694 A1 16-03-1986</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 82004 A1 12-12-1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 34465 A2 28-03-1985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 57728 B1 24-03-1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60025974 A 08-02-1985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9001180 B1 27-02-1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 21577 A 11-12-1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 8404476 A 26-02-1986</td>
<td></td>
</tr>
<tr>
<td>WO 0018758</td>
<td>A 06-04-2000</td>
<td>AT 256123 T 15-12-2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5759999 A 17-04-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2345065 A1 06-04-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1328552 A 26-12-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69913545 D1 22-01-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69913545 T2 16-09-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1115721 T3 19-04-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2214045 T3 01-09-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0018758 A1 06-04-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002525366 T 13-08-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1115721 T 30-04-2004</td>
<td></td>
</tr>
<tr>
<td>WO 02098864</td>
<td>A 12-12-2002</td>
<td>BR 0210102 A 08-06-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2448602 A1 12-12-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1312988 A 14-07-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02098864 A1 12-12-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1397351 A1 17-03-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004536814 T 09-12-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03010822 A 17-02-2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003060466 A 27-03-2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8012294 A 04-05-1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9407799 A 06-05-1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2174080 A1 20-04-1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1142817 A 12-02-1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9601014 A3 13-11-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 961599 A 07-06-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 940664 A1 31-12-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 74464 A2 30-12-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9504520 T 06-05-1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 961425 A 12-06-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 274978 A 27-04-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 313973 A1 05-08-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2153494 C2 27-07-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 47096 A3 01-10-1996</td>
<td></td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(e) der Patentfamilie</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>WO 9510506 A</td>
<td></td>
<td>US 6342503 B1</td>
<td>29-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9510506 A1</td>
<td>20-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6107301 A</td>
<td>22-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9407921 A</td>
<td>11-04-1996</td>
</tr>
</tbody>
</table>