A method for characterizing food-grade wooden part-components, characterized in that it comprises the steps of: emitting an IR radiation beam towards food-grade wooden part-components (2), receiving radiations reflected/transmitted by the radiated wooden part-components (2), processing said radiations reflected/transmitted by the radiated food-grade wooden part-components (2) to generate information indicative of the radiation spectrum, determining on the basis of said spectrum at least one conditioning parameter (PE(i)) which is indicative of a respective compound present in the food-grade wooden part-components (2) adapted, in use, to influence the aroma and/or the perfume and/or the color of a wine, or wine-derived product, when it is put into contact with the wooden part-components (2) themselves.
Description

[0001] The present invention relates to the processing of food-grade wood, preferably for wine-making, and in particular relates to a system configured to divide in completely automatic manner the wooden part-components into predetermined categories of food-grade wood, such as, for example, wood chips and/or planks/staves designed to be used to make a container for wine, or a wine-related product, to which reference will be made in the following description without thereby losing in generality.

[0002] It has been known for centuries that a wine containing barrel made with wooden staves considerably influences the aroma (bouquet), the perfume, and the color of the wine itself during the wine preservation/aging process, and may thus have different/variable effects on the wine according to the type of wood and its composition.

[0003] Currently, the wood for making staves usable for making a barrel is chosen by means of empiric methods, which are essentially based on analyzing the correlation between the wood composition and some data, such as: the geographic origin of the wood, the growth factors of the trees and the environmental factors. Such methods thus require carrying out long, complex analyses at the origin of the woods with all the drawbacks that this implies in terms of costs and productive efficiency. Furthermore, the evaluation and final choice of the wood, i.e. the categorization of the wood for making a barrel, is carried out by an operator, who analyzes the aforesaid data/correlations and establishes the type of wood to be used on the basis of experience. It is apparent that such a procedure is subject to considerable margins of error because the final choice of the wood for making the barrel is entirely subjective.

[0004] The applicant has carried out an in-depth study to create a system for categorizing food-grade wooden part-components, which: allows to divide, i.e. to categorize, the wooden part-components on the basis of an objective analysis selectively carried out on some specific compounds present in the wood designed, in use, to condition/influence the aroma and/or the perfume and/or the color of a wine or a distillate (of wine, i.e. cognac, brandy, grappa, or the like), when the latter is placed in contact with the wooden part-components 2 themselves.

[0005] It is thus the object of the present invention to make available a solution which allows to reach the objectives indicated above.

[0006] This object is reached by the present invention in that it relates to a system, a method and a machine for categorizing food-grade wooden part-components, preferably for wine-making, as disclosed in the appended claims.

[0007] The present invention will now be described with reference to the accompanying drawings, which show a non-limitative embodiment thereof, in which:

- figure 1 diagrammatically shows a system for categorizing food-grade wooden part-components according to the dictates of the present invention; while
- figure 2 is a flow chart of the operative steps of the method for categorizing the food-grade wooden part-components, provided according to the present invention.

[0008] The present invention will now be described in detail with reference to the accompanying drawings in order to allow a person skilled in the art to implement and use it. Various changes to the described embodiments will be immediately apparent to a person skilled in the art, and the described generic principles may be applied to other embodiments and applications without thereby departing from the scope of protection of the present invention, as disclosed in the appended claims. Therefore, the present invention must not be considered limited to the described and illustrated embodiments but instead confers the broadest scope of protection, in accordance with the principles and features described and disclosed herein.

[0009] With reference to figure 1, numeral 1 diagrammatically indicates as a whole a system for categorizing food-grade wooden part-components 2, preferably for oenological use, which is configured so as to analyze the wooden part-components to determine a series of conditioning parameters $PE(i)(i$ being variable between 1 and n) which are indicative of some compounds present in the wood designed, in use, to condition/influence the aroma and/or the perfume and/or the color of a wine or of a wine-related product such as for example vinegar, or a distillate (of wine i.e. cognac, brandy, grappa, or the like), when the latter is placed in contact with the wooden part-components 2 themselves.

[0010] According to a preferred embodiment, the wooden part-components 2 may comprise rough planks or semi-machined planks or machined wooden planks, e.g. wooden staves, preferably, but not necessary made of oak heartwood, which may be assembled in known manner to obtain a container for a wine or a wine-derived product, such as, for example, a vat or a barrel for containing the wine or the wine-derived product (not shown).

[0011] It is understood that in all cases the present invention is not limited to this type of application, but may be used additionally or alternatively to characterize wooden part-components 2 corresponding to wood chips (not shown) designed either to be immersed in or to be put into contact with a wine according to refinement methods of the known type and thus not described in detail.

[0012] According to a preferred embodiment, the system 1 is configured so as to execute a spectrographic analysis on the wooden part-components 2 so as to determine one or more conditioning parameters $PE(i)$ on the basis of the detected spectrum and to categorize the wooden part-components 2 (i.e. to determine the belonging of the examined wooden part-components 2 to a pre-determined category of food-grade wood, preferably for...
oenology use) on the basis of said determined conditioning parameter(s) PE(i). Preferably, the system 1 may be configured so as to compare one or more determined conditioning parameters PE(i) with corresponding predetermined magnitudes/quantities GE(i), and to categorize the wooden part-component 2 on the basis of the result of said comparison. According to a preferred embodiment shown in Figure 1, the system 1 is configured to execute a spectroscopic analysis to determine the conditioning parameters PE(i) present in the wood by preferably operating in the near-infrared wavelength band, i.e. in the NIR (Near-IR) band, which is known and comprised between approximately 780 nm and 2500 nm. **[0013]** According to a possible embodiment, the system 1 may be configured so as to execute a spectroscopic analysis to determine the conditioning parameters PE(i) by preferably operating in the mid-infrared wavelength band, i.e. the MIR (MID-IR) band, which is known and comprised between approximately 2500nm and 50000nm. **[0014]** According to a preferred embodiment shown in Figure 1, the system may comprise an IR spectroscopic apparatus 3, which is structured so as to be arranged, in use, at/near a wooden part-component 2 to be categorized and is configured so as to: emit an IR radiation beam (infrared radiation) towards said wooden part-component 2; receive some of the radiations obtained by reflection/transmission of the incident IR radiation beam from the wooden part-component 2 and provide an SIR analysis signal containing information indicative of the received electromagnetic radiation spectrum. It is understood that in all cases the present invention is not limited to analyzing the reflection of electromagnetic radiations by the wooden part-component 2, but may also additionally or alternatively relate to the transmission of the electromagnetic radiations obtained following the crossing of the wooden part-component 2 by the incident IR electromagnetic radiations. **[0015]** According to a preferred embodiment, the system 1 further comprises an electronic processing device 4, which may be connected to the IR spectroscopic apparatus 3 to receive the S-IR analysis signal, and is configured so as to process the S-IR analysis signal, by means of a spectrum analysis/processing algorithm, so as to determine one or more conditioning parameters PE(i) on the basis of the spectrum and to categorize the wooden part-component 2 on the basis of the determined conditioning parameters PE(i). According to a preferred embodiment, the conditioning parameters PE(i) may preferably comprise: the content (e.g. the percentage) of soluble polysaccharides, and/or the content of tannins, preferably ellagic tannins (HPLC), and/or the content of aromatic fractions/substances, preferably volatile aromatic fractions/substances, and/or the wood grain size. In all cases, it is understood that the present invention is not limited to the conditioning parameters PE(i) listed above, but may extend to consider other additional conditioning parameters PE(i) not listed above, such as for example the content of water/humidity, and/or the alcohol content, and/or the content of phenolic fraction, and/or the wood density and/or the content of substances which condition the “bitter undertones” of the wine or of the wine-derived product, and/or the content of substances which condition the sensorial properties of the wine or the wine-derived product. Obviously, the conditioning parameters PE(i) used by the system 1 to categorize the wood may vary on the basis to the type of food-grade use of the wooden part-components 2. In particular, the conditioning parameters PE(i) used by the system 1 for categorizing wooden part-components useable for a wine may be different from the conditioning parameters PE(i) used instead for categorizing wooden part-components for containing a wine-derived product produced as a vinegar, or a distillate for example of a wine. **[0016]** According to a preferred embodiment, the aromatic substances determined by the electronic processing device 4 may comprise, for example, lactones and/or eugenol and/or vanillin and/or volatile phenols and/or aldehydes or the like. **[0017]** The conditioning parameters PE(i) may be determined by the analysis/processing algorithms by means of predetermined correlation functions on the basis of the measured spectrum. The correlation functions associated to the conditioning parameters PE(i) may be determined/established by means of multivariate PCA (Principal Component Analysis) or PLS (Partial Least Squares) statistic processing methods/tests of known type applied to a series of sample data associated to the conditioning parameters PE(i) to be detected described above, and to the corresponding bands/wavelengths. **[0018]** According to a preferred embodiment, the system 1 may establish a one or more categories of food-grade wood, preferably wood for wine-making, which may be characterized, for example, by one or more predetermined reference magnitudes/quantities GE(i) associated to respective conditioning parameters PE(i). The electronic processing device 4 may be configured so as to establish/determine the belonging of a wooden part-component 2 to a determined category of food-grade food, preferably for wine-making, when one or more conditioning parameters PE(i) satisfy at least one predetermined relationship/condition with the respective predetermined magnitudes/quantities GE(i). **[0019]** According to a possible embodiment, the electronic processing device 4 may be configured so as to establish/determine the belonging of the wooden part-component 2 to a category of food-grade wood when one or more conditioning parameters PE(i) are higher than the respective predetermined magnitude/quantity GE(i). By way of non-limiting example only, the predetermined magnitudes/quantities GE(i) characterizing each category of wood may comprise: a polysaccharide threshold, and/or a tannin threshold, and/or a flavoring substance threshold, and/or a wood grain size threshold, and/or the wood grain size threshold, and the electronic processing device 4 may establish the belonging of part of a wooden part-component 2 to said category.
of wood, e.g. a first category, when the conditioning parameters PE(i) indicative of the polysaccharide content, and/or the tannin content, and/or the content of flavoring substance, and/or the wood grain size are higher than the polysaccharide threshold, and/or the tannin threshold, and/or the flavoring substance threshold, and/or the wood grain size threshold, respectively.

According to a possible embodiment, the electronic processing device 4 may be configured so as to establish/determine that the wooden part-component 2 belongs to a determined category of food-grade wood, preferably for wine-making, e.g. to a second category, when one or more wine production conditioning parameters PE(i) are comprised in a predetermined range associated to the respective predetermined magnitude GE(i). according to a non-limiting example, the predetermined magnitudes GE(i) characterizing each category of wood may comprise: a predetermined polysaccharide range ΔP, and/or a predetermined tannin range ΔT, and/or a predetermined flavoring substance range ΔA, and/or a wood grain size range ΔL, while the electronic processing device 4 may determine the belonging of part of a wooden part-component 2 to said category of wood, e.g. a second category, when the polysaccharide content, and/or the tannin content, and/or the flavoring substance content, and/or the wood grain size are comprised within predetermined polysaccharide range ΔP, and/or a predetermined tannin range ΔT, and/or a predetermined flavoring substance range ΔA, and/or a the wood grain size range ΔL, respectively.

It is understood that in all cases, the present invention is not limited to the exceeding of the aforesaid predetermined ratios of thresholds and to the inclusion of the parameters PE(i) within predetermined ranges, but according to the possible variants, other ratios between the conditioning parameters PE(i) and the predetermined magnitudes/quantities GE(i) associated to the predetermined categories may be included, in which each ratio, e.g. determined by a mathematical equation, may depend on the categorization of the mathematical and of the type of wood or on the conditioning parameters PE(i)/magnitudes GE(i) used for the comparison.

The spectroscopic apparatus IR 3 is a known device and thus will not be further described unless to specify that it may comprise an IR emitting device controlled 3a to emit the IR radiation beam having a wavelength in the infrared band towards the wooden part-component 2 corresponding, for example, to a stave, and an infrared sensitive detection device 3b, which is configured to receive the radiation beam from the stave 2 (in the example illustrated in Figure 1) and to provide the S-IR analysis signal containing the spectrum.

According to a possible embodiment shown in Figure 1, the system 1 may preferably comprise a storage device 7 containing the predetermined wood categories and, preferably not but necessarily, the respective predetermined magnitudes GE(i) for each wood category. For example, the storage device 7 may comprise an electronic table or database preferably containing, for each wood category, the respective values of the predetermined magnitudes GE(i) and the corresponding predetermined ratios to be satisfied for categorizing the wood.

Furthermore, the spectrum algorithms for determining the conditioning parameters PE(i) and the correlation functions which may be implemented in use by the electronic control device 4 for determining the conditioning parameters PE(i) on the basis of the information indicating the spectrum contained in the SIR analysis signal can be stored in form of programs in the storage device 7.

Figure 2 shows a flow chart indicating the operations implemented by the method for characterizing
the wooden part-components in which it is assumed to execute the operations by means of the system 1 shown in Figure 1. The method may preferably comprise arranging the stave 2, for example, on the support/advancement plane of the actuating device 5. The method executes the steps of: generating an IR radiation beam towards the wooden part-component 2 (block 100), e.g. towards the stave 2; receiving the radiations reflected/transmitted by the wooden part-component 2 (block 110), e.g. the stave 2; generating the S-IR analysis signal containing the spectrum on the basis of the detected reflected/transmitted radiations, preferably by means of the IR spectroscopic apparatus 3. Furthermore, the method executes the steps of determining one or more conditioning parameters PE(i) on the basis of the information contained in the S-IR analysis block indicative of the detected spectrum (block 120). For this purpose, the method may execute the required operations in analysis algorithms based on the correlation functions so as to determine, for example, the content percentage of polysaccharides, and/or of tannins, and/or of flavoring substances, and/or the wood grain size on the basis of the spectrum.

The method further executes the steps of categorizing the wooden part-component 2, e.g. the stave, on the basis of the conditioning parameters PE(i) determined during the previous step. For this purpose, the method may execute the step of determining the category of wood, preferably for wine-making, to which the wooden part-component 2, e.g. the stave, belongs on the basis of the conditioning parameters PE(i). Preferably, the method may execute the step of determining the category of wood, preferably for wine-making (e.g. the first or the second or the third category) to which the wooden part-component 2, e.g. the stave, belongs on the basis of the result of the conditioning parameters PE(i) and the predetermined magnitudes GE(i) associated to one more predetermined categories of food-grade wood (block 130). Preferably, the method may execute the step of determining the wooden part-component 2, e.g. the stave, belonging to a category of wood, when one or more of the conditioning parameters PE(i) satisfy at least one predetermined condition with the respective predetermined magnitudes GE(i) (block 140).

Preferably, the method may establish/determine the belonging of the wooden part-component 2 to a predetermined category of wood, when one or more conditioning parameters PE(i) are, for example, higher than the respective predetermined magnitude GE(i). These operations may be executed by the method by means of the electronic processing device 4 shown in Figure 1. Preferably, the method may execute the step of communicating the determined category of wood to the operator (block 150). This operation may be executed preferably by means of the user interface 6. In all cases, it is understood that the present invention is not limited to communicating the determined category of wood to the operator but may include communicating the information related to the determined category of wood to a wood processing station (not shown) arranged downstream of the IR spectrometric apparatus and structured to receive the wooden part-components 2, e.g. the staves, and to subdivide/divert them automatically to the various predetermined advancement paths/stores on the basis of the determined category of wood.

The system described above is advantageous because: it allows to categorize the wooden part-components on the basis of an objective analysis carried out on the compounds present in the wood, it is simple, cost-effective and rapid to execute, it is easy to implement on an industrial production line/system of vats/barrels made using wooden staves.

It is finally apparent that changes and variations may be made to the system, machine and method described and illustrated without thereby departing from the scope of the invention defined by the accompanying claims.

In particular, the system 1 described above may correspond to a machine structured to categorize the wooden part-components for wine-making operating according to the method described above.

Claims

1. A method for categorizing food-grade wooden part-components characterized in that it comprises the steps of: emitting an IR radiation beam towards food-grade wooden part-components (2); receiving radiations reflected/transmitted by the radiated wooden part-components (2); processing said radiations reflected/transmitted by the radiated food-grade wooden part-components (2) to generate information (S-IR) indicative of the radiation spectrum; determining on the basis of said spectrum at least one conditioning parameter (PE(i)) which is indicative of a respective compound present in the food-grade wooden part-components (2) which, in use, conditions the aroma, and/or the perfume, and/or the color of a wine, or wine-related product when the wine, or wine-related product, is put into contact with the wooden part-components (2) themselves; characterizing said wooden part-components (2) on the basis of at least said determined conditioning parameter (PE(i)).

2. A method according to claim 1, comprising the step of comparing at least said determined conditioning parameter (PE(i)) with at last one predetermined reference magnitude GE(i) associated to a predetermined category of food-grade wood, and determining the belonging of the wooden part-components (2) to said predetermined category of food-grade wood on the basis of said comparison.

3. A method according to claims 1 or 2, wherein said at least one conditioning parameter (PE(i)) is indic-
ative of: the content of polysaccharides, or the content of tannins, or the content of aromatic fractions/substances, or the wood grain size.

4. A method according to any one of the preceding claims, wherein said IR radiation beam is a NIR radiation beam.

5. A method according to any one of the preceding claims, wherein said wooden part-components (2) comprise at least one plank or stave (2) for vats/barrels for containing wine, or a wine-related product, or wine refinement chips.

6. A system for categorizing food-grade wooden part-components characterized in that it comprises IR radiation emitting devices (3a) for emitting a beam of IR radiations towards food-grade wooden part-components (2); IR radiation sensitive means (3b) for receiving IR radiations reflected/transmitted by the radiated wooden part-components (2) and configured so as to process said IR radiations reflected/transmitted by the food-grade wooden part-components (2) to generate information (S-IR) indicative of the radiation spectrum; and processing means (4) configured to determine on the basis of said spectrum, at least one conditioning parameter (PE(i)) which is indicative of a respective compound present in the food-grade part-components (2) adapted, in use, to influence the aroma and/or the perfume and/or the color of a wine, or a wine-related product, when the wine, or the wine-derived product, is put into contact with the wooden part-components (2) themselves; and categorizing said wooden part-components (2) on the basis of at least said determined conditioning parameter (PE(i)).

7. A system according to claim 6, wherein said processing means (4) are further configured to compare at least said conditioning parameter (PE(i)) with at least one predetermined reference magnitude (GE(i)) associated to a predetermined category of food-grade wood, and determine the belonging of the wooden part-components (2) to said predetermined category of food-grade wood on the basis of said comparison.

8. A system according to claim 7, wherein said at least one conditioning parameter (PE(i)) is indicative of: the content of polysaccharides, or the content of tannins, or the content of aromatic fractions/substances, or the wood grain size.

9. A system according to claims 7 or 8, comprising NIR radiation emitting/receiving means.

10. A system according to any one of the claims from 6 to 9, wherein said wooden part-components (2) comprise at least one plank/stave (2) for vats/barrels for containing wine, or a wine-derived product, or wine refinement chips.

11. A machine for categorizing food-grade wooden part-components characterized in that it comprises IR radiation emitting devices (3a) for emitting an IR radiation beam towards food-grade wooden part-components (2); radiation sensitive means (3b) for receiving radiations reflected/transmitted by the radiate food-grade wooden part-components (2) to generate information (S-IR) indicative of the radiation spectrum; and processing means (4) configured to determine, on the basis of said spectrum, at least one conditioning parameter (PE(i)) which is indicative of a respective compound present in the food-grade part-components (2) adapted, in use, to influence the aroma and/or the perfume and/or the color of a wine, or a wine-derived product, when the wine, or the wine-derived product, is put into contact with the wooden part-components (2) themselves; categorizing said wooden part-components (2) on the basis of at least said determined conditioning parameter (PE(i)).
100. Emit an IR/NIR beam onto a food-grade wooden part-component/stave to determine the spectrum

110. Receive the IR/NIR beam from a food-grade wooden part-component/stave to determine the spectrum

120. Determine at least one conditioning parameter on the basis of the detected spectrum

130. Compare the conditioning parameter with magnitudes associated to respective categories of wood

140. Determine the category of wood on the basis of the comparison

150. Communicate the determined food-grade/wine-making category of wood

Fig. 2
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR 2 971 967 A1 (SEGUIN MOREAU & C [FR]) 31 August 2012 (2012-08-31) * page 1, line 6 - page 2, line 25 *</td>
<td>1-11</td>
<td>G01N</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>25 February 2014</td>
<td>Hoogen, Ricardo</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document filed in the application
- **L**: document filed for other reasons
- **&**: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EPO file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-02-2014

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 2971967 A1</td>
<td>31-08-2012</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82