
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0053415 A1

Okimianski

US 20060053415A1

(43) Pub. Date: Mar. 9, 2006

(54)

(76)

(21)

(22)

(63)

METHOD AND SYSTEM FOR EFFICIENTLY
INTERPRETING ACOMPUTER PROGRAM

Inventor: Anton Okmianski, Lincoln, MA (US)

Correspondence Address:
HICKMAN PALERMO TRUONG & BECKER,
LLP
2055 GATEWAY PLACE
SUTE 550
SAN JOSE, CA 95110 (US)

Appl. No.: 11/264,188

Filed: Oct. 31, 2005

Related U.S. Application Data

Continuation of application No. 09/796,870, filed on
Feb. 28, 2001, now Pat. No. 6,978.447.

302
INTERFACECLENT STARTS

304
READ CONFIGURATIONFILE

306
SELECT HENEXT AVAILABLE

INTERPRETATION CONTROL SERVER

308
QUERY SELECTED INTERPRETATION

CONTROL SERVER

310
ISSELECTED SERVER

OPERATING?

312
STARTSELECTED SERVER

314
START

SUCCESSFUL2

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl. .. 717/139

(57) ABSTRACT

A method and a System are provided for efficiently executing
computer programs that require invocation of an interpreter.
A name of a program to be interpreted or executed is
received, with Zero or more arguments, at an interface client
element. The interface client element may be implemented
as a compact Software element that is invoked using a
command-line command. The interface client passes the
program name and arguments to a continuously running
Server process that includes a continuously running or
persistent interpreter. Alternatively, the Server proceSS and
interpreter are integral. The Server proceSS provides the
name and arguments to the interpreter, which interprets the
program. One or more result values based on results of
interpretation of the computer program by the interpreter are
received and passed back to the interface client.

YES

Patent Application Publication Mar. 9, 2006 Sheet 1 of 7 US 2006/0053415 A1

Fig. 1A
102
PROCESSOR

104 106
SOURCE INTERFACE
PROGRAM CLIENT

108
INTERPRETATION

CONTROL
SERVER

110
INTERPRETER

Patent Application Publication Mar. 9, 2006 Sheet 2 of 7 US 2006/0053415 A1

Fig. 1B
102
PROCESSOR

105 106
JAVASOURCE - INTERFACE

PROGRAM CLIENT

108
INTERPREATION

CONTROL
SERVER

112
JAVAVIRTUAL MACHINE

HOSSE OO}}d OZ?Z HEIBHdHINI

US 2006/0053415 A1

HIÐIN ?JOTZ HENNES TOHINOO NOLIWIEHdHHINI ! ?ROZ

Patent Application Publication Mar. 9, 2006 Sheet 3 of 7

Patent Application Publication Mar. 9, 2006 Sheet 4 of 7

Fig. 3

304
READ CONFIGURATION FILE

306
SELECT THENEXTAVAILABLE

INTERPRETATION CONTROL SERVER

308
QUERY SELECTED INTERPRETATION

CONTROL SERVER

310
ISSELECTED SERVER

OPERATING?

312
STARTSELECTED SERVER

314
START

SUCCESSFUL2

302
INTERFACE CLIENT STARTS

US 2006/0053415 A1

YES

Patent Application Publication Mar. 9, 2006 Sheet 5 of 7 US 2006/0053415 A1

Fig. 4.

START

402
RECEIVESOURCE PROGRAMINFORMATION

404
SEND SOURCE PROGRAMINFORMATION TOINTERPRETATION

CONTROL SERVER

406
WAIT TO RECEIVERESULTS OF INTERPRETATION

408
RECEIVERESULTS OF INTERPRETATION

409
SEND RESULTS OF INTERPRETATION TO STANDARD OUTPUT

Patent Application Publication Mar. 9, 2006 Sheet 6 of 7 US 2006/0053415 A1

Fig. 5

START

502
INTERFACECLIENTRECEIVESCLASS NAME ANDARGUMENTSFOR

JAVA CLASS TO BEINTERPRETED

INTERFACE CLIENT SENDS CLASS NAME ANDARGUMENTS TO AN
AVAILABLE INTERPRETATION CONTROL SERVER

506
SELECTED INTERPRETATION CONTROL SERVER SENDS CLASS

NAME ANDARGUMENTS TOJAVAVIRTUAL MACHINE

JAVAVIRTUALMACHINE INTERPRETS CLASS, RETURNS VALUES)TO
INTERPRETATION CONTROL SERVER, CONTINUES OPERATING

510
INTERPRETATION CONTROLSERVER RETURNS VALUE(S) TO

INTERFACECLIENT,CONTINUES OPERATING

(REPEAT ASNEEDED FOR
ADDITIONAL CLASS(ES))

US 2006/0053415 A1

}|}}OMIEN TWOOT

Patent Application Publication Mar. 9, 2006 Sheet 7 of 7

US 2006/0053415 A1

METHOD AND SYSTEM FOR EFFICIENTLY
INTERPRETING ACOMPUTER PROGRAM

RELATED APPLICATION DATA

0001. This application claims domestic priority under 35
U.S.C. S 120 as a continuation application of U.S. patent
application Ser. No. 09/796,870, filed Feb. 28, 2001, entitled
“Method and System for Efficiently Interpreting a Computer
Program,” the disclosure of which is incorporated by refer
ence as if fully set forth herein.

FIELD OF THE INVENTION

0002 The present invention relates to interpretation of
computer programs, and relates more specifically to a
method and System for more efficient startup of interpreted
computer programs.

BACKGROUND OF THE INVENTION

0003. Many computer programs are created using high
level Source programming languages that have English-like
Syntax. However, a computer cannot directly execute the
Source text of the program expressed in Such languages
(“Source code'). Instead, two main approaches are used to
transform the Source code into machine-executable code. In
one approach, known as compilation, the Source code is
provided to a compiler, which parses the Source code, carries
out lexical analysis and Syntax analysis, and generates
machine-executable object code for later execution. Often
Such analysis and code generation requires the processor to
make multiple passes through the Source code. One disad
Vantage of this approach is that the compiled code typically
is executable using only one processor type or processor
family; a Second disadvantage is that a processor must carry
out the entire compilation process before it can begin
executing the code. Examples of languages that use this
approach are C and C++.
0004. In a second approach, known as interpretation, the
Source code is provided to an interpreter. In interpretation,
two Sub-approaches are generally used. In the "pure inter
pretation' approach, there is no visible intermediate code
processing Stage; the program code requires no special
pre-processing and is received as-is by the interpreter, which
interprets it directly. Examples of Such languages are Perl
and JavaScript.
0005. In the other sub-approach, the source code is con
verted to an intermediate code representation, which is then
interpreted. For example, in a first phase of operation, the
interpreter makes a single pass over the Source code and
converts each Source code instruction into one or more
corresponding intermediate language instructions. In a Sec
ond phase of operation, the interpreter executes the inter
mediate language instructions. An example of a computer
language that uses this approach is JavaE), developed by Sun
MicroSystems, Inc., in Java the intermediate language con
Sists of “byte codes' that are executed, at run time, by a Java
Virtual Machine. The Source program code is first compiled
into intermediate language instructions represented in byte
codes. The interpreter takes the pre-processed code and
translates it into Specific low-level operating System instruc
tions on the fly.
0006 An advantage of this approach is that a Java Virtual
Machine that is compatible with a particular processor

Mar. 9, 2006

family can directly execute any Java program, without the
need for a compilation Stage. However, the Java interpreta
tion approach also has disadvantages. For example, every
time a Java application is started, the Java Virtual Machine
must first Start executing. Unfortunately, there are costs
associated with startup of the Java Virtual Machine, in terms
of time, memory and processor resources, which degrade
Startup performance of the application. These Startup costs
include the allocation of memory, the creation of internal
data structures, and the initialization of these structures.
Collectively these processes impose significant and unde
sirable overhead.

0007. In some contexts, the performance degradation
asSociated with these Startup costs is significant. The prob
lem is especially evident when the expected running time of
the program is Small and the program is invoked frequently
over a period of time. In Such Scenarios, the Startup time of
the application can become as resource-intensive and time
consuming as running the program itself.
0008 For example, one problem involved in interpreta
tion of Java programs relates to development of large,
complex computer application programs. Development of
Such programs, e.g., by professional Software engineers,
may involve creating numerous individual programs and
then combining them into the complete application. The
engineers may have thousands or tens of thousands of Source
code elements in various files or directories. During the
course of Software development, engineers have to compile
an entire application often to Verify that it compiles and
WorkS correctly. This compilation process is often accom
plished with the use of scripts called “makefiles,” and in a
typical approach this involves running the Java compiler
repetitively for each directory that contains Source code files.
However, because the Sun Microsystems Java compiler is
written in the Java language and therefore executes in the
Java Virtual Machine, every time the Java compiler is
started, the Java Virtual Machine is started again. This
results in unacceptable overhead and inefficient startup
throughout the compilation process.
0009. As another example, the Unix operating environ
ment consists of many Small programs each dedicated to
Specific purpose. For example, a program that implements
the command “Is” prints the list of files in the directory. This
command carries out a simple task and is expected to
execute fast. However, implementation of a program of the
nature of "Is in Java is presently impractical because the
overhead of starting the Java Virtual Machine is larger than
the time or other resources needed to execute the program
itself. Thus, there is a need for a way to write programs in
Java that would otherwise be impractical.
0010 Several past attempts have been made to solve this
problem. One approach is known as SpeedyCGI, and pro
vides a way of running Common Gateway Interface (CGI)
PERL scripts persistently. SpeedyCGI is described in the
“daemoninc” dot corn Web site. After a PERL script is
initially run, instead of exiting, SpeedyCGI keeps the PERL
interpreter in memory. During Subsequent runs, the inter
preter is used to handle new requests, instead of Starting a
new PERL interpreter for each execution.
0011. However, SpeedyCGI has many limitations and
drawbackS. For example, SpeedyCGI requires modification
and recompilation of the interpreter environment. This also

US 2006/0053415 A1

means that Speedy CGI has to be recompiled for every
different version or release of the PERL interpreter. This
approach is not readily adaptable to other environments,
Such as the Java programming environment, in which the
developer of Java (Sun MicroSystems) places contractual
restrictions on re-distribution of modified Java Virtual
Machine implementations.
0012. Also, SpeedyCGI is SpeedyCGI is restricted to
running on one machine. Since SpeedyCGI is restricted to
running on one machine, it cannot utilize resources from
multiple machines. All resources must reside on the same
machine as the client and the Server. Furthermore, it cur
rently only operates on Selected computer platforms.
0013 Additional known disadvantages of Speedy CGI are
that it can only run one program at a time on any particular
Server interpreter. If the Server interpreter is busy processing
running one application and receives a request to run another
instance of the application or a different application, it has
to Start a new Server interpreter.
0.014 Java application servers have attempted to address
Scalability of Java applications. An example of Such a server
is Inprise Application Server 4. However, Such servers only
can be invoked from a browser or through a complicated
mechanism Such as Common Object Request Broker Archi
tecture (CORBA). There is a need for a way to call and
interpret Source programs from a command line rather than
using a browser or mechanism Such as CORBA. Application
servers also are typically bulky, require complex installation
and are generally very expensive.
0.015 Based on the foregoing, there is a need for an
improved method of efficiently starting an interpreter for
computer programs written in an interpreted language Such
as Java.

0016. There is a specific need for a way to improve the
Startup efficiency of Java interpreted programs that are either
Started repeatedly and frequently, or consist of Small pro
grams, where startup overhead can be greater than the time
or resources needed to execute the program itself.
0.017. There is a specific need for a method and system
that addresses the limitations of SpeedyCGI and Java Appli
cations Servers. For example, there is a need for a way to
efficiently interpret computer programs in a way that does
not require all elements of the interpreter System to reside or
execute on the same machine, to interpret multiple programs
at once, and to Support command-line invocation of the
interpreter System.

SUMMARY OF THE INVENTION

0.018. The foregoing needs, and other needs that will
become apparent from the following description, are
achieved by the present invention, which comprises, in one
aspect, a method and a System for efficiently interpreting
computer programs that require invocation of an interpreter.
A name of a program to be interpreted or executed is
received, with Zero or more arguments, at an interface client
element. The interface client element may be implemented
as a compact Software element that is invoked using a
command-line command. As a result, invocation of the
interface client element consumes relatively few resources
and has low overhead. The interface client passes the
program name and arguments to a continuously running

Mar. 9, 2006

Server process that includes a continuously running or
persistent interpreter. Alternatively, the Server proceSS and
interpreter are Separate, and the Server process forwards the
program name and arguments to a separate interpreter. The
Server process provides the name and arguments to the
interpreter, which interprets the program. One or more result
values based on results of interpretation of the computer
program by the interpreter are received and passed back to
the interface client. In this way, programs that need to be
Started frequently can be repeatedly started without incur
ring overhead involved in Successively restarting the inter
preter for each invocation of the program.
0019. In one specific embodiment, a persistent Java Vir
tual Machine is pre-started either manually or automatically
by one or more clients. The persistent Java Virtual Machine
remains in memory after finishing processing the request
from the client and continues to accept new requests, thus
eliminating the recurring costs of Startup. A client element
can be invoked either by command line or from one or more
CGI scripts from a browser. The client receives the infor
mation normally found in a command-line invocation of the
Java Virtual Machine and routes it to a server, which is
written in Java. The Server, in turn, dynamically executes the
program in the same Java Virtual Machine in which it runs.
Thus, certain embodiments provide a generic Java Virtual
Machine server that can handle various different Java appli
cations and offers a command-line interface.

0020 Embodiments are applicable not only to Java, but
to any computer programming language that can be used to
write the Server, and that can dynamically instantiate and
execute program code.

0021. In other aspects, the invention encompasses a com
puter-readable medium, apparatus and System configured to
carry out the foregoing Steps. Other aspects of the invention
will become apparent from the following description and
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer
als refer to Similar elements and in which:

0023 FIG. 1A is a block diagram of an example of the
Structure of a System for efficiently starting up an interpreted
computer program.

0024 FIG. 1B is a block diagram of a second example of
the Structure of a System for efficiently Starting up an
interpreted computer program.

0025 FIG.2 is a block diagram of a system for efficiently
Starting up interpreted computer programs in a distributed
environment.

0026 FIG. 3 is a flow diagram illustrating an example of
a process that an interface client may use to automatically
Start an interpretation control Server;

0027 FIG. 4 is a flow diagram showing a process of
efficiently interpreting a computer program;

0028 FIG. 5 is a flow diagram illustrating steps per
formed to efficiently interpret a Java Source program;

US 2006/0053415 A1

0029 FIG. 6 is a block diagram of a computer system
that may be used to implement embodiments.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0.030. A method and apparatus for efficiently executing
computer program is described. In the following description,
for the purposes of explanation, numerous Specific details
are set forth in order to provide a thorough understanding of
the present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced
without these specific details. Well-known structures and
devices are shown in block diagram form in order to avoid
unnecessarily obscuring the present invention.
0.031 Embodiments are discussed in the following
description in Sections conforming to the following outline:

0032) STRUCTURAL OVERVIEW
0033) FUNCTIONAL OVERVIEW
0034). STARTING THE SERVERS
0035) INTERPRETING ACOMPUTER PROGRAM
0036) HARDWARE OVERVIEW
0037) EXTENSIONS AND ALTERNATIVES

0038 1. Structural Overview
0039 Efficient interpretation of a computer program can
be carried out according to Several embodiments of the
present invention. For example, a program can be inter
preted in a configuration where the client and the Server
execute in the same physical computer. Alternatively, a
program can be interpreted in a distributed environment
having multiple clients and Servers, where each client can
communicate with any one of the Servers. In one specific
embodiment, a Java server and Java Virtual Machine facili
tate interpretation of Java programs that have been pre
processed into byte code format.
0040 FIG. 1A is a block diagram of an example of the
Structure of a System for efficiently interpreting a computer
program.

0041. In general, a system for efficiently interpreting a
computer program comprises an interface client 106, an
interpretation control server 108, and an interpreter 110.
Interface client 106 receives program Source instructions
from a source program 104. Interface client 106 is commu
nicatively coupled to interpretation control server 108,
which in turn is communicatively coupled to interpreter 110.
Intercommunication among interface client 106, interpreta
tion control server 108, and interpreter 110 may occur
through programmatic function calls, use of distributed
object mechanisms, network Socket communication, etc.
Server 108 and interpreter 110 may run in the same process
and may run as a Single program without Special commu
nication mechanisms. For example, the interpretation con
trol Server itself may be a program that is run by the
interpreter, and when server 108 receives a request form the
client the interpretation control server 108 dynamically
instantiates or executes the class within its own environ
ment.

0042. In one embodiment, interface client 106 receives
the name of one or more class files that contain Source

Mar. 9, 2006

instructions. In response to receiving the instructions or a file
name, interface client 106 informs interpretation control
server 108 that the named program or the instructions are
ready for interpretation, and passes them to it. In response,
interpretation control server 108 passes the instructions or
file to interpreter 110, which interprets them.
0043 FIG. 1B is a block diagram of a second example of
the Structure of a System for efficiently interpreting a com
puter program. Interface client 106 receives the name of the
Java Source program 105 to execute, and notifies interpre
tation control server 108. The Java source program 105 may
comprise one or more Java class files, where there are
multiple files, the name of the main class as an entry point
to the program is passed to the interface client 106. In
response, interpretation control Server 108 contacts Java
virtual machine 112 and provides the class files to the Java
Virtual machine, which interprets them. In one specific
embodiment, the control Server executes the class in its own
environment.

0044) Communication of Java source programs or class
files to interface client 106 may occur by invoking interface
client in executable form from a command-line interface of
processor 102. In one embodiment, interface client 106 is
invoked to run Java classes with a command having the
form:

0045 Jstart <class name> param1 param2 . . .
0046 where “Jstart” is the name of a specific program
implementation of interface client 106. Any desired
name for the client may be used. In response to
command-line invocation, interface client 106 invokes
interpretation control server 108 as further described
herein. Use of command-line invocation gives a pro
grammer, developer or administrator control over the
timing of invocation and the naming of the classes to be
interpreted.

0047. The embodiments of FIG. 1A, FIG. 1B use a
Single processor 100 that Stores and executes the interface
client, interpretation control Server, and interpreter. How
ever, a Single-machine implementation is not required. FIG.
2 is a block diagram of a System for efficiently interpreting
computer programs in a distributed environment.
0048 Referring now to FIG. 2, a system for efficiently
interpreting computer programs in a distributed environment
includes one or more first processors 202A, 202B that are
communicatively coupled to one or more Second processors
212A, 212B, 212C directly or by means of one or more
intervening networkS 214. Direct connections may in fact be
indirect through a local area network or other communica
tion means. Network 214 may comprise one or more LANs,
WANs, internetworks, multiple internetworks that span wide
areas Such as the Internet, etc.
0049. Each first processor 202A, 202B includes a source
program 204A, 204B and an interface client 206A, 206B.
Source programs may comprise Java classes, complete
applications in a high-level programming language, or other
Source text. Interface clients 206A, 206B are executable
applications that can be invoked using a command line
facility of an operating System of the first processors 202A,
2O2B.

0050. The source of the program may actually reside
either on the client or the Server. If just the class or program

US 2006/0053415 A1

name is used, then the server needs to be able to “get” to the
program, which is made available either on the Server
machine, or by using a mechanism for retrieving the pro
gram from the client. Alternatively, the actual program files
are passed to the Server. In this approach, the client program
reads the files containing byte code and transferS them over
the network to the server. This approach is well Suited to
Small programs or in an environment with a fast network, So
that the program can be quickly transferred over network to
the server.

0051 Each second processor 212A, 212B, 212C includes
an interpretation control server 208A, 208B, 208C and a
corresponding interpreter 210A, 2101B, 210C.

0.052 Each of the interface clients 206A,206B of the first
processors may select from among the Second processors
212A, 212B, 212C for purposes of having Source programs
204A, 204B interpreted. In one embodiment, a user may
enter a command on any one of the first processorS 202A,
202B that names one of the source programs 204A, 204B
and requests interpretation. The interface client 206A, 206B
of the first processor is invoked and executes, and then
selects one of the processors 212A, 212B, 212C for inter
pretation of the associated Source program. In response to
receiving a request to interpret a Source program, the
Selected interpretation control Server passes the Source pro
gram to the interpreter for interpretation.

0.053 Source program 104, or Java classes, may be stored
in any of Several locations with respect to processor 102,
first processors 202A, 202B, or second processors 212A,
212B, 212C. For example, source program 104 may be
Stored on a persistent storage device (e.g., disk) of processor
102. In the example of FIG. 11B, the source Java classes
may be Stored on the machine that hosts the interpretation
control server and Java Virtual Machine. Alternatively, the
Source programs or classes could be Stored on shared disk.
If the Source programs or classes are Stored on the machine
that hosts the interface client, then the interface client Sends
any pre-compiled, byte code class files that are associated
with the Source programs or classes at the same time that it
Sends the name and arguments of the Source programs or
classes to the interpretation control Server. If the Source
programs or classes are on shared disk, the interpretation
control Server links to them dynamically and provides them
to the interpreter.

0054) In any of the embodiments of FIG. 1A, FIG. 1B,
FIG. 2, communication of commands and information
between an interface client and an interpretation control
Server may use any means of communication that are
provided by the underlying operating System of the
machine(s) that host the interface client and interpretation
control Server. Examples of Suitable means of communica
tion among the client processes and the Server processes
include named pipes as well as shared memory, Sockets, and
Remote Procedure Call (RPC). The availability of such
multiple communication means enables one or more inter
face clients and one or more interpretation control Servers
can utilize resources of multiple machines, because the
communication means do not require client and Server to be
located on the same machine. For example, different pro
grams or different invocations of the same program can
share database handles, reducing overhead involved when

Mar. 9, 2006

multiple programs need to open the database. As a result,
client and Server processes may be separated in a distributed
fashion.

0055) Further, one instance of the Java Virtual Machine
may be shared among multiple programs that are concur
rently interpreted. The user can run any number of concur
rent processes on one Java Virtual Machine, thereby elimi
nating the need for extra Server processes, which consume
additional Startup overhead, degrade start-up performance
and hinder Scalability. This is accomplished by running each
concurrent program in a separate execution thread.
0056. In an embodiment, the interpretation control server
is implemented in the Java language, and the Standard Java
Virtual machine serves as the interpreter for both the inter
pretation control Server and the programs that the control
Server invokes based on requests from the interface client.
The Java Virtual Machine allows dynamic execution of Java
programs, i.e., the name of the program or class does not
have to be known at the time that the Java Virtual Machine
is started up. No modification or recompilation of the Java
Virtual Machine is necessary. Unlike prior approaches Such
as SpeedyCGI, the interpretation control element runs on an
instance of the interpreter. In addition, in an alternative
embodiment, the interpretation control Server and the inter
preter may be implemented in the form of an integral
Software element. Thus, in one example embodiment, the
interpretation control server uses the same JVM for inter
preting program as the one on which it itself runs.
0057 Embodiments are applicable not only to Java, but
to any computer programming language that can be used to
write the interpretation control Server, and that can dynami
cally instantiate and execute program code.
0.058 2. Functional Overview
0059 A description of processes involved in starting an
interpretation control Server and an interpreter, and using
them in cooperation with interface clients to interpret Source
programs, is now provided. For purposes of illustrating an
example, this description is made in reference to FIG. 2.
However, the functional description provided herein is
equally applicable to the example arrangements of FIG. 1A,
FIG 1B.

0060) 2.1 Starting the Servers
0061 Interpretation control servers 208A, 208B, 208C
may be started or initialized in advance of interpretation
processing, either manually or using automatic Startup pro
ceSSes that initiate on demand. For example, interface clients
206A, 206B may be configured with code for issuing a query
to a Selected interpretation control Server to determine
whether the interpretation control Server is then currently
operating. If the interpretation control Server is found to be
inactive at the time an interpretation process is needed, the
interface client can issue a command to processor 212 to
invoke or Start the interpretation control Server.
0062. In the specific case of FIG. 2, in which each
interpretation control Server resides on and is executed on a
processor other than the processor that hosts the interface
client, an interface client can Start an interpretation control
Server by means of a remote procedure call or any other
mechanism. If the interpretation control Server is hosted on
the same machine as the interface client, the client Starts the
server directly.

US 2006/0053415 A1

0.063 FIG. 3 is a flow diagram of a process of automati
cally starting an interpretation control Server. In one embodi
ment, Java interpretation control Servers may be started
automatically by an interface client using the process of
FIG. 3. The process of FIG. 3 may be carried out at any
time, including at the time a Java application is started.
0064. In step 302, an interface client starts operating. In
one embodiment, a user Starts an interface client by entering
a command-line command, Such as the name of the interface
client and one or more names of classes for interpretation. In
Step 304, the interface client reads a configuration file as part
of its initialization processing. The configuration file con
tains information that identifies one or more candidate
interpretation control Servers that can be used for interpre
tation. For example, the configuration file may comprise a
list of one or more IP addresses and Server process names for
known or available interpretation control Servers.
0065. In step 306, the next available interpretation con
trol Server is Selected. For example, an interface client Scans
the list of candidate interpretation control Servers and Selects
one according to pre-determined criteria, e.g., the Server that
is geographically closest, within the same Sub domain as
indicated by a comparison of an IP address of the processor
that hosts the interface client and the IP address of the
SerVerS, etc.

0.066. In block 308, a query is issued to the selected
interpretation control Server. For example, the interface
client issues a query to the selected interpretation control
server to determine whether it is then currently active. If the
Selected interpretation control Server is then currently oper
ating, as tested in block 310, then control passes to block 316
and the process of FIG. 3 concludes. If the selected inter
pretation control Server is not then currently operating, then
in block 312 the interface client automatically attempts to
Start the Selected interpretation control Server, e.g., by
remote procedure call.
0067. Thereafter, in block 314, the selected interpretation
control Server is queried to determine whether the Startup
was Successful. If the Startup was Successful, then control
passes to block 316 in which processing is complete. If
Startup is not Successful, then the next available interpreta
tion control server is selected in block 306. Although it is not
illustrated in FIG. 3, appropriate processing may be carried
out when all candidate interpretation control Servers have
been contacted without a Successful startup. For example, an
error can be thrown.

0068 2.2 Interpreting a Computer Program
0069. A method of efficiently interpreting a computer
program is now described. In one embodiment, Such a
method addresses the Specific problem of performance deg
radation resulting from re-starting the Java Virtual Machine
frequently for program that is executed repeatedly. Further,
the method improves efficiency involved in repeatedly start
ing up Small programs where the Startup overhead may
exceed the resources needed by the program to execute.
0070 FIG. 4 is a flow diagram of an example of a process
of efficiently interpreting a computer program, expressed
with respect to Steps carried out by an interface client. In
block 402, Source program information is received. Block
402 may include invoking the interface client from a com
mand line that includes a name of a Source program and one

Mar. 9, 2006

or more arguments. The arguments are values of Zero or
more parameters of the type normally received directly by
the program.

0071. In block 404, the source program information is
sent to an interpretation control server. In block 406, the
process waits to receive one or more results of interpretation
of the Source program by an interpreter that is associated
with the interpretation control Server. Such results are gen
erated by the interpreter, which may dynamically invoke a
named class or other Source program information. Alterna
tively, the program itself generates Such results. For
example, if the program invokes a method on a class that
returns a String, the String is returned to the client. If the
method returns nothing, which can be normal, then the
interpreter simply returns a Status value Such as "SUC
CESS’’’ or “ERROR.

0072. In block 408, the results of interpretation are
received. As shown by block 409, the results of interpreta
tion are printed to the Standard output device of the console
from which the client program was invoked. Printing to the
Standard output device may result in causing the results of
interpretation to be displayed in a Screen display.
0073 FIG. 5 is a flow diagram of an example of a process
of efficiently interpreting a computer program, for the Spe
cific context of interpreting Java programs.

0074. In block 502, an interface client receives a class
name and one or more arguments for a Java class to be
interpreted. Optionally, the interface client also receives the
name of a method to be invoked. In one embodiment, if no
method name is provided, then a predefined method (such as
“main()") is invoked.
0075). In block 504, the client sends the Java class name
and the arguments to an available interpretation control
server. Block 504 may involve selection of an available
interpretation control server using the technique of FIG. 3.
In another embodiment, the interface client is configured to
automatically start Server processes on multiple machines.
AS a result, the System can implement load distribution Such
that the interface client Selects one among a plurality of
available interpretation control Servers or interpreters. In this
embodiment, block 504 may involve selection of one of a
plurality of interpretation control Servers based on the then
current load of the Servers, or by using a round-robin
approach. In a related embodiment, the interface client and
interpretation control Server eXchange information about the
number of Source programs that are concurrently running on
the server or with the interpreter. The interface client
receives this information for all interpretation control Serv
erS in the System. Based on Such load information, the
interface client can Select different interpretation control
Servers to Serve Successive interpretation requests, thereby
balancing processing load acroSS all the Servers.
0076. In block 506, the selected interpretation control
Server receives the Java class name and arguments, and then
sends them to the Java Virtual Machine. In one embodiment,
the interpretation control Server dynamically invokes a
Specified or default method on the class whose name was
passed to it. It also passes the parameters to the method that
was passed to it. In this approach, the interpretation control
Server has the class that is being invoked on its machine and
the Java Virtual Machine is pre-configured to know where to

US 2006/0053415 A1

find it. In another approach, the actual byte code of the class
is passed to the Server, the class file is then assembled, and
then the class file is dynamically instantiated.
0077. In block 508, the Java Virtual Machine interprets
the named class using the Supplied arguments, and returns
one or more values to the interpretation control Server as
results of the interpretation. For example, the Java Virtual
Machine dynamically invokes a method on the class for the
class name that was provided, and returns the results of
running the method to the client. Alternatively, interpretation
of the named class may result in updating a database, writing
information to a data file, or other input and output opera
tions, returning valueS or return codes is not required. In this
case, the interpretation control Server waits until the method
finishes execution and then returns a “SUCCESS' message
to the client, So that client knows that program running was
completed.
0078. In block 510, the interpretation control server
returns the received values to the interface client. The
proceSS may be repeated any number of times as needed to
interpret other class files.
0079. After interpreting the named class, i.e., after
completion of both block 508 and block 510, the Java Virtual
Machine and the interpretation control Server continue run
ning and remain ready to Serve other client requests. The
interface client may terminate.
0080. In this configuration, a class can be executed with

little Start-up overhead. In particular, once the interpretation
control Server and interpreter processes are started, they stay
in memory; further, the time required for Start-up of the
interface client program is minimal because it is written as
a compact Software element in a language that does not
require the overhead of the interpreter (Such as C or C++).
In addition, any Java Virtual Machine that Supports dynamic
class instantiation may be used as the interpreter without any
modifications to the Java Virtual Machine.

0081. In one alternative embodiment, the command line
command that is used to invoke the process can receive one
or more additional parameters. In another embodiment, the
interpretation control Servers are pre-Started, and therefore
the process omits logic relating to determining whether an
interpretation control Server is available and running. In Still
another alternative, the Java class Source file(s) do not reside
on the interpretation control Server, but reside on the client
or another location. In this case, the process includes addi
tional logic to enable the client to retrieve the Java code
asSociated with the Java class and Send it along with the Java
class name and arguments as part of block 504.
0082 Further, in this arrangement, multiple instances of
interpreter 210A, 210B, 210C collectively can interpret
multiple programs and/or processes concurrently.
0.083 Using the disclosed system, the Java Virtual
Machine is used in off-the-shelf form and does not require
modification or recompilation.
0084) 3. Hardware Overview
0085 FIG. 6 is a block diagram that illustrates a com
puter system 600 upon which an embodiment of the inven
tion may be implemented.
0086) Computer system 600 includes a bus 602 or other
communication mechanism for communicating information,

Mar. 9, 2006

and a processor 604 coupled with bus 602 for processing
information. Computer system 600 also includes a main
memory 606, such as a random access memory (RAM) or
other dynamic Storage device, coupled to buS 602 for Storing
information and instructions to be executed by processor
604. Main memory 606 also may be used for storing
temporary variables or other intermediate information dur
ing execution of instructions to be executed by processor
604. Computer system 600 further includes a read only
memory (ROM) 608 or other static storage device coupled
to bus 602 for storing static information and instructions for
processor 604. Astorage device 610, Such as a magnetic disk
or optical disk, is provided and coupled to bus 602 for
Storing information and instructions.
0087 Computer system 600 may be coupled via bus 602
to a display 612, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
614, including alphanumeric and other keys, is coupled to
buS 602 for communicating information and command
Selections to processor 604. Another type of user input
device is cursor control 616, Such as a mouse, a trackball, or
cursor direction keys for communicating direction informa
tion and command Selections to processor 604 and for
controlling cursor movement on display 612. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

0088. The invention is related to the use of computer
system 600 for improving startup efficiency of interpreted
computer programs. According to one embodiment of the
invention, improving Startup efficiency of interpreted com
puter programs is provided by computer system 600 in
response to processor 604 executing one or more Sequences
of one or more instructions contained in main memory 606.
Such instructions may be read into main memory 606 from
another computer-readable medium, Such as Storage device
610. Execution of the Sequences of instructions contained in
main memory 606 causes processor 604 to perform the
process StepS described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi
nation with Software instructions to implement the inven
tion. Thus, embodiments of the invention are not limited to
any Specific combination of hardware circuitry and Software.
0089. The term “computer-readable medium' as used
herein refers to any medium that participates in providing
instructions to processor 604 for execution. Such a medium
may take many forms, including but not limited to, non
Volatile media, Volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag
netic disks, such as storage device 610. Volatile media
includes dynamic memory, Such as main memory 606.
Transmission media includes coaxial cables, copper wire
and fiber optics, including the wires that comprise bus 602.
Transmission media can also take the form of acoustic or
light waves, Such as those generated during radio and
infrared data communications.

0090 Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard disk,
magnetic tape, or any other magnetic medium, a CD-ROM,
any other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other memory chip or

US 2006/0053415 A1

cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.
0.091 Various forms of computer readable media may be
involved in carrying one or more Sequences of one or more
instructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and Send the instructions over
a telephone line using a modem. A modem local to computer
system 600 can receive the data on the telephone line and
use an infrared transmitter to convert the data to an infrared
Signal. An infrared detector can receive the data carried in
the infrared signal and appropriate circuitry can place the
data on bus 602. Bus 602 carries the data to main memory
606, from which processor 604 retrieves and executes the
instructions. The instructions received by main memory 606
may optionally be stored on storage device 610 either before
or after execution by processor 604.
0092 Computer system 600 also includes a communica
tion interface 618 coupled to bus 602. Communication
interface 618 provides a two-way data communication cou
pling to a network link 620 that is connected to a local
network 622. For example, communication interface 618
may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to
a corresponding type of telephone line. AS another example,
communication interface 618 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any Such implementation, communication interface 618
Sends and receives electrical, electromagnetic or optical
Signals that carry digital data Streams representing various
types of information.
0.093 Network link 620 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 620 may provide a connection
through local network 622 to a host computer 624 or to data
equipment operated by an Internet Service Provider (ISP)
626. ISP 626 in turn provides data communication services
through the Worldwide packet data communication network
now commonly referred to as the “Internet'628. Local
network 622 and Internet 628 both use electrical, electro
magnetic or optical signals that carry digital data Streams.
The Signals through the various networks and the Signals on
network link 620 and through communication interface 618,
which carry the digital data to and from computer System
600, are exemplary forms of carrier waves transporting the
information.

0094 Computer system 600 can send messages and
receive data, including program code, through the net
work(s), network link 620 and communication interface 618.
In the Internet example, a server 630 might transmit a
requested code for an application program through Internet
628, ISP 626, local network 622 and communication inter
face 618. In accordance with the invention, one Such down
loaded application provides for improving Startup efficiency
of interpreted computer programs as described herein.

0.095 Processor 604 may execute the received code as it
is received, and/or Stored in Storage device 610, or other
non-volatile Storage for later execution. In this manner,
computer system 600 may obtain application code in the
form of a carrier wave.

Mar. 9, 2006

0096 4. Extensions and Alternatives
0097. A method and system for efficiently interpreting a
computer program has been described in which interpreted
programs are invoked from a command line and have a fast
Start-up time. Multiple programs may be run concurrently
using one interpreter. Scalability and availability benefits are
achieved by enabling interpreted programs to share
resources Such as database connections, distribute load
acroSS multiple interpreter processes, and Select an inter
preter based on the then-current load of a plurality of
interpreters.
0098. Using the disclosed approaches, a software devel
oper can write relatively Small programs that can be
executed from the command line. Writing Such programs in
Java is currently impractical in many cases as a result of the
Slow Start-up of Java applications, and the overhead of
starting multiple Java Virtual Machines in the event that two
programs need to be started Substantially concurrently.
Using the disclosed approaches, in this context Start-up time
is virtually eliminated and multiple programs can re-use the
Same Java Virtual Machine process.
0099. The disclosed approaches are also applicable to
execution of CGI Scripts that can execute fast and can Scale
as the number of requests to the Server increases. In this
alternative, the interface client is a CGI application that is
invoked by a Web server. In contrast, if CGI is used to
invoke an application in the Java Virtual Machine directly,
then the start-up overhead is too great and the overall
Solution is non-Scalable because of the large amount of
memory consumed by each Java Virtual Machine process
and the cpu overhead required for Starting up each instance
of the Java Virtual Machine.

0100. In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention. The
Specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive Sense.

What is claimed is:
1. A method of interpreting a computer program wherein

the computer program requires invocation of an interpreter
for execution, the method comprising:

receiving an identifier for the computer program from a
client by an interpretation control Server, wherein the
identifier identifies the computer program to the inter
pretation control Server, wherein Said interpretation
control Server is a program written in an interpreted
language run by an instance of an interpreter, Said
instance providing an environment for the interpreta
tion control Server;

requesting the instance of the interpreter being used to run
the interpretation control Server to dynamically instan
tiate a method on the identified computer program and
within the environment of the interpretation control
Server; and

providing one or more result values to the client, wherein
the one or more result values are based on results of
interpretation of the computer program by the inter
preter.

US 2006/0053415 A1

2. A method as recited in claim 1, wherein the identifier
is received from a command-line invocation of the client.

3. A method as recited in claim 1, wherein receiving the
identifier includes:

executing the client that receives the identifier in a com
mand line invocation of the client;

extracting the identifier from the command line; and
providing the identifier from the client to the interpreta

tion control Server.
4. A method as recited in claim 2, wherein Said interpreter

is a Virtual Machine process, and wherein the identifier
includes a class name for use by an instance of the Virtual
Machine process.

5. A method as recited in claim 1, further comprising
iteratively repeating all prior Steps for each of a plurality of
class files that represent Source code for an application
program, wherein the entire program is interpreted within
the environment of the interpretation control server without
restarting the interpreter in Successive iterations.

6. A method as recited in claim 1, wherein receiving the
identifier for the computer program includes Selecting the
interpretation control Server from among one or more of a
plurality of interpretation control Servers.

7. A method as recited in claim 1, wherein the step of
receiving the identifier for the computer program from an
interface client by an interpretation control Server com
prises:

initiating a plurality of interpretation control servers,
wherein each Said interpretation control Server is run by
a separate instance of an interpreter;

receiving load-balancing information representing then
current processing load levels of each of the interpre
tation control Servers, and

Selecting the interpretation control Server from among one
or more of the plurality of interpretation control Servers
based on the load balancing information.

8. A method as recited in claim 1, further comprising
continuing operation of the interpretation control Server and
the instance of the interpreter after providing the one or more
result values to the interface client.

9. A machine-readable tangible Storage medium carrying
one or more Sequences of instructions for interpreting a
computer program, wherein execution of the one or more
Sequences of instructions by one or more processors causes:

receiving an identifier for the computer program from a
client by an interpretation control Server, wherein the
identifier identifies the computer program to the inter
pretation control Server, wherein Said interpretation
control Server is a program written in an interpreted
language run by an instance of an interpreter, Said
instance providing an environment for the interpreta
tion control Server;

requesting the instance of the interpreter being used to run
the interpretation control Server to dynamically instan
tiate a method on the identified computer program and
within the environment of the interpretation control
Server; and

providing one or more result values to the client, wherein
the one or more result values are based on results of
interpretation of the computer program by the inter
preter.

Mar. 9, 2006

10. A machine-readable medium as recited in claim 9,
wherein the identifier is received from a command-line
invocation of the client.

11. A machine-readable medium as recited in claim 9,
wherein receiving the identifier includes:

executing the client that receives the identifier in a com
mand line invocation of the client;

extracting the identifier from the command line; and
providing the identifier from the client to the interpreta

tion control Server.
12. A machine-readable medium as recited in claim 10,

wherein Said interpreter is a Virtual Machine process, and
wherein the identifier includes a class name for use by an
instance of the Virtual Machine process.

13. A machine-readable medium as recited in claim 9,
wherein execution of the one or more Sequences of instruc
tions by the one or more processors further causes iteratively
repeating all prior Steps for each of a plurality of class files
that represent Source code for an application program,
wherein the entire program is interpreted within the envi
ronment of the interpretation control Server without restart
ing the interpreter in Successive iterations.

14. A machine-readable medium as recited in claim 9,
wherein receiving the identifier for the computer program
includes Selecting the interpretation control Server from
among one or more of a plurality of interpretation control
SCWCS.

15. A machine-readable medium as recited in claim 9,
wherein receiving the identifier for the computer program
from an interface client by an interpretation control Server
comprises:

initiating a plurality of interpretation control Servers,
wherein each Said interpretation control Server is run by
a separate instance of an interpreter;

receiving load-balancing information representing then
current processing load levels of each of the interpre
tation control Servers, and

Selecting the interpretation control Server from among one
or more of the plurality of interpretation control Servers
based on the load balancing information.

16. A machine-readable medium as recited in claim 9,
wherein execution of the one or more Sequences of instruc
tions by the one or more processors further causes continu
ing operation of the interpretation control Server and the
instance of the interpreter after providing the one or more
result values to the interface client.

17. An apparatus, comprising:

a machine-readable medium carrying one or more
Sequences of instructions for interpreting a computer
program; and

one or more processors,

wherein execution of the one or more Sequences of
instructions by the one or more processors causes:
receiving an identifier for the computer program from

a client by an interpretation control Server, wherein
the identifier identifies the computer program to the
interpretation control Server, wherein Said interpre
tation control Server is a program written in an
interpreted language run by an instance of an inter

US 2006/0053415 A1

preter, Said instance providing an environment for
the interpretation control Server;

requesting the instance of the interpreter being used to
run the interpretation computer program and within
the environment of the interpretation control Server;
and

providing one or more result values to the client,
wherein the one or more result values are based on
results of interpretation of the computer program by
the interpreter.

18. An apparatus as recited in claim 17, wherein the
identifier is received from a command-line invocation of the
client.

19. An apparatus as recited in claim 17, wherein receiving
the identifier includes:

executing the client that receives the identifier in a com
mand line invocation of the client;

extracting the identifier from the command line; and
providing the identifier from the client to the interpreta

tion control Server.
20. An apparatus as recited in claim 18, wherein Said

interpreter is a Virtual Machine process, and wherein the
identifier includes a class name for use by an instance of the
Virtual Machine process.

21. An apparatus as recited in claim 17, further compris
ing the Step of iteratively repeating all prior Steps for each of
a plurality of class files that represent Source code for an
application program, wherein the entire program is inter
preted within the environment of the interpretation control
Server without restarting the interpreter in Successive itera
tions.

22. An apparatus as recited in claim 17, wherein receiving
the identifier for the computer program includes Selecting
the interpretation control Server from among one or more of
a plurality of interpretation control Servers.

23. An apparatus as recited in claim 17, wherein receiving
the identifier for the computer program from an interface
client by an interpretation control Server comprises:

initiating a plurality of interpretation control Servers,
wherein each Said interpretation control Server is run by
a separate instance of an interpreter;

receiving load-balancing information representing then
current processing load levels of each of the interpre
tation control Servers, and

Selecting the interpretation control Server from among one
or more of the plurality of interpretation control Servers
based on the load balancing information.

24. An apparatus as recited in claim 17, wherein execution
of the one or more Sequences of instructions by the one or
more processors further causes continuing operation of the
interpretation control Server and the instance of the inter
preter after providing the one or more result values to the
interface client.

25. An apparatus for interpreting a computer program,
comprising:
means for receiving an identifier for the computer pro
gram from a client by an interpretation control Server,
wherein the identifier identifies the computer program
to the interpretation control Server, wherein Said inter

Mar. 9, 2006

pretation control Server is a program written in an
interpreted language run by an instance of an inter
preter, Said instance providing an environment for the
interpretation control Server,

means for requesting the instance of the interpreter being
used to run the interpretation control Server to dynami
cally instantiate a method on the identified computer
program and within the environment of the interpreta
tion control Server; and

means for providing one or more result values to the
client, wherein the one or more result values are based
on results of interpretation of the computer program by
the interpreter.

26. An apparatus as recited in claim 25, wherein the
identifier is received from a command-line invocation of the
client.

27. An apparatus as recited in claim 25, wherein the
means for receiving the identifier includes:
means for executing the client that receives the identifier

in a command line invocation of the client;
means for extracting the identifier from the command

line; and
means for providing the identifier from the client to the

interpretation control Server.
28. An apparatus as recited in claim 26, wherein Said

interpreter is a Virtual Machine process, and wherein the
identifier includes a class name for use by an instance of the
Virtual Machine process.

29. An apparatus as recited in claim 25, further compris
ing means for iteratively repeating all prior Steps for each of
a plurality of class files that represent Source code for an
application program, wherein the entire program is inter
preted within the environment of the interpretation control
Server without restarting the interpreter in Successive itera
tions.

30. An apparatus as recited in claim 25, wherein the
means for receiving the identifier for the computer program
includes means for Selecting the interpretation control Server
from among one or more of a plurality of interpretation
control Servers.

31. An apparatus as recited in claim 25, wherein the
means for receiving the identifier for the computer program
from an interface client by an interpretation control Server
comprises:
means for initiating a plurality of interpretation control

Servers, wherein each said interpretation control Server
is run by a separate instance of an interpreter;

means for receiving load-balancing information repre
Senting then-current processing

means for Selecting the interpretation control Server from
among one or more of the plurality of interpretation
control Servers based on the load balancing informa
tion.

32. An apparatus as recited in claim 25, further compris
ing means for continuing operation of the interpretation
control Server and the instance of the interpreter after
providing the one or more result values to the interface
client.

