(12) STANDARD PATENT (11) Application No. AU 2007268226 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Creating frequent application-consistent backups efficiently
(51) International Patent Classification(s)
GOG6F 12/16 (2006.01) GOG6F 15/16 (2006.01)
(21) Application No: 2007268226 (22) Date of Filing: 2007.04.26

(87) WIPO No: WO07/139647

(30) Priority Data

(31) Number (32) Date (33) Country
11/461,846 2006.08.02 us
1283/DEL/2006 2006.05.29 IN

(43) Publication Date: 2007.12.06

(44) Accepted Journal Date: 2011.09.15

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Singla, Amit;Sahasranaman, Vivek;Fries, Robert M.;Ali, Abid;Anand, Karandeep
Singh;Badami, Vinay S_;Valiyaparambil, Manoj K.

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
HUGO et al., "SnapMirror®: File System Based Asynchronous Mirroring for Disaster Recovery",
Proceedings of the FAST 2002 Conference on File and Storage Technologies,
January 2002
US 2006/0064444 A1 (VAN INGEN et al.) 23 March 2006
US 6604118 B2 (KLEIMAN et al.) 5 August 2003

7139647 A1 I 00000 OO O

I~ cons

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
6 December 2007 (06.12.2007)

20 AP0 0 00O 0O
pIg

(10) International Publication Number

WO 2007/139647 A1l

(5D

ey

(22)
(25)
(26)
(309)

)

(72)

International Patent Classification:
GOGF 12/16 (2006.01) GOGF 15/16 (2006.01)

International Application Number:
PCT/US2007/010304

International Filing Date: 26 April 2007 (26.04.2007)

Filing Language: English

Publication Language: English

Priority Data:
1283/DEL/2006
11/461,846

29 May 2006 (29.05.2006)
2 August 2006 (02.08.2006)

IN
Us

Applicant: MICROSOFT CORPORATION [US/US];
Onc Microsoft Way, Redmond, Washington 98052-6399
(US).

Inventors: VALIYAPARAMBIL, Manoj K.; Onc Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
SAHASRANAMAN, Vivek; One Microsoft Way, Red-
mond, WA 98052-6399 (US). BADAMI, Vinay S.; One
Microsofl Way, Redmond, WA 98052-6399 (US). ALIL,
Abid; One Microsoft Way, Redmond, WA 98052-6399
(US). SINGLA, Amit; One Microsoft Way, Redmond,
WA 98052-6399 (US). ANAND, Karandeep Singh;

(81)

(84

—

One Microsoft Way, Redmond, WA 98052-6399 (US).
FRIES, Robert M.; One Microsoft Way, Redmond, WA
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AL, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ,DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, 8D, SL, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, IR, I'l, 172, UA, UG, UZ, VC, VN, ZA, ZM, ZW.
Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Turopean (AT, BE, BG, CH, CY, CZ, DL, DK, EL, GS, I,
FR, GB, GR, HU, IE, IS, IT, I.T, LU, T.V, MC, MT, NI, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: CREATING FREQUENT APPLICATION-CONSISTENT BACKUPS EFFICIENTLY

/100\
Production Server_105 / \
F____M_erlm-r{liﬂ__"‘ Full Volume
} ey Btneps 1178 | L
" Volume Filier Driver 115
K4 Volume Update
") 50
File 120 Bitmaps 117 e
121 122 123
I Logflo Volume Undale
o x [x [x Jems) Tr ' 155
Fils 123 —
127 128 129
I USN Journal
] o) i
File 130
131 132 133 Volume
T 175
>
Recovery {f)

Backup Server 116

Full Backup (f)
145

Update (ty
p@()

Update ()
p 1_55(

(57) Abstract: Data can be protected at a production server in a virtually continuous fashion, without necessarily imposing severe
traints on the source application(s). For example, a production server can create an application-consistent backup of one or
&= more volumes, the backups corresponding to a first instance in time. A volume filter driver can monitor data changes using an
& in-memory bitmap, while a log file and/or update sequence number journal can keep track of which files have heen modified. The

volume updates are also consistent for an instance (later) in time. At the next replication cycle, such as every few minutes (however
configured), the volume filter driver passes each in-memory bitmap to the physical disk on the production server. The production
server then sends the updates to the backup server, which thus stores application-consistent backups for the volume for multiple

instances of time.

WO 2007/139647 A1 |/ 0000 D00 0 R

— as 1o the applicant’s entitlement to claim the priority of the ~ For two-letter codes and other abbreviations, refer to the "Guid-
earlier application (Rule 4.17(iii)) ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Guazelte.

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

WO 2007/139647 PCT/US2007/010304

CREATING FREQUENT APPLICATION-CONSISTENT BACKUPS EFFICIENTLY

BACKGROUND
Background and Relevant Art
[0001] As computerized systems have increased in popularity, so have the needs to store

and backup electronic files and other communications created by the users and

.applications associated therewith. In general, computer syster;:ls and related devices create

files for a variety of reasons, such as in the general case of creating a word processing
document in a work setting, as well as creating a file used for more sophisticated database
purposes. In addition, many of these documents can include valuable work product, or
sensitive information that should be protected. One will appreciate, therefore, that there
are a variety of reasons why an organization will want to backup electronic files on a
regular basis, and thereby create a reliable restoration of an originally created file when
needed.

[0002] Despite some of the conveniences afforded by many conventional backup systems,
the mechanisms used by many conventional systems are often less efficient than optimal,
For example, the ability to create an application-consistent backup can be an important
component of some backup systéms. An application-consistent (as well as a file system-
consistent) backup is basically a backed-up set of data that are consistent in file state for a
particular point in time. For example, if a backup administrator copied all data on a given

production server volume, even as the data may be in the process of being written-to or

1

10

15

20

25

WO 2007/139647 PCT/US2007/010304

updated, the file state of the corresponding backup copy may not necessarily be consistent
for a single point in time. Creating an application-consistent backup, therefore, generally
involves the additional effort of reconciling file state.

[0003] Nevertheless, one can appreciate that there can be any number of difficulties
associated with creating application-consistent data backups. For example, conventional
mechanisms for creating a backups generally involve an application program, such as a
backup component of a mail or database application program, calling one or more backup
and/or restoration Application Program Interfaces (“APIs). In particular, the backup
component might tell the APIs to freeze writes to certain specified disk data on the
production server, and. then create a backup copy (i.e., “replica™ of the data.
Unfortunately, there is generally no simple way for backup components to describe their
data to the backup APIs at the production server. Further complicating this difficulty is
the fact that there can sometimes be a large number of backup APIs that may need to be
referenced during a backup process.

[0004] In addition, the fact that a particular application that created certain data is
requesting the backup services often implies that less than all of the production server data
might be backed up at any given time. For example, conventional backup mechanisms are
often application-specific with respect to the data being backed-up. Such application-
specific backup approaches often involve running multiple instances of the given
application during the backup process. One will appreciate, however, that running
multiple instances of a given application can be inefficient for a number of reasons,
whether from a cost or resource expenditure perspective.

[0005] Furthermore, even using applications to provide backup services can be somewhat
ineffective since application-specific backups gene.rally do not provide point-in-time

copies of the application data without significant resource expenditures. This can mean

10

15

20

25

WO 2007/139647 PCT/US2007/010304

that an application may not be able to provide an application-consistent point-in-time
backup with high frequency (thus providing highly granular recovery points) without
overloading both the production server and the backup server. Thus, conventional
backups performed by a particular application typically cannot provide a “hot standby” of
point-in-time backups that are only a few minutes old.

{0006] This general lack of granular configurability can extend to a wide variety of other
issues in backup systems. For example, conventional backup systems can be difficult to
configure for types of files, specific folders, or folder locations on a particular volume.
Thus, there can be difficulties associated with having conventional backup systems backup
production server data with better granularity than just an entire one or more volumes, or
just entire files, as opposed to backing up just those portions of the files that have actually
been medified. These and other similar problems often mean that the production server
and backup server are configured to copy and transfer more data between them than
necessary, which of course can affect system performance and network bandwidth. In
particular, the production server may be copying and transferring file data that have not
changed, as well as entire files that have only changed only in small part. Because of this
is, the backup server may also need to devote more storage capacity than necessary for
backing up the production server data.

[0007} One will appreciate, therefore, that each of the afore-mentioned factors (or
combinations thereof) can negatively affect Recovery Point Objectives (“RPO”), which
generally refer to how far back in time data need to be recovered in order for an
organization to re-launch operations after a disaster. The afore-mentioned factors can also
negatively affect Recovery Time Objectives (RTO), which generally refer to how much
time will pass after a disaster before the data necessary for re-launching operations can be

recovered. That is, conventional backup systems are generally ill-equipped to provide

WO 2007/139647 PCT/US2007/010304

relatively high recovery points, particularly in a relatively quick amount of time without
undue burdens on system resources.

[0008] Present backup systems, therefore, face a number of difficulties that can be

addressed.

2007268226 02 Aug 2011

20

25

30

SUMMARY
[0008A] In a first broad form the present invention seeks to provide, at a production
server in a computerized environment in which one or more production servers backup data
to be protected on one or more volumes at one or more backup servers, a method of
replicating production server data in a virtually continuous, consistent fashion, such that
recent data can be easily recovered from the backup server, including the acts of:
at a first instance of time, creating a copy of data for one or more volumes
from a production server, the copy corresponding to a full baseline of the data for the
one or more volumes;
sending the copy of the data for the one or more volumes from the production
server to a backup server, wherein the data is consistent for the first instance of time;
subsequent to the first instance of time, storing an indication for each of one or
more changes to the data on the one or more volumes, the indications being stored in
one or more bitmaps that are stored in volatile memory on the production server,
wherein at least one of the one or more changes includes a change to a file path of a
file corresponding to any of the one or more data changes at the production server,
such that the file path at the production server is different from a path to the file at the
backup server;
upon identifying a replication cycle event, saving the one or more bitmaps to
one or more log files that are stored in persistent storage of the production server,
wherein the one or more data changes are consistent for a second instance of time;
deleting the one or more bitmaps from the volatile memory;
using the indications from the one or more bitmaps to identify the one or more
data changes for the one or more volumes;
correlating the paths for the file at the production server and at the backup
server, such that new changes to the file can be sent to the backup server with a
change in the path for the file, wherein correlating the paths includes:
scanning a USN journal at least a first time to cache the change in file
path at the production server;
scanning the USN journal at least a second time to identify the initial
file path at the production server; and,
computing an adjusted path to the file at the backup server based on

the first and second scans; and,

2007268226 02 Aug 2011

20

25

30

sending to the backup server a copy of the one or more data changes for the
one or more volumes, such that the backup server has a copy of data for the one or
more volumes that are valid for a first instance of time and a second instance of time.
[0008B] Typically the method further includes saving file-level data changes for the
volume in one of a change filter, a change journal, or a USN journal.
[0008C] Typically the method further includes an act of correlating the one or more
volume log files with one of the change filter, change journal, or USN journal to identify one
or more changed files that correspond to the one or more data changes in each changed file.
[0008D) Typically the method further includes an act of marking the one or more data
changes on any one of a byte level or a byte block level in the one or more volume log files.
[0008E] Typically the method further includes the acts of:
freezing the one or more in-memory bitmaps corresponding to the second
instance in time; and,
creating a new set of one or more in-memory bitmaps corresponding to new
writes to the one or more changed files for the third instance in time.
[0008F] Typically a volume filter driver receives the one or more data changes and
applies the one or more data changes to the one or more volume log files.
[0008G] Typically the one or more data changes that are consistent for the first and
second instances of time are at least one of application-consistent or file system-consistent.
[0008H] Typically the method further includes an act of sending a new update of
volume data at the production server to the backup server, wherein the new update is
consistent for a third instance of time, and wherein the time elapsed between the second and
third instances of time is configurable for any time period of less than hour.
[0008I] Typically the method further includes an act of sending a request to the
backup server for a copy of one or more files, wherein the request to the backup server for a
copy of one or more files includes an indication that the one or more files are valid for one of
the second or third instances in time.
[0008J] Typically the method further includes an act of receiving a recovery response
from the backup server, wherein the recovery response includes a full copy of data for the
requested one or more files as of the second or third instance of time.

[0008K] Typically the method further includes:

5A

2007268226 02 Aug 2011

25

30

receiving the copy of data corresponding to the full baseline of the data for the
one or more volumes, the copy of the data being consistent for the first instance of
time;
receiving the copy of the one or more data changes for the one or more
volumes, the copy of the one or more data changes being consistent for the second
instance of time;
receiving a recovery request for data that is valid in accordance with the
second instance of time;
identifying the requested data for the second instance of time at one or more
backup server volumes, wherein the requested data includes at least a portion of the
one or more data changes; and,
sending the requested data that is valid for the second instance of time to the
production server.
[0008L] Typically the method further includes the acts of:
receiving a subsequent copy of one or more data changes for the one or more
volumes, the subsequent copy of the one or more data changes being consistent for a
subsequent instance of time;
upon receiving a subsequent recovery request for data that is valid in
accordance with the subsequent instance of time, identifying each of one or more
copies of changes to the requested data that were received between receipt of the full
baseline copy and receipt of the subsequent copy of one or more data changes; and,
combining the full baseline copy of the requested data with the identified one
or more copies of changes to the requested data.
[0008M] Typically the full baseline copy and the copies of the one or more data
changes are at least one of application-consistent or file system-consistent.
[0008N] In a second broad form the present invention seeks to provide, at a production
server in a computerized environment in which one or more production servers backup data
to be protected at one or more backup servers, a computer storage media having computer-
executable instructions stored thereon that, when executed, cause one or more processors at
the production server to perform a method of replicating production server data in a virtually
continuous, application-consistent fashion, such that recent data can be easily recovered from

the backup server, including the acts of:

5B

2007268226 02 Aug 2011

25

30

at a first instance of time, creating a copy of data for one or more volumes
from a production server, the copy corresponding to a full baseline of the data for the
one or more volumes;

sending the copy of the data for the one or more volumes from the production
server to a backup server, wherein the data is consistent for the first instance of time;

subsequent to the first instance of time, storing an indication for each of one or
more changes to the data on the one or more volumes, the indications being stored in
one or more bitmaps that are stored in volatile memory on the production server,
wherein at least one of the one or more changes includes a change to a file path of a
file corresponding to any of the one or more data changes at the production server,
such that the file path at the production server is different from a path to the file at the
backup server;

upon identifying a replication cycle event, saving the one or more bitmaps to
one or more log files that are stored in persistent storage of the production server,
wherein the one or more data changes are consistent for a second instance of time;

deleting the one or more bitmaps from the volatile memory;

using the indications from the one or more bitmaps to identify the one or more
data changes for the one or more volumes;

correlating the paths for the file at the production server and at the backup
server, such that new changes to the file can be sent to the backup server with a
change in the path for the file, wherein correlating the paths includes:

scanning a USN journal at least a first time to cache the change in file
path at the production server;
scanning the USN journal at least a second time to identify the initial

file path at the production server; and,

computing an adjusted path to the file at the backup server based on the first
and second scans; and,

sending to the backup server a copy of the one or more data changes for the
one or more volumes, such that the backup server has a copy of data for the one or

more volumes that are valid for a first instance of time and a second instance of time.

5C

2007268226 02 Aug 2011

20

[0009] Implementations of the present invention solve one or more problems in the art with
systems, methods, and computer program products configured at least in part to optimize
recovery point objectives and recovery time objectives in backup systems. For example, in at
least one implementation, resource savings at a production server can be achieved by monitoring
changes to production server volumes with a volume filter driver. In addition, network bandwidth
and backup server resources can be used efficiently by transferring primarily just the incremental
changes (e.g., bytes, or byte ranges of changes) to a backup server since the last replication cycle.
As will be appreciated more fully herein, such optimizations can provide the ability to backup
production server data in a virtually continuous (or near continuous) fashion without significant
drains on production server resources, backup server resources, and/or network bandwidth
concerns.

[0010] For example, a method from the perspective of a production server of replicating
production server data in a virtually continuous, consistent fashion can involve sending a copy of
volume data from one or more volumes of a production server to a backup server. In such a case,
the sent copy of data for the volume(s) will generally be consistent (i.e., application-consistent or
file system-consistent) for a first instance of time. In addition, the method can involve identifying
one or more changes to the volume data via one or more volume log files. The method can further
involve, upon identifying a replication cycle event, saving the one or more data changes in the
one or more volume log files. Generally, the one or more data changes will also be consistent for
a second (i.e., subsequent) instance of time. Still further, the method can involve sending to the
backup server a copy of the one or more changes. As such, the backup server will have a copy of
data of the one or more volumes, where the data are valid for a first instance of time and a second

instance of time.

5D

10

15

20

25

WO 2007/139647 PCT/US2007/010304

[0011] By contrast, a method from the perspective of a backup server of replicating
production server data in a virtually continuous, consistent fashion, can involve receiving
one or more volume backups from a production server. In such a case, the one or more
volume backups are consistent for an initial instance of time. The method can also
involve receiving one or more application-consistent backup updates, at least one of which
is a consistent update to at least one of the one or more volume backups for a subsequent
instance of time. In addition, the method can involve receiving a recovery request for data
that are valid in accordance with the subsequent instance of time.

[0012] Furthermore, the method can also involve identifying the requested data for the
subsequent instance of time at one or more backup server volumes. In such a case, the
requested data include at least a portion of the at least one application-consistent backup
update. In addition, the method can involve sending the requested data that is valid for the
subsequent instance of time to the production server.

[0013] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.
[0014] Additional features and advantages of exemplary implementations of the invention
will be set forth in the description which follows, and in part will be obvious from the
description, or may be learned by the practice of such exemplary implementations. The
features and advantages of such implementations may be realized and obtained by means
of the instruments and combinations particularly pointed out in the appended claims.
These and other features will become more fully apparent from the following description
and appended claims, or may be learned by the practice of such exemplary

implementations as set forth hereinafter.

10

15

WO 2007/139647 PCT/US2007/010304

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the
invention briefly described above will be rendered by reference to specific embodiments
thereof which are illustrated in the appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not therefore to be considered to
be limiting of its scope, the invention will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:
[0016] Figure 1A illustrates an architectural overview diagram in accordance with an
implementation of the present invention in which a production server creates incremental
application (or file system)-consistent backups and sends those backups to a backup
Server;
[0017] Figure 1B illustrates an overview diagram in accordance with an implementation
of the present invention in which a volume filter driver monitors changes to a volume
using system memory and one or more physical disks; and
[0018] Figure 2 illustrates flowcharts of methods comprising a sequence of acts performed
from the perspective of a production server and a‘ backup server in accordance with

implementations of the present invention.

10

15

20

25

WO 2007/139647 PCT/US2007/010304

DETAILED DESCRIPTION

[0019] The present invention extends to systems, methods, and computer program
products configured at least in part to optimize recovery point objectives and recovery
time objectives in backup systems. For example, in at least one implementation, resource
savings at a production server can be achieved by monitoring changes to production server
volumes with a volume filter driver. In addition, network bandwidth and backup server
resources can be used efficiently by transferring primarily just the incremental changes
(e.g., bytes, or byte ranges of changes) to a backup server since the last replication cycle.
As will be appreciated more fully herein, such optimizations can provide the ability to
backup production server data in a virtually continuous (or near continuous) fashion
without significant drains on production server resources, Backup server resources,' and/or
network bandwidth concemns.

[0020] As will be appreciated more fully from the following specification and claims,
implementations of the present invention can meet a wide range of "recovery time
objectives" by refreshing the backup server with a “full snapshot" of production server
data. In addition, implementations of the present invention include a volume filter driver
that can be implemented at the production server. As will be appreciated more fully
herein, the volume filter driver can be configured to monitor changes to bytes (and or byte
blocks) on production server volume(s). The production server can then be configured to
send an entire snapshot (or backup copy) by sending only those changed bytes (or byte
blocks) to the backup server. As such, use of a volume filter driver can mitigate the
burden on resources that might otherwise be consumed when moving a full snapshot of
production server data to a backup server.

[0021] Furthermore, and as a result of these and other features, the production server can

provide a backup server with virtually continuous backups of several “consistent” (i.c.,

10

15

20

WO 2007/139647 PCT/US2007/010304

application-consistent and/or file system-consistent) snapshots (i.e., initial backup and
subsequent shadow copies) that are spaced close together in time. In addition, since each
update to the backup is application-consistent (and/or file system-consistent), or valid for a
specific instance of time, the difference between each update will also be application-
consistent. As such, implementations of the present invention provide a user with the
ability to recover a wide range of application-consistent data (e.g., from the file level,
database level, and even entire production server level) with fairly high granularity (e.g.,
only a few minutes old) with much less burden than otherwise might be needed.

[0022] Generally, there are a variety of ways in accordance with implementations of the
present invention for implementing continuous, consistent backup services. In at least one
very basic sense, creating a consistent backup includes creating a baseline copy (e.g., 145)
of one or more volumes (e.g., 175), and then supplementing that baseline copy with
incremental, consistent updates (e.g., 150, 155) to the one or more volumes. For example,
Figure 1A shows that production server 105 creates at least one baseline backup copy
(e.g., 145) of data on selected volume(s) 175. In addition to simply creating the baseline
copy 145, a backup administrator in system 100 might use any number or type of
mechanisms to make copy 145 consistent.

[0023] In one implementation, the backup administrator might use a replica agent (not
shown), installed at backup server 110 and/or at production server 105 to guide replication
processes. During a replication cycle, for example the replica agent might be configured to
instruct any one or more appropriate application writers on production server 105 to
momentarily hold write activities on any one or more volumes (e.g., a database may span
several volumes, and several applications can use the same volume with different

replication schedules) for a single point in time. (For a file share backup, an application

10

15

20

WO 2007/139647 PCT/US2007/010304

writer may not even be involved at all.) This allows the replica agent to thereby create a
single point-in-time backup (i.e., “shadow copy”) of the one or more volumes.

[0024] The replica agent may also provide instructions to each application writer to
perform certain functions on their data of interest, to thereby ensure that all data and
metadata are consistent for the point-in-time of the rcplicatioh cycle. For more simple
applications that may not have an application writer or corresponding plug-in associated
therewith, the replica agent might be configured to simply instruct those applications to
freeze or shut down during the replication cycle. The aforementioned agents, components,
and functions for creating consistent backups can be provided in at least one
implementation in the MICROSOFT environment, for example, with a Volume Shadow
Copy Service (“VSS™).

[0025] In any event, having frozen the writes of interest to a particular volume (or
volumes) and for a particular instance in time, production server 105 can then make and
send a copy of the volume(s) (or alternatively only those selected folders, ﬁles, or file
types) of interest. For example, Figure 1A shows production server 105 can provide this
initial baseline copy 145 to backup server 110. Generally, production server 105 can
provide the baseline copy 145 any number of ways. In one implementation, for example,
production server 105 simply sends copy 145 over a network connection. In other
implementations, such as where network bandwidth may be more limited, a backup
administrator can transfer the volume copy to tape (or another intermediate storage node —
not shown) and later connect that tape to backup server 110. However performed,
production server 105 provides backup server 110 with at least one consistent baseline
copy of all the data (i.e., valid for time “to,”) for the volume, folder, file, or set of files of

interest that shares the same replication cycle.

10

10

15

20

25

WO 2007/139647 PCT/US2007/010304

[0026] After providing one or more baseline copies of the onme or more production
server(s) volumes, backup server 110 can continue to receive updates to the baseline
backup(s). For example, backup server 110 can continue to backup production server 105
on a wide variety of configurable replication schedules, such as those ranging in the orde.r
of about 5-10 minutes, 10-15 minutes, 15-30 minutes, or the like. Generally, the level to
which the backup administrator configures the replication cycles will be the level of
granularity to which one can access a particular “recovery points.”

[0027] As previously discussed, ordinarily a relatively high level of granularity in the
accessibility of point-in-time backups could be prohibitively resource-expensive for some
backup systems. Thus, to create the above-mentioned level of granularity of “recovery
points) without necessarily compromising the “time taken to recover” (e.g.,- without
incurring significant overhead), implementations of the present invention can provide a
number of important components and functions.

[0028] In one implementation discussed more fully hereinafier, for example, a volume
filter driver 115 can be used to monitor iterative changes to any of the one or more |
volumes {e.g., 175) at production server 105, with either in-memory bitmaps, or by
marking particular changed bytes (or byte blocks) in a volume log file on disk. Generally,
a volume filter driver (e.g., 115) will be independent of how hardware or software-based
“snapshots” are implemented on production server 105. One will appreciate, however,
that a volume filter driver 115 is not necessarily required, and similar functions may be
performed by other components, as also discussed herein. In additional or alternative
implementations production server 105 can also monitor changes to the volume (e.g...
changes to files 120, 125, 130, etc.) through the use of conventional shadow copy
monitoring mechanisms, and/or Update Sequence Number journals (i.e., “USN journal™*

140), or the like. With particular respect to the MICROSOFT operating environment, for

11

10

15

20

25

WO 2007/139647 PCT/US2007/010304

example, such components are provided through combined use of a Volume Shadow Copy
Service (“VSS”) and a USN journal.

[0029] Generally, a volume log file (e.g., 135) can comprise all of the changes to a volume
during a specific replication c;ycle (e.g., volume offset, length of data change) for each
write to the volume, and/or in-memory bitmap of changes. When a specific replication
cycle occurs, an existing volume log file (e.g., 135) is frozen, and a new volume log file
(not shown) can be created to gather changes for the next replication cycle. In one
implementation, volume level changes can be sent directly to backup server 110, without
any additional correlating information. Corresponding updates sent to backup server 110
might then be applied into the replica as “byte n” (or “byte block n changed to n+1”). In
‘additional or alternative implementations, volume data at production server 105 can also
be correlated with USN journal (or related component) 140 information.

[0030] In particular, a USN journal (e.g., 140) comprises time-stamped information of
such activities with respect to the file name data in the file system. Components similar or
identical to USN journal 140 are also referred to as change filters, or change journals, or
the like. Specific reference to a “USN journal 140” herein, therefore, is made primarily by

way of convenience. In any event, and with reference to file system activity, production

‘server 105 can combine volume log file (e.g., 135) data and change journal data (e.g.,

USN journal 140) to correlate the time, type of activity, and file name, etc. of the various
writes to volume 175.

[0031] Along these lines, USN journal 140 can also be used in conjunction with volume
log file 135 to correlate such things as the address of a particular byte or “byte block™
change (as well as corresponding files for the change). In particular, each file on a volume
can be thought of as an open set of addressable bytes, as well as an open set of addressable

fixed-length byte blocks. In some cases, monitoring and transferring byte blocks (rather

12

10

15

20

25

WO 2007/139647 PCT/US2007/010304

than individual bytes) can be a more efficient way to monitor and transfer changes, as well
as determine how much space may be needed for backup purposes. In particular, this is in
part since byte blocks represent a level of granularity that is usually somewhat less than
that of an entire file, but greater than that of a single byte. As such, Figure 1A shows that
production server 105 logs the various byte or byte block changes to its files to be
protected.

[0032] For example, Figure 1A shows that production server 105 logs that bytes (or “byte
blocks”) 121, 122, and 123 of file 120 have changed (e.g., 120 is a new file) since the last
replication cycle ‘(e.g., last 5, 10, 15, 20, 25, or 30 minutes, etc.). Similarly, although file
125 comprises bytes (or byte blocks) 127, 128, and 129, only bytes 128 and 129 have
changed; and where file 130 comprises bytes 131, 132, and 133, only byte 133 has
changed since the last replication cycle. Generally, production server 105 can log these
changed bytes in a read-only shadow copy of the volume, folder, or relevant files. As
previously mentioned, production server 105 can also store these changed bytes for a
volume log file as in-memory bitmaps (e.g., using a bit per block of data on the volume)
that are later passed to physical disk during replication. However logged or monitored,
and at an appropriate time (i.e., the next replication cycle), production server 105 can then
prepare only these file changes (i..e., 121, 122, 123, 128, 129, 133, etc.) to be sent to
backup server 110.

{0033] In this particular example, the changes (i.e., 121, 122, 123, 128, 129, 133, etc.) are
each valid for the most recent point-in-time (i.e., “t;”), and thus consistent (i.e.,
application-consistent or file system-consistent). Notably, since these bytes (or byte
blocks) represent the difference between two consistent point-in-time backups, the
application of these bytes (or byte blocks) at backup server 110 can also be consistent.

After identifying these data changes, production server 105 can send these changes as

13

10

15

20

25

WO 2007/139647 PCT/US2007/010304

updates 150 (for time t;) to backup server 110. Similarly, production server 105 can
identify and send each next set of incremental data changes (i.e., data changes logged for
one or more volumes) in a next incremental update for the next replication cycle. For
example, Figure 1A als‘o shows that production server 105 prepares and sends update 155
(for time t») to backup server 110, and so on.

[0034] One will appreciate that from the point at which production server 105 reads the
changed data and prepares message 150, there may be additional changes to the volume
data, which could make the data being read otherwise inconsistent (i.e., consistent for time
“t1” and valid for a subsequent time). As previously discussed with respect to baseline
copy 145, therefore, a volume shadow copy service (or other VSS-like mechanism) can be
used in at least one implementation to read data only for the frozen, particular instance in
time, and not any changes subsequent thereto. This can help ensure that snapshot updates
150 (as well as 155, etc.) are consistent up to the indicated instance of time at which
snapshot (also referred to as backup update or update) operatiohs commenced.

[0035] Upon receipt, backup server 110 can store each backup and corresponding
update(s) in a particular replica volume. In one implementation, backup server 110 stores
the backups and updates in the same volume allocation of the same storage medium. In
other implementations, backup server 110 (and/or additional backup servers or storage
nodes) can store the backups and corresponding updates on separate volumes, and even on
separate storage media, however desired by the backup administrator.

[0036] In some cases, and due to the nature of the virtually continuous, iterative backups
of production server 105, a backup administrator may need to synchronize a number of
aspects of the data with production server 105 data. For example, there may be cases of
failure during a replication cycle, and/or over several replication cycles, such as may be

due to network outage, log overflows (e.g., USN journal wrap, etc.). In one

14

10

15

20

25

WO 2007/139647 PCT/US2007/010304

implementation, therefore, a backup administrator can perform a validation or correction
by creating a new baseline full snapshot (e.g., similar to 145) of production server 105.
The backup administrator can then perform (e.g., via production server 105) a checksum
comparison (or other validation) between the a snapshot of the data on production server
105, and the data on backup server 110. Any errant data on backup server 110 can then be
fixed, if necessary.

[0037] With particular respect to WINDOWS operating components, for example, this
checksum can be performed in at least one implementation using Remote Differential
Compression (“RDC”) used in WINDOWS SERVER 2003. In some cases, use of an
RDC type of mechanism may be preferable in a Wide Area Network (“WAN™)
environment. In another implementation, such as may be preferable in a Local Area
Network (“LLAN”), the backup administrator can divide each file in a snapshot into sets of
“chunks” (e.g., byte blocks) and then compute checksums for each chunk.

[0038] In any event, due in part to the level of replication granularity provided by
implementations of the present invention, if a user requests a particular version of a file (or
other data representation) that is only a few minutes old (e.g., needed from a recent
personal computer crash), the user can send a request to backup server 110 for that
particular version of a file. For example, a user might request a particular copy of file 120
that was valid as of 5 minutes ago (e.g., “ty,” or before updates 121, 122, 123). Similarly,
an administrator might request (not shown) an entire reproduction of volume or volumes
175.

[0039] Upon receipt of the request, and depending 6n the nature of the request, backup
server 110 can then find the requested data as appropriate. For example, with respect to
basic file-system data, each update of volume 175 could contain a full copy of requested

data. Thus, backup server 110 might only need to identify the time requested by the user,

10

15

20

25

WO 2007/139647 PCT/US2007/010304

identify the data within the. corresponding update for that time, and then provide a copy of
that data back to the user (e.g., recovery message 160).
[0040] In other cases, such as with mail or other types of database application data, each
incremental update (e.g., 150, 155) received by backup server 110 might only contain an
incremental update for the requested data. Thus, backup server 110 could be configured to
play back each incremental update from the requested recovery point back to the last
baseline full. Backup server 110 can then combine the requested data identified during
playback (e.g., 145, 150, 155, or to.,), until reaching the time .speciﬁed in the r@quest.
When all relevant data from the original backup and corresponding updates are combined
and prepared, backup server 110 can then send the recovery response (e.g., 160), which is
valid pursuant to the requested time. For example, Figure 1A shows that backup server
110 sends resp.onse 160, which indicates that the recovered data are valid for time ““t;.”
[0041] In the foregoing implementation, the backup server 110 may therefore need
application support to playback the incremental updates. In another implementation, the
baseline full copy and any corresponding incremental updates between the baseline full
and the requested point in time can simply be copied back to production server 105. A
corresponding application writer (e.g., an application writer within a shadow copy service
frameworl;) at production server 105 can then playback the logs on the full backup.
[0042] Generally, the time that elapses between the request for particular data and the
corresponding response can be a function of at least two parts:

1. Time to transfer the data from backup server 110 to production server 105; and

2. Time for backup server 110 (e.g., via a relevant backup agent) to complete the

recovery.

Of course, the timé to transfer data from target to source is generally a function of the

network bandwidth available, as well as disk speeds and resource usage at backup server

16

10

15

20

25

WO 2007/139647 PCT/US2007/010304

110 and production server 105. By contrast, the time to create a particular recovery is
typically a function of the time required to recover a full copy of the produétion server
data from a given baseline, and the time required to identify and play back accumulated
updates (e.g., “t;.1”") accumulated from the baseline in order to recovery a specific point in
time. One will appreciate, therefore, that recovery time can be greatly enhanced by
limiting the amount of updates backup server 110 (or production server 105) has to play
back for any given recovery request, such as by creating periodic baseline full copies (e.g.,
145),

[0043} As previously mentioned, one way of limiting the amount of incremental updates
that backup server 110 might need to replay can involve creating a new “full” baseline
snapshot periodically. Since creating and sending a new, full snapshot to backup server
110 can be resource-expensive (e.g., network bandwidth, production server 105 resourées,
and the amount of backup server 110 disk space needed) in some cases, implementations
of the present invention also provide for the creation of “intelligent full snapshots.” These
intelligent, full snapshots are effectively a baseline demarcation of a predetermined point
in time. For example, every predetermined period, such as every two weeks, backup
server 110 can roll two weeks worth of incremental updates (e.g., 150, 155, etc.) together
with the last baseline copy of data (e.g., 145, or newer), and thus create essentially a new
“tp” copy of production server 105 data.

[0044] In order to roll each of these incremental updates together efficiently, backup
server 110 can be configured to monitor all writes to production server 105 volume since
the last full snapshot. In at least one implementation, for example, backup server 110
implements volume filter driver 115 at production server 105 to monitor changes to the
volume (i.e., one or more volumes), and store those writes in production server 105

memory 170 during each replication cycle. For example, Figure 1A (see also Figure 1B)

17

10

15

20

25

WO 2007/139647 PCT/US2007/010304

shows that volume filter driver 115 interfaces between volume 175 and memory 17.0 on
production server 105. As will be understood more fully in Figure 1B, each time a change
is made to volume data, volume filter driver 115 can record that change (or set of changes)
in a volume log file 135. In at least one implementation, these changes are recorded in
system memory 170 as an in-memory bitmap (e.g., 117a) for each of the one or more
volumes. When production server 105 is ready for a particular replication cycle, volume
filter driver 115 can then pass all the in-memory bitmaps to volume 175, and production
server 105 can then send the corresponding data to backup server 110.

[0045] For example, Figure 1B shows that memory 170 has been used to gather snapshot
data corresponding to various in-memory bitmaps. In particular, Figure 1B shows that
volume filter driver 115 identifies certain file changes (i.e., file changes 121, 122, 123,
etc.), and subsequently stores these changes as corresponding in-memory bitmaps 193,
195, etc. in memory allocation 190a. In this particular example, volume filter driver 115
stores all changes to the corresponding one or more volumes since the last replication
cycle (i.e., spapshot 185a — “t,”), and, as such, each bitmap 193, 195, etc. is valid for the
most recent instance of time in the corresponding snapshot (i.e., 190a, snapshot “t3”).
[0046] When the replication cycle is triggered, such as due to instructions received from a
replica agent, volume filter driver 115 transfers all bitmaps for snapshot 190a (i.e., bitmaps
193, 195, etc.) to the appropriate volume 175 allocation 190b. For example, Figure 1B
shows that memory snapshot portions 180a and 185a have been emptied since the
replication cycle for which they were generated has already passed. Furthermore, the
corresponding volume 175 allocations 180b, 185b, etc. now contain “all bitmaps” 183,
187 that were previously stored in memory portions 180a, 185a, respectively. Ultimately,
when a snapshot corresponding to the set of bitmaps is deleted, the bitmaps (e.g., 183,

187) can remain on the volume (e.g., 175).

18

10

15

20

25

WO 2007/139647 PCT/US2007/010304

[0047] These in-memory bitmaps (e.g., 193, 195) can be created and implemented a
number of different ways. In one implementation, for example, backup server 110 takes a
shadow copy snapshot (e.g., snapshot 150) of the production server 105 volume, an
Input/Output Control (“IOCTL”) can be sent to the shadow copy provider (software or
hardware) . This IOCTL can be intercepted by volume filter driver 115 to split the active
bitmap. In response, and during creation of the shadow copy, volume filter driver 115
synchronizes the split by creating a frozen set of bitmaps (e.g., 1802/189b, 185a/185b) and
a new active set of bitmaps (e.g., 190a/190b). In another alternative implementation, an
entity that is capable of harvesting the shadow copy diff area (e.g., VSS diff area) could be
aware of the volume level changes and also aware of the USN/file system. As such, this
entity could provide an abstraction that would give the set of changed files and the set of
changes in the files. An appropriate replication or backup application can then use this
infrastructure for achieving replication.

[0048] When a replication cycle is triggered, volume filter driver 115 passes the frozen
bitmaps to disk in order to reduce memory 170 usage. Volume filter driver 115 can also
expose one or more IOCTLs that can be queried for all the changes that occurred since the
most recent snapshot (e.g., “t;-1”"). In one implementation, querying these IOCTLs returns
all the bitmaps that have been accumulated since the most recent snapshot. One will
appreciate that using in-memory bitmaps as described herein to monitor changes can be
very efficient, at least in part since in-memory bitmaps tend not to affect production server
105 resources significantly.

[0049] In an alternative implementation, and to identify each of these monitored changes,
backup server 110 can also identify the set of files that are changed using, for example
USN journal 140 (or using other monitored file metadata). Backup server 110 (or relevant

component) can then query the production server 105 file system for the file extents that

19

10

15

20

25

WO 2007/139647 PCT/US2007/010304

each changed file occupies. An intersection between the file extents queried from the file
system and the file extents that volume filter driver 115 reports can provide the extents of
the file that have changed since the last replication cyéle, and thus allow certain files (e.g.,
database files) to be excluded from certain replication processes. Backup server 110 (or
relevant component) can then repeat this process for each changed file (either as reported
by a USN journal or by a similarly-configured metadata document).
[0050] With particular respect to using a USN journal to monitor changes at production
server 105, one will appreciate that a File Reference Number (“FRN™) at production server
105 might not match with the FRN for the same file stored at backup server 110. Thus, in
order to send the monitored changes from production server 105 to backup server 110, it
may be important in some cases to compute a correct, matching path to the particular
changed file. For example, a volume might have the following changes, which involve
modifying a path at production server 105 for file “y.txt”:

1) Modify C:\a\b\c\y.txt

2) Rename C:\a\b to C:\p\q\r

3) Modify Cap\qwiblely.txt

4) Delete C:\a
In the example illustrated immediately above, original path “a\b” at production server 105
is renamed as path “p\g\r,” and directory “\a” of the original path is deleted. This leaves
the path at production server 105 for file “y.txt” to be “C:\p\q\p\r\b\c\y.txt.” Nevertheless,
these path changes for “y.txt” at production server 105 may not automatically result in
changes to the path at backup server 110. In particular, the path to y.txt at backup server
110 will generally remain “a\b\c\y.txt.”
[0051] At the time of a snapshot, production server 105 might also record into the USN

Journal the following changes shown below for example records 1-5:

20

10

15

20

25

WO 2007/139647 PCT/US2007/010304

1) {rsn = modify, FRN = yFRN, parentFRN = cFRN, filename = y.txt}

2) {rsn =rename-old, FRN =bFRN, parentFRN = aFRN, filename =b}

3) {rsn =rename-new, FRIN =DbFRN, parentFRN =rFRN, filename =b}

4} {rsn = modify, FRN = yFRN, parentFRN = cFRN, filename = y.txt}

5) {rsn = delete, FRN = aFRN, parentFRN = root, filename = a}
In addition from the foregoing example, the state of the relevant production server 105
volume at the time of replication is shown as “C:\p\q\r\b\c\y.txt.”
[0052] In order to send changes for record 1 to backup server 110 in this particular
example, production server 105 needs to retrieve the file paﬁl for “y.txt” from backup
server 110. Specifically, due to the above-described path change, the path for “y.txt” at
production server 105 in the snapshot for “c-FRN” is C:\p\q\r\b\c\y.txt, which is different
from its path at backup server 110 (i.e., C:\a\b\c\y.txt). Implementations of the present
invention can solve this issue with at least two alternative approaches. In one
implementation, for example, the USN journal can simply retrieve and store path metadata
from backup server 110 in a relational database, and thus continually correlate file paths at
production server 105 and backup server 110.
[0053] In an altemative implementation, production server 105 can scan the USN journal
twice. In the first pass, production server 105 can correlate this information through
iterative scans (or “passes”) of USN journal 140. In one scan, for example, production
server 105 caches each folder rename. In a second pass, production server 105 can
compute the corresponding path at backup server 110 based on the cached renames and
current paths. For example, at the end of a first pass, production server 105 might cache
the following information about deleted and/or renamed directories:

{FRN = bFRN, replica_parent = aFRN, replica_name = b}

{FRN = aFRN, replica_parent = root, replica_name = a}

21

10

15

20

25

WO 2007/139647 PCT/US2007/010304

To compute the file path for y.txt, production server 105 first identifies that the parent
FRN (i.e., “File Reference Number”) for y.txt in record “1” is ¢cFRN. In a next step,
production server 105 computes the file name for cFRN, as well as the file name of the
parent FRN. Production server 105 then looks in cache before querying the file system.
Since, in this example, the cache has no file name entry for the parent cFRN, production
server 105 queries the file system, apd determines that the file name is c, and that the
parent is bFRIN.
[0054} Production server 105 then computes the file name of bFRN, as well as bBFRN’s
corresponding parent file name. As before, production server 105 first looks before
querying the file system. Since the cache has an entry for bFRN in this example,
production server 105 determines that the file name is b, and that the parent is aFRN.
Production server then computes the file name of aFRN and the parent file name of aFRN.
Again, production server 105 first looks at the cache before querying the file system, and
since the cache has an entry for aFRN in this example, production server 105 determines
that the file name of aFRN'is “a,” and the parent FRN is “root.”
[0055] Ultimately, production server 105 computes the final path as “c:\a\b\c\y.txt.” Next,
when record 3 (rename-new) is processed in the second pass, the cache is updated for the
new parent file name as follows.
| {FRN = bFRN, replica_parent = rFRN, replida_namc =b}

{FRN = aFRN, replica _I‘Jarent = root, replica_name = a}
When production server 105 processes record 4, even though the record is identical to
record 1, the path computed for y.txt is now “C:\p\q\r\b\c\y.txt.” The computed path is
different in this particular case since the parent “bFRN” in the cache is now “rFRN.”
Accordingly, the foregoing text illustrates how the two-pass algorithm can help optimige

the amount of data that production server 105 transfers to backup server 110. In

22

10

15

20

25

WO 2007/139647 PCT/US2007/010304

particular, the foregoing text describes multiple ways in which production server 105 can
identify at the time of the second pass any created files, as well as any files that are
modified and then deleted, and thus properly correlate file paths with backup server 110.
[0056] Accordingly, Figures 1A-1B and the corresponding text provide a number of
systems, components, and mechanisms for efficiently backing up a production server’s
data in a virtually continuous fashion. In addition to the foregoing, implementations of the
present invention can also be described in terms of flowcharts of methods having a
sequence of acts for accomplishing a particular results. In particular, Figure 2 illustrates
flowcharts of from the perspective of production server 105 and backup server 110 in
accordance with implementations of the present invention for backing up and recovering
data. The acts illustrated in Figure 2 are described bélow with respect to the components
and diagrams illustrated in Figures 1A-1B.

[0057] As a preliminary matter, reference is sometimes made herein to a “first,” “secon S’
or “third” event (or an “instance™) in a sequence of time. One will appreciate, however,
that such designations are merely to differentiate unique instances on a continuum, such
that the “first” event or instance is not only different from a “second” or “third” instance,
but also occurs at some point before the “second” and/or “third” instances. For example,
the creation and sending of a baseline “full” copy of data (e.g., 145) could also be
considered a second or third (or later) instance with respect to some prior event (not
shown), even though described primarily as a first instance with respect to update 150.
Similarly, update 150 could be described as a occurring at a “first” instance in time with
respect to update 155 (e.g., a “second” instance), and so forth, though these terms are
primarily described herein as “second” and “third” instances of times in the illustrated
examples with respect to baseline full 145. Such term usage in the relative sense for

sequential events also applies to usage herein of the terms “initial” or “subsequent.”

23

10

15

20

25

WO 2007/139647 PCT/US2007/010304

[0058] For example, Figure 2 shows that a method from the perspective of production
server 105 of replicating production server data in a virtually continuous, application (i.e.,
or file system)-consistent fashion, such that recent data can be easily recovered from the
backup server, comprises an act 200 of sending a consistent copy of volume data to a
backup server. Act 200 includes sending a copy of volume data from a production server
to a backup server, wherein the data are consistent for a first instance of time. For
example, production server 105 (e.g., in response to replica agent or other command from
backup server 110) creates an entire volume backup 145 that is consistent for a particular
point in time (e.g., “t”). In one implementation, this involves calling all application
writers at production server 105 to freeze and begin preparations for backup. Production
server 105 then copies all data on the volume (or on specific files, folders, or file-types,
etc.), and prepares this data to be sent to (and stored at) backup server 110.

[0059] Similarly, Figure 2 shows that the method from the perspective of backup server
110 of replicating production server data in a virtually continuous, consistent fashion, such
that recent data can be easily recovered from the backup server, comprises an act 240 of
receiving an consistent volume backup from a production server. Act 240 includes
receiving one or more volu:ﬁe backups from a production server, wherein the one or more
volume backups are consistent (i.e., application or file system-consistent) for an initial
instance of time. For example, Figure 1A shows that backup server 110 receives and
stores full backup 145, which is received over a network from production server 105, or
received from a tape drive or other storage node that is at some point connected with
Backup server 110. In particular, a backup administrator can take a hardware snapshot of
production server 105, and then attach the snapshot to backup server 110.

[0060] In addition, Figure 2 shows that the method from the perspective of production

server 105 comprises an act 210 of identifying one or more changes to the volume data.

24

10

15

20

25

WO 2007/139647 PCT/US2007/010304

Act 210 includes identifying one or more changes to the volume data via one or more
volume log files. For example, as shown in Figures 1A and 1B, volume filter driver 115
can tracks changes to files 120, 125, and 130 and store those changes in volume log file
135. In one implementation, these one or more changes may alternatively be stored in
memory 170 as in-memory bitmaps before being placed in volume log file 135.

[0061] Fiéure 2 also shows that the method from the perspective of production server 105
comprises an act 220 of saving one or more consistent updates to disk. Act 220 includes,
upon identifying a replication cycle event, saving the one or more data changes in the one
or more volume log files, wherein the one or more data changes are consistent for a second
in;tance of time. For example, upon identifying a replication cycle trigger (e.g., from a
replica agent), volume filter driver passes bitmaps 193, 195 in memory allocation 190a to
allocated physical disk space 190b (e.g., also corresponding with volume log file 135).
This physical disk allocation 190b thus comprises a snapshot for one peint-in-time that is
different from the snapshot 187 stored in disk allocation 185b (i.e., “all bitmaps™ 187).
[0062] Furthermore, Figure 2 shows that the rﬂethod from the perspective of production
server 105 comprises an act 230 of sending a copy of the consistent updates to the backup
server during replication. Act 230 includes sending to the backup server a copy of the one
or more data changes, such that the backup server has a copy of the data that are valid for
a first instance of time and a second instance of time. For example, in addition to passing
full update 145 to backup server 110, production server also sends consistent snapshot
updates 150 and 155, which are each valid for different points in time (i.e., “t;,” “t2,” etc.).
[0063] Accordingly, Figure 2 shows that the method from the perspective of backup
server 110 comprises an act 250 of receiving one or more consistent updates. Act 250
includes receiving one or more consistent backup updates, at least one of which is a

consistent update to at least one of the one or more volume backups for a subsequent

25

10

15

20

WO 2007/139647 PCT/US2007/010304

instance of time. For example; backup server 110 receives any of consistent snapshot
updates 150, 155, such that backup server now has data copies for various incremental
points in time (i.e., “t;,” “tz,” etc.) compared to full backup 145 (“ty,” or some other
baseline full).

[0064] In addition, Figure 2 shows that the method from the perspective of backup server
110 comprises an act 260 of receiving a recovery request. Act 260 includes receiving a
recovery requést for data that are valid in accordance with the subsequent instance of time.
For example, b-ackup server 110 receives a request (not shown) for a particular file that ié
valid for time “t;,” which is a file found in both baseline full backup 145 and update 150.
Furthermore, Figure 2 shows that the method from the perspective of backup server 110
comprises an act 270 of identifying the requested data valid for the subsequent instance in
time. Act 270 includes identifying the requested data for the subsequent instance of time
at one or more backup server volumes, wherein the requested data include at least a
portion of the at least one consistent backup update.

[0065] With respect to database data, for example, backup server 110 might roll together
copies of the file at each preceding and current point in time that is valid for the request;
that is, backup server 110 combines copies of the file from times “t,” and “t).” On the
other hand with file system data, each subsequent update (e.g., 150, 155) may include a
full, updated copy of the requested file, and, as such, Backup server 110 may only need to
identify the requested data in the most recent update (or some other subsequent update) for

the requested point-in-time. Thus, depending on the type of data requested, backup server

110 may need to identify each incremental update from the point requested going back to

the latest baseline full, or may need to simply identify the requested data in the latest

point-in-time update.

26

10

15

20

25

WO 2007/139647 PCT/US2007/010304

[0066] As such, Figure 2 also shows that the method from the perspective of backup
server 110 comprises an act 280 of returning the requested data. Act 280 includes sending
the requested data that is valid for the subsequent instance of time to the production server.
For example, with the case of database data, backup server 110 provides recovery 160,
which includes both baseline full data (e.g., 145) as well as incremental update data (e.g.,
150, 155), while with file-system data, backup servef 110 provides a recovery that has at
least the file data from the requested update point-in-time. Backup server’s 110 response
160 can also an indication for which recovery time the response is valid. As shown in
Figure 1A, recovery data 160 shows that the data are valid for time “t,.”

[0067] Accordingly, the diagrams, components, and metﬁods in accordance with
implementations of the present invention provide a number of advantages over
conventional backup systems. In particular, implementations of the present invention
provide ways of backing up data that are data source agnhostic (e.g., via volume filter
driver 115), do not necessarily require a version of the application running on a backup
server, and represent virtually continuous replication. As pfeviously described, these
optimizations are based at least in part on tracking or monitoring changes with low
overhead at a volume le\.rel using a volume filter driver (e.g., 115), and also performing
replication cycles at the file level using, for example, a USN journal, so that file-level
inclusions/exclusions can still be applied.

[0068] In addition, implementations of the present invention provide for the creation of
full baseline copies of the production server data at a backup server in an optimized
manner, and without necessarily requiring transferring the full data across a network.
Minimizing the amount of subsequent data that are transferred to a backup server can
provide a substantial reduction in the potential resource drains on the netw.ork and on the

production servers. As such, implementations of the present invention further provide a

27

10

15

20

WO 2007/139647 PCT/US2007/010304

number of alternative ways for meeting stringent recovery time objectives.
Implementations of the presént invention also provide a number of ways for tracking data
changes (e.g., byte or byte block level) with low performance overhead, and tracking data
changes in a manner that is independent of the file systemn and hardware/software
snapshots. Furthermore, implementations of the present invention also provide one or
more ways to reconstruct path information (such as with USN-based replication) without
necessarily requiring persistent state on the relevant production servers.

[0069] The embodiments of the present invention may comprise a special purpose or
general-purpose computer including various computer hardware, as discussed in greater
detail below. Embodiments within the scope of the present invention also include
computer-readable media for carrying or having computer-executable instructions or data
structures stored thereon. Such computer-readable media can be any available media that
can be accessed by a general purpose or special purpose computer.

[0070].By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk
storage or other magnetic storage devices, or any other medium which can be used to carry
or store desired program code means in the form of computer-executable instructions or
data structures and which can be accessed by a general purpose or special purpose
'computer. When information is transferred or provided over a metwork or another
communications connection {either hardwired, wireless, or a combination of hardwired or
wireless) to a computer, the computer properly views the connection as a computer-
readable medium. Thus, any such connection is properly termed a computer-readable
medium. Combinations of the above should also be included within the scope. of

computer-readable media.

28

2007268226 02 Aug 2011

[0071] Computer-executable instructions comprise, for example, instructions and data
which cause a general purpose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of functions. Although the subject
matter has been described in language specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in the appended claims is not
necessarily limited to the specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example forms of implementing the claims.
[0072] The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope of the invention is, therefore,
indicated by the appended claims rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the claims are to be embraced within
their scope.

[0073] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that the prior publication (or
information derived from it) or known matter forms part of the common general knowledge
in the field of endeavour to which this specification relates.

[0074] Throughout this specification and the claims which follow, unless the context requires
otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be
understood to imply the inclusion of a stated integer or step or group of integers or steps but

not the exclusion of any other integer or step or group of integers or steps.

29

2007268226 02 Aug 2011

25

30

C\NRPortb\DCQISER\I 702068 _ | DOC-1/082011

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. At a production server in a computerized environment in which one or more
production servers backup data to be protected on one or more volumes at one or more
backup servers, a method of replicating production server data in a virtually continuous,
consistent fashion, such that recent data can be easily recovered from the backup server,
including the acts of:

at a first instance of time, creating a copy of data for one or more volumes
from a production server, the copy corresponding to a full baseline of the data for the
one or more volumes;

sending the copy of the data for the one or more volumes from the production
server to a backup server, wherein the data is consistent for the first instance of time;

subsequent to the first instance of time, storing an indication for each of one or
more changes to the data on the one or more volumes, the indications being stored in
one or more bitmaps that are stored in volatile memory on the production server,

wherein at least one of the one or more changes includes a change to a file path of a

file corresponding to any of the one or more data changes at the production server,

such that the file path at the production server is different from a path to the file at the
backup server;
upon identifying a replication cycle event, saving the one or more bitmaps to
one or more log files that are stored in persistent storage of the production server,
wherein the one or more data changes are consistent for a second instance of time;
deleting the one or more bitmaps from the volatile memory;
using the indications from the one or more bitmaps to identify the one or more
data changes for the one or more volumes;
correlating the paths for the file at the production server and at the backup
server, such that new changes to the file can be sent to the backup server with a
change in the path for the file, wherein correlating the paths includes:
scanning a USN journal at least a first time to cache the change in file
path at the production server;
scanning the USN journal at least a second time to identify the initial

file path at the production server; and,

30

CANRPorb\DCOSEHT02068_1. DOC-1AIR1201 |

computing an adjusted path to the file at the backup server based on

the first and second scans; and,
sending to the backup server a copy of the one or more data changes for the
one or more volumes, such that the backup server has a copy of data for the one or

5 more volumes that are valid for a first instance of time and a second instance of time.

2. The method as recited in claim 1, further including saving file-level data

changes for the volume in one of a change filter, a change journal, or a USN journal.

0 3. The method as recited in claim 2, further including an act of correlating the

2007268226 02 Aug 2011

one or more volume log files with one of the change filter, change journal, or USN journal to
changed file.
5 4. The method as recited in any one of claims 1 to 3, further including an act of

marking the one or more data changes on any one of a byte level or a byte block level in the

one or more volume log files.

5. The method as recited in any one of claims | to 4, further including the acts
20 of:
freezing the one or more in-memory bitmaps corresponding to the second
instance in time; and,
creating a new set of one or more in-memory bitmaps corresponding to new
writes to the one or more changed files for the third instance in time.
25

6. The method as recited in any one of claims 1 to 5, wherein a volume filter

|

identify one or more changed files that correspond to the one or more data changes in each
driver receives the one or more data changes and applies the one or more data changes to the

|

|

one or more volume log files.
30 7. The method as recited in any one of claims 1 to 6, wherein the one or more

data changes that are consistent for the first and second instances of time are at least one of

application-consistent or file system-consistent.

31

2007268226 02 Aug 2011

25

30

CANRPorb\DCCSEHW3I702068_1 DOC-1/08/201 |

8. The method as recited in any one of claims 1 to 7, further including an act of
sending a new update of volume data at the production server to the backup server, wherein
the new update is consistent for a third instance of time, and wherein the time elapsed
between the second and third instances of time is configurable for any time period of less

than hour.

9. The method as recited in claim 8, further including an act of sending a request
to the backup server for a copy of one or more files, wherein the request to the backup server
for a copy of one or more files includes an indication that the one or more files are valid for

one of the second or third instances in time.

10. The method as recited in claim 9, further including an act of receiving a
recovery response from the backup server, wherein the recovery response includes a full copy

of data for the requested one or more files as of the second or third instance of time.

11. The method as recited in any one of claims 1 to 10, further including:

receiving the copy of data corresponding to the full baseline of the data for the
one or more volumes, the copy of the data being consistent for the first instance of
time;

receiving the copy of the one or more data changes for the one or more
volumes, the copy of the one or more data changes being consistent for the second
instance of time;

receiving a recovery request for data that is valid in accordance with the
second instance of time;

identifying the requested data for the second instance of time at one or more
backup server volumes, wherein the requested data includes at least a portion of the
one or more data changes; and,

sending the requested data that is valid for the second instance of time to the

production server.

12. The method as recited in claim 11, further including the acts of:

32

2007268226 02 Aug 2011

25

30

CANRPortbADCCISEHIT02068_1 . DOC-1/0R/201 |

receiving a subsequent copy of one or more data changes for the one or more
volumes, the subsequent copy of the one or more data changes being consistent for a
subsequent instance of time;

upon receiving a subsequent recovery request for data that is valid in
accordance with the subsequent instance of time, identifying each of one or more
copies of changes to the requested data that were received between receipt of the full
baseline copy and receipt of the subsequent copy of one or more data changes; and,

combining the full baseline copy of the requested data with the identified one

or more copies of changes to the requested data.

13. The method as recited in claim 12, wherein the full baseline copy and the
copies of the one or more data changes are at least one of application-consistent or file

system-consistent.

14. At a production server in a computerized environment in which one or more
production servers backup data to be protected at one or more backup servers, a computer
storage media having computer-executable instructions stored thereon that, when executed,
cause one or more processors at the production server to perform a method of replicating
production server data in a virtually continuous, application-consistent fashion, such that
recent data can be easily recovered from the backup server, including the acts of:

at a first instance of time, creating a copy of data for one or more volumes
from a production server, the copy corresponding to a full baseline of the data for the
one or more volumes;

sending the copy of the data for the one or more volumes from the production
server to a backup server, wherein the data is consistent for the first instance of time;

subsequent to the first instance of time, storing an indication for each of one or
more changes to the data on the one or more volumes, the indications being stored in
one or more bitmaps that are stored in volatile memory on the production server,

wherein at least one of the one or more changes includes a change to a file path of a

file corresponding to any of the one or more data changes at the production server,

such that the file path at the production server is different from a path to the file at the

backup server;

33

2007268226 02 Aug 2011

25

30

C \NRPorb\DCQSEH\3 702068 _1.DOC- 140872011

upon identifying a replication cycle event, saving the one or more bitmaps to
one or more log files that are stored in persistent storage of the production server,
wherein the one or more data changes are consistent for a second instance of time;
deleting the one or more bitmaps from the volatile memory;
using the indications from the one or more bitmaps to identify the one or more
data changes for the one or more volumes;
correlating the paths for the file at the production server and at the backup
server, such that new changes to the file can be sent to the backup server with a
change in the path for the file, wherein correlating the paths includes:
scanning a USN journal at least a first time to cache the change in file
path at the production server;
scanning the USN journal at least a second time to identify the initial
file path at the production server; and,
computing an adjusted path to the file at the backup server based on the first
and second scans; and,
sending to the backup server a copy of the one or more data changes for the
one or more volumes, such that the backup server has a copy of data for the one or

more volumes that are valid for a first instance of time and a second instance of time.

15. At a production server in a computerized environment in which one or more
production servers backup data to be protected on one or more volumes at one or more
backup servers, a method of replicating production server data in a virtually continuous,
consistent fashion, such that recent data can be easily recovered from the backup server,
substantially as hereinbefore described and illustrated with reference to the accompanying

drawings.

16. At a production server in a computerized environment in which one or more
production servers backup data to be protected at one or more backup servers, a computer
storage media having computer-executable instructions stored thereon that, when executed,
cause one or more processors at the production server to perform a method of replicating
production server data in a virtually continuous, application-consistent fashion, such that
recent data can be easily recovered from the backup server, substantially as hereinbefore

described and illustrated with reference to the accompanying drawings.

34

PCT/US2007/010304

WO 2007/139647

1/3

vi 94
—

[
(&) aepdn

0st
(4) ajepdn

@WN .
(0) dnyoeg |n4

091

(4) Kisnooay

S5t (@)
sjepdn suwnjop

0%)
8jepdn awnjop

X
§21 T
Sunjop eer zel 1l
0ET el
07 e x[x] L
[LNOp NS AL
62 82b 12k
Gzl a4
b4 X X IA
1
£21 22 1)
/1 sdeung 0zt eld

4

4

: GIJ IsAuQ ey swniop 7

rd

i

2

-z)

0} J9niag dnyoeg

sLINjoA fing

\—=———- e £

| BT sdeuyg Aowspy-u |

b e e

07} Kowspy

\We

04 TonIag uonanpolg

PCT/US2007/010304

WO 2007/139647

2/3

gl "ol

G/} Swnjoy 0ZF AiouRy
q067 s8¢ 9081 e06L T €08}
G67 deung
i &8l
sdewyg iy sdeuyig |1y £67 dewyg

(€ 10ysdeug

(@) joysdeug

(41) joysdeus

(€1) Jouysdeug

(@) 1oysdeug

() 10ysdeug

T T R e e e . R E "G E " E. .- .- - - -

wo
e
|

18AU(Ja)i4 swnjop

gz
ik Iel

sabueyn
oll4

PCT/US2007/010304

WO 2007/139647

3/3

eleq pajsanbay ay uiney

8LUI] u| souejsuj Jusnbasgng
8} 104 pifeA ejeq pajssnbay ayy Auap

~—04¢

Jsanbay L1ar00ay v aA08Y

092

sajepdn) jusisisuon-uoneaijddy
80| O 8UQ sAIB08Y

—06¢

J8AIag uanonpoid v woz4 dnyoeg swnjop
Jus}sisuag-uopediddy uy sneasy

~ 0¥

0}} 1aiag dmjjeg

-

0€¢~

uopealjdey Buung
Jsnieg dnyoeg ay] o) sejepdn
Jusjsisuog-uogeayddy ey Jo Ado) v pusg

[

02—

¥81q o] sajepdn
Eﬁm_m:oo.:o%o__&,q IO 10 8UD aneg

A

0ke—~

EJeq SWN(oA Y] o
sabueys alop 10 aug Amuapy

y

002~

Jenag dmyoeg v o] ejeq swnjop jo Adon
Jugjsisuod-uojieayddy uy pusg

£0} 18AIag Uonanpo.d

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

