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METHODS AND APPARATUSES FOR NONINVASIVE DETERMINATIONS OF ANALYTES

Technical Field

[0001] This present invention relates generally to determining analyte concentrations by
analyzing light that has passed through a material sample. More specifically, the present invention
relates to methods for improving the accuracy of analyte determinations in material samples that both
scatter and absorb light.

Background Art

[0002] It is well known that absorbance spectra measured in the presence of scattering media
differ from spectra of the same chemical species measured in the absence of scattering. It is also well
recognized that the paths that light rays travel through a scattering sample are more difficult to
characterize than those in non-scattering samples, within which, light rays generally travel a straight
line. In non-scattering samples, path length can be calculated from the physical dimensions of the
sample and a basic knowledge of beam and sample geometry. Furthermore, path length in an ideal
transmission measurement is a common property for all light rays incident on the sample and thus

path length can be represented with a scalar value common to all rays and all wavelengths.

[0003] In contrast, light rays traveling through a scattering sample have multiple potential paths
and are therefore best described by a path length distribution (PLD). In simple terms, this distribution
will have some fraction of rays that traveled the typical path length, as well as a fraction of rays that
traveled shorter and longer paths through the sample via the random nature of scattering interactions.
The properties of this path length distribution can also be further characterized with statistical
properties, such as the distribution’s mean and standard deviation. These properties are not
necessarily fixed for a measurement system as they depend, in complex ways, on sample properties
including both the scattering and absorbance.

[0004] There is great interest in measuring analyte concentrations in samples that both absorb
and scatter light, despite the difficulties described above. This is because many important biological
systems scatter light due to their heterogeneous composition. One example of these heterogeneous
structures is collagen fibers in skin that scatter light because they have a different refractive index
than the interstitial fluid that surrounds them. This scattering can complicate noninvasive glucose
measurements such as those described in Patent number 4,975,581, issued December 4, 1990.
Another important example is measuring the concentration of urea in suspension of cells, such as
those in whole blood. In this example, the red blood cells have a different refractive index than the
surrounding serum that causes them to scatter both visible and infrared light. Another important
example, is measuring lactate concentration in bioreactor celi cultures. This is an example where
structures inside the cells, such as mitochondria, can be strong scattering elements. Determining
analyte concentrations in all of these sample types is complicated by intrinsic biological variability in
their absorbance and scattering properties.
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[0005] Known methods for determining an analyte concentration in a sample from optical
measurements with variable path length distributions, due to scattering and absorbance changes,
typically involve simplifying assumptions that limit their measurement performance in practice or
involve methods that seek to estimate the path length distribution.

[0006] One class of methods uses theoretical approaches to estimate absorbance and scattering
properties separately by applying Diffusion Theory. For example, Tissue Optics: light scattering
methods and instruments for medicél diagnosis, Tuchin V., ISBN 0-8194-3459-0, The Society of
Photo-Optical Instrumentation Engineers, 2000 Section 1.1 includes descriptions of optical properties
of tissue with multiple scattering including blood and skin. The Diffusion Theory approach requires
simplifying approximations that are not valid for all combinations of absorbance and scaitering
properties. For example, Diffusion Theory is not accurate when the effects of absorbance are greater
than scattering or when the number of scattering events is small. Noninvasive tissue measurements

in the near infrared spectral region can have one or both of these conditions.

[0007] Another theoretical approach uses Monte Carlo simulations to estimate the path length
distribution from explicit knowledge of the system under study, which requires some, if not all, of the
following optical properties: absorbance coefficient, scattering coefficient, scattering phase function,
and sample geometry. In practice, it is difficult to accurately estimate the optical scattering properties
of tissue as the true shapes of collagen fibers or blood cells need to be simplified to geometric forms

like spheres or cylinders with known analytical solutions.

[0008] Another class of methods makes assumptions about optical properties of the sample at
specific wavelengths. For example, that non-absorbing wavelengths exists that can be used to
correct analyte absorbance at wavelengths with similar scattering properties. Patent number
5,099,123 issued March 24, 1992. This approach is typically limited to spectral regions where water, a
major constituent in many biological samples, is a weak absorber. A second example of assumed
optical properties is the use of isobestic points. Patent number6,681,128, issued January 20, 2004.
An isobestic point occurs at a wavelength where there are only two absorbing species, typically an
analyte and another major absorber, and both species have the same absorptivity. Again, these
approaches are applicable in some biological measurements, like pulse oximeters measurements in
the 500 to 1000 nm region, but not throughout the infrared region where there are many more
spectrally active biological species.

[0009] Multiplicative Scatter Correction, Multivariate Calibration, Martens and Naes, Section 7.4
and similar publications, estimates the net effect of scattering on path length across spectral
wavelength with low—order polynomials, such as a quadratic function. Such functions do not
accurately represent scattering over broad spectral range, such as the 4000 to 8000 cm-1 region
commonly used in noninvasive glucose measurements.

[0010] Another approach to determining analyte concentrations in highly scattering and
absorbing samples is to measure the path length distribution explicitly and incorporate the path length
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estimate in the measurement algorithm. One such technique is to use photon time-of-flight
measurements to characterize the sample’s optical properties at discrete wavelength in combination
with absorption measurements, Leonardi, L; Burns, DH Multiwavelength Scatter Correction in Turbid
Media using Photon Time-of-Flight; Applied Spectroscopy, 50(6), 637-646,1999. This approach
requires additional measurement apparatus including a pulsatile or frequency-modulated light source,
which adds cost and complexity. It also assumes that the path length properties at all wavelengths
can be inferred from one or more discrete measurements.

Brief Description of the Drawings

[0011] FIG. 1 shows an idealized absorbance measurement system.

FIG. 2 shows the difference between a pure analyte signal and a net analyte signal.

FIG. 3 shows a net analyte signal with selectivity errors

FIG. 4 shows a net analyte signal with proportional errors

FIG. 5 shows pathlength changes that produce proportional errors

FIG. 6 shows a conceptual framework for understanding prediction errors

FIG. 7 shows a spectroscopic framework for understanding prediction errors

FIG. 8 shows spectra from several application areas

FIG 9.shows glucose measurement results in scattering media

FIG 10.shows ethanol measurement results in scattering media

FIG 11.shows urea measurement results in scattering media

FIG 12. shows the dependence of scatter on wavelength

FIG 13. shows the different in predictor functions for two scatter levels

FIG 14. shows the interaction between interfering substances and the predictor function
FIG 15. a illustration of the fundamental probe of analyte measurement in scattering media
FIG 18. illustrates a system with multiple observations point

FIG 17. illustrates the relationship between path and scattering media

F1G 18. illustrates the relationship of photon travel to scattering media

FIG 19. illustrates the influence of scattering media on glucose predictions

FIG 20.illustrates a conceptual framework for determining media characteristics through multiple
observations

FIG 21. shows the ability to classify media based upon the diagnostic metric

FIG 22. illustrates the path characteristics of the calibration samples

FIG 23. illustrates the path characteristics of the validation samples

FIG 24. plots the prediction results for standard single channel processing

FIG. 25 plots the prediction results generated by the sub-model approach

FIG. 26 shows the process of generating predictions results from multi-channel spectra
FIG. 27 plots the resulting prediction results and error structure

FIG. 28 plots the prediction results generated by the X-Y model approach using glucose only
FIG. 29 plots the prediction resuits generated by the X-Y model approach using muitiple analytes
FIG. 30 show different predictor functions developed from different media
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FIG. 31 shows the relationship between different predictor functions
FIG. 32 shows prediction differences as a function of different predictor functions
FIG. 33 plots the prediction results generated by the adaptive model approach

Disclosure of Invention

[0012] This patent describes a new family of methods to improve the accuracy of analyte
concentrations measured in samples that both absorb and scatter light. Light scattering in biological
samples, including blood, skin and bioreactor cell cultures, causes light rays to travel different paths
through a sample. The paths of these rays violate several assumption of Beer's law because the
paths are no longer parallel or of equal lengths. As a result, there is no longer a simple relationship
between absorbance and concentration changes because interactions between scattering and
absorbance properties across the desired operating spectral range distort the absorbance features of
.the analyte. The consequences of these distortions, in particular their effect on measurement
precision, are not adequately discussed in prior art except for algorithmic approaches that generally
compensate for scattering with multiplicative and offset corrections. The following discussion
describes a novel family of methods for determining analyte concentrations in a sample from one or
more optical measurements. These methods improve the accuracy of analyte determinations in
material samples that both scatter and absorb light. One clear benefit of these methods is their
improved ability to measure new samples with optical properties that are different from the samples
used to calibrate the method. This overcomes a known limitation for applying existing methods in
many practical applications where the method appears to perform well on a calibration set but
performs poorly on new sample types that require extrapolation or interpolation. These new methods
also overcome limitations in applying linear prediction methods based on Beer’s law to samples that

span a range of optical measurement or sample properties that violates its inherent assumptions.
Absorbance Spectroscopy

[0013] Spectroscopy measures the interaction of light with a sample. In general, light intensity
entering and exiting a sample is compared to extract qualitative or quantitative information. The
following section outlines the assumptions inherent in spectroscopy for ideal samples before moving
on to more complex systems. For illustrative purposes, this section focuses on absorbance
spectroscopy in the visible and infrared regions. The visible region includes wavelengths from 380 to
780 nm. The near infrared region includes wavelengths from 780 to 2500 nm and the mid-infrared
region includes wavelengths from 2500 nm to 50000 nm. This illustrative discussion is not restrictive,
as the same fundamental principles apply broadly to absorption measurements outside these regions,
including absorbers in the ultraviolet region and X-ray region and nuclear magnetic resonance. In the
visible and infrared regions, a molecule absorbs light at frequencies characteristic of its chemical
structure, which is determined by vibrational and electronic energy levels. In qualitative spectroscopy,
the frequency and relative intensities of these characteristic absorbance features are used to identify
specific chemical species (such as ethyl alcohol) or a broader class of chemicals (such as alcohols).

In quantitative spectroscopy, the magnitude of one or more absorbance features is used fo estimate
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the concentration of an individual chemical species in a sample (such as alcohol levels in blood) or a
family of related compounds (such as total proteins in blood). Thus it is understood that the analyte
measurement can estimate the concentration of a single species (such as glucose), a composite
property (such as octane number of gasoline), a physical property (such as sample temperature), or a
subjective sample property (such as fruit ripeness).

[0014] An idealized system for absorbance measurements is shown in Figure 1a where the
sample is presented in a cuvette with rectangular cross-section to the incident beam, which has
parallel rays of monochromatic radiation. The sample transmittance (T) is the ratio of the intensity of
the exiting light (1) to the incident light (l,),

T=1l,
[0015] The sample absorbance (A) is calculated from transmission with a logarithmic transform
A = -logo (T) = log1o (Io/1)

[0016] Absorbance spectra are generally used for quantitative and qualitative analysis because,

in these ideal systems, their magnitude is linearly related to concentration through Beer’s law
A=elc

[0017] Where e is molar absorptivity, | is path length, and c is concentration of the absorbing
species. Note that in the measurement example shown in Figure 1a the path lengths of the three
illustrated rays are equal and equivalent to the internal dimension of the cuvette. Thus path length is
completely described with a scalar value of path length, I. In contrast the scattering systems shown in
both a transmission (Figure 1b) and a diffuse reflectance (Figure 1c) measurement modes where
three possible light rays are shown that have different path lengths in the sample due to scattering

interactions.

[0018] Also note, that the Beer’s law notation is easily extend to a spectrum measured at

multiple wavelengths using a vector notation,
A, =ejlc

[0019] where A, is a vector containing the absorbance measured at each wavelength (v), e, is a
vector containing the molar absorptivity at each wavelength (v) and path length, |, is still a scalar
quantities as it is the same for all wavelengths. For a measurement system with a fixed pathlength,
the change in absorbance at each wavelength for a unit change in concentration will be called the
pure component spectrum, K,

K, = e/l
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[0020] While this pure component spectrum is often considered to be the absorbance of the
analyte, such as absorbance features of the glucose molecule, there are also cases where the signal
includes the influence of the analyte on the solvent or other constituents of the sample. Examples of
these indirect effects include negative absorbance features of displaced solvent and changes in the
hydrogen bonding structure of the solvent due to temperature or dissolved ions, such as the spectral
changes associated with adding salts like sodium chloride.

[0021] The Beer's law equation can be similarly extended to describe a sample with multiple
absorbing components using a matrix representation,

A, =1EynCy

[0022] where E, , is matrix with the absorptivity of species 1 to n at each wavelength, v, and ¢, is
a concentration vector of the n constituent concentrations in the sample. Note again, that path length,

1, is assumed to be a scalar quantity for this sample.

[0023] Also note, while many methods of determining analyte concentration are described for
absorbance measurements, this choice of units is for mathematical convenience and compactness
alone, as equivalent computational algorithms can be written by one skilled in the art to operate on

other inputs forms including transmission spectra, detector intensities, and interferograms.
A calibration estimates the relationship between measured absorbance and analyte concentration

[0024] In practice, a calibration step can be required to create an accurate relationship between
the measured absorbance spectra and analyte concentration for a given measurement system. In
this discussion, method calibration refers broadly to using a set of spectral measurements of samples
with known properties to calibrate the relationship between the measured spectra and the analyte of
interest. Method validation refers to a subsequent step where new samples are used to test the
validity of the calibrated measurement method. Ildeal validation samples have a distinct composition

(absorber concentrations and scattering properties) from the calibration samples.

[0025] If a wavelength exists where only the analyte of interest absorbs then Beer's Law
describes a linear relationship between the absorbance at this selective wavelength, A4, and the
analyte concentration, c,

A1 = CK1

[0026] where K; is the slope of the calibration curve — a plot of measured absorbance versus

analyte concentration.
[0027] Estimated concentration, cnat, is determined with the predictor function, b,

Chat = A¢b and b=1/K;
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[0028] This calibration approach will be called a single-wavelength single-component prediction
model, as it requires the one component’s (the analyte) spectral properties to be calibrated at one
wavelength. This concept can also be extended to a multiple-wavelength single-component
prediction model,

Chat = Ayby

[0029] Note that the predictor function (also called a regression vector) for a single-component
model, by, is simply a scaled version of the pure component signal of that analyte and, as such, the
entire signal is used to predict analyte concentration.

[0030] Biological samples typically contain many constituents, which can potentially interfere with
the single-component prediction functions described above. The constituents or conditions that
interfere with analyte measurements will collectively be called interferences or interfering species. In
some cases, the interference is a chemical component that absorbs at one or more wavelengths
common to the absorbance of the analyte. In other cases, the interference is a spectral change
resulting from changes in the sample environment, like temperature or pH. As discussed above,
scattering can be viewed as an interferent it alters or modifies the measured spectrum. In other cases,
the interference results from spectral artifacts due to component aging or alignment changes in the
optical measurement system.

[0031] If uncorrected for, such interfering species degrade the measurement performance of the
prediction function. Thus, the goal of multi-component calibrations is to calculate a ‘net-analyte’
spectrum that responds proportionally to analyte concentration but is selective against interfering
species. As the name implies, a multi-component calibration requires both analyte properties and the
interfering species properties to be adequately represented in the calibration set in order to produce
an accurate prediction model.

[0032] A simple geometric presentation of a net analyte signal is shown in Figure 2. In this
example the net analyte signal is the portion of the pure component signal that is perpendicular (or
orthogonal) to the interfering species’ signal. There are two classes of linear models that estimate
such net analyte signals: forward calibrations and inverse calibrations. One example of a forward
calibrations the Classical Least Squares (CLS) solution of the multi-component Beer’s law described

previously.
by = K'(KK")"

[0033] where K is a matrix of pure component spectra. Solving this least-squares solution
requires pure component spectra to be known for all absorbing components in the calibration set.

[0034] In practice, the knowledge required to solve a CLS model can be difficult to obtain for
biological samples due to their potentially large number of constituents. As a result, many biological

measurements systems use another class of multi-component models called inverse models.
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Inverse models estimate the predictor function b, from
by = (ATAY'ATc,

where c, is a vector of analyte concentrations.

[0035] Inverse models only require concentration values to be known for the analyte of interest in
the calibration step. These reference concentrations are often available from standard clinical
methods. For example, the glucose reference concentrations used in this disclosure were measured
with an electrochemical method on a Yellow Springs Analyzer.

[0036] The class of inverse methods includes many specific computational algorithms including
inverse least squares (ILS), multiple linear regression (MLR), partial-least squares (PLS), principal
components regression (PCR), canonical correlation, ridge regression, and Tikhonov regression.
Multivariate Calibration, Martens and Naes, Section 7.4 The PLS algorithm is used to solve the
inverse multi-component models in this work, unless stated otherwise. The goal of each of these
methods is to produce a regression vector for the multiple-wavelength prediction model shown above.
While the prediction functions (regression vectors) produced by forward and inverse models will look
similar for some chemical systems, the two approaches have different optimization functions.
Forward models, like those defined in the CLS approach, find solutions with spectral signals that best
represent true spectral shapes, in other words, CLS is an optimal estimator of pure component
spectra. In contrast, inverse models, like those solved with the PLS approach, find solutions for the
predictor function so its output best matches the reference concentrations, in other words, solutions
that minimize prediction error. This is an important distinction, as the predictor functions in a the
presence of path length changes can be very different from the predictor function that are optimal for
a fixed pathlength measurement. For details see Brown C., Discordance between Net Analyte Signal
Theory and Practical Multivariate Calibration, Analytical Chemistry, Vol. 76, No. 15, August 1,

Sources of prediction error

[0037] The following discussion focuses on three general classes of prediction errors:
measurement noise errors, selectivity errors, and proportional errors.

[0038] Measurement noise errors result from the propagation of random instrument noise
through the prediction equation. Random instrument noise arises from a variety of sources including
photon counting, dark current noise at the detector and Johnson noise across electronic junctions.
While reduced by good instrument design and signal averaging, instrument noise is never eliminated.
This noise reduces the precision of the concentration predictions. The relationship between optical
signal variance and concentration estimate variance depends on the magnitude of the net analyte
signal and the predictor function derived from it. Specifically, for a given measurement error

magnitude the concentration variance is proportional to the Euclidean length, (sqrt(v v")) of the
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regression vector. Accordingly, the effects of measurement error noise are smallest when the

maximum amount of the pure component signal is retained.

[0039] Selectivity errors as diagramed in Figure 3a result when the prediction function (drawn as
a regression vector) is not completely selective for the analyte of interest. In this case, concentration
changes of the interfering signal will influence the analyte prediction. This influence can bias the
sample prediction away from the true analyte concentration in samples containing interfering species.
Measuring the same sample repeatedly does not reduce such a bias. Note that the sample can be
biased to over- or under-report the analyte concentration. The direction and magnitude of the bias
depends on spectral differences between the analyte and interfering species and the concentration of

the interfering species in a prediction sample relative to the average value in the calibration set.

[0040] Although the effect of a selectivity error on individual sample predictions is a constant
bias, the effect of selectivity errors across muitiple samples with variable composition can appear
random, especially when plotted as analyte prediction versus true concentration. A simple example of
this is shown in Figure 3b where variation in an interferent concentration can cause the analyte
concentration to be over- or under- reported. In a controlled setting, the effect of a single interfering
species would be clear if the prediction errors (predicted concentration minus true concentration) were
plotted as a function of the interfering species concentration. In practice the effect of selectivity error
can appear random, particularly if the model has selectivity errors for multiple interfering species.
Selectivity errors can occur if the interfering species variation was not well represented in the
calibration set or if the shape of the interfering species spectrum (and hence its direction) is different
in a new sample as a result of distortions caused by changes in the path length distribution.

[0041] Proportional errors occur when the magnitude of the regression vector is incorrect. The
resulting errors are proportional to the analyte concentration as shown in Figure 4. Unlike the
prediction error structure observed for selectivity in Figure 3, the predicted concentrations lie on a line.
The nature of the proportional error is that this line differs from the line of indentity. Note that the
optimal net analyte signal and estimated net analyte signal in this example point in the same direction
but differ in magnitude. As such, if the optimal net analyte is orthogonal to the interfering species then
the estimated net analytical signal will maintain the same selectivity. This implies that the proportional

errors can be distinct from selectivity errors in their origin and observed error structure.
Example of path changes that produce proportional errors

[0042] Figure 5 illustrates a hypothetical system where path length changes are induced by
changing the physical dimensions of the cuvette. The effect of these path length changes is equal for
all wave lengths of the spectrum. This system was mathematically constructed with knowledge of the
pure component spectra of water, glucose, urea, and ethanol, which will be components of tissue
phantoms discussed in the following sections. Figure 5a shows the spectral effect of this path length
change on one sample. As would be expected from Beer’s law, these spectra differ only by a scalar
factor. For this example, the prediction function was calibrated using only samples collected at the 1

9



WO 2006/086566 PCT/US2006/004608

mm path length. Figure 5b shows prediction results for the 1 mm prediction function on a set of
validation samples, also collected with the a 1 mm path length. These predictions lie along the line of
identity with little variation as the prediction function is optimal for these data. In contrast, predcitions
from the 1 mm predictor function applied to samples with 0.8 and 1.2 mm path lengths show clear
proportional errors. It is important to note that the change in path length for each wavelength is the
same in this measurement system and this is not the behavior generally seen when scattering and/or
absorbance changes in many of the biological systems where the path length is a distribution.

[0043] Figure 6 shows a mathematical framework for assessing prediction errors in a linear
prediction model that can be used to assign the origins of the three classes of errors discussed in the
previous section: measurement noise errors, selectivity errors, and proportional errors. The glucose
value estimated by applying the prediction function to a spectrum is equal to the sum of the glucose
prediction values applied to each constituent of the sample as Beer's law describes as linear additive
system. This framework is used in Figure 7 for the case of the 1.0 mm model predicting 500 samples
measured in a 1.2 mm cuvette. Note that the proportional error in glucose predictions is consistent
with that of a net analyte signal calibrated on a system on samples with a shorter path length but that
this path length change in a nonscatteing sample does not increase selectivity errors because
concentration variation in the two potential interferents (urea and ethanol) have no significant effect on

the glucose prediction. Also note that measurement noise errors are not significantly increased.

[0044] Given the proportional nature of these errors, it is reasonable to apply a multiplicative
correction using methods described in the prior art section. In general, such approaches assume that
path length is constant across small spectral regions or changes smoothly with wavelength. These
methods are adequate because the correction does not need to adjust the model to correct for a
selectivity error with respect to the ethanol or urea components.

A major limitation in biological samples is path length changes due to scattering elements.

[0045] The cuvette example shown in Figure 1a and discussed in the previous section is not an
accurate representation of path length changes that occur in measurements of biological samples. In
these systems, the path length distribution results from scattering, which is defined here to broadly
include interactions that change the direction of a light ray due to interactions with inhomogeneties in
the sample including scattering structures described previously (such as cell structures and collagen
fibers) as well as inhomogeneites from concentration gradients, temperature gradients, and diffuse
reflecting surfaces (such as air-sample boundaries). Figures 1b and 1c¢ show how such scattering
events can change the direction of a light ray and influence its total path length within the sample.
Many factors can change the scattering of a sample, including changes in the number, size, and
geometry of scattering elements.

[0046] in blood samples, scattering changes occur due to hematocrit level differences across a
population or changes within a single patient over time, due to factors like dehydration or blood loss
during surgery. The shape of red blood cells can also change as a function of blood pH and tonicity.

10
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[0047] Noninvasive tissue measurements can also include significant scattering variations due,
in part, to physiological variations in collagen-to-water ratios and collagen fibril diameter changes as a
function of age and disease state. It should also be noted, that the very act of placing skin on an
optical sampling element can change its scattering properties through compression, tension,
temperature, and humidity changes.

[0048] Large scattering changes also occur during bioreactors run where cell density can vary
over the course of a single run as cells multiply or are extracted.

[0049] Figure 8 shows examples of spectral variation observed in noninvasive tissue
measurements, blood samples, and bioreactor runs. To further understand problems of this nature, a
set of tissue phantoms was constructed with well-characterized variation in absorbing and scattering
constituents. This set of tissue phantoms was then studied to test the effects of changing path length
distributions through several mechanisms, including changes in scatter bead concentration, absorber
concentration, and optical sampler configuration. These tissue phantoms contained polystyrene
beads (0.298 um diameter sphere supplied by Bang’s Beads) as scattering elements with a two-fold
variation in concentration (4000 to 8000 mg/dL). These scattering beads were suspended in 0.9%
saline solutions, phosphate buffered to physiological pH and warmed to a physiological temperature
range (varied from 36 to 38 C) consistent with noninvasive tissue sampling. The scattering bead
concentrations were clustered around nine discrete levels with steps of 500 mg/dL. between 4000 and
8000 mg/dL of polystyrene. For convenience, these will be referred to a scatter levels 1 to 9. Each
scattering level included samples with variable analyte and interference concentrations. These
scattering samples also contained glucose, urea, and ethanol over a wide, but physiologically
representative range. For example, the glucose range of 100 to 600 mg/dL includes values observed
in diabetic subjects. These spectra were obtained by [Exiract a description and figure from the
Noncontact Sampler Patent].

[0050] Figure 9 includes results from a study that essentially repeats the path length
investigation shown in Figure 5, now using tissue phantoms instead of variable thickness cuvettes to
induce path changes. Figure 9a shows resuits of using prediction function calibrated for glucose with
low-scattering samples (scatter levels 1-3) performs (versus reference glucose concentration) on a
validation set with similar scattering levels. The slope of the glucose predictions is close to unity and
the scatter around the line is consistent with the measurement noise errors for this instrument. Panel
9d shows similar behavior for a prediction function calibrated for glucose with high scattering samples
(scatter levels 7-9) and validated on samples with similar scattering levels.

[0051} Figures 9b and 9c illustrate prediction errors that occur when these same prediction
functions are applied to validation samples with scattering characteristics outside the calibrated range.
Although there are slope errors of about 3 and 7% respectively, the greatest loss in overall
measurement performance results from prediction errors that scatter around these lines. Given the

measurement noise and prediction functions are the same as those in Figures 9a and 9d, errors of
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this magnitude and character are more consistent with a selectivity error such as those illustrated in
Figure 3b. Figures 10 and 11 illustrate similar behavior for the ethanol and urea predictor functions
calibrated and validated in the same way. These examples illustrate a loss of prediction performance
with for all three chemical constituents when a prediction function is used on samples with different
path length distributions that differ from those used to calibrate the predictor function. This behavior
was confirmed by measuring validation samples with both high and lower concentrations of scattering
elements than samples included in the calibration.

[0052] The error structure seen in the scattering samples is in contrast to that observed with the
non-scattering samples in Figure 5. The differences in the prediction errors are due to the fact that
the change in path length is different at each wavelength. In fact the observed pathlength is a function
of both scattering and absorbance. This pathlength change as a function of wavelength has been
described as a distortion of the glucose signal. Both scattering and absorbance are wavelength
dependence. The pathiength change between samples is a complicated vector which changes with
every wavelength versus a simple scalar multiplier. The changes in pathlength as a function of
wavelength effectively distort the glucose signal. This distortion creates a slightly different PLD at
every wavelength which results in the observed glucose prediction errors. This distortion can be
conceptualized as a variable degree of blurring across an image. Figure 12 illustrates the change in
scattering as a function of wavelength.

[0053] Returning to a more rigorous spectroscopic interpretation of the error, Figure 13 illustrates
key geometric properties of glucose predictor functions (specifically the net analyte signals calculated
with the PLS algorithm) of glucose estimated from high and low scattering calibrations with an inverse
model. It is important to note that the optimal model for low scatter samples is different than the
model for high scatter samples, with respect to the length of the regression vector but also the
direction of the regression vector. This implies that a single regression vector will under-perform a
regression vector optimized for a given path length distribution.

[0054] Figure 14 illustrates how scattering changes distorts not only the analyte signal shape
(through a nontrivial rotation) but also the spectra of potential glucose interferences, like urea and
ethanol. For example, the glucose model calibrated for low scattering samples is orthogonal to the
spectral response of urea and ethanol in low scattering measurements, which is consistent with the
measurement performance for these samples. This performance is not maintained when these
chemical species are distorted by path length changes in a manner that reduces the glucose model
selectivity by rotating or distorting the signals in a manner that induce overlaps with the glucose
model. This is the origin of selectivity error with path length distribution changes, the behavior of this
error is consistent with discussion of Figure 3. This is a key spectroscopic insight into why path
variation in scattering media generates both proportional errors and /or selectivity errors when the
path length distributions change in a complex manner as a function of wave length. Samples that

exhibit these selectivity errors with path length distribution changes require a new class of prediction
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methods to maintain acceptable performance across samples that have scattering and absorbance
changes.

New Approach to Pathlength Determination by Prediction Differences

[0055] As described above, path length distributions can be a complex function of scatter,
absorbance and wavelength. The process of determining the effective PLD at each wavelength with
information obtained from a single spectral observation (also called a single-channel measurement)
on each sample is extremely difficult. In general, the problem is one where the number of unknown
parameters exceeds the number of independent measurements.

[0056] To accurately determine analyte concentrations in material samples that both scatter and
absorb light, additional information can be obtained by using an optical system that acquires multiple
observations of the sample. These observations can differ in the subsets of light rays they collect
from the sample. These subsets of light rays are collected by what are often referred to a as multi-
channel samplers, or equivalently a muiti-path samplers or equivalently as multi-depth samplers.
These samplers have the capability of acquiring spectral data that have differences in their PLDs .
These subsets of light rays are filtered out of the set of all rays exiting the tissue through the use of
filters. In this discussion, filter has a broad definition that includes optical filters that attenuate light
rays based on their linear or elliptical or circular polarization state. The definition of filter also includes
spatial filters (also called masks or apertures) that attenuate rays based on the physical location they
leave the sample such as described in US patent 5,935,062, Diffuse reflectance monitoring
apparatus.. The definition of filter also includes and angular filters such as the intrinsic acceptance
angle of a fiber optic, lens, or set of baffles that attenuate rays based on the angle they leave the
sample. None, one, or combinations of these filters can be applied to each measurement channel of

a multi-channel sampler.

[0057] Even with a multiple-channel measurement, determining the effect of scattering on the
PLD and the prediction function can remain a éomplex calculation. A simple approach for
determination of the relative pathlength is needed.

The approach disclosed below is based upon the fact that Beer’s law:

A=elc

is unable to distinguish between path length changes and concentration changes. This fundamental
characteristic of Beer's law can be exploited to characterize the scattering characteristics of the
tissue. As discussed previous, historical approaches have sought to deduce the path length properties
directly from the one or more spectral measurement. In contrast the analysis framework disclosed
herein uses the net effect of the path length distribution changes on the predicted analyte

concentration to characterize the sample.

[0058] In Figure 15, the problem is described in a pictorial representation. Samples of scattering
media are represented in Figures 15a and 15b. Both boxes are filled with the same glucose
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concentration. In Figure 15a the light rays travel a more direct path due to the fact that less scattering
occurs, resulting in an average path of 5. In Figure 15b the light rays travels a much less direct path
due to the increase scattering and travels a average pathlength of 8. Thus, if the same prediction
function is applied to both measurement channels, the glucose prediction for the box in figure 15A will
be less than the prediction result for the box in figure 15B despite the fact that both boxes are filled
with solution of the same glucose concentration. As the goal of the system is to measure glucose, one
has the inability to determine if the boxes have different glucose concentration or different path

lengths based upon the information and results generated by this single observation system.

[0059] For description purposes and explanation of the key inventive concept, consider the
boxes in Figure 16 to contain nails that are perpendicular to the plane of the paper. If marbles or balls
were dropped in the top of these two boxes, the number of nails and resulting bounces (which are
considered here to be a type of scattering) would influence the path traveled and the resulting
distribution of balls in the collection bins. In the case of fewer nails, the distribution is much more
center focused. As the number of nail bounces increase the distribution becomes more dispersed

and the relative differences in the number of balls in adjacent bins is reduced. Thus, by examination of
the number of balls in each bin or an examination of the ball distribution as a function of bin location, a
relative measure of the effect of nail interactions can be determined. The observed ball distribution
allows one to assess the density of nails in the box without looking in the box.

[0060] Figure 17 illustrates the same information as Figure 16, but now includes information
regarding the pathlength traveled by the balls as they travel from top to bottom. Those balls that
effectively drop straight through will have the shortest pathlength, while balls on the outer bins in a
case with lots of nail encounters will have the longest pathlength. Thus, if one could obtain a measure
of pathlength at each bin location, like counting the number of balls in each bin, a relative
determination of the number of nails within the box could be made (e.g. scattering events).

[0061] Figure 18 returns to a spectroscopic illustration. The boxes are now filled with scattering
media, the left box with fewer scattering centers then the right box. The glucose concentration in each
box is the same. Light rays are launched into the media from a single light source at the top of the
box and the light rays reaching the bottom of the box are recorded at two sampler channels or
detectors. This is an example where different spatial filters are applied to the two measurement
channels. As the light rays travel through the media they are scattered much like the balls of the prior
example. As illustrated, the photons travel different distances based upon the scattering
characteristics of the media. The relationship between the path lengths traveled is heavily influenced
by the amount of scatter. For example, in the left side with more scatter, the difference in pathlengths

traveled as observed by the two detectors is less than for the lower scatter situation on the left side.

[0062] The spectral information recorded at each detector channel of this multi-channel sampler
can be used to generate glucose prediction results. In this application, the same predictor function is
applied to the signal or spectrum measured by each channel. The resuiting glucose predictions

effectively scale with the pathlength the photons have traveled and the actual glucose concentration
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of the media. As the objective of this process is to characterize the scattering or pathlength of the
media, the contribution of the glucose concentration of the media needs to be removed. The media
concentration of glucose can be effectively removed by examining the relative difference between the
glucose predictions, an simple subtraction creates the relative difference. Thus, the relative prediction
difference can be used to classify or characterize the media or tissue under examination. As shown in
Figure 19, difference in the glucose prediction results for channel 1 and channel 2 of the sampler can
be a diagnostic metric to characterize the scattering or pathlength characteristics of the tissue sample.
This method is very powerful as it is a direct measure of the influence that the media is imposing on
the prediction result. Stated differently, this analysis framework uses the net effect of the path length
distribution changes on the predicted analyte concentration to characterize the sample. In practice,
the analysis method determines the characterization of the media by effectively using the same
system used for analyte measurement versus a secondary measurement system for media
characterization. Specifically, the media characterization method uses the same optical system,
similar processing methods, a similar predictor function, and similar level of computational complexity.
The observation that relative differences in prediction results can be used for media characterization
is extremely valuable and requires only an additional piece of spectral information. This second piece
of spectral information should have a different functional dependence on the scatering and absorbing
characteristic of the sample than the first piece of spectral information.. The fact that the media is
characterized by the relative difference in the prediction results removes any requirements to know
the true glucose concentration of the sample.

[0063] The relative prediction difference method can be extended to other analytes in the
sample. For example, alcohol diffuses throughout tissue and will be influenced by changes in
pathlength. As alcohol absorbs differently than glucose, the influences of path can be slightly different
than glucose but the basic concept that the measurement is sensitive to path applies. Thus, the use
of relative prediction differences as a diagnostic function to characterize the media can be extended to
multiple analytes in the sample. The use of diagnostics metrics from multiple analytes increases the
information content available for tissue scattering characterization. Using an image analogy, it
transitions the picture from black and white to color.

[0064] Figure 20 is a summary of the concept described above. Historically, most noninvasive
glucose measurement systems have used a single source and detector. This results in a single
spectra or singular piece of information and can be equated to a monocular vision system with a
limited ability to determine pathlength. The expansion of the system to multiple observation points
increases the information content and transitions the system to a binocular system with the ability to
diagnose and characterize the effects of path length distribution changes that result from variations in
absorbance and scattering across a set of samples. The extension of the concept to include multiple
analytes adds an additional dimension to the information content and allows for further tissue
characterization. In analogy terms, we think of the addition of multiple analytes as adding color to a
black and white image, a dramatic increase in information content.
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