Office de la Proprieté Canadian CA 2416839 C 2013/03/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 41 6 839
Findustrie Canada Industry Canada a2 BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2001/08/08 (51) CLInt./Int.Cl. GO6F 712/08 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2002/02/21 GO6F 1/730(2000.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2013/03/12 GUT RON ABRAHAM. US:
(85) Entree phase nationale/National Entry: 2003/01/20 TZANNES. ALEXIS PAUL, US:
(86) N° demande PCT/PCT Application No.: US 2001/041608 REITER, EDMUND CAMPION, US

(87) N° publication PCT/PCT Publication No.: 2002/015011 (73) Proprietaire/Owner:

T AWARE, INC., US
(30) Priorité/Priority: 2000/08/15 (US60/225,412)
(74) Agent: SMART & BIGGAR

54) Titre : SYSTEME ET PROCEDE DE MEMOIRE CACHE DE CREATION D'OBJETS ABSENTS DE LA MEMOIRE

CACHE A PARTIR DE COMPOSANTES D'OBJETS EN MEMOIRE CACHE ET STOCKEES
54) Title: CACHE SYSTEM AND METHOD FOR GENERATING UNCACHED OBJECTS FROM CACHED AND STORED

OBJECT COMPONENTS

—’ pra—

T —

20 ““'

DATA PROCESSING SYSTEM

44 BUS
3 34
STORAGE N S 34
DEVICE : 49 l: 1O CONTROLLER
28 STORAGE | CACHE e .
MEMORY ; ! P4
[T - T « CACHE
{ 42CACHE |
<2 24 26 aiintateteindtadedds
| STORAGE DEVICE USER PERIPHERAL 42
INTERFACE DEVICE g BACHE
I 28 STORAGE A)] ;
MEMORY - ,' i bl
oyt st i CACHE | CACHE |
: i N :

(57) Abréegée/Abstract:
Methods and apparatus for constructing objects within a cache system thereby allowing the cache system to respond to requested

objects that are not Iinitially available within the cache system. One embodiment of the invention caches image files, where the
Images are divided into components and stored in a format that allows identification and access to the components. The cache
system determines that an object, such as an image file, Is missing from the cache memory, locates sufficient components from the

cache memory and/or external storage, and constructs the object from the located components.

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

WO 02/015011 A3

(19) World Intellectual Property Organization

(31)

(21)
(22)
(25)
(26)

(30)

(71)

(72)

(74)

CA 02416839 2003-01-20

International Bureau

(43) International Publication Date

21 February 2002 (21.02.2002) PCT
International Patent Classification’: GO6F 12/08, (81)
17/30
International Application Number: PCT/US01/41608

International Filing Date: 3 August 2001 (08.08.2001)

Filing Language: English

Publication Language: English

Priority Data:

60/225,412 15 August 2000 (15.08.2000) US

Applicant: AWARE, INC. [US/US]J; 40 Middlesex Turn-
pike, Bedford, MA 07130 (US).

Inventors: GUT, Ron, Abraham; 332 Franklin Street
#700, Cambridge, MA 02139 (US). TZANNES, Alexis,
Paul; 14 Milk Street, Lexington, MA 02421 (US). RE-
ITER, Edmund, Campion; 212 Old County Road, Lin-
coln, MA 02865 (US).

Agent: VICK, Jason, H.; Nixon Peabody LLP, Suite 800,
8180 Greensboro Drive, McLean, VA 22102 (US).

(84)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 02/015011 A3

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ.,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL., IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL., PT, RO, RU, SD, SE, SG, SI, SK,
SL., TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CFL,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:

(88)

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

Date of publication of the international search report:
26 September 2002

[Continued on next page]

(54) Title: CACHE SYSTEM AND METHOD FOR GENERATING UNCACHED OBJECTS FROM CACHED AND STORED
OBJECT COMPONENTS

20

DATA PROGESSING SYSTEM

30
CPU

40
CPU

- mh A T S AN S Ay W A

L L I N L ey

38

PROCGESSOR

- e W -

44 BUS

22’
STORAGE
DEVICE

l 28 STORAGE ‘
MEMORY

34

U Tl Rl R R

- am = n wr =N e

‘-ﬂﬂ

28 STORAGE
MEMORY

26
PERIPHERAL
DEVICE

1
i
|
§
’
t
1
'
'

(57) Abstract: Methods and apparatus for constructing objects within a cache system thereby allowing the cache system to respond
to requested objects that are not initially available within the cache system. One embodiment of the invention caches image files,
where the images are divided into components and stored in a format that allows identification and access to the components. The
cache system determines that an object, such as an image file, is missing from the cache memory, locates sufficient components from
the cache memory and/or external storage, and constructs the object from the located components.

10

15

CA 02416839 2009-12-18

CACHE SYSTEM AND METHOD FOR GENERATING UNCACHED OBJECTS FROM
CACHED AND STORED OBJECT COMPONENTS

Field of the Invention

The invention generally relates to data processing storage architectures and

processes, and more specifically relates to cache memory for efficient access to stored data.

Background of the Invention
Recent developments in the computer and computer networking industries have

spawned an ever increasing demand for fast access to large amounts of data relating to
objects such as images, audio, and documents. Dramatic increases in both data storage
capacity and computer processing speed have allowed computer applications to process and
store greater amounts of data facilitating data content rich with multi-media. Similar
advances in computer networking have lead to dramatic increases in both communications
bandwidth and the breadth of network access. With these advances, vast amounts of
information are routinely shared among computers supporting web-based and other

networked applications.

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

capacity and computer processing speed have allowed computer applications to process
and store greater amounts of data facilitating data content rich with multi-media. Similar
advances in computer networking have lead to dramatic increases in both
communications bandwidth and the breadth of network access. With these advances, vast

5 amounts of information are routinely shared among éomputers supporting web-based and
other networked applications.

Typically, a host computer is connected to a storage device, such as a hard disk
drive or a file server, having a memory that holds the information in the form of objects.
When the host computer receives a request for a data object, thé storage device is queried

10 and the object is retrieved from the storage device and transferred to the host computer.
To reduce a delay involved in accessing the object from the storage device, a cache 1s
often used on the host computer. The cache typically includes a smaller memory used to
store the most frequently requested objects from the storage device. The cached objects
are more quickly accessible than objects stored wi'thin the larger storage device.

15 Therefore, subsequent requests for objects that have been cached can be responded to
quickly directly from the cache, without the need to access the storage device.

A typical cache includes binary logic functioning when the cache receives a
request for an object to determine 1f the object 1s available in the cache. If the object is
available in the cache, the cached object is used to respond to the request. If the object is

20 not available in the cache, the object request is responded to by retrieving the object from
the larger storage device. If the storage device is connected to the requesting processor

through a shared communications bus, there will likely be delays to retrieve the object

10

15

20

25

30

CA 02416839 2009-12-18

due to the bandwidth of the bus, competition from other devices connected to the bus, and
additional instructions necessary to communicate the object request to the storage device
and the object delivery to the requestor. This delay will likely be even greater if the storage

device, such as a web server, is remotely located and connected by a communication link

such as the World Wide Web.

Summary of the Invention
The present invention relates to a cache system and method for generating uncached

objects from cached and stored object components. One embodiment of the invention
caches 1mage files, where the images consist of components and are stored in a format that
allows identification and access to the individual image components.

In accordance with one aspect of the present invention, there is provided, in a data
processing system having a cache, a method comprising: locating a first component that is
related to an uncached image, the first component including a component tag and a
component payload, the component payload including image information, and the first
component being present in either the cache or a storage system; locating a second
component that 1s related to the uncached image in either of the cache, the storage system,
or another storage system, the second component including a second component tag and a
second component payload, the second component payload at least including additional
image information; and constructing by the cache, the uncached image at least from the
located first and second components.

In accordance with another aspect of the present invention, there is provided a data
processing system having a cache, comprising: means for locating a first component that is
related to an uncached image, the first component including a component tag and a
component payload, the component payload including image information, and the first
component being present in either the cache or a storage system; means for locating a
second component that is related to the uncached 1mage in either of the cache, the storage
system, or another storage system, the second component including a second component tag
and a second component payload, the second component payload at least including
additional image information; and means for constructing by the cache, the uncached image
at least from the located first and second components.

In one aspect, a regenerative cache system determines that an object, such as an

1mage file, is missing from the cache memory. The regenerative cache system then locates

CA 02416839 2009-12-18

sufficient components to construct the object, where the components can be located within
the cache memory, or within an external storage device. Once the components are located,
the regenerative cache system constructs the object.

One feature of the invention in one embodiment is the storing within the
regenerative cache system objects constructed by the regenerative cache system in response
to an object request where the object is initially missing from the cache.

Another feature of the invention in one embodiment is the requesting of an object by
the regenerative cache system in anticipation of an external request for an object not

initially stored within the cache. Here, the regenerative cache system determines that an

-32-

10

}5

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

object will likely be requested, then the regenerative cache system determines 1f the
object is missing. If the anticipated requested object is missing from the cache, the
regenerative cache system constructs the object.

In another aspect, a regenerative cache system includes an interface, logic
element, memory, and a processor. The interface allows the regenerative cache system to
communicate with external devices or systems to monitor requests for objects, to access
externally stored objects and components, and to respond to requested objects. The logic
element functions to determine if a requested object is missing from the cache, then, 1f
missing, to locate the components to construct the requested object. Memory stores
objects that are likely to be requestéd and objects that include components that are likely
to be necessary to construct requested objects that are not themselves 1n the cache. The

processor functions in coordination with the interface, the logic element, and the memory

to access the necessary components and construct the requested object.

One feature of the invention responds to a requested JPEG 2000 image file that 1s
initially missing froﬁl the cache by constructing the requested irhage file using

components from one or more JPEG 2000 image files resident within the cache system

memory, or resident within external storage systems.

Another feature of the invention is to respond to a requested document file that 1s

initially missing from the cache by constructing the requested document file by using

components of other document files resident within the cache system memory, or resident

within external storage systems.

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

Yet another feature of the invention 1s to respond to a requested web-page file that
is initially missing from the cache by constructing the requested web-page file by using
components of other web-page files resident within the cache system memory, or resident

within external storage systems.

Brnief Description of the Drawings

The invention is pointed out with particularity in the appended claims. The
drawings are not necessarily to scale, emphasis instead generally being placed upon
illustrating the principles of the invention. Like reference characters in the respective

10 drawing figures indicate corresponding parts. The advéntages of the 1nvention may be
better understood by referring to the following description taken in conjunction with the
accompanying drawings in which:

FIG., 1 1s a block diagram of an embodiment of a data processor architecture
showing the relationship between a cache and a host data processor in this embodiment;

15 FIG. 2 1s a general block diagram illustrating an embodimept of an
implementation of the cache;

FIG. 3 is a general diagram illustrating an example of a data object structure;
FIG. 4 1s a flow diagram generally illustrating an embodiment of a process for
constructing objects in the cache;
20 FIG. 5 is a more detailed flow diagram illustrating an embodiment of a process for
constructing objects in the cache;

FIG. 6 is a general diagram 1llustrating an example of data object construction

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

FIG. 7 is a general diagram illusirating an example of an image data object;

FIG. 8 is a general diagram illustrating an example of another image data object;

and

FIG. 9 is a general diagram illustrating an example of a compound document data

object.

Detaiiéd Description of the Invention

Referring to FIG. 1, in one embodiment a data processing system 20 is in
communication with a first storage device 22, a user interface 24, and one or more
peripheral devices 26. The data processing system 20 receives data through either the
user interface 24, the peripheral device 26, such as a modem or image scanner, or through
memory reads from the first storage device 22 where the storage device comprises storage
memory 28. The first storage device 22 can.be any data storage device such asadisk
drive, a magnetic tape drive, an optical disk drive, or an electronic memory. The data

processing system 20 processes and optionally delivers data to the user interface 24, such
as a terminal display, to the peripheral device 26, such as a printer, or through memory

writes to the storage memory 28 of the first storage device 22.

The data processing system 20 includes a central processing unit (CPU) 30 1n
communication with a second storage device 22’ and an input/output (1/0) controller 34
through an electrical communications bus 44. The second storage device 22’ is similar to

the first storage device 22, having a storage memory 28, except that the second storage

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

device 22’ constitutes part of the data processing system 20 and is addressable directly
through the system bus 44. The I/O controller 34 interfaces the first storage device 22,

the user interface 24, and one or more peripheral devices 26 to the CPU 30. The CPU 30

receives, processes, and delivers data.

S The CPU 30 1s further comprised ol a processor 38, a CPU memory 40, and a
regenerative cache system 42. The CPU 30 is in electrical communication with the CPU
memory 40 and the regenerative cache system 42 through a CPU electrical
communications bus 36. In orie embodiment the CPU 30 is a computer, such as a file
server, workstation, or personal computer (PC), and the memory 40 comprises any

10 combination of dynamic random access memory (DRAM), read only memory (ROM),
registers and cache used to store the instructions and data processed by the processor 38.

Other embodiments are shown with the regenerative cache system 42, shown in

phantom, where the regenerative cache system 42 is configured locally at one or more of
each of the CPU memory 40, the processor 38, the first and second storage devices 22 and

15 22’ the I/O controller 34, the user interface 24, and the one or more peripheral devices
26. Also shown are embodiments wherein the'regenerative cache system 42, shown 1n
phantom, is configured as one or more standalone system components, and wherein the
regenerative cache systems 42 are in communication with the CPU 30 through the VO
controller 34 and through the system bus 44. The regenerative cache system 42 caches

20 objects and generates uncached objects from cached and stored objects in accordance

with the principles of the invention.

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

Referring to FIG. 2, one embodiment of the regenerative cache system 42 includes

a cache memory element 46, an interface element 48, a processor element 50, and a logic

element 52. The memory element 46 is in electrical communication with the interface

element 48, the processor element 50, and the logic element 52.

In one embodiment, the regenerative cache system 42 manipulates and stores

objects. In this embodiment, the cache memory element 46 provides a storage capability

| ‘enabling the regenerative cache system 42 to store objects locally to the regenerative

cache system 42. The interface element 48 is in further communication with external
systems, devices, or components enabling the regenerative cache system 42 to accept as
input new objects for storage or processing and to provide as output cached objects and/or
components of cached objects. The logic element 52 enables the regenerative cache
system 42 to locate an object. In one embodiment, the logic element 52 determines

whether an object is available within the cache memory element 46 and/or whether an

object is available externally to the regenerative cache system 42 where the object can be

located within one or more of each of the CPU memory 40, the first and second storage

devices 22, 22°, a second regenerative cache system 42 the user interface 24, and one or

more peripheral devices 26.

In one embodiment, in addition to locating objects within and without the
regenerative cache system 42, the logic element 52 pﬁforms functions similar to a typical
cache related to managing the limited cache memory 46 1n an efficient manner (e.g.,

maintaining cached items determined likely to be requested in the future and not

maintaining cached items determined not likely to be requested in the future).

10

15

20

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

Objects stored within the memory element 46 are individually addressable and can

be addressed directly by memory location address, indirectly by a reference, such as a

filename, or referentially through a virtual address map or address look-up table.

The elements 46, 48, 50, 52 of the regenerative cache system 42 can be grouped

together and located on a single substrate, within a single module, or within a single
chassis, distributed among combinations of one or more substrates, modules, or chassis,
or shared among multiple regenerative cache systems 42. In one illustrative example of

one embodiment of a shared element regenerative cache system 42 configuration, the

processor 50 of a first regenerative cache system 42 serves as the processor 50 of a
second regenerative cache systems 42.

Referring to FIG. 3, an object 54 contains an object tag 56 providing information
related to the object 54 and an object payload 58 containing additional information related
to the object 54. The object 54 represents any file having a format describing structured
data. Examples of files having structured data formats include extensible markup
language (XML) files; files ﬁsing the Objéct Linking and Embedding (OLE) structure;
image files, such as bitmap, includiﬁé 0OS/2 bitmap files containing multiple images,
Computer Graphics Metafile (CGM), Flexible Image Transport System (FITS) {ile,
Graphics Interchange Format (GIF) file, Hierarchical Data File (HDF), Adobe PostScript
file, Tagged-Image File Format (TIFF), compressed image files, such as discrete-cosine
transformed image files and wavelet-transformed image files, such as Joint Photographic
Experts Group (JPEG) compressed image files, including JPEG 2000 files; audio files

such as MP3 files, or Wave Form Audio File Format files; compressed files, such as

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

“zipped” files; video files, such as Moving Picture Experts Group (MPEGQG) files; and
database files. The object tag 56 contains information such as “meta” data, identifying a
particular object 54 by including information such as a file identifier, a file type, and

details relating to the particular file construction.

The object payload 58 is comprised of one or more components 60a through 60n
(generally 60). Each component 60 is comprised of a component tag 62 and a component
payload 64. The component tag 62 provides information such as a component jdentifier,
a component type, and details relating to the component contents. The component
payload 64 contains additional information related to the component 60. In some
embodiments, the components 60 can be further subdivided into sub-component levels

with a structure similar to that described for the component 60.
With these objects 54 representing structured data storage objects 54, such as
XML, OLE, or JPEG 2000, the regenerative cache system 42 has the ability to search for

and manipulate components 60. Once the components 60 have been located, they can be
accessed and manipulated in a variety of ways for further processing and viewing. The

objects 54 also lend themselves to being granularly updated by adding, subtracting, or re-

ordering the individual object components 60.

In one embodiment each of the components 60 of an object 54 can constitute a
new object 54 either individually or in combination. The components 60 can also be
components 60 of objects 54 available within the cache memory 46, which, when

extracted from their objects 54 and combined and affixed with an appropriate object tag

56, yield new objects 54.

~10-

10

15

20

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

FIG. 4 shows an embodiment of a process used by the regenerative cache system
42 to construct an iject 54. The regenerative cache system 42 determines if an object 54
is missing from the cache memory 46 (step 66). The object 54 can be 1dentified by an
external request or from the regenerative cache system 42 determining that the object be
obtained and cached 1n anticipation of a future request. The requested object 54 is
missing from the cache 42 if the requested ‘object 54 has not been previously stored and
maintained within the cache memory 46. If the object 54 is not missing from the
regenerative cache system 42, the regenerative cache system 42 returns the requested
object 54 stored within the cache memory 46 to respond to the requestor (e.g., the
processor 38). If the requested object 54 1s missing from the cache memory 46, the
regenerative cache system 42 locates one or more components 60 sufficient to construct
the requested object 54 (step 68) and constructs the object 54 (step 70) and returns the
requested object 54 (step 72) to respond to the object 54 reques;. The regenerative cache
system logic element 52 knows the contents of 1ts own cache memory 46 and the
requested object 54 because the regenerative cache system 42 accepts requests for objects
54. In one embodiment the regenerative cache system 42 determines the contents of its
own cache memory 46 through the method used to track cached objects 54, suchas a file
table, directory, or address map. The logic element 52 determines the components 60
from which the object 54 can be produced and determines if those cormponents 60 are
available within the cache memory 46. In one embodiment, the logic element 52
determines the components 60 from which the object 54 can be produced from the symntax

of the file structure and the request for the object 54. The syntax of the file structure

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

defines structural attributes of the objects 54 and can include the definition of structural
details relating to the object tag 56 and the one or more component tags 62 of the
requested object 54. The request for the object 54 identifies what the requested obj.ect >4
is. An example of a request for a JPEG 2000 1mage objec;t 54 1dentifies the source image
(e.g., a computer file relating to a particular photograph) and how the requested object 54
is structured (e.g., in increasing resolution where lower-resolution cormponents 60 are
ordered before higher-resolution components). In some embodiments, the -requested
object 54 can be retrieved directly from the one or more remote storage devuicés 22,22°,
40, 42 regardless of the presence within the cache memory 46 of components 60 from
which the object 54 can be produced. The requested object 54 can be retrieved directly
from the one or more remote storage devices 22, 22°, 40, 42 under any one of several

situations, such as if ample communications bandwidth 1s available or if the pre-request

contents of cache memory 46 are to be preserved.

In one embodiment, the objects 54 are JPEG 2000 1mage files and the logic
element 52 examines the object tags 56 of the objects 54 stored in the cache memory 46
to determine if the object 54 is misging from the cache memory 46. If the object 54 is
missing from the cache memory 46, the regenerative cache system 42 examines the object
54 and component tags 62 of each object 54 available within the cachie memory 46 to
determine if any or all components 60 are available within the cache memory 46 to
respond to the requested object 54. If sufficient components 60 are available, the
components 60 are combined accordingly to construct an object 54 to respond to the

object 54 request. If some components 60 are available within the cache memory 46, but

-]12-

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

not all components 60 sufficient to construct the requested object 54, the regenerative
cache-gystem 42 obtains locally those components 60 available within the cache memory
46 and then obtains the additional components 60 sufficient to construct the requested
object 54 from the one or more remote storage devices 22, 22°,40, 42. The regenerative
5 cache system 42 then combines the components 60 to construct the requested object 54.
In some embodiments, the requested objects 54 are retrieved from storage directly rather
than constructed within the regenerative cache system 42, even though some, or sufficient
components 60 may be available in cache memory 46.
In one embodiment, after having constructed the requested object 54, the
10 regenerative cache system 42 stores the newly constructed object 54 to satisfy future
requests. In some embodiments, the components 60 used to construct the object 54 are
copied and maintained separately as components 60 within the cache memory 46. In
other embodiments, the components 60 are used and combined to form the requested

object 54 and the original components 60 are no longer stored. This form of object
15 generation can be used where 1t 1s more efficient to store the components 60 within the

constructed object 54, or if the regenerative cache system 42 has determined that the

- components 60 within cache memory 46 are no longer necessary.

In more detail, referring to FIG. 5, one embodiment of the regenerative cache
system 42 determines the one or more components 60 sufficient to construct the requested
20 object 54 (step 74). The regenerative cache system 42 determines the sufficient

components 60 from the syntax of the file structure and the request fbr the object 54. The

regenerative cache system 42 determines 1f the sufficient components 60 to construct the

-13-

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

requested object 54 are available within the cache memory 46 (step 76). If the sufficient
components 60 are available within the cache memory 46, the object 54 is constructed by
the cache processor 50 (step 78). If the components 60 are not available in the cache
memory 46, the regenerative cache system 42 determines if any components 60 of the
5> - requested object 54 are available in the cache memory 46 (step 80). If any of the
components 60 of the requested object 54 are available in the cache memaory 46, the
Tegenerative cache system 42 determines which components 60 are missing by comparing
the determined components 60 of the requested object 54 available in the cache memory
46 to the determined components 60 sufficient to construct the requested object 54 (step.
10 82). Having determined the missing components 60, the regenerative cache system 42
retrieves the missing components 60 from one or more remote storage devices 22,227,
40, 42 (step 84). Referring again to FIG. 1, the one or more remote storage devices 22,
22°, 40, 42 can include local memory 40, a local storage device 22 in communication
with the CPU 30 through a system bus 44, a peripheral storage device 22, an external
15 storage source in communication with the data processing system 20, or another
regenerative cache system 42. The regenerative cache system 42, having the components
60 from the locally available cache memory 46 and those retrieved from the remote one
or more storage devices 22, 22°, 40, 42, constructs the requested object 54 (step 78). The
object 54 can be reﬁlrned in response to an object request (step 95) and/or cached for
20 future requests.
If no components 60 of the requested object 54 are available inn the cache memmory

46 (step 80), the regenerative cache system 42 determines if the requested object 54 is

-14-

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

externally available 1n one or more of the remote storage devices 22, 22°, 40, 42 (step 80).
In one embodiment, if the object 54 is available 1n storage memory 28 of either of the
remote storage devices 22, 22°, the regenerative cache system 42 need not respond to the
request because either of the storage devices 22, 22’ replies to the request directly.
Alternatively, the regenerative cache system 42 can retrieve the requested object 54 from
the one or more remote storage devices 22, 22°, 40, 42 and store it in the cache memoxry

46 to respond to future requested objects 54.

If the object 54 is not available in the one or more remote storage devices22, 22,

40, 42 (step 86), having already determined that no components 60 are available within
the cache memory 46 (step 80), the regenerative cache system 42 determines if the
necessary components 60 that can produce the requested object 54 are externally

available in the one or more remote storage devices 22, 22°, 40, 42 (step 88). Ifthe
components 60 that can produce thé requested object 54 are unavailable in the one or
more remote storage devices 22, 22°, 40, 42 the object request cannot be saﬁsﬁed (step
90). If the components 60 are available in the one or more remote storage devices 22,

22°, 40, 42, the regenerative cache system 42 retrieves the necessary components 60 (step
02) and constructs the requested object 54 (step 78). Again, in some embodiments, the
requested object 54 can be retrieved directly from the one or more rermote storage devices

22.22° 40, 42 regardless of the presence or absence within the cache memory 46 of any

components 60 from which the object 54 can be produced.

In one embodiment, the regenerative cache system 42 stores within the cache

memory 46 the components 60 retrieved externally from the one or more remote storage

-15-

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

devices 22,22’, 40, 42. In another embodiment, the regenerative cache system 42 stores
within the cache memory 46 the object 54 constructed by the regenerative cache system
42.

FIG. 6A shows three examples of the regenerative cache system 42 constructing
objects 54 in accordance with the principles of the invention. This figure illustrates the
cache memory 46 and the storage memory 28, where each of the cache memory 46 and
the storage memory 28 contain data in the form of objects 54a, 54b, S4c, and 54d. The
cache memory 46 is 1llustrated twice, first on the left-hand side of the figure and again on
the right-hand side of the figure. The left-hand side of the figure represents the contenits
of cache memory 46 and storage memory 28 betore the regenerative cache system 42
receives a request for a particular object 54e. The cache memory 46 on the right-hand
side of the figure represents the same cache memory 46 with altered rmemory contents

after the regenerative cache system 42 responds to the request tor the particular ebject 54e

and cached the requested object 54.

Four each of these examples, the cache memory 46 1nitially contains object 54a and
object 54b and the storage memory 28 contains objects 54c and 54d. In a first example,
the particular object 54e is requested and the regenerative cache system 42 determines
that the particular object 54¢ 1s missing from the cache memory 46 as shown by the left-
hand side of the figure. The regenerative cache system 42 determines the components 60
that can produce the requested particular object 54e. The logic element 52 then
determines that the components 60 that can produce the requested particular object 546

are resident within the cache memory 46 and are contained within object payloads 58a

-16-

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

and 58b of objects 54a and 54b, respectively. In this example, the particular components
are not shown because the components 60 that make up each of the object payloads 58a
and 58b are used to construct the rgquested particular object 54e. The regenerative cache
system 42 then constructs the particular object 54e by taking the components 60
5 contained within the object payloads 58a and 58b, combining them, and affixing the
object tag 56 for requested particular object 54e. The solid arrows from the left-hand side
of the figure to the right trace the results of the regenerative cache system 42 responding
to the request for requested particular object 54e. Although the constructed object 54 is
shown as the concatenation of objects 54a and 54b, the resulting particular object 54e is
10 1tself a new and distinct object. As shown in this exatnpie; objects S4a and 54b remain
within the cache memory 46 after the construction of a particular object 54e.

In a second illustrative example shown by the dashed arrows, a particular object
54¢€’ 1s requested and found missing from the cache memory 46. The regenerative cache
system 42 determines the components 60 that can produce the particular object 54¢’ and

15 the logic element 52 locates some, but not all of the sufficient components 60 within the
cache memory 46. In this example, the components 60 located within cache memory 46
make up the object payload 58b of object "54b. To construct the requested particular
object 54¢’, the logic element 52 locates missing components 60 in storage memory 2 8
where the missing components 60 are contained within the object payload 58c¢ of object

20 54c. Having the cached components 60 from object 54b the regenerative cache system 42

obtains the missing components located in the storage memory 28 and constructs the

-17-

[0

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

requested particular object 54¢’ 1n a manner similar to the construction of particular
object 54e constructed in previous illustrative example.

In yet another illustrative example also referring to FIG 6A and shown by the
dotted arrows, a particular object 54¢’’ is requested and found missing from the cache
memory 46. The regenerative cache system 42 determines the components 60 that can
produce the requested particular object 54¢’” and the logic element 52 determines that
none of the components 60 are available within the cache memory 46. The regenerative
cache memory 42 determines that the requested object 54¢’’ is not available in storage
memory 28 and the logic element 52 locates the components 60 within object payloads

58c and 58d of objects 54c and 544, respectively. The regenerative cache memory 42
then obtains the missing components 60 from storage memory 28 and then constructs the

requested particular object 54¢”’ in a manner similar to that described within the first and

second illustrative examples.

FIG. 6B shows three examples of the regenerative cache system 42 constructing
objects 54 in accordance with the principles of the invention. FIG. 6B illustrates a
configuration of cache memory 46 and storage memory 28 similar to that illustrated in
FIG. 6 A with further detail regarding the components of the stored objects 54. Ineach of
these three illuétrative examples, each of the objects 54 stored in cac‘:he memory 46 and

storage memory 28 are shown comprising multiple components 60. Similar to the
illustrative examples of FIG. 6A, the requested particular objects S4e, S4¢’, and 54e°° are

comprised of one or more components 60 of a first stored object 54a, 54c in combination

with one or more components 60 of a second stored object 54b, 54d.

-18-

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

For each of the illustrative examples relating to F1G. 6B, object 54a and object
54b are initially stored within the cache memory 46 and objects 54c and 54d are initially
stored within the storage memory 28. The regenerative cache system 42 determines
which components 60 of stored objects 54 are necessary to construct the requested

5 particular requested object S4e, 54€’, or 54¢’°. The logic element 52 1oOcates the
components 60 to construct the requested particular object 54e, 54¢’, or 54¢”’ and the
regenerative cache system 42 constructs the requested particular object S4e, 54¢’, 6r
S4e’’.

In the first illustrative example, the requested particular object S4e i1s comprised of
10 components 60a and 60c. The logic element 52 locates component 60 a within object S4a
stored in cache memory 46. The logic element 52 also locates component 60c within
object 54b, also stored within cache memory 46. The regenerative cache system 42
. extracts components 60a and 60c from obj ects 54a and 54b, respectiveely, and constructs
the requested particular object 54e by combining objects 60a and 60c _land affixing a new
1S object tag 56 associated with the requested particular object 54e. The solid arrows
extending from the components 602; and 60c stored within objects S4a and 54b,
respectively, within the cache memory 46 -to the particular object 54e generated in
response to the request illustrate the relationships between the objects 54 and components
60 relating to the request of this illustrative example. In this example, the particular
20 object 54e constructed in response to a request 1s shown stored within the cache memory

46.

-19.

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

In a second 1llustrative example shown by the dashed arrows, a requested
particular object 54€’ is constructed by the regenerative cache system ‘42 similarly to the
construction of the requested particular object 54e of the previous example, from
component 60b of object 54a stored within cache memory 46 and from component 60g of

object 54d stored within storage memory 28.

In a third illustrative example shown by the dotted arrows, a requested particular

object S4e’’ is constructed by the regenerative cache system 42 similarly to the
construction of requested particular objects 54e and 54¢’ in the preceding two illustrative
examples from component 60f of object 54¢ stored within the storage memory 28 and

component 60h of object 544, also stored within the storage memory 28.

FIG. 6C shows further illustrative examples of the regenerative cache system 42
constructing objects 54 in accordance with the principles of the invention where the
requested particular object 54 is comprised of one or more components of a single object.
In the first illustrative example, the particular object 54e is requested where the
components of object 54e are comprised of component 60a. The logic element 52 locates
component 60a as a coﬁlponent 60 6f object 54a stored in cache memory 46. The
regenerative cache system 42 extracts component 60a from object 54a, affixes the object
tag 56 to the particular object 54€, and stores the particular object 54e in response to the
request for the particular object 54e. The solid arrow extending from object 60a stéred
within object 54a-within the cache memory 46 to the particular object 54e generated in

response to the request illustrates the relationships between the objects 54 and

components 60 relating to the request of this illustrative example. -

220~

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

Similarly, in a second illustrative example, a particular object 54¢’ is requested
where the components of object 54¢’ are comprised of component 60g. The logic
element 52 locates component 60g as a component 60 of object 54d stored in storage
memory 28. The regenerative cache system 42 extracts component 60g from object 54d,
affixes the object tag 56 to the particular object 54¢’, and stores the particular object S54¢’
within the cache memory 46 in response to the request for the particular object 54¢’. The
dashed arrow extending from object 60g stored within object 54d within the cache
memory 46 to the particular object 54e’ generated 1n response to the request illustrates the

relationships between the objects 54 and components 60 relating to the request of this

second illustrative example.

Referring to FIG. 7, in an illustrative example of one embodiment of a
regenerative cache system 42, a requested object 54 1s a graphical image file 96, where

the image file is a computer-readable representation of a graphical image, such asa

digitized representation of a photograph. The image file can be an uncompressed image
file such as a bitmapped image file, or a compressed image file, suéh as a discrete-cosine-
transformed image file, or a wavelet-transformed image file. The image file 96 is

compriéed of a plurality of tiles 98a to 98n (generally 98). One example of an image file
96 is a geographical map, such as a road, terrain, or weather map, where the image
comprises a large number of pixels, more than typically displayable on1 a standard
computer display terminal. The exemplary image file 96 can be treated as a whole or

subdivided into tiles 98 where the tiles correspond to a subset of the irmage file pixels that

are capable of being simultaneously displayed on a computer display terminal. Here, the

-2]-

[0

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

entire image file 96 can be requested from the one or more remote storage devices 22,
22°. 40, 42 and the individual tiles 98 displayed as requiréd, or individual tiles 98 can be
retrieved from the one or more remote storage devices 22, 22°, 40, 42 as required. If the
requestor of the image file 96 observes a first tile 98a, then observes a second tile 98b, the
regenerative cache system 42 can store the requested tiles 98a and 98b 1n the cache
memory 46. A later request for a different object 54 including either of the tiles 98a or
98b as components 60 can be served from cache memory 46 using the cached tiles 98a or
98D rather than retrieving ihe tiles 98a, 98b from the one or more remote storage devices
22,22°,40, 42.

Referring to FIG. 8, in one embodiment the object 54 1s a wavelet-transformed,
compressed image 100. One example of a wavelet-transformed, compressed image 100

is a JPEG 2000 image 100. The JPEG 2000 image 100 is comprised of various categories

of components 60 related to the nature in which the JPEG 2000 compression algorithm

functions. The JPEG 2000 compression algorithm takes a digital representation of an

image 96 as shown in FIG. 7 and divides the image into one or more tiles 98. The JPEG
2000 compression algorithm i1s appiied separately to each of the tiles 98. Eachtile 98 1s
divided into components 102a, 102b, and 102¢ (generally 102) such as red, green, and
blue color components 102 that when combined together yield a color imége. Each of the

color components 102 is transformed using a wavelet transform to form sub-bands 104a

through 104j (generally 104) of the original image file 96. Sub-bands 104a, 104b, and

- 104c correspond to a first level wavelet transform. Sub-bands 104d, 1 O4e, and 1041

correspond to a second sub-band level, and sub-bands 104g, 104h, and 104i correspond to

29

10

15

20

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

a third sub-band level. The transform can be applied repeatedly to produce additional
levels of sub-bands 104. The various levels of sub-bands 104 correspond to different
levels of image resolution.

When applying the JPEG 2000 algoritohm to an 1mage file 96, the two dimensional
arrays of sub-bands 104 for each color component 102 are further divided by the JPEG
2000 algorithm 1nto layers, or collections of coded bit-planes, 106a through 106n o
(generally 106). These layers 01 06 correspond to levels of image quality or accuracy. The
more layers 106 that are decoded, the higher the quality of the image that is presented.

Referring again to FIQ. 3, the JPEG 2000 image 100 corresponds to an object 54,
while the tiles 98, color components 102, sub-bands 104, and layers 106 correspond to
components 60. The JPEG 2000 algorithm converts an 1mage file 96 into a JPEG 2000
image 100 referred to as a JPEG 2000 “codestream.” The codestream is essentially an

aggregation of the components 60 arranged 1n a particular order with a particular
codestream header, or object tag 56. The JPEG 2000 codestream also includes

component tags 62 for each of the components 60 to facilitate their identification and

manipulation.
Depending on a particular selection and ordering of the components 60, a JPEG
2000 codestream contains different compressed versions of the original image file 96.

The JPEG 2000 codestream syntax allows image presentation that varies in color,

resolution, quality, and spatial location on the original image.

In an illustrative example, referring again to FIG. 8, where the requested object 54

is a JPEG 2000 1mage 100, the object components 60 comprise one or more tiles 98, and

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

one or more color components 102, and/or one or more sub-bands 104, and/or one or
more layers 106. The syntax of the JPEG 2000 algorithm dictates the order of the
components 60 in response to a request. The requested object 54 can be the entire full-
sized, full-color, full-resolution, and full-quality JPEG 2000 image 100, or the requested
5 object 54 can be a subset of the full-sized, full-color, full-resolution, full-quality JPEG
2000 image 100. Examples of a subset of a JPEG 2000 image 100 include a central
portion of a larger image, a grayscale version of a color image, a thurnbnail of a higher-
resolution image, or a reduced-quality version of the of a full-quality 1mage.
In addition to identifying the extent of the full-sized, full-color, full-resolution,

10 full-quality JPEG 2000 image 100, the request for object 54 can also identify a particular
ordering of the requested object cqmponents 60. Tfle ordering of the components 60
effects the presentation of a decompressed JPEG 2000 1mage 100. The components 60
can be ordered with respect to the tiles 98 to produce a presentation in progressive size, or
progressively by location on the image, e.g., starting with the center tile(s) 98 and

15 continuing with the remaining tiles 98 outward towards the image boarder. The

components 60 can also be o‘rdered.with respect to the color components 102 to produce a
presentation in progressive color, e.g., starting with a grayscale image, then progressing to
a dual color image, and ultimately progressing to the full-color image. Altermatively, the
components 60 can be ordered with respect to the sub-bands 104 to produce a

20 presentation in progressive resolution, e.g., starting with a low-resolution image, then
progressing to a higher-level resolution, and ultimately progressing to the resolution level

of the requested object 54. The components 60 can also be ordered with respect to the

~24-

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

layers 106 to produce a presentation in progressive quality, e.g., startinag with a low-
quality 1mage, then progressing to a higher-quality image, and ultimately progressing to
the quality level of the requested object 54.

: Other variations are possible where a selected portion of the full-size, full-color,

5 full-resolution, full-quality JPEG 2060 1mage 1s presented 1n any of thie previously
identified presentation modes, or where different segments of the requiested JPEG 2000
image 100 are presented with varying size, color, resolution, or quality. One example
would be a low-resolution image having a sub-region, such as the central region provided
at a higher resolution.

10 In a first illustrative example, the regenerative cache system 42 has cached within
the cache memory 46 a first object 54 comprising an ordered set of components 60 that
define a particular presentation of the JPEG 2000 image file 100. In a first illustrative
example, the first object 54 is the fu11~sized, tull-color, full-resolution, full-quality JPEG
2000 1mage file 100, ordered for progressive resolution. Whgn a subsequent request is

15 received for a second object 54 that is related to the first object, such as a request for a
lower-resolution version of the first image 54, the regenerative cache system 42 knows

that it has the necessary components 60 within the cache memory 46 to construct the
lower-resolution second image 54. The regenerative cache system then locates the
necessary components 60 from the first cached object 54 and constructs the second ob ject
20 54,
In another illustrative example, the first object 54 stored within the cache memory

46 1s a reduced-resolution, or thumbnail presentation of the JPEG 2000 image file 100.

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

Subsequently, a request is received for a second object 54 that is related to the first object
54, sﬁgh as a request for a full-resolution presentation of the JPEG 2000 image 100 from
which the thumbnail first object 54 was obtained. Again, the regenerative cache system
42 knows that it has the thumbnail component(s) 60 (the lower sub-band(s) 104) related
5 to the second requested object 54 stored within the cache memory 45. The regenerative
cache system 42 then determines the additional components 60 sufficient to construct the
requested second object 54 when combined with the thumbnail components 60 and
obtains those additional components from the one or more storage devices 22, 22°, 40, 42.
The regenerative cache system 42 can similarly" serve requests for second objects 54 that
10 ditfer from the first object 54 in color, quality, or even presentation ordering of the
components 60.
Referring to FIG. 9, in yet another embodiment the objects 54 are compound
documents 108. The compound documents 108 are comprised of a plurality of document
-.components 60a through 60d (generally 60). The document components 60 represent any
15 1dentifiable subsection of a file. Exam;:o)les of document components 60 include graphics,
spreadsheets, chapters, sectipns, pages of text, slides, charts, graphs, drawings, and tables.
Examples of compound documents include word processing documents, OLE documents,
web documents, and slide presentations. Other examples of compound documents 108
include audio files where the document components 60 represent individual songs, or
20 portions of songs of a multi-song compilation such as an audio compact disk (CD), an

compressed digital audio file, such as an MP3 file, or individual track s of a multi-track

recording.

_26-

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

In one example, the compound document 108 is an OLE document and the
document component 60 is an embedded spreadsheet. Here, a data processing system 20
responds to a request for a first compound document 108 by retrieving the compound
document 108 from storage and caching the compdund document 108, containing the
5 spreadsheet document component 60 in the regenerative cache system 42. The
regenerative cache system 42 can return the compound document 108 and cache the
compound document 108 and component 60 separately. When the data processing
system 20 receives a later request for a second document 108 different from the first
document 108, but having the same embedded spreadsheet document component 60, the
10 regenerative cache system 42 determines that the second compound document 108 is not
cached, but the embedded spreadsheet component 60 is cached and contained within the
first compound document 108 (or contained separately in the compound document 108
and the compohent 60 if cached separately). The regenerative .cache system 42 retrieves
the sufficient document components 60 for the second requested compound document
15 108, less the spreadsheet document component 60 already cached. The regenerative
cache system 42 then combines the cached spreadsheét document component 60 with the
remaining document components 60 retrieved from storage creating the requested second
compound document 108. The regenerative cache system 42 can decide to cache some or
all of the second compound document 108 to serve later requests. Other examples of
20 compound documents 108 that are similarly handled by the regenerative cache system 42

imclude web compound documents 108, such as HTML documents with embedded

=27

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

components 60. The components of a web compound document 108 include items such

as graphic components, text block components, frames, and applets.

Having shown the preferred embodiments, one skilled in the art will realize that

many variations are possible within the scope and spirit of the claimed invention. It 1s

therefore the intention to limit the invention only by the scope of the claims.

8-

CA 02416839 2009-12-18

What 1s claimed 1s:

1.

In a data processing system having a cache, a method comprising:

locating a first component that 1s related to an uncached image, the first
component including a component tag and a component payload, the
component payload including image information, and the first component

being present in either the cache or a storage system,;

locating a second component that is related to the uncached image in either
of the cache, the storage system, or another storage system, the second
component including a second component tag and a second component
payload, the second component payload at least including additional image

information; and

constructing by the cache, the uncached image at least from the located first

and second components.

The method of claim 1, further comprising obtaining the located first and second

components.

The method of claim 1 or claim 2, further comprising deriving one or more of the

first and second components from an object.

The method of any one of claims 1 to 3, further comprising storing the constructed

1mage 1in the cache.

The method of any one of claims 1 to 4, further comprising generating, by the cache,

a request for the image.
The method of any one of claims 1 to 5, wherein the image is an image file.

The method of claim 6, wherein the 1mage file is a JPEG-2000 file.

The method of any one of claims 1 to 5, wherein the components constitute an

image file.

The method of claim 8, wherein the image file 1s a JPEG-2000 file.

29.

10.

11.

12.

13.

14.

13.

16.

17.

18.

CA 02416839 2009-12-18

A data processing system having a cache, comprising:

means for locating a first component that is related to an uncached image, the
first component including a component tag and a component payload, the
component payload including image information, and the first component

being present in either the cache or a storage system;

means for locating a second component that is related to the uncached image
in either of the cache, the storage system, or another storage system, the
second component including a second component tag and a second
component payload, the second component payload at least including

additional image information; and

means for constructing by the cache, the uncached image at least from the

located first and second components.

The system of claim 10, further comprising means for obtaining the located first and

second components.

The system of claim 10 or claim 11, further comprising means for deriving one or

more of the first and second components from an object.

The system of any one of claims 10 to 12, further comprising means for storing the

constructed image in the cache.

The system of any one of claims 10 to 13, further comprising means for generating,

by the cache, a request for the image.
The system of any one of claims 10 to 14, wherein the image is an image file.

The system of any one of claims 15, wherein the image file is a JPEG-2000 file.

The system of any one of claims 10 to 14, wherein the components constitute an

image file.

The system of claim 17, wherein the image file is a JPEG-2000 file.

-30-

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

1/11

ahad i E X X ¥ P ETrE

- A an s e - e Fm

WHIHdEd

o¢ .

SNa vy

AOVHOLS 87
JOVIHILNI
d3sN
¥e

30iA3A 39YY0LS

e]

[4¢

YITIOYLNOD O/
Ve

¥0SSI00Ud
B |
IHOVD
A
W3LSAS ONISSIO0ONUd V1IVa

0c

JAOVHOLS 82

EREL
IDVHOLS
22

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

2/11

JOVAHILN]
5%

¢ DI

HOSSI00Yd
05

AHOWIN FHOVD
oF

NFLSAS FHOVD IAILYHINIOTY
b

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

3/11

LNANOJNOD

ugg

AVOTIAVd 1O3r€0
8g

OVL LDArE0
05

133rq0
14°]

ININO4NOD
| 09

AvO'iAvd L0380
8G

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

4/11

(CTART)

STEP 66 OBJECT MISSING

FROM CACHE?

STEP 68 LOCATE

COMPONENTS

STEP 70
CONSTRUCT OBJECT

STEP 72

RETURN OBJECT

END

FiG. 4

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

5/11

START

STEP 74 | DETERMINE SUFFICIENT
COMPONENTS

STEP 76 SUFFICIENT
COMPONENTS
IN CACHE? .~ v
\ STEP 82 STEP 84
STEP 80 . ANY DETERMINE
. | COMPONENTS 2 MISSING FETCH MISSING
IN CACHE? COMPONENTS COMPONENTS
N
g STEP 92
STEP 86 OBJECT . ~COMPONENTS FETCH
IN STORAGE? IN STORAGE?, . | COMPONENTS
N ,
Y N
| STEP 90
STEP 94 -, FETCH FROM OBJECT CONSTRUCT

OBJECT

STORAGE UNAVAILABLE

(END) STEP 78

STEP 95 |
™ RETURN OBJECT l«

FIG. §

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

6/11

V9 S1

[1/9

SUBSTITUTE SHEET (RULE 26)

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

7M1

q9 ‘314

103rgo
w9IPG

103rdo
e

103rgo
%G

193rgo
- avg

123rao
BHG
AHOWIN
JHOVD AYOWIN
9 IHOVYD
11/L | 9t

SUBSTITUTE SHEET (RULE 26)

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

8/11

104rdo
PrG

103rao
%

AHdOWIN

~— | Fowois

123rgao
arS

10340
evs

[1/8 9y

SUBSTITUTE SHEET (RULE 26)

CA 02416839 2003-01-20
WO 02/15011 PCT/US01/41608

9/11

96 FILE

FiG. 7

CA 02416839 2003-01-20

PCT/US01/41608

WO 02/15011

10/11

ANINOAWOD
A1)

ANINOdNWOD
420l

LNINOdINOD
eZ0!}

8 OIA

A4 DV 0002 O3
00}

CA 02416839 2003-01-20

WO 02/15011 PCT/US01/41608

11/11

108 COMPOUND DOCUMENT

22
STORAGE
DEVICE

28 STORAGE

42
CACHE

f‘

36 BUS

’ﬁ--—-ﬂ’hﬂh-nﬁ

22
STORAGE DEVICE

28 STORAGE
MEMORY

" .
DATA PROCESSING SYSTEM

24
USER
INTERFACE

Ll I I S A ——

Ul v W et ek ' S - gy

44 BUS

26
PERIPHERAL

---_--‘

- ay ik A wl

-t

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - abstract drawing

