wo 2015/148965 A2 || NN TP OO0 A0 RO AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/148965 A2

1 October 2015 (01.10.2015) WIPO I PCT
(51) International Patent Classification: (74) Agent: PENN, Amir, N.; Brinks Gilson & Lione, P.O.
HO4L 12/707 (2013.01) Box 10087, Chicago, IL 60610 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2015/023067 kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
’ BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
27 March 2015 (27.03.2015) DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
. KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
61/972,130 28 March 2014 (28.03.2014) Us SD, SE, SG, SK, SL, SM, ST, 8V, S8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: WEIGEL BROADCASTING CO. [US/US];) o
26 N. Halsted Street, Chicago, IL 60661 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: LEVINSON, Aaron, N.; 16849 Nw Davidson GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Road, Banks, OR 97106 (US). WALKER, Kyle, B.; 1604
Brophy Avenue, Park Ridge, IL 60068 (US). OLSON,
Christopher, P.; 705 N. State Street, #201, Bellingham,
WA 98225 (US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: CHANNEL BONDING

Client Device 102

Packetized
Data

Bonding
Support

Producers Consumers|

Se0ESI|
ajgein
IV Uo

eled

Depending on transfer direction, for each
transfer a single producer and consumer
will participate on the appropriate system

AN

/

Server 104 \ /
Producers Bonding Packetized
L] [** Support Data
Consumers

FIG. 1

(57) Abstract: A system and method for channel bonding is
disclosed. The system and method enable transmission of data
across multiple connections using multiple network inter-
faces. Further, the system and method are configured to
handle slow or problematic connections and are configured to
dynamically modity the bit rate of one or more media data
streams.

WO 2015/148965 A2 |IIIWAT 00T VT 00 KR AU A

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW. KM, ML, MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report (Rule 48.2(g))

WO 2015/148965 PCT/US2015/023067

CHANNEL BONDING

Reference to Related Application

[0001] This application claims the benefit of U.S. Provisional Application No. 61/972,130,
which is hereby incorporated by reference herein in its entirety.

Technical Field

[0002] The present description relates to applications that involve communicating between a
client and a server whereby the client has multiple network interfaces and may use any
combination of these to communicate with the server. Additionally, the present description relates

to broadcasting applications involving variable bit rate streaming media.

Background

[0003] Channel bonding is a computer networking arrangement in which two or more
network interfaces on a client computer are combined for increased throughput and/or
redundancy. For example, channel bonding can be used to transfer data using both an 802.11
network interface and an Ethernet network interface faster than can be done using solely either the

802.11 network interface or the Ethernet network interface.

SUMMARY

[0004] Methods and systems are disclosed for channel bonding.

[0005] In one aspect, an apparatus configured to communicate via a plurality of network
interfaces is disclosed. The apparatus includes: the plurality of network interfaces; a memory
configured to store at least a part of one or more data streams; and at least one processor in
communication with the plurality of network interfaces and the memory. The processor is
configured to: establish, for each of the plurality of network interfaces, a respective network
connection with a remote device; packetize the one or more data streams into a plurality of
packets; transmit the plurality of packets using the plurality of network connections to the remote
device; and evaluate performance of one network connection in transmitting the packets in
relation to one or more of remainder of the network connections. Various criteria may be used to
evaluate the network connection. Examples of criteria include, but are not limited to: ACK
checking and RTT checking, discussed further herein. In this regard, when evaluating the
performance of one network connection relative to another network connection, the same criteria
for the different connections may be used. Alternatively, when evaluating the performance of one
network connection relative to another network connection, different criteria for the different
connections may be used (e.g., RTT for one connection may be used to evaluate ACK checking
for another connection).

[0006] In another aspect, a method for communicating via a plurality of network interfaces is
disclosed. The method includes: establishing, for each of the plurality of network interfaces, a
respective network connection with a remote device; packetizing the one or more data streams into

a plurality of packets; transmitting the plurality of packets using the plurality of network

WO 2015/148965 PCT/US2015/023067

connections to the remote device; and evaluating performance of one network connection in
transmitting the packets in relation to one or more of remainder of the network connections.

[0007] In still another aspect, an apparatus configured to communicate via a plurality of
network interfaces is disclosed. The apparatus includes: the plurality of network interfaces; a
memory configured to store at least a part of one or more data streams; and at least one processor
in communication with the plurality of network interfaces and the memory. The processor is
configured to: establish, for each of the plurality of network interfaces, a respective network
connection with a remote device; packetize the one or more data streams into a plurality of
packets; transmit the plurality of packets using the plurality of network connections to the remote
device; evaluate performance of one network connection in transmitting the packets; and in
response to evaluating the performance of the one network connection, operate the one network
connection in test mode.

[0008] In still another aspect, a method to communicate via a plurality of network interfaces
is disclosed. The method includes: establishing, for each of the plurality of network interfaces, a
respective network connection with a remote device; packetizing the one or more data streams into
a plurality of packets; transmitting the plurality of packets using the plurality of network
connections to the remote device; evaluating performance of one network connection in
transmitting the packets; and in response to evaluating the performance of the one network
connection, operating the one network connection in test mode.

[0009] In yet another aspect, an apparatus configured to communicate via a plurality of
network interfaces is disclosed. The apparatus includes: the plurality of network interfaces; a
memory configured to store at least a part of one or more data streams; and at least one processor
in communication with the plurality of network interfaces and the memory. The processor is
configured to: receive an indication to transmit the one or more data streams to a remote device; in
response to receiving the indication to transmit the one or more data streams: establish, for each of
the plurality of network interfaces, a respective network connection with a remote device;
packetize the one or more data streams into a plurality of packets; and transmit the plurality of
packets using the plurality of network connections to the remote device whereby a rate at which
packets are assigned to one network connection is determined by a rate at which packets
previously transmitted by the one network connection are acknowledged as having been received.
[0010] In yet another aspect, a method for communicating via a plurality of network
interfaces is disclosed. The method includes: receiving an indication to transmit the one or more
data streams to a remote device; in response to receiving the indication to transmit the one or more
data streams: establishing, for each of the plurality of network interfaces, a respective network
connection with a remote device; packetizing the one or more data streams into a plurality of
packets; and transmitting the plurality of packets using the plurality of network connections to the

remote device whereby a rate at which packets are assigned to one network connection is

WO 2015/148965 PCT/US2015/023067

determined by a rate at which packets previously transmitted by the one network connection are
acknowledged as having been received.

[0011] In still another aspect, an apparatus configured to determine whether to instruct a bit
rate change is disclosed. The apparatus includes: a network interface configured to receive one or
more streams of packets from a remote device; a buffer configured to store video frames derived
from the one or more streams of packets; and at least one processor in communication with the
network interface and the buffer. The processor is configured to: derive, based on the one or more
streams of packets, the video frames; store the video frames in the buffer; analyze a fullness of the
buffer; in response to the analysis, determine whether to instruct a bit rate change; and in response
to determining to instruct the bit rate change, send an indication of the bit rate change to the
remote device.

[0012] In still another aspect, a method for determining whether to instruct a bit rate change
is disclosed. The method includes: deriving, based on one or more streams of packets, the video
frames; storing the video frames in the buffer; analyzing a fullness of the buffer; in response to the
analysis, determining whether to instruct a bit rate change; and in response to determining to
instruct the bit rate change, send an indication of the bit rate change to the remote device.

[0013] Other systems, methods, and features will be, or will become, apparent to one with
skill in the art upon examination of the following figures and detailed description. It is intended
that all such additional systems, methods, and features be included within this description, be

within the scope of the disclosure, and be protected by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The technology may be better understood with reference to the following drawings
and description. Non-limiting and non-exhaustive descriptions are described with reference to the
following drawings. The components in the figures are not necessarily to scale, emphasis instead
being placed upon illustrating principles. In the figures, like referenced numerals may refer to like
parts throughout the different figures unless otherwise specified.

[0015] Figure 1 provides a block diagram of the overall software architecture of the channel
bonding system.

[0016] Figure 2 illustrates a block diagram that focuses on various different types of network

interfaces that may be used in the client device.

[0017] Figure 3 illustrates a higher level view of the architecture of the channel bonding
system.
[0018] Figure 4 illustrates a block diagram of the architecture of Figure 3 in which the client

device transmits packets to the server using channel bonding.
[0019] Figure 5 illustrates a block diagram of the architecture of Figure 3 in which the server
transmits packets to the client device using channel bonding.
[0020] Figure 6 illustrates a block diagram of the architecture of Figure 3 in which the client

device and the server both transmit and receive packets from each other using channel bonding.

-3

WO 2015/148965 PCT/US2015/023067

[0021] Figure 7 illustrates a block diagram of some of the advanced facilities used by a
connection thread for the transmission of data, as previously demonstrated in Figures 4-6.
[0022] Figure 8 illustrates a block diagram of some of the facilities of the Connection
Management Component (CMC), as previously indicated in Figures 4-6.

[0023] Figure 9 illustrates a flow diagram for acknowledgment checking, as performed by a
connection thread, when transferring data during a transfer session.

[0024] Figure 10 illustrates a flow diagram for round-trip time (RTT) checking, as
performed by a connection thread, when transferring data during a transfer session.

[0025] Figure 11 illustrates a flow diagram for analyzing the performance of a connection
thread while it is in test mode.

[0026] Figure 12 illustrates a flow diagram for determining the clock skew between the
client device and the server by analyzing time data provided across multiple connections.
[0027] Figure 13 illustrates a block diagram of some of the criteria and techniques for

network interface prioritization.

[0028] Figure 14 illustrates a block diagram of the client device, which performs encoding
and/or decoding of media and utilizes multiple network interfaces for the transmission of encoded
media.

[0029] Figure 15 illustrates a flow diagram for the broadcasting consumer. The broadcasting

consumer may analyze multiple aspects of the transfer session and/or its own internal data to
determine whether to adjust the bit rate of encoded media.

[0030] Figure 16 illustrates one example of a flow diagram for the broadcasting consumer to
analyze the health of its video buffer in order to determine whether or not to adjust the bit rate.
[0031] Figure 17 illustrates a flow diagram for the producer to potentially make out-of-band
bit rate decrements based on notifications from the CMC about the state of the network
connections.

[0032] Figure 18 illustrates a block diagram of some of the techniques that are used for
dealing with unhealthy media buffers in order to bring the media buffers back to a healthy state.
[0033] Figure 19 illustrates two concurrent flow diagrams for synchronizing audio and video

playback and for video playback.

[0034] Figure 20 illustrates a general block diagram for one or both of the client device or
server.

DETAILED DESCRIPTION
[0035] The principles described herein may be embodied in many different forms. Not all of

the depicted components may be required, however, and some implementations may include
additional, different, or fewer components. Variations in the arrangement and type of the
components may be made without departing from the spirit or scope of the claims as set forth

herein. Additional, different or fewer components may be provided.

WO 2015/148965 PCT/US2015/023067

[0036] There are instances in which a first device secks to transfer a large amount of data
quickly to a second device. In most cases, the first device utilizes only a single network
connection to transfer the data to the second device. This single network connection may
represent a large network pipe that is sufficient for the networking application, but this is not
necessarily the case. For example, a single mobile broadband network connection may not be
sufficient depending on the requirements of the networking application. In order to support the
diverse requirements of networking applications, channel bonding may be used in order to
increase the size of the network pipe.

[0037] In one embodiment, an architecture is described that provides a thread-safe
framework that can be used to simultaneously utilize multiple network interfaces on a client
device to reliably transfer data to and/or from a server running the same framework to process the
data. In this regard, the multiple network interfaces on the client device enable the data to be
transferred in either direction more quickly (or both directions) and with greater reliability. The
use of multiple network devices may also enable near real-time processing of the data on the
receiving end, as compared to just using a single network device.

[0038] The architecture comprises a client/server model, and the client device may include a
plurality of network interfaces. In one embodiment, this plurality of network interfaces may be all
of the same type (e.g., one of mobile broadband, Wi-Fi, Ethernet, satellite, etc.) or may be
comprised of any combination of network interface types (e.g., any combination of mobile
broadband, Wi-Fi, Ethernet, satellite, etc.). There may be multiple instances of each network
interface type amidst the plurality of network interfaces. In a more specific embodiment, this
plurality may be comprised of a total of five mobile broadband devices, and therefore all network
interfaces are of the same type. In another specific embodiment, this plurality may be comprised
of one Ethernet device, one Wi-Fi device, one satellite device, and seven mobile broadband
devices. Furthermore, where appropriate, network interfaces are not restricted to a particular
network provider. In a more specific embodiment, the plurality of network interfaces may be
comprised of four mobile broadband devices, with the first and second devices associated with
carrier #1, the third device associated with carrier #2, and the fourth device associated with carrier
#3.

[0039] The client system makes use of the plurality of network interfaces by establishing a
single network connection with the server for each network interface. Each network connection
can be considered to be a channel through which data may flow in either direction, and the manner
in which these channels are combined is known as channel bonding.

[0040] The server may comprise a single server system, or multiple server systems
configured to work in combination (such as a cloud-based server arrangement). In one
embodiment, the server may include a single network interface (such as a network interface
configured to communicate via the Internet). In an alternate embodiment, the server may include

multiple network interfaces (such as one network interface configured to communicate via the

WO 2015/148965 PCT/US2015/023067

Internet and a second network interface configured to communicate via a network other than the
Internet).

[0041] In one aspect, bonding is used to transmit one or more streams of data using at least
one channel. Streams may be transmitted in either direction, and multiple streams may be
transmitted simultaneously. As opposed to various other networking techniques that make use of
aggregate network connections, in one embodiment, channel bonding is setup for each connection
to send different parts of the streams of data, thereby maximizing throughput. In this regard, the
receiving device is configured to rebuild a particular stream as originally sequenced. As discussed
in more detail below, software techniques are used to enable channel bonding, including any one,
any combination, or all of the following: balance data delivery amongst the network connections;
dynamically analyze the connections (e.g., dynamically analyze at least one aspect of the
transmission via the connections in order to handle slow and/or unreliable connections); and
ultimately to ensure complete stream delivery. As network interfaces dynamically become
available to the client device, either by being added to the system and/or by establishing
connectivity to the network (e.g., the Internet), in one embodiment, network connections may be
established for each network interface, with each network connection being added to the pool of
network connections that can be almost immediately utilized to transfer data streams. In addition,
as network interfaces become unavailable, for example because the network interfaces can no
longer access the Internet or are deemed too slow or unreliable, in one embodiment, the associated
network connections may be dynamically removed from the pool of network connections without
interrupting the data flow, assuming that there is at least one network connection remaining in the
pool. In an alternate embodiment, network interfaces that are deemed too slow or unreliable may
have their associated network connections instead placed into test mode and, after evaluating them
while in test mode, may be reintroduced into the pool of network connections utilized to transfer
the data streams, as described in more detail below.

[0042] In an alternate embodiment, fewer than all of the available network connections may
be placed into a pool of network connections for use to transfer data streams. For example, based
on various criteria (such as cost, previous performance, etc.) certain network connections (such as
a satellite network connection) may not be initially placed in the pool of network connections
available to transfer data. Later, based on poor performance of other network connection(s) that
are in the pool of network connections available to transfer data, one or more of these certain
network connections may be placed into the pool of network connections in response to certain
conditions. In still an alternate embodiment, a network connection, initially in the pool of network
connections available to transfer data, may be removed from the pool during the transfer session.
For example, a network connection may be placed into test mode for poor performance and may
be reintroduced into the pool based on the performance of the network connection in test mode, as
discussed below. As another example, a network connection initially in the pool of network

connections available to transfer data (such as a satellite connection) may be removed from the

WO 2015/148965 PCT/US2015/023067

pool of network connections based on the performance of the other network connections (e.g., in
the case of a satellite network connection, other lower-cost network connections may be
performing adequately (such as having sufficient throughput), thereby allowing the removal of the
higher-cost satellite network connection). Thus, the addition of the available network connection
to the pool and/or the removal of the available network connection from the pool may be based on
other network connections and/or may be based on the performance of the available network
connection.

[0043] Bonding may be used in combination with one or more applications (termed bonding
applications) that comprise custom solutions. As discussed in more detail below, examples of
bonding applications include, but are not limited to, the following: broadcasting (e.g., television
broadcasting or radio broadcasting); video conferencing; and file transfer. In one embodiment,
bonding may be configured as a library following specific API guidelines. Bonding applications
may thus access the library, thereby benefiting from the increased bandwidth made possible by
bonding.

[0044] As discussed in more detail below, bonding may be used in the context of a
producer/consumer model. A producer is supplied by a bonding application and provides one or
more streams of data to bonding, which is responsible for sending the data to the receiving side. A
consumer is also supplied by a bonding application and is handed reassembled streams by bonding
for its own processing. In this context, the producer may generate a data stream (such as a data
stream that constitutes a file, a video stream, or an audio stream, etc.). Further, the consumer may
make use of a reassembled data stream (e.g., write the data stream to a file, play video, play audio,
etc.). Inthe producer/consumer model, bonding applications may include custom consumers and
custom producers that are placed on appropriate sides of the connection for the purposes of
generating and handling specific data streams.

[0045] Figure 1 provides a block diagram 100 of the overall software architecture of the
channel bonding system. Client device 102 includes software associated with bonding, termed
bonding support, which may be in the form of a library. Further, client device 102 may include
one or more bonding applications, which, when executed, each may make use of a producer and/or
a consumer. Bonding support, running on the client device, initially establishes network
connections for each of the client’s network interfaces with the server (104). Then, when a
bonding application is executed on the client, it may associate its producer, or its consumer, or
both, with bonding support. The equivalent process may be done on the server. That is, if the
bonding application running on the client causes a producer to be associated with bonding support,
then the bonding application running on the server causes a corresponding consumer to be
associated with bonding support. In addition, if the bonding application running on the client
causes a consumer to be associated with bonding support, then the bonding application running on
the server causes a corresponding producer to be associated with bonding support. Both of these

scenarios may occur at the same time, for the same bonding application running on both the client

WO 2015/148965 PCT/US2015/023067

and the server. That is, a bonding application may use both a consumer and a producer at the
same time on the client, and the same bonding application may use both a corresponding producer
and a corresponding consumer on the server.

[0046] A producer, whether running on either the client or the server, provides a flow of data
to bonding support. This flow of data will differ depending on the bonding application—some
bonding applications may deliver a stream of data that constitutes a single file, while other
bonding applications may deliver streams of encoded audio and/or video that are being generated
in real-time. Regardless of the type of data being delivered to bonding support, the producer is
responsible for breaking it up into a plurality of packets, known as packetizing the data, prior to
delivering it to bonding support. Once it has been delivered to bonding support, bonding support
makes use of the multiple network connections to deliver these packets to the receiving side.
Some or all of these network connections may be used by bonding support simultancously. The
producer need not deliver the data to bonding support all at once. For example, in the case of data
that is being generated in real-time, the producer hands bonding support data as it becomes
available, at which point bonding support packetizes the data and makes it available to the
network connections for sending to the receiving side over bonding.

[0047] The producer packetizes the data in a manner such that the original sequence can be
reconstructed on the receiving side. As previously stated, multiple network connections may be
used to transmit the packetized data, and because the sending of the packets is divvied up across
the different network connections, individual packets may arrive out-of-order in comparison to the
order in which they were originally packetized by the producer. One way to support the proper
reconstruction of the packetized data is to leave some room in each packet for an index, with the
index value initially starting at zero and incremented for each subsequent packet. Additionally, in
order to support multiple streams of data, space may be left in each packet for an indicator that is
used to distinguish one type of data from another. Such an indicator, for example, would be used
to distinguish packets used for encoded video from packets used for encoded audio for a
broadcasting bonding application. On the receiving side, the combination of the packet index and
the data type indicator provides sufficient information to reconstruct the original packetized data
as the producer generated it. As an illustrative example, if two packets of the same data type are
sent, one with packet index #1 and one with packet index #2, and each is sent on a different
network connection, it is possible that the receiving side will receive the packet with index #2
prior to receiving the packet with index #1. However, due to the presence of the index in each
packet, bonding support will correctly deliver the packets to the consumer in the right order.
[0048] On the receiving side, whether on the client or the server, the packetized data is
received by bonding support via the multiple network connections. The packetized data provided
by the producers on the sending side must then be reassembled by bonding support, and, as parts
of the stream become available in packetized form, the consumer depacketizes them. The

consumer then makes use of the data for its own purposes. For example, a consumer that is used

WO 2015/148965 PCT/US2015/023067

for file transfer may write the stream to a file. In another example, a consumer associated with
broadcasting may decode encoded media (e.g., encoded video and/or audio) and then play it out.
From the perspective of bonding support, the content of the data is irrelevant—it is the consumer
that is responsible for interpreting the data and making use of it.

[0049] Of note, a network interface may include an actual physical device providing a
networking capability (e.g., Ethernet, Wi-Fi, mobile broadband, satellite, etc.). In a more general
form, a network interface is an abstraction of an actual physical device and provides a standard
way by which data can be sent and received from the physical device. The inner workings of the
physical device, known to one of skill in the art, are omitted. In this regard, for example, a
mobile broadband network interface is simply a short-hand form of describing a network interface
abstraction that is associated with a physical mobile broadband device.

[0050] Figure 2 illustrates a block diagram 200 that focuses on various different types of
network interfaces that may be used in the client device. The first type of network interface
described in Figure 2 is a compound device network interface 202. This type of network interface
may typically be used with another full-fledged computing device (compound device 242), such as
a smartphone. Such a device may execute an operating system on a processor 206 and have one
or more of its own network interfaces. In Figure 2, the compound device associated with this
network interface is shown as having an embedded mobile broadband device 208, but this is just
one of various possible network interfaces that it might have. In addition, in order to
communicate between the compound device network interface on the client device and the actual
compound device, a communication interface 204 is also provided. Such a communication
interface would typically be in the form of USB, Bluetooth, or other options. Finally, the
embedded mobile broadband device communicates wirelessly with a cellular network 216.
Though Figure 2 only illustrates one compound device 242, one or more compound devices, such
as one or more smartphones, are contemplated.

[0051] Figure 2 also illustrates a mobile broadband network interface 210, which may
communicate with a physical mobile broadband device 230 via communication interface 212,
which can typically take the form of USB, PCI, etc. The mobile broadband device typically has
its own processor 214, which would typically be used to run some firmware. The mobile
broadband device communicates wirelessly with a cellular network 216.

[0052] Figure 2 also illustrates a Wi-Fi network interface 218, which may communicate with
a physical Wi-Fi device 246 via communication interface 220, which would typically take the
form of USB, PCI, etc. The Wi-Fi device typically may include its own processor 222, which
would typically be used to run some firmware. The Wi-Fi device communicates wirelessly with a
wireless network 224.

[0053] Figure 2 also illustrates a satellite network interface 226, which may communicate
with a physical satellite device 248 via comnunication interface 228, which would typically take

the form of USB, PCI, etc. The satellite device typically may have its own processor 230, which

WO 2015/148965 PCT/US2015/023067

would typically be used to run some firmware. The satellite device may be comprised of a
number of different hardware components, such as a satellite dish. The satellite device
communicates wirelessly with one or more satellites 232.

[0054] Figure 2 also illustrates an Ethernet network interface 234, which may communicate
with a physical Ethernet device 250 via communication interface 236, which would typically take
the form of USB, PCI, etc. The Ethernet device typically would have its own processor 238,
which would typically be used to run some firmware. The Ethernet device communicates via
cable with a router 240.

[0055] Figure 3 illustrates a higher level view 300 of the architecture of the channel bonding
system. Client device 102, as previously illustrated in Figure 1, includes a processor 304, a
memory 306, and multiple network interfaces 312. The processor 304 is configured to execute
software stored in memory 306. Memory 306 includes software configured for transmitting
and/or receiving data streams using bonding. Though memory 306 is depicted as a single memory
device, one or more memory devices may be used as memory 306. In one embodiment, the
software may be configured using bonding logic 308, which may comprise a library, and bonding
application logic 310. As discussed above, a bonding application may access a bonding library in
order to customize transmission/reception of a data stream. For example, the bonding application
logic 310 may be directed to a broadcasting application, a file transfer application, a video
conferencing application, or the like.

[0056] Client device 102 further includes network interfaces 312. As shown in Figure 3,
network interfaces 312 are divided into different types of network interfaces, including mobile
broadband 314, Wi-Fi 316, Ethernet 318, and satellite 220. The types of network interfaces 312
shown in Figure 3 are merely for illustration purposes. Other network interface types, in addition
to or instead of the network interface types shown in Figure 3, may be used. In addition, there
may be zero or more network interfaces of a particular type used in a particular client device 102.
For example, there may be one Ethernet network interface 318, one Wi-Fi network interface 316,
seven mobile broadband network interfaces 314, and zero satellite network interfaces 320.

[0057] The network interfaces 312 may communicate via one or more networks 322, such as
the Internet, as shown in Figure 3. Bonding logic 308 will establish network connections with the
server 330 for each of the network interfaces 312.

[0058] Similar to client device 102, server 104, as previously illustrated in Figure 1, includes
a server processor 332, a memory 334, and server network interface 340. Memory 334 includes
bonding logic 336 and bonding application logic 338. In one embodiment, the server’s bonding
logic and bonding application logic may be identical to the bonding logic and bonding application
logic residing on client. In an alternate embodiment, the server’s bonding logic and bonding
application logic may be different from the bonding logic and bonding application logic residing
on client. In particular, while the server’s bonding logic and bonding application logic

components may have much in common with the client device’s bonding logic and bonding

-10 -

WO 2015/148965 PCT/US2015/023067

application logic components, there may be some differences between them. Using the network
connections setup by bonding logic 308 on the client device 102 in combination with bonding
logic 336 on the server 104, either the client’s bonding application logic 310 or the server’s
bonding application logic 338 or both may be used to provide one or more data streams to be
communicated to the receiving side via the network connections.

[0059] As discussed above, in the context of the producer/consumer model, on either the
client device or the server or both, the bonding application may provide a producer, a consumer,
or both a producer and a consumer. In this regard, one or more data streams may be transmitted
from the client device to the server, from the server to the client device, or bi-directionally
between the client device and the server. Figures 4-6, respectively, illustrate the different flows of
packets from the client device to the server, from the server to the client device, and bi-
directionally between the client device and the server.

[0060] Figures 4 through 6 break down the bonding logic and bonding application logic
further. Figure 4 illustrates a block diagram 400 of the architecture of Figure 3 in which the client
device transmits packets to the server using channel bonding. Figure S illustrates a block diagram
500 of the architecture of Figure 3 in which the server transmits packets to the client device using
channel bonding. Finally, Figure 6 illustrates a block diagram 600 of the architecture of Figure 3
in which the client device and the server both transmit and receive packets from each other using
channel bonding. In each of these figures, a new concept is introduced in the form of the
Connection Manager Component (CMC) 412. This component is part of the client device’s
bonding logic 308, introduced in Figure 3, and it is responsible for establishing network
connections with the server 104 for one, some, or all of the client device’s network interfaces.
These network interfaces are labeled in Figures 4-6 as Network Interface #1 426, Network
Interface #2 428, and Network Interface #N 440, with the implication that the client device may
have 1 to N network interfaces. Prior to establishing a network connection with the server for a
particular network interface, the CMC may check to see if this network interface has any network
connectivity present, but it is generally sufficient to try to connect to the server via a network
interface. If network connectivity is not present, the attempt to connect to the server will fail.
[0061] In one embodiment, each network connection is logically independent of any other
network connection established by the CMC, and in order to manage a particular network
connection, the CMC may establish a dedicated software thread for it, termed a connection thread.
In Figures 4-6, a different connection thread for each network interface on the client device 102 is
specified, as connection thread #1 420, connection thread #2 422, and connection thread #N 424,
In addition, once the server receives a connection from a particular client device-side network
interface, the CMC 460 on the server may also set up its own dedicated connection thread for
managing this particular connection. In Figures 4-6, server-side connection threads are labeled

connection thread #1 454, connection thread #2 456, and connection thread #N 458. As such,

-1l -

WO 2015/148965 PCT/US2015/023067

there may be a one-to-one mapping of connection threads on the client device to connection
threads on the server.

[0062] One manner in which to setup a network connection is by using network sockets. A
network socket is an endpoint of an inter-process communication flow across a network, and in
the context of the client device and the server, one socket would be associated with a network
interface on the client device and a companion socket would be associated with the server network
interface 340 on the server. When the connection is initially formed, the socket may be created,
with a connection thread associated with the created socket. For example, when the client device
initially forms a connection, the socket may be created for the client device along with an
associated connection thread. In response to the arrival of a new connection, the server may
assign a new socket on its side and also setup a connection thread associated with its socket.
[0063] Communications may be routed via one of several protocols. For example, there are
two main communication protocols used for the transmission of data on the Internet, the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP is an option
for many networking applications, since it provides a number of important features, such as
connections, reliability, and error checking. These features come with overhead, potentially
resulting in a performance cost, however, and as a result, TCP may not be a preferred option for
real-time or near real-time networking applications, such as streaming applications. UDP, in
contrast, is rather minimal and generally a preferred choice for streaming applications. UDP,
however, makes no guarantee of data delivery. For example, if a client device sends a packet
using UDP to a server, it may or may not be received by the server. Furthermore, the client device
has no way to determine if the server did or did not receive the packet using UDP. That is, UDP,
by itself, provides no means for determining this. Some network applications can handle some
amount of data loss, and in the case of bonding applications, this depends on the bonding
application. However, since there exists bonding applications that require all data sent to be
delivered to the receiving side, if UDP is used, some level of reliability may be needed on top of
UDP in order for bonding to function properly. Rather than create such a layer on top of UDP,
one option is to use UDT (UDP-based Data Transfer Protocol), which sits on top of UDP. UDT
adds many features on top of UDP, such as reliable and guaranteed delivery of data, and it also
provides a number of additional features, such as performance monitoring of an active network
connection.

[0064] In this regard, each connection may be associated with a network interface on the
client device. Further, the multiple connections on the client device may be associated with a
connection group. A connection group can be considered to be a bundling of one or more network
connections, with each of the network connections in the group being used to operate upon the
same goal. This is in contrast to independent network connections, which may be used for
completely independent goals. Both the client device and the server may be notified of the

connection group for a particular bonding session so that the connection group, as a whole, may be

-12-

WO 2015/148965 PCT/US2015/023067

used in order to transfer data via different connections for the particular bonding session. For
example, a connection group may comprise a first connection (associated with a first network
interface on the client device), a second connection (associated with a second network interface on
the client device), and a third connection (associated with a third network interface on the client
device). On the client device side, data may be sent via any of the different connections within the
connection group for the particular bonding session. On the server side, the server may identify
that the data is sent via one of the connections (whether the first, second or third connection),
determine that the connection is part of the connection group of the particular bonding session,
and thus associate the data received via the connection with the particular bonding session.

[0065] After a connection group is established, data transfer via the connection group may
be initiated. In one embodiment, the device that established the connection group may be the
same device that initiates the data transfer. For example, the client device may establish a
connection group and then may initiate the data transfer via the connection group. In still another
embodiment, the device that established the connection group may be different from the device
that initiates the data transfer.

[0066] In one embodiment, the direction of data flow, if there even is a single direction, is
completely independent of the manner in which data transfer is initiated. For example, for a
broadcasting bonding application that only transmits data from the client device to the server, data
transfer may be initiated by the client device. But, it may instead be initiated by the server. This
type of data transfer flow is demonstrated in Figure 4. As another example, for a file transfer
bonding application that sends a file from the server to the client device, data transfer may be
initiated by the server or the client. This sort of data transfer flow is demonstrated in Figure 5. As
another example, for a video conferencing application that sends and receives media from both the
client and the server, data transfer could be initiated by the client device or the server. This sort of
data transfer flow is demonstrated in Figure 6.

[0067] To elaborate further on data transfer initiation, for example, a user interface on the
client device may be used to input the command to initiate the data transfer. When a bonding
application is ready to begin the transfer, which may be initiated by an action on the user interface
of the client device, the bonding application may describe the data type to be transferred, and
using this description, the CMC 412 on the client device may interact with the CMC 460 on the
server, requesting a handler for this data type. More specifically, different data types may
comprise a broadcasting data type, a get file data type, etc. These different data types have
associated handlers, such as a handler for file transfer, a handler for broadcasting, ctc.

[0068] The component of the bonding application that initiates data transfer is termed the
initiator, while the component of the bonding application that handles the initiation request is
termed the receptor. In one embodiment (such as the embodiment in which all initiation requests
are handled by the client device), the initiator always runs on the client device, and the receptor

always runs on the server.

-13-

WO 2015/148965 PCT/US2015/023067

[0069] If a suitable receptor exists, further negotiation is performed in order to setup an
appropriate producer/consumer combination (or combinations) on both ends of the connection
based on the requirements of the bonding application. In this regard, if data only flows in a single
direction for a particular bonding application, it may be sufficient to have a single consumer on
one side of the connection and a single producer on the other side of the connection.
Alternatively, if data flow is bi-directional, two producer/consumer combinations may be
sufficient. For example, as described in both Figures 4 and 5, the bonding application only needs
to transfer data in one direction. In this case, the bonding application provides a producer on the
sending side, and the bonding application also provides a consumer on the receiving side. The
main difference between Figures 4 and 5 is that, in Figure 4, the sending side is the client device
and the receiving side is the server, while in Figure 5, the sending side is the server while the
receiving side is the client. In another example, as described in Figure 6, the bonding application
needs to transfer data in both directions simultaneously (such as, from a timing perspective, the
data transferred in one direction is at least partly concurrent with the transfer of data in the
opposite direction). In this case, the bonding application provides both a producer and a consumer
on the client device, and it also provides both a producer and a consumer on the server.

[0070] More specifically, in bi-directional data transfer, as described in Figure 6, there may
be an additional step of creating a second, auxiliary connection thread for each network
connection on both the client device and the server. In the case that data transfer flows in only a
single direction, the connection threads are likely to be sufficient for both the maintenance of the
connection and for the transfer of data, as demonstrated in Figures 4 and 5. However, in the case
of bi-directional data transfer, it may be both inconvenient and suboptimal to use a single software
thread for both sending and receiving data. Instead, on both sides of a connection, the CMC may
create an additional thread for each network connection in order to more easily handle both
sending and receiving data. These auxiliary connection threads are illustrated in Figure 6 as
auxiliary connection thread #1 602, auxiliary connection thread #2 604, and auxiliary connection
thread #2 606 for the client device and auxiliary connection thread #1 608, auxiliary connection
thread #2 610, and auxiliary connection thread #N 612 for the server. It is important to note that
the use of one or two software threads per network connection is completely transparent to the
bonding application. The bonding application need only supply an initiator, receptor, and one or
more producers and consumers, and as long as the bonding application fulfills its requirements,
the internal details of how channel bonding works are not relevant to it. Once the appropriate
producer/consumer combination(s) have been setup, data transfer may commence. Producers are
responsible for the generation of data for transmission 406. As data becomes available to the
producer, it may provide the data to bonding. As discussed in more detail below and above, the
producer may break up the data into ordered packets (that is, it may packetize data 408) and make
these packets available to the CMC, which may then place them in send queue 416. In one

embodiment, the send queue is one of at least two possible queue(s) 414, with the other queue

-14-

WO 2015/148965 PCT/US2015/023067

being the resend queue 418, which is discussed below. In an alternate embodiment, a single send
queue may be used in which packets for resend may be placed at the top of the send queue. The
CMC may ensure thread-safe balanced delivery of these data packets to the individual connection
threads, which claim different packets in order to send them to the consumer. Initially, each
connection thread associated with an active connection may assume ownership of a predetermined
number of packets that were previously placed in the send queue and begin transmission of the
respective owned packets. In one embodiment, the predetermined number of packets may be the
same for each connection thread (e.g., 20 packets), as discussed in more detail below. When a
connection thread claims ownership of a packet from the send queue, this packet may be removed
from the send queue to ensure that no other connection thread tries to take ownership of it.

[0071] Various connection threads may attempt to access data residing in the send queue
simultaneously. Unlike in a standard networking application, which uses a single network
interface to transmit its data, one objective with bonding may be for multiple connections to send
pieces of a data stream with almost no overlap of data being sent across multiple connections,
thereby maximizing throughput. Using multiple threads to process and deliver data packets
requires cooperation amongst the threads and the need for synchronization. One can consider the
send queue, as described earlier, to be an array of packets ready to be sent to the receiving side. If
two connection threads want to retrieve the next available packet at roughly the same time, and
both get the same packet, packet N, then the increased throughput advantage of bonding has been
lost to a certain extent. Instead, the desire is for connection thread #1 to get packet N, while
connection thread #2 gets packet N + 1, for example.

[0072] There are various thread synchronization techniques that can be used to accomplish
this, many of which involve the use of a lock. Some types of locking mechanisms prevent other
threads from making progress while one thread has the lock. That is, while connection thread #1
has the lock and is retrieving the next available packet from the send queue, if connection thread
#2 wants to also get a packet at the same time, it has to wait for connection thread #1 to finish.
Depending on how long connection thread #2 must wait, a transition from user code to the OS
kernel may occur on the associated connection thread, which incurs its own time cost. Such a
locking mechanism may work for bonding, but at a cost of reduced performance.

[0073] Alternatively, fast atomic primitives may be used by the bonding logic to ensure both
thread-safe and performant access to the send queue by each connection thread. Atomic
operations result in a very low-level lock at the processor instruction level, and in the rare case
that two threads attempt to access the same piece of memory at the same time, the hardware will
ensure that only one thread can do so, and the second thread will have to wait a miniscule amount
of time before it can execute the instruction.

[0074] As discussed in more detail below, the CMC may also monitor data delivery in order
to assess the network connections (e.g., detect bad/poor network connections) and adjust packet

delivery accordingly (e.g., re-sending data packets on an alternate connection).

-15-

WO 2015/148965 PCT/US2015/023067

[0075] On the receiving side, the associated connection thread may make the data available
to the CMC. The CMC, in turn, may make this data available to a bonding application’s consumer
by placing packets in order 462 in one or more received packet buffers 450 provided by the
consumer. A received packet buffer may be a circular buffer of a predetermined size, or it may be
dynamically sized. The consumer is then responsible for de-packetizing the data 448 stored in a
received packet buffer and then making use of the de-packetized data 446. Once it has made use
of a particular packet resource, it may be responsible for returning the packet resource back to the
CMC for further use.

[0076] Packets can be delivered out of sequence as compared to how they were originally
ordered when the data was packetized by the producer. In this regard, the consumer may account
for this. For instance, for a file transfer bonding application, the consumer may wait for
contiguously sequenced packets to be delivered before attempting to write to a file, since every
part of a file can be considered to be equally important. Other bonding applications may have less
stringent requirements. For example, a broadcasting bonding application may not necessarily wait
for missing packets, for example, choosing instead to skip over some missed packets without
noticeably impacting playback of the media.

[0077] When data transfer is in process, a connection thread responsible for sending data
may detect the loss of its associated network connection first, and if additional connections have
been established, the loss of the connection may be reported to the receiving side by one of the
other network connections, enabling more timely responses to failure conditions by the receiving
side. If all connections are lost, the transfer may be aborted.

[0078] As discussed below, if a connection becomes too slow relative to other connections,
or it has been determined to perform poorly in general, the connection may be taken out of the
connection group and later brought back up in a test mode, discussed below, until the situation
may be rectified. In one embodiment, while a connection is in test mode, it does not send any of
the data generated by the producer. In an alternate embodiment, if a connection becomes too slow
relative to other connections, or it has been determined to perform poorly in general, another
connection may be established for a network interface that is currently idle. For example, in
response to determining that a connection using the mobile broadband network interface is not
performing properly, a new connection using a currently idle satellite network interface may be
established and added to the connection group. In a more specific embodiment, the connection
using the satellite network interface may be used until the situation with the poorly performing
connection is rectified.

[0079] Previously mentioned, in one embodiment, there are two queue(s) 414, the send
queue 416 and the resend queue 418. In one embodiment, the queue(s) 414 may comprise circular
buffers. As previously discussed, packetized data provided by a producer is initially placed in the
send queue, which are later claimed by different connection threads. As discussed in more detail

below, if a particular network connection becomes unreliable or slow, it is still important to send

.16 -

WO 2015/148965 PCT/US2015/023067

the packets that it has claimed to the receiving side. The connection thread may add its packets
nto the resend queue in this case, allowing one or more other connection threads to send these
packets while the original connection thread that claimed them continues to attempt to
successfully send the packets as well. Packets in the resend queue have a higher priority than
packets in the send queue. That is, if there are packets to be sent in both queues, connection
threads will claim packets in the resend queue prior to claiming any packets in the send queue.
The resend queue and the use of other network connections to resend packets that had previously
been claimed improves reliability. Previously, it has been mentioned that channel bonding
improves throughput, and improved throughput may be the key benefit, but the existence of
multiple network connections also allows for improved reliability, something that is not possible
in networking technologies that use only a single network connection. While resending packets
on other connections technically results in a decrease in throughput, the end result may be that the
data stored in these packets is delivered to the receiving side faster, so it could also be argued that
it may improve throughput as well.

[0080] When data transfer is in process, the state of the software may be described as being
in a transfer session. In one embodiment, when the data transfer is finished, the transfer session is
considered to be finished, but another transfer session may be started again at some point in the
future in order to handle a new data transfer request.

[0081] Figure 7 illustrates a block diagram 700 of some of the advanced facilities used by a
connection thread for the transmission of data, as previously demonstrated in Figures 4-6. As
shown in Figure 7, connection thread 420 may include transmission analytics 702. Transmission
analytics 702 may analyze at least one aspect of the transmission of the data transmitted by
connection thread 420. Examples of transmission analytics include, but are not limited to, ACK
checking 704 and RTT checking 706, discussed in further detail below. Further, connection
thread 420 includes transmission modes 708, such as normal mode 710 and test mode 712,
discussed in further detail below.

[0082] Figure 8 illustrates a block diagram 800 of some of the facilities of the Connection
Management Component (CMC), as previously indicated in Figures 4-6. As indicated in Figure 8,
either the client device’s CMC 412 or the server’s CMC 460 may have certain common features,
even if there are sufficient differences between them as well to warrant two different types of
CMCs, one intended for a client device and one intended for a server. A CMC includes various
connection phases 802, such as a normal connection phase 804, test connection phase 806 and
advanced test connection phase 808, each of which is discussed in further detail below. Finally, a
CMC may include additional analytics 816, such as clock skew 818, discussed in further detail
below.

[0083] In standard networking applications, which involve only a single network connection,

if the connection to the Internet is slow, the network application has little choice but to accept the

-17-

WO 2015/148965 PCT/US2015/023067

slow connection. In addition, if the connection fails for some reason, the network application as a
whole is effectively stopped as well.

[0084] In contrast, bonding may analyze at least one aspect of the transmission (such as one
or more aspects of the connection), and based on the analysis, may modify operation of at least a
part of the system. The modification may comprise modifying the connection (e.g., put the
connection into test mode, take the connection offline, put the connection into normal mode for
transmission of the data, etc.). Alternatively, or in addition, the modification may comprise
changing operation of the network interface. For example, the client device may command the
network interface to disconnect connection. More specifically, for a mobile broadband interface,
the client device may command the mobile broadband interface to end communication with the
cellular tower. As another example, the client device may command the mobile broadband
interface to change its mode (e.g., from 3G to 4G). As still another example, the client device
may command another network interface, currently sitting idle, to establish a connection with the
server (e.g., using a satellite network interface as a backup).

[0085] In one embodiment, the analysis comprises a dynamic analysis of one or more
aspects of a plurality of network connections. In an alternate embodiment, the dynamic analysis
comprises dynamically analyzing a first network connection (which uses a first network interface)
relative to (or dependent on) a second network connection (which uses a second network
interface). In a more specific alternative embodiment, the dynamic analysis comprises
dynamically analyzing a first network connection relative to (or dependent on) the same aspect in
a second network connection. The dynamic analysis may comprise dynamic analysis of
transmission of at least a part of the data generated by the producer(s) and consumed by the
consumer(s). In a more specific embodiment, the dynamic analysis comprises analyzing latency
of at least a part of the connection. The latency analysis of a specific connection may be
independent of, dependent on, or part dependent on and part independent of the latency analysis of
a different connection.

[0086] In a still more specific embodiment, the dynamic analysis comprises round-trip time
(RTT) checking for packets transmitted on a connection, which may be compared with the RTT
associated with packets transmitted on one, some, or all of the other connections. The RTT is
typically defined as the amount of time it takes to send a packet to the receiving end and get a
receipt of delivery of this packet back. So, the amount of time it takes to send a packet to the
receiving end can be estimated as RTT/2, even though it may take longer to send data in one
direction than in the other. RTT is one example of how to go about examining the transmission
time of packets transmitted between the client device and the server, and other metrics are
contemplated.

[0087] In yet another embodiment, the dynamic analysis comprises dynamically analyzing a
connection partially or completely independently of any other connection in a connection group.

In a more specific embodiment, the dynamic analysis comprises acknowledgment (ACK)

- 18-

WO 2015/148965 PCT/US2015/023067

checking for packets transmitted via a connection, which may be analyzed independent of one,
some, or all of the other connections.

[0088] In still another embodiment, dynamic analysis comprises dynamically analyzing a
connection both partially or completely independently of any other connection in bonding, and
dependent on one, some or all of the other connections in bonding. In a more specific
embodiment, the dynamic analysis comprises RTT checking (which may make use of the RTT
values associated with other network connections in a connection group) and ACK checking
(which may, in one aspect, comprise analysis of acknowledgment of packets partially or
completely independently of one, some, or all of the other connections). In another specific
embodiment, the dynamic analysis comprises analyzing the same aspect both independent of (and
dependent on) transmission via another connection. For example, analysis of ACK checking may,
in one aspect, be independent of ACK checking for other connections, and may, in another aspect,
be dependent on ACK checking for other connections. In this regard, the same aspect, ACK
checking, may be a basis for both independent and dependent analysis.

[0089] The dynamic analysis may handle slow and/or unreliable connections. For example,
in the case of mobile broadband, a particular network interface may undergo temporarily poor
signal strength. In some areas, the carrier may only support data transmission at a very low rate.
To address this situation, bonding may use various techniques, such as the dynamic analysis, to
reduce the impact of poorly performing network connections.

[0090] As discussed above, one aspect of the analysis of a network connection is ACK
checking. When a connection thread is in the process of sending packets during a transfer session,
after an implementation-defined number of packets is outstanding to the receiving side, the
connection thread may check to determine if any of these packets has been received by the other
end of the connection. Acknowledgments may be sent as part of the transmission process. For
example, if UDT is used as the communication layer, one of the features that UDT provides is
acknowledgments, such that, after a certain number of packets has been processed by the receiving
side of a connection, the receiving side sends a special acknowledgment packet to the sender that
indicates the number of ordered packets that has been successfully received by the receiver.
[0091] If one or more of the packets have been acknowledged by the time the connection
thread has reached the implementation-defined limit of outstanding packets awaiting
acknowledged, it may be appropriate to apply further analytics (e.g. RTT checking), but if it
makes it through these analytics, the connection thread may take ownership of more packets from
the send queue till it again reaches the implementation-defined number of outstanding packets
awaiting acknowledgment.

[0092] If none of the outstanding packets has been received by the point at which the
connection thread checks to see if any have been acknowledged by the receiver, the connection

thread may wait an amount of time, and during this time, it may not send any new packets. That

-19-

WO 2015/148965 PCT/US2015/023067

is, it will not take ownership of any additional packets from the send queue. The amount of time
may be a variable amount of time, as discussed below.

[0093] If, by the end of this time period, one or more of the packets that were sent have been
acknowledged by the receiving end, it may be appropriate to apply further analytics (e.g., RTT
checking), but if it makes it through these analytics, the connection thread may take ownership of
more packets from the send queue till it again reaches the implementation-defined number of
outstanding packets awaiting acknowledgment.

[0094] If, instead, by the end of this time period, none of the packets that were sent have
been acknowledged by the receiving end, the connection is considered to have entered a slow
and/or unreliable stage. While UDT guarantees data delivery, assuming that a connection is still
viable, if a connection has become slow and/or unreliable, it may be some time before the
outstanding packets are delivered to the receiving end. The lack of acknowledgments may also
indicate that the connection is no longer viable, which indicates that the packets may never be
delivered, depending on when the connection lost its viability. For example, the receiving end
might have successfully received the packets, but before the associated acknowledgment is
received by the sending side, the connection may go bad, and as a result, the acknowledgment
packet may never be received. Whatever the case may be, it is important for the packets to be
delivered to the receiving end in a timely fashion.

[0095] If a network connection is considered to have entered a slow and/or unreliable stage,
the connection thread may release its “ownership” of the unacknowledged packets. After
releasing ownership, the CMC may add the unacknowledged packets to the resend queue. Other
connection threads, when they are ready to send data, will recognize that data packets are available
in the resend queue and will prioritize sending packets from the resend queue over packets in the
send queue. Packets in the resend queue generally have a lower numerical sequence number
compared to the packets that are currently at the front of the send queue and, as such, it is
important to send them as soon as possible. Similar to the thread synchronization techniques
utilized for claiming ownership of packets in the send queue, the other connection threads may
take ownership of the packets in the resend queue for transmission. At the same time, the original
connection thread that has entered a slow and/or unreliable stage may continue to attempt to send
the packets. As such, it is possible for the CMC on the receiving end to be informed of multiple
packets with the same sequence number arriving across multiple connections. As such, the CMC
may need to discard the redundant packets.

[0096] After failing its acknowledgment check, a connection thread may not attempt to take
ownership of any new packets from either the send or resend queues until all the packets that it
had previously sent have been acknowledged. While the connection thread technically released its
ownership of the packets and caused them to be added to the resend queue, the original packets
would still have been sent, and it may not be possible to cancel the transmission of these packets

depending on the communication layer that is being utilized. As such, the connection thread will

-20 -

WO 2015/148965 PCT/US2015/023067

continue to utilize acknowledgment checking until it has determined that all of the packets have
been acknowledged. If, eventually, the original packets are acknowledged, the connection thread
may resume taking ownership of packets from the send queue (or resend queue). If, instead, the
connection thread continues to fail further acknowledgment checks, it will be considered to no
longer be viable, and the associated connection may be terminated. A connection using the
associated network interface may be brought up again at a later point. The establishment of a new
network connection may be sufficient to correct whatever problem caused the lack of
acknowledgments. Once the new connection is established, it may be added to the connection
group and then join the transfer session.

[0097] As described earlier, if none of the outstanding packets has been received by the point
at which the connection thread checks to see if any have been acknowledged by the receiver, the
connection thread may wait an amount of time, and during this time, it may not send any new
packets. In one embodiment, this time period may be dynamically calculated; such as
dynamically calculated each time a wait needs to be done. The dynamic calculation may use an
algorithm that takes into account, and be based on, the average RTT across all the other
connections in the transfer session (e.g., the connections that are actively transferring data
generated by the producer). In addition, if an acknowledgment is received prior to the time period
expiring, the wait will be interrupted, and the connection thread may continue as described
previously.

[0098] For example, packet “XXX” may be delivered to the CMC by the producer and
placed on the send queue. Connection thread #2 may then claim ownership of packet “XXX" and
send it to the receiving side. In the event that the acknowledgment for packet “XXX” is not
received in a timely manner, connection thread #2 may release ownership of packet “XXX”,
which is then placed in the resend queue. Another connection thread, such as connection thread
#4, may then claim ownership of packet “XXX” from the resend queue and send it to the receiving
side. The packet “XXX" originally sent by connection thread #2 may have been lost, or it may
have been unduly slow in transmission. In the latter case, packet “XXX” will be sent twice. In
this regard, the CMC on the receiving side may discard the redundant packet “XXX”. Extending
this out further, connection thread #4, which claimed ownership of packet “XXX” from the resend
queue, may also fail its acknowledgment check. In this case, it will re-add the packet back into
the resend queue, and another connection thread could then claim ownership of it. However, both
connection threads #2 and #4 may not claim ownership of any packets from either the send or
resend queues until their copies of packet “XXX” have been acknowledged by the receiving side.
[0099] The ACK checking technique allows each connection thread to self-regulate itself.
That is, it ensures that a particular connection thread only takes ownership of the number of
packets its associated network connection can successfully transmit within a given period of time.
Because a connection thread will only claim ownership of at most an implementation-defined

number of packets at any given time, if one network connection is slower than another network

201 -

WO 2015/148965 PCT/US2015/023067

connection, the connection thread associated with the slow network connection won’t take
ownership of new packets as frequently as the connection thread associated with the faster
network connection. The faster network connection will simply receive acknowledgments from
the receiving side more quickly than the slower network connection, allowing it to take ownership
of new packets and send them more frequently. As such, the throughput for each network
connection can be maximized implicitly, without having to undergo a training session ahead of
time to see what sort of throughput a particular network connection is capable of. This in turn also
enables a transfer session to begin immediately when initiated by a bonding application, since
there is no need for a training session prior to transferring data generated by the producer.

[00100] In one implementation, each of the connection threads initially may be assigned the
same predetermined number of packets, such as 20 packets. In this regard, each of the connection
threads may be limited to taking ownership of 20 packets at a time, including immediately upon
starting the transfer session. Thus, upon startup of the transfer session, a training session is not
required. Rather, each of the connection threads may take ownership of no more than 20 packets.
Thereafter, the number of additional packets that a particular connection thread may take
ownership of is dependent on whether any of the currently owned 20 packets have been
acknowledged. For example, if none of the 20 packets have been acknowledged, the particular
connection thread may not take ownership of any additional packets. If one or more of the 20
packets owned by the particular connection thread is acknowledged, the particular connection
thread may take ownership of additional packets up to the 20 packet limit. This procedure of
monitoring the number of unacknowledged packets associated with a particular connection thread
may continue through the transfer session.

[00101] Figure 9 illustrates a flow diagram 900 for acknowledgment checking when a
connection thread is transferring data during a transfer session. At 902, the connection thread gets
ownership of new packets from the send and/or resend queues. At 904, it sends the new packets.
At 906, it is determined whether the ACK has been received for one or more of the sent packets.
If not, at 908, it waits to sec if an ACK is received within a dynamically determined time limit
(which, as stated previously, may be calculated based on the RTT values for the other connections
in a transfer session). If not received within the time limit, at 910, it adds any remaining
unacknowledged packets to the resend queue. At 912, the ACK failure counter is incremented by
one, with the ACK failure counter being used to keep track of the number of times in a row the
connection thread has failed an ACK check. At914, it is determined whether the ACK failure
counter has exceeded a threshold. If yes, at 916, the connection is determined not to be viable,
and at 918, the connection is taken offline. Later a network connection for the same network
interface may be reestablished, and once it joins the connection group and the transfer session, at
920, the connection may enter test mode depending on certain conditions. If instead, at 914, the
ACK failure counter has not exceeded the threshold, it moves to 922, at which point a mode is set

to indicate that the connection thread should not claim ownership of any new packets (from either

00

WO 2015/148965 PCT/US2015/023067

the send or resend queues). From there, it loops back to the ACK received check at 906 as already
discussed. If, at 906, an acknowledgment has been received or, at 908, an acknowledgment is
received within the time limit, it moves to 924, at which point the ACK failure counter is reset to
zero. At 926, it is determined whether the connection thread is in the no new packets mode. If
not, the flow diagram, loops back to 902. If yes, at 928, it is determined whether the
acknowledgments have been received for all released packets (e.g., those added to the resend
queue at 910). If not, the flow diagram loops back to 906. If yes, the flow diagram returns to 902.
[00102] In addition to (or instead of) ACK checking, RTT checking may be performed.
[00103] When in a transfer session, even if a connection that is sending data is receiving
regular acknowledgments from the receiving end, it may be taking a relatively long time to deliver
the packets to the receiving end on this particular connection, particularly in relationship to the
amount of time it takes to deliver packets on the other connections in the transfer session. For
example, if there are four connections in a transfer session, and connections #1-#3 each have
average RTT values of 100 mSec or less, that means that, on average it takes 50 mSec or less to
deliver a packet to the receiving end on connections #1-#3. However, connection #4 takes a bit
longer to deliver data and has an average RTT value of 500 mSec. This means that it takes
connection #4 roughly 250 mSec to send a packet to the receiving end. As described earlier, once
a connection thread takes ownership of a packet from the send queue (or resend queue), no other
connection thread will attempt to send this packet. While connection #4 will make progress, albeit
at a slower pace compared to connections #1-#3, the amount of time it takes connection #4 to
deliver data can have a noticeable and detrimental impact on some bonding applications,
particularly bonding applications that involve near real-time streaming of media.

[00104] In order to filter out slow connections, the RTT for a connection may be examined
after an acknowledgment check has succeeded. The RTT is examined after receiving the
acknowledgment check since typically, if the acknowledgment check fails, there is no reason to do
the RTT check, as it is clear that none of the packets sent appear to have been received. In one
embodiment, the RTT value may be compared based on a variable threshold. The variable
threshold may be based on the RTT values of one, some, or all of the other connections in a
transfer session, such as a value that is sufficiently greater than a calculation that is based on the
average RTT across all the other connections in the transfer session. In this regard, in one
embodiment, the evaluation of one connection may be based, at least in part, on the evaluation of
one, some, or all of the remaining connections. In an alternate embodiment, the RTT value may
be evaluated based on a predetermined threshold, independent of the RTT values of different
connections. In still an alternate embodiment, the RTT value may be evaluated based on both a
variable threshold and a non-variable threshold. For example, if the RTT value is above an
implementation-defined threshold (e.g., 250 mSec) and the RTT value is sufficiently greater than a
calculation that is based on the average RTT across some or all of the other connections in the

transfer session, then a slow RTT counter may be incremented for this particular connection.

-23 -

WO 2015/148965 PCT/US2015/023067

[00105] If the slow RTT situation continues to occur, then after the slow RTT counter hits an
implementation-defined threshold, all unacknowledged packets that the connection thread has sent
may be added to the resend queue. For example, the implementation-defined threshold may
comprise “5”, meaning that the slow RTT counter needs to be repeatedly incremented five times
before any unacknowledged packets are added to the resend queue. This avoids the possibility of
the connection thread adding unacknowledged packets to the resend queue prematurely because of
a temporarily slow connection. If this threshold is hit, similar to the lack of acknowledgments
case in ACK checking, the connection thread will not take ownership of any new packets from the
send queue (or resend queue) until all packets it had previously sent have been acknowledged. If
the slow RTT situation continues to repeatedly occur, after the count hits a different
implementation-defined threshold (the different implementation-defined threshold must be greater
than the earlier implementation-defined threshold), the connection may be marked as being slow,
and the associated connection may be terminated. After waiting a predetermined amount of time,
the connection may be brought back up. When brought back up, the connection may be added to
the connection group and then join the transfer session, but it may be placed in a different state
than normal mode, such as in test mode, as will be discussed below.

[00106] Figure 10 illustrates a flow diagram 1000 for round-trip time (RTT) checking, as
performed by a connection thread, when transferring data during a transfer session. Parts of flow
diagram 1000 are similar to flow diagram 900. At 902, the connection thread gets ownership of
new packets from the send and/or resend queues. At 904, it sends the new packets. At 906, it is
determined whether the ACK has been received for one or more of the sent packets. If not, it
performs ACK checking as described in Figure 9. If an ACK was received at 906 (or an ACK was
received within the time period as described in 908 in Figure 9), it moves to 1002, at which point
the RTT value for the network connection is accessed. At 1004, it is determined whether the RTT
is greater than an allotted RTT limit. If yes, at 1006, it is determined whether the RTT is
sufficiently greater than the average RTT for the other connections in the transfer session. If yes,
at 1010, the RTT failure counter for this connection thread is incremented by 1. Then, at 1010, it
is determined if the RTT failure counter is greater than a threshold #1. If yes, at 910, as done with
ACK checking, any remaining unacknowledged packets are added to the resend queue—however,
in contrast to ACK checking, if it gets to this point, at least one outstanding packet had been
previously acknowledged as a result of it getting past ACK checking. At 1014, it is determined if
the RTT failure counter is greater than a threshold #2 (with threshold #2 being greater than
threshold #1). If yes, at 916, the connection is determined not to be viable, and at 918, the
connection is taken offline. Later a network connection for the same network interface may be
reestablished, and once it joins the connection group and the transfer session, at 920, the
connection may enter test mode depending on certain conditions. If instead, at 1014, the RTT

failure counter has not exceeded the threshold #2, at 912, as with ACK checking, at which point a

-4 -

WO 2015/148965 PCT/US2015/023067

mode is set to indicate that the connection thread should not claim ownership of any new packets
(from either the send or resend queues). Following 912, it loops back to 906.

[00107] If instead, at 1012, threshold #1 is not exceeded, it moves to 926, as previously
described in Figure 9, and continues from there in the same fashion as already described for
Figure 9.

[00108] If instead, either 1004 or 1006 evaluate to no, then at 1008, the RTT failure counter is
resct to 0. Then, it moves onto 926 as already described.

[00109] Network connections that are being used in a transfer session may be in one of
several modes, such as normal mode and test mode. Normal mode describes the state of a
network connection when it is being used to transfer packetized data generated by a producer
during a transfer session.

[00110] Test mode is a special state into which a network connection may be placed while in
a transfer session based on a prior analysis of the connection, such as if the connection has been
determined to be performing poorly. Test mode may be entered based on the results of the
different types of analysis discussed above, for example based on RTT checking and/or ACK
checking. More specifically, test mode may be entered in one of two different ways: (1) the last
connection for the associated network interface was terminated due to RTT checking; and (2) the
last two connections for the associated network interface were terminated due to ACK checking.
Other criteria may be used to determine if test mode should be used.

[00111] While a network connection is in test mode during a transfer session, its associated
connection thread will not take ownership of any packets from the send or resend queues. Instead,
the connection may repeatedly send a special test mode packet that does not contain any real data
to the receiving side. Other than this change, both ACK checking and RTT checking may operate
in the same way as discussed above.

[00112] If the connection in test mode continues to fail ACK checking or RTT checking, the
connection will again be terminated and brought back up at a later point. The amount of time
between a termination and the act of bringing back up the connection may be predetermined or
may vary depending on whether or not the previous connection for the associated network
interface were in test mode. For example, as the number of times that a network connection for a
particular network interface is repeatedly placed in test mode (and subsequently fails out of test
mode due to ACK checking and/or RTT checking) increases, the amount of time between the
point at which the previous connection was terminated and the point at which a new connection is
established may be increased up to an implementation-defined time limit.

[00113] While in test mode, if the network connection successfully gets past both ACK
checking and RTT checking after sending an implementation-defined number of test mode
packets, the connection will exit test mode, enter normal mode, and immediately start taking

ownership of packets from the send and/or resend queues.

_05.

WO 2015/148965 PCT/US2015/023067

[00114] In this regard, the intention of test mode may be two-fold. First, test mode may
prevent a poorly performing connection from transmitting any of the data generated by the
producer, since this could have a detrimental impact on the bonding application. As discussed
above, what is meant by a poorly performing network connection may be the performance of the
connection relative to the performance of another connection (or other connections) in the transfer
session and/or may be the relative to a predetermined standard. With regard to comparing a
connection to other connection(s), if most of the connections are slow (and therefore have high
RTT values), then a slow connection may not be considered to be performing poorly, since it is
performing similarly in comparison to the other network connections. Failed acknowledgment
checks may always result in the same outcome, however, regardless of how the other connections
in a transfer session are doing.

[00115] Second, if whatever condition that caused the connection to perform poorly is
corrected in the future, test mode may detect this and allow the connection to rejoin the transfer
session in normal mode as a productive member of the connection group.

[00116] Figure 11 illustrates a flow diagram 1100 for analyzing the performance of a
connection thread while it is in test mode. Figure 11 builds on ACK checking and RTT checking
as described in Figures 9 and 10, respectively, and as such, certain details are omitted for brevity.
During a transfer session, a network connection is placed in test mode, and, at 1102, test mode
packets are sent. While sending packets, ACK checking and RTT checking proceed as previously
described. While sending test mode packets, if, at any point, it fails due to ACK or RTT checking
at 1106, the connection will be terminated at 1108. Then, at 1110, it increments a counter by one
that keeps track of the number of times a network connection for the associated network interface
was terminated during this transfer session while in test mode. Then, at 1112, it determines how
long to wait to reestablish a network connection for this network interface based on the value of
the counter described for 1110. It waits this amount of time at 1114 and then, at 1116, a network
connection for this network interface is reestablished, and it loops back to 1102. If instead, at
1106, it is able to successfully send an implementation defined number of test mode packets
(successfully implies that all packets are acknowledged by the receiving side) without failing
ACK or RTT checking, the network connection is placed in normal mode. In addition, prior to
entering normal mode, the counter described for 1110 above is reset to zero.

[00117] As discussed above, the CMC may provide one or more services to the bonding
application logic. In one embodiment, these services may be used in conjunction with bonding to
improve results and provide useful feedback information to the bonding application. In an
alternate embodiment, the services may be used separately from and independent of any bonding
application. Examples of such services were previously described in Figure 8.

[00118] One service comprises determining the clock skew between the client device and the
server. In one embodiment, the clock skew determination may be used for a bonding application,

since in certain instances understanding the clock skew between the client and the server may be

-26 -

WO 2015/148965 PCT/US2015/023067

helpful for the bonding application. The clock skew is the difference in time between the local
clock times set on each respective system. For example, if the time on the client is 12:00:00 PM,
and the time on the server is 12:00:01 PM, then the clock skew is approximately 1 second.
[00119] The clock skew may be calculated in a variety of ways. One way is using a variation
on Cristian's algorithm. Cristian’s algorithm is method that can be used to determine the clock
skew between two different systems solely using time data provided by each system along with
information pertaining to a network connection between the two systems. Over a network
connection established between the two systems, the first system sends its current time T1 to the
second system in a packet, which also gets its current time T2 at the very point that the packet is
received. The second system also determines the RTT for the network connection at this point in
time. Since, as previously described, it may be estimated that it takes roughly RTT/2 to send a
packet in either direction, the clock skew may be calculated as: clock skew =T2 - T1 — RTT/2. In
addition, generally it may be best to go through this process multiple times and calculate an
average based on multiple T1/T2/RTT combinations (or alternatively select the combination with
the lowest RTT value).

[00120] In one embodiment, instead of simply utilizing Cristian's algorithm for a single
network connection, in the context of channel bonding, the algorithm may be used across multiple
different connections (such as for at least two, for more than two, or for all of the different
connections that are in the transfer session). In this regard, each client system sends multiple time
packets to the server, and after an implementation-defined number of time packets have been
accumulated by the server across the different connections, the server may apply Cristian's
algorithm to all of them.

[00121] For example, the client device may be communicating with the server via two
connections: connection 1 and connection 2. The client device may, via each connection,
occasionally send a packet with the current time T1 when the packet is sent; when the server
receives this packet, the server may note its current time T2 and the current RTT value for
associated network connection, which may be constantly changing. After the server accumulates
a certain number of these packets across the different connections, the server may calculate an
average using Cristian’s algorithm. Through this determination over multiple connections, as
opposed to a single network connection, the expectation is that the accuracy of the technique will
be improved.

[00122] Once the clock skew has been calculated by the server, the server may optionally
inform the client device of the calculated clock skew value. As discussed above, a bonding
application may wish to know the clock skew. Alternatively, clock skew may be determined
separate and independent from any bonding application.

[00123] Figure 12 illustrates a flow diagram 1200 for determining the clock skew between the
client device and the server by analyzing time data provided across multiple connections. This

flow diagram is taken from the perspective of the server. At 1202, time packets sent by the client

_27-

WO 2015/148965 PCT/US2015/023067

device over at least two different connections are received. At the point each packet is received,
T1 is extracted from the packet and T2 and RTT are noted, as described earlier. At 1204, itis
determined whether the number of packets received is greater than a threshold. If not, it loops
back to 1202 and the server continues to receive time packets from the client via the network
connections. If greater than the threshold, at 1206, the clock skew between the client device and
the server is determined based on the received packets from the different connections along with
the associated T2 and RTT values. At 1208, the client device is optionally informed about the
determined clock skew.

[00124] As described earlier in Figure 8, the CMC also provides bonding applications (or for
independent use) with the ability to utilize one or more connection phases: normal connection
phase; test connection phase; and advanced test connection phase. Normal connection phase
corresponds to the phase that a network connection is in during a transfer session when it is either
operating in normal mode or test mode. In contrast, test connection phase and advanced test
connection phase may be used by bonding applications for a training phase prior to the generation
of actual data from a producer. When in either of these two phases, a network connection may
send fake data in either direction for a period of time depending on the requirements of the
bonding application. During this period of time, various aspects of the network connection are
tracked. When the time period is complete, the data may be analyzed, and the bonding application
may make use of this analysis for its own purposes. As a general rule, it may be most
advantageous if all the network connections are operating in test connection phase or advanced
test connection phase in order to get an idea how well the transfer session as a whole will perform
ahead of time. Examples of the type of data that may be provided post analysis may include, but
are not limited to, any one, any combination, or all of the following: minimum, maximum,
average, and median RTT; minimum, maximum, average, and median throughput; and the
frequency of test mode use. Advanced test connection phase builds upon test connection phase by
providing additional analytics, such as a precise determination of the time it takes each packet to
be transmitted from the sender to the receiver. It is important to note that bonding applications do
not need to make use of either test connection phase or advanced test connection phase in order to
operate successfully. In this regard, the bonding application may optionally use either of test
connection phase or advanced test connection phase.

[00125] As previously stated, a training phase is not a requirement due to the way that
channel bonding works. However, bonding applications may still choose to make use of test
connection phase or advanced test connection phase in certain circumstances depending on their
requirements. For example, a broadcasting bonding application may benefit from a training
session by being able to ascertain, prior to the actual broadcast, what can be used as a reasonable
maximum bit rate for encoded media that it generates. Without a training session, the

broadcasting bonding application may need to be conservative and always start with a relatively

_08-

WO 2015/148965 PCT/US2015/023067

low bit rate, and a lower bit rate implies that the quality, at least initially, may be worse than that
associated with a higher bit rate.

[00126] Up till this point, channel bonding has been described as an approach that treats all
network connections equally. Through the use of ACK checking and/or RTT checking, the
connection threads associated with the different network connections fairly manage the
distribution of packets to the different network connections. Network connections that are faster
and more reliable than other connections will by default take ownership of more packets, and
connections that are slower and less reliable will by default take ownership of fewer packets.
However, in one embodiment, it may be advantageous to prioritize certain network connections
over other network connections. In such an embodiment, channel bonding would not necessarily
treat all network connections equally.

[00127] As described in block diagram 1300 of Figure 13, there are various criteria 1304 that
may be utilized by the CMC in order to prioritize the network connections associated with certain
network interfaces over the network connections associated with other network interfaces. These
criteria may include, but are not limited to, the following: cost 1306; data limits 1308; location
1310; and time of day 1312. In addition, based on the prioritization criteria, the CMC may use
various techniques 1314 to implement such the prioritization in practice. Such techniques may
include, but are not limited to, the following: disable interface 1316 and weighting 1318. For the
criteria and techniques will be discussed in more detail below.

[00128] The cost prioritization criteria generally pertains to how much it may cost to send
and/or receive data using a particular network interface on the client device. For example, it may
be more expensive to transfer a MB worth of data using network interface #1 than using network
interface #2. The various ways in which the monetary costs associated with different network
interfaces may be determined. In one embodiment, the client device may maintain preconfigured
values for the different network interfaces. In another embodiment, the server may provide values
associated with a network interface at the point the client device establishes a network connection
with the server for this network interface.

[00129] The data limits criteria pertains to potential data limits that may be associated with
specific network interfaces. For example, a mobile broadband network interface #1 in a client
device may be associated with carrier #1. Generally, mobile broadband carriers don’t provide data
plans with unlimited data—most data plans have a precise limit, such as 100 GB per month, and
any data use beyond this limit in the allotted time period may be charged by the additional GB,
disallowed entirely, or dropped down to slower speeds (for example 4G to 3G or even 2G). If the
data allowance associated with a particular network interface is close to being met or has been
exceeded, it may be prudent to prioritize other network interfaces over this network interface in
order to save money. In this regard, the data limits criteria is similar to the cost criteria. It is
important to note that a data plan may not be specific to an individual network interface on a

single client device. A single data plan, and therefore a single data allowance, may be associated

-29.-

WO 2015/148965 PCT/US2015/023067

with multiple network interfaces on the same client device and even multiple network interfaces
that span multiple client devices. For example, client device #1 may have mobile broadband
network interface #1 and mobile broadband network interface #2, both associated with carrier #1.
In addition, client device #2 may have mobile broadband network interface #3 and mobile
broadband network interface #4, both also associated with carrier #1. Further, the same data plan,
and therefore, data allowance, covers all four devices. Based on this situation, in one
embodiment, a client device may determine data limits information on a per network interface
basis by querying the carrier associated with each network interface, where appropriate. In
another embodiment, the server may provide values associated with a network interface at the
point the client device establishes a network connection with the server for this network interface.
[00130] The location criteria pertains to the physical location of the client device prior to
starting a transfer session. Through some means, the client device, perhaps in combination with
the server, keeps track of its current location during a transfer session along with performance data
associated with the transfer session. Over time, a database of performance data corresponded to
location may be compiled. If sufficient information is available for a particular location when a
transfer is next done at this location, certain network interfaces could be prioritized over others,
since it may be noted from the performance data accumulated for this location that certain network
interfaces work poorly in this location compared to others. For example, a client device may have
mobile broadband network interface #1 associated with carrier #1 and mobile broadband network
interface #2 associated with carrier #2. In a particular location, mobile broadband devices
associated with carrier #1 may get a great signal, while mobile broadband devices associated with
carrier #2 get a very poor signal. Such information could be ascertained from accumulated
location data.

[00131] The time of day criteria is similar to the location criteria. Through some means, the
client device, such as in combination with the server keeps track of performance data for transfer
sessions based on the time of day, day of the week, date, etc. Such a scheme could also take
location into account. If sufficient performance data has been accumulated, certain patterns may
be ascertained. For example, it may be noted that, between 5 PM and 6 PM on weekdays, mobile
broadband network interfaces associated with carrier #1 work poorly, regardless of location.
Further, it may be noted that mobile broadband network interfaces associated with carrier #2 work
well during the same time period, regardless of location. Such data may be utilized for
prioritization purposes.

[00132] The CMC may use the plethora of prioritization criteria in order to decide how to
prioritize certain network interfaces over other network interfaces. For example, based on the
data, it may decide to disable certain network interfaces entirely. In one embodiment, the CMC
on the client device might not establish a network connection with the server for such a network
interface. As one example, for a satellite network interface, the CMC may determine, based on

cost, that a network connection with the satellite network interface will not be established. In

-30-

WO 2015/148965 PCT/US2015/023067

another embodiment, the CMC on the client device may establish a network connection with the
server for such a network interface, but it may opt not to use it for transferring any data during a
transfer session.

[00133] In an alternate embodiment, the CMC may make use of weighting. By factoring in
all the data determined through the different prioritization criteria, the CMC may assign a weight
to each network interface. In one more specific embodiment, the weight may take the form of a
percentage, with the percentage pertaining to the rate at which a connection thread associated with
anetwork connection for a particular network interface would take ownership of packets from
either the send or resend queues. At 100%, a connection thread might not be impacted at all and
might operate in the same fashion as described previously in the document regarding the rate at
which it claims ownership of new packets. At 50%, however, the rate at which it claims packets
from the send or resend queues would be half that of the normal rate. In a more specific
embodiment, such weights could be applied from the very beginning of a transfer session. In
another more specific embodiment, such weights could be applied over time during a transfer
session.

[00134] The CMC may also factor into the equation the requirements of the bonding
application. Certain bonding applications may be more negatively impacted by prioritization than
other bonding applications. For example, in the case of the data limits criteria, the data allowance
for carrier #1 may be reached sooner than the data allowance for carrier #2 because, in general,
data transfer works better with carrier #1. If a network interface associated with carrier #1 is
weighted less than that associated with carrier #2 or disabled entirely, then the overall throughput
and reliability of the resulting transfer session may not be adequate based on the requirements of
the bonding application. In the case of a file transfer bonding application, unless the speed of file
transfer is abysmal, prioritization may not be a concern. However, in the case of a broadcasting
bonding application, the quality of the media transmission may be paramount. In such a situation,
making use of prioritization techniques from the start of a transfer session may have a detrimental
impact on the quality of the media transmission. In such an environment, it may be preferable to
start the transfer session without making use of any prioritization techniques, and once the transfer
session has been established, it may be appropriate to gradually apply such techniques in order to
gauge their impact to the transfer session. As discussed above, the client device may use multiple
network interfaces. The performance of the network interfaces may be monitored in real time (or
near real time) in the context of a transfer session. In an alternate embodiment, the performance
of the network interfaces may be monitored across different transfer sessions. For example, the
server may monitor a particular mobile broadband network interface associated with a particular
client device across multiple bonding sessions to determine whether the particular mobile
broadband network interface is functioning properly. In a specific embodiment, the server may
maintain a record of the different mobile broadband devices that have been used in the past to

connect to the server from each particular client device. If, when a client device connects to the

-3l -

WO 2015/148965 PCT/US2015/023067

server, a particular mobile broadband device that had been used in the past no longer connects or
behaves erratically (compared to past behavior as recorded in a previous bonding session), the
server may analyze the data and, based on certain thresholds, send a notification. The notification
may comprise an internal notification within the server or may comprise a notification to an
external device.

[00135] As discussed above, various bonding applications may be used with bonding. One
such bonding application is a broadcasting bonding application. The broadcasting bonding
application is configured to provide a high-performance solution for broadcasting high-quality
audio and video in near-real time from remote locations via one or more Internet connections,
such as by using bonding. In one embodiment, the bonding logic may be in the form of a modular
bonding library, which enables the creation of bonding applications, such as a broadcasting
application.

[00136] A bonding application, such as the broadcasting bonding application, may make use
of an already existing bonding library, and therefore does not have to concern itself with the
details of bonding. In this regard, the bonding application can instead focus on creating the
technology specific to the bonding application.

[00137] The broadcasting bonding application has a number of different architectural
guidelines: provide high-quality audio and video; support a near real-time delay between the client
and server depending on the bandwidth available via bonding; support one or more video modes
(e.g., video modes such as 720p59.94 and 1080159.94),

[00138] Given the above architectural guidelines, the following architectural details may be
used: use advanced video and audio encoding/decoding capabilities in order to compress the raw
video and audio down to a reasonable size for transmission over bonding (in order to satisfy the
near real-time delay guideline); support variable bit rate for video encoding (in order to satisfy the
high-quality audio and video requirement and the near real-time delay guideline); audio and video
remain synchronized (in order to satisfy the high-quality audio and video guideline); reduce or
minimize the impact of networking issues in order to reduce the chance that media will stutter or
temporarily freeze (in order to satisfy the high-quality audio and video requirement and the near
real-time delay guideline).

[00139] Additionally, there are a number of different hardware guidelines for a broadcasting
solution, some of which follow from the architectural guidelines: be able to receive audio and
video data via a serial digital interface (SDI) input on the client; be able to output audio and video
data via an SDI output on the server; support hardware encoding of raw video frames on the client
and hardware decoding of encoded video frames on the server; be easy to transport and take into
the field. SDI is a family of digital video interfaces, and is one example of a digital video
interface. High-definition serial digital interface (HD-SDI) is another example of a digital video

interface. Other video interfaces, such as HDMI, are contemplated.

-3

WO 2015/148965 PCT/US2015/023067

[00140] A broadcasting system may involve both user interactions, hardware, and software.
An example of a general sequence of events for a broadcast is as follows:

[00141] (1) the user connects an audio/video input source to the client device via an SDI
cable. In one embodiment, the input source is a video camera. Alternatively, other input sources

are contemplated.

[00142] (2) the user starts the client device software, which connects to the server using
bonding.

[00143] (3) the user interacts with the client device software to initiate a broadcast.

[00144] (4) while a broadcast is active: on the client device, the software may periodically or

continually retrieve audio samples and video frames from the SDI input and encode the media
data. The encoded data is made available to bonding, which sends the data to the server; on the
server, the software may continually or periodically check for encoded audio and video data that
has been received by bonding, and as it becomes available, the data is decoded. This decoded data
is in turn sent over SDI for use by the TV station, perhaps for a live broadcast over network
television.

[00145] (5) the user interacts with the client software to stop the broadcast.

[00146] (6) the user disconnects the input source from the client system.

[00147] This sequence may omit certain details in a broadcasting session; however, the
above-sequence nevertheless reflects the overall picture of a broadcasting session.

[00148] Figure 14 illustrates a block diagram 1400 of the client device, which performs
encoding and/or decoding of media and utilizes multiple network interfaces for the transmission of
encoded media. The client device has one or more network interfaces, as described previously. In
addition, it has a processor 304 which executes both the bonding logic and bonding application
logic. In this case, it is executing the specific bonding application logic associated with the
broadcasting bonding application. As described earlier, the client device must have a means of
receiving raw video and audio from an external input, such as a camera via an SDI connection.
This is represented by the hardware media interface 1412, which, in this example, is connected to
a camera 1414 (such as by using an SDI cable). The camera delivers raw video and audio to the
hardware media interface, which in turn delivers it to the processor for further use. The processor
may also make use of a hardware component 1408 for the purposes of hardware encoding (e.g.,
for video encoding). The processor may also make use of a hardware component 1410 for the
purposes of hardware decoding (e.g., for video decoding). Hardware decoding may typically only
be used in the case that the bonding application running on the server has a producer that
generates encoded media for the client device’s consumption (or, more specifically, for the
consumer’s consumption that is running as part of the bonding application on the client). This
scenario could arise for such use cases as an IFB or return video feed, which will be discussed
later. In one embodiment, client device 102 includes only hardware encoding 1408. In an

alternate embodiment, client device 102 includes only hardware decoding 1410. In another

-33.

WO 2015/148965 PCT/US2015/023067

alternate embodiment, client device 102 includes both hardware encoding 1408 and hardware
decoding 1410. Either hardware encoding or hardware decoding may be provided by a physical
hardware subsystem in the computer. For example, they might be provided by a hardware
subsystem that is part of processor 304. Processor 304 may comprise a processor, such as an
Intel® processor with a graphics component that includes Intel® Quick Sync Video, which may be
used for H.264 hardware encoding and/or decoding. In this regard, Intel® Quick Sync Video
includes encoding and decoding functionality without relying on an external hardware card to
encode or decode via H.264. Intel® Quick Sync Video thus potentially accelerates encoding and
decoding while enabling the processor 606 to complete other tasks. Various other hardware
options exist for both encoding and decoding H.264 video.

[00149] In the case that the hardware media interface, as described previously, is used for SDI
input, one hardware option for SDI input is an internal add-in card (such as a PCI Express” card).
This hardware option may be used for desktop, server systems, or custom systems that would use
a custom chassis and potentially other custom components. Another hardware option comprises
external devices that can be connected to a computer, such as via USB, Thunderbolt, or
ExpressCard.

[00150] Figure 14 further illustrates data in (e.g., encoded video and/or audio) and data out
(e.g., encoded video and/or audio). In one embodiment, client device 102 only outputs data via
bonding. This describes the typical broadcasting bonding application arrangement, since the
broadcasting bonding application would typically provide a producer on the client device for the
purposes of packetized encoded media that is gencrated from the raw audio and video data input
via the hardware media interface. In an alternate embodiment, client device 102 only inputs data
via bonding. Such an arrangement would not correspond to the typical broadcasting application,
since no data is being broadcast by the client device to the server. In still another embodiment,
client device 102 both inputs and outputs data via bonding. This arrangement describes an
enhancement to the typical broadcasting bonding application arrangement, with the server
providing some data to the client for certain purposes (e.g., IFB or a return video feed, as
mentioned earlier and discussed below), in addition to the client broadcasting data to the server.
[00151] Client device 102 may further include a user interface for the user to interact with
client device 102. The user interface may comprise a touch screen, a mouse and/or keyboard
input. Thus, one option is a hybrid laptop/tablet that provides both a touch screen and satisfies the
hardware outlines as discussed above for Figure 14. The laptop may include one or more USB
ports. USB modems may comprise mobile broadband functionality and may connect via the USB
ports. Another option is to create a custom computing solution with its own chassis and possibly
other custom hardware.

[00152] As mentioned above, there are a number of steps a broadcasting bonding application
may perform in order to go from raw audio/video data on the client device to raw audio/video data

on the server. The client device may encode the raw, uncompressed media data. Then, the

-34 -

WO 2015/148965 PCT/US2015/023067

encoded data is sent over bonding to the server. On the server, the encoded data is decoded,
resulting in raw, uncompressed media data. There may be additional implementation-specific
steps to convert the raw data to other pixel formats.

[00153] All of these steps result in a time cost, known as the broadcasting overhead. As such,
there will be some real-time delay (otherwise known as the initial delay or simply delay) between
when the client device receives the raw audio/video data from an input source and when the server
outputs the equivalent raw audio/video data. For example, if the client device starts a broadcast at
12:00:00 PM, the server might not play the first frame until 12:00:03 PM, indicating a 3 second
initial delay. The various steps mentioned above are responsible for the initial delay. Effort may
be taken to make the different steps as fast as possible while maintaining the highest quality audio
and video as possible.

[00154] As discussed above, encoding techniques may be used as part of the broadcasting
process. The encoding techniques thereby enable the transmission of high quality video. If one
considers a video format like 720p, a progressive format with a resolution of 1280x720, there are
typically 1843200 bytes in a single video frame. Using the broadcast-standard frame rate of 59.94
frames per second (fps), that means that just for the raw video data alone, a network pipe with a
throughput of at least 883 Mbps (megabits-per-second) would be required. Such a large amount
of bandwidth is unrealistic in the mobile realm, and even the aggregate throughput of 10 mobile
broadband connections would not provide a sufficient aggregate network pipe.

[00155] As such, compressing the raw data may reduce the amount of data for transmission.
For audio and video, this may be performed using advanced encoders. One example of an
encoding scheme is the H.264/AVC codec, which may be used to encode video data. Another
example compression scheme is the AAC codec, which may be used to encode audio data. Both
codecs can produce high quality video and audio results, respectively, at relatively low bit rates.
This means that less data may need to be transferred, in comparison to when other codecs are
used, to get the same level of quality.

[00156] There are numerous implementations of the H.264 and AAC codecs. In one
embodiment, both codecs may be implemented in hardware. In an alternative embodiment, both
codecs may be implemented in software. In still an alternate embodiment, the H.264 codec may
be implemented in hardware and the AAC codec may be implemented in software. The speed of
the encoder (and decoder) is relevant for the broadcasting bonding application, since, as described
above, the longer it takes to encode video and audio, the higher the delay will be between client
device and server.

[00157] For example, since audio encoding is less computationally intensive than video
encoding, a software AAC encoder may be used. Further, in order to deliver low latency video to
the server, it may be necessary to use a hardware H.264 encoder. Various options for hardware-
based H.264 encoders exist. One option is to use a separate add-in card or external device. These

options are fine for decoding on the server end, but they can be problematic from the perspective

-35.

WO 2015/148965 PCT/US2015/023067

of the client, which is intended to be in a mobile form factor for ease of transport. Another option
is to use built-in capabilities of the processor or motherboard—this approach obviates the need to
provide a separate piece of hardware just for encoding and/or decoding. For example, Intel®
Quick Sync Video may be used for encoding H.264 video on the client device and is technology
that is built into the graphics component on many Intel processors. In this regard, instead of
requiring a separate hardware product to handle H.264 encoding on the client device, Quick Sync
Video may be used in combination with the Intel processor to enable H.264 encoding without any
additional hardware. Thus, a single piece of equipment may be used for both processing and
encoding/decoding functionality.

[00158] As discussed above, a consumer (in the producer/ consumer model discussed above)
may have one or more buffers into which the CMC places received packets depending on the type
of data stored in a packet. Further, in the context of a broadcasting bonding application, the
consumer may have multiple buffers, such as a video buffer and an audio buffer.

[00159] In one embodiment, the size of the buffer (such as the video buffer and/or the audio
buffer) may be predetermined. In an alternate embodiment, the size of the buffer may be
dynamic. For example, as mentioned above, in the broadcasting bonding application’s consumer,
the software may continually or periodically check for encoded audio and video data that has been
received by bonding (and placed in either the audio or video buffers by the CMC), and as it
becomes available, the data is decoded. This decoded data is in turn played out over SDI.
Drilling down on the encoded video data, after providing this data to the H.264 hardware decoder,
the decoder produces decoded video frames. These video frames are raw, uncompressed video
frames, consuming the same number of bytes as raw, uncompressed video frames on the client
side. Such frames in theory are suitable for playback directly over SDI, but more than likely, they
may need to be converted to another pixel format due to the requirements of the SDI playback
hardware. For example, Intel® Quick Sync Video decodes to the NV 12 pixel format, while some
SDI solutions requires that video be in the UYVY pixel format. A color conversion step may be
needed to convert between the two pixel formats.

[00160] Once the consumer has a single video frame in a pixel format that can be sent out
over the SDI playback hardware, in theory, it may send it out for playback immediately.
However, this is generally not advisable. Once playback starts, the intention is that both video and
audio should playback continuously after this point. Going back to the broadcast standard video
frame rate of 59.94 fps, after playing the first video frame, if another video frame is not ready to
be played roughly 0.01668 scconds later, then this will not result in smooth video.

[00161] Instead, one or more buffers may be used to accumulate the frames associated with
the video. In one embodiment, a separate buffer may be used to accumulate video frames (and
another for audio samples) that are ready to be played back over SDI. These buffers are separate
from the audio and video buffers into which the CMC places packetized data. Once a sufficiently
sized buffer has been populated with video frames that are ready to be played back (or audio

-36-

WO 2015/148965 PCT/US2015/023067

samples), then playback can start. This buffer may be a circular buffer. More particularly, as new
frames become available for playback after playback has started, they are inserted into the buffer
using a FIFO scheme.

[00162] Also, the time necessary to accumulate a predetermined amount of data in the buffer
is known as the initial buffering period. This time impacts the initial delay. That is, if the buffer
is sized such that playback only starts after X seconds of media have been accumulated, then the
initial delay can be calculated as X plus the broadcasting overhead. The amount of time
associated with the broadcasting overhead is variable. The most variable quantity is the time
needed to send data from client device to server, since network conditions may be constantly
fluctuating across multiple network connections. The encoding/decoding overhead is also variable
to a lesser extent, depending on the complexity of the video.

[00163] In one embodiment, the size of the buffer may be dependent on at least one aspect of
the transmission of the stream of data. In a more specific embodiment, the size of the buffer may
be based on the broadcasting overhead (e.g., based on an estimate of the broadcasting overhead).
For example, the size of the buffer may be based on the broadcasting overhead and/or based on
variations in the broadcasting overhead. More specifically, if the network conditions in general
are highly variable, then it may be reasonable to choose a larger buffer size in order to have
sufficient “buffer”.

[00164] There are different methods that may be used to assess network conditions as a means
to determine the broadcasting overhead, since, as stated previously, the most variable aspect of the
broadcasting overhead is bonding. One way is to use the advanced test connection phase,
discussed previously, in order to establish how well individual network connections perform.
After collecting this data, the broadcasting application on the client device may have sufficient
information for determining what the ideal buffer size should be. One aspect of advanced test
connection phase is to determine how long it takes for each individual packet sent in advanced test
connection phase to be received by the server in real-time. The buffer size may be selected based
on the worst result. For instance, if it took longer fo send packet X to the server than any other
packets, the client device may take this duration, add it to an estimate of the amount of overhead
for encoding and decoding, and calculate an ideal buffer size that takes this into account.

[00165] Alternatively, in the event that the network conditions may be changing considerably
during a broadcasting session, such as when the client device is mobile (e.g., the client device is in
inside a moving vehicle), attempting to dynamically determine an ideal buffer size may produce
inconsistent results. For example, if the client is in a moving vehicle during the broadcast, the
network conditions may be constantly changing as different mobile broadband networks come in
and out of range. The automatic determination of buffer size might be done entirely when the
network conditions are excellent, and this could result in a buffer size that is too small for the

entirety of the broadcast. In this kind of environment, it may be preferable to pre-select a fixed

-37-

WO 2015/148965 PCT/US2015/023067

amount for the buffer size that is relatively high so as to have sufficient “buffer” to account for
highly variable network quality.

[00166] For example, if the buffer size is two seconds, that means that after two seconds of
raw media has been accumulated by the consumer (the initial buffering period), playback will
start. If raw media that is ready for playback continues to be made available at the same rate that
it was made available during the initial buffering period, then there should be no problems during
the broadcast, and the buffer should continue to contain roughly two seconds worth of media
during the lifetime of the broadcast. However, if the rate were to decrease, then the number of
frames available for playback in the buffer will begin to decrease. While the buffer is sized such
that it can accumulate two seconds worth of media, it may only be filled with 1.5 seconds of
media. Thereafter, due to deteriorating network conditions, the amount of data in the buffer may
decrease to 1 second, 0.5 seconds, and eventually O as the frames are all used up without being
repopulated fast enough. If the number of frames in the buffer drops down to 0, then problems
will occur as mentioned earlier. In this example, if the buffer size were instead four seconds, that
may be sufficient padding to accommodate the highly variable network conditions. The buffer
may start with 4 seconds worth of media, perhaps drops to 2 while the network takes a dive, and
then climb back up to 4 seconds when the network stabilizes.

[00167] Choosing an ideal size for the buffer may be challenging from a user perspective. It
is unlikely that users will have sufficient information and technical expertise to estimate the
broadcasting overhead prior to starting a broadcast. One approach is to use a sufficiently large
buffer size so as to account for most potential broadcasting overhead situations. Perhaps a buffer
size of 5 seconds may be sufficient. In this case, if, for example, the broadcasting overhead is 1.5
seconds, this translates into the initial delay being 6.5 seconds (1.5 seconds of broadcasting
overhead and 5 seconds to fill the buffer). However, the further and further the broadcast is
removed from real-time, the harder it is for a studio to cue and manage a remote reporter using the
broadcasting technology. If a reporter is supposed to appear on the air at a specific time (known
as the hit), then in order for this to occur, the reporter must be cued in by someone at the station
6.5 seconds prior to the hit in order for it to appear as if the reporter is reporting “live”. This
requires resources at the television station that could be otherwise used for something else. In
theory, someone must always cue the reporter in, regardless of the initial delay. However, if the
initial delay is 2.5 seconds or less, the reporter may listen to the live broadcast over a phone (or
other solution, such as an interruptible feedback (IFB), discussed below), and when the reporter
hears his/her cue, that is, the point in the broadcast that immediately precedes the hit, the reporter
starts. The hit does not technically arrive at the station for another 2.5 seconds or less. Therefore,
this results in a short gap in the broadcast; however, this gap may be considered acceptable for TV
broadcast purposes. Anything higher may be noticeable by viewers and would benefit from

someone at the station precisely timing things.

-138-

WO 2015/148965 PCT/US2015/023067

[00168] In an alternate embodiment, the size of the buffer may be configurable by the user—
such an approach was implied earlier in the context of a moving vehicle. In a specific
embodiment, the user may directly configure the size of the buffer. For example, the user may be
presented with a text box in the user interface of the client device allowing the input of a specific
buffer size. If, for example, a buffer size of 2.5 seconds is specified, this means that, when the
broadcasting session starts, the consumer (in this scenario, running on the server) will create a
video buffer sized to store at least 2.5 seconds of video frames and an audio buffer sized to store at
least 2.5 seconds of audio data. In an alternate specific embodiment, the user may indirectly
configure the size of the buffer. As discussed above, the size of the buffer, along with the
broadcasting overhead, dictate the initial delay in the replay of the media. Rather than specifying
the buffer size in the user interface, the user may specify the delay instead. In response, it may be
necessary to initiate a training session (using advanced test connection phase as described earlier)
in order to estimate the broadcasting overhead. Once the broadcasting overhead is determined,
this provides sufficient information to determine an appropriate buffer size to match the requested
delay. For example, if the user chooses a delay of 4 seconds, and the broadcasting overhead is
determined to be 1.5 seconds, then the buffers should be sized to store 2.5 seconds of media.
[00169] Any approach to sizing the raw media buffers that involves the use of a training
session (e.g., using advanced test connection phase as described earlier) means that broadcasting
cannot be started immediately when initiated by the user. Some amount of time is required to
perform the training session, analyze the results, and make decisions based on these results. In
contrast, if a fixed buffer size is chosen, as soon as the user initiates the broadcast, the broadcast
has technically started. The consumer will not initiate media playback until the buffers have
accumulated sufficient media, as specified by the fixed buffer size, but once this occurs, which is
equal to the buffer size plus the broadcasting overhead, as discussed previously, playback begins.
As such, it may be preferable to use a fixed buffer size in certain situations.

[00170] Networking conditions may be highly variable. When a broadcast begins,
networking conditions across the different network connections in a transfer session may be
excellent, easily allowing, for example, a 4 Mbps encoded video stream to be sent to the server.
However, five minutes later, the situation could change for a myriad of reasons, and now, the
combined throughput of the bonded network connections can only satisfy a 1.5 Mbps encoded
video stream (in addition to the data needed to transfer encoded audio and any additional
overhead). For example, in the case of mobile broadband, the carrier may be experiencing a lot
more usage on the network (from other cellular customers) than was the case five minutes prior.
The cellular signal may somehow have fluctuated. Alternatively, there may be Internet routing
issues. Regardless, the networking conditions may vary.

[00171] Due to the variability of networking conditions, the bit rate used to encode media
may be dynamically adjusted. For example, in one embodiment, the bit rate at which video is

encoded (such as by using an H.264 encoder) may be dynamically adjusted. Typically, audio is

-39.

WO 2015/148965 PCT/US2015/023067

encoded at a lower bit rate than video. Thus, dynamic bit rate adjustment may only focus on
adjusting the video encoding bit rate. In an alternative embodiment, the bit rate at which audio is
encoded may be adjusted. In still an alternative embodiment, the bit rate at which both video and
audio are encoded may be adjusted.

[00172] Varying the bit rate varies the amount of encoded output data per time segment. As a
general rule, as the bit rate of an encoded video stream goes down, the quality of the encoded
video stream goes down as well. In addition, as the bit rate of an encoded video stream goes up,
the quality of the encoded video stream also goes up, although, if the bit rate is increased beyond a
certain point, the perceivable quality will only go up slightly or not at all.

[00173] One embodiment comprises determining whether (and/or by how much) to vary the
bitrate. In a more specific embodiment, this determination may be performed by the consumer
alone. For example, when broadcasting video from the client device to the server, the consumer
may request adjustments to the bit rate based on at least one aspect of the processing of the video
by the consumer (¢.g., a comparison of the number of video frames currently stored in the buffer
versus the number of video frames that can be stored in the buffer). The consumer can only make
bit rate adjustment requests, since it is the producer, running on the client, that is responsible for
encoding video. In an alternate more specific embodiment, this determination may be performed
by the producer alone. For example, when broadcasting video from the client device to the server,
the producer device may decide to modify the bit rate in response to being informed by the CMC
of a problem with one of the network connections in the transfer session, as discussed in more
detail below. In yet an alternate more specific embodiment, this determination may be performed
by the producer and the consumer (e.g., in one instance, the producer may determine whether to
vary the bit rate and in another instance, the consumer may determine whether to vary the bit rate).
In this regard, this determination (whether by the producer, the consumer, or both the producer
and the consumer) may dictate when the bit rate should be incremented or decremented and by
how much.

[00174] As discussed above, one manner to vary the bit rate is by consumer-controlled bit rate
adjustment requests. In the broadcasting context from client device to server, the consumer may
control the bit rate adjustments. As previously discussed, the consumer maintains a circular buffer
of video frames that are ready to be played out over SDI. In determining whether and how much
to vary the bit rate, the consumer may analyze at least one aspect of the buffer (such as the
“health” of the buffer). Since the producer, running on the client device, is performing the
encoding in the broadcasting context, the consumer, running on the server, may inform the
producer of a bit rate change request in order to effect the bit rate change.

[00175] The consumer may analyze the buffer to generate an indication of how much the
buffer is filled. For example, the buffer may be sized such that it can contain X video frames and
the buffer may currently have Y video frames stored therein. Y may be examined in reference to

X in order to generate the indication of how much the buffer is filled. This examination may

- 40 -

WO 2015/148965 PCT/US2015/023067

generate different categories of healthiness for the buffer. Examples of healthiness include but are

not limited to:

[00176] Very healthy: (7/8)*X <Y

[00177] Moderately healthy:

[00178] if X <120: (12)*X <Y < (7/8)*X

[00179] if X >120: (11/120)*X <Y < (7/8)*X

[00180] If the value Y does not fit into either the very healthy or moderately healthy

categories defined above, then the video buffer may be considered unhealthy. The above formulae
are merely for illustration. Other rules for assessing the state of the buffer are contemplated.
[00181] The video buffer may also experience various levels of unhealthiness, discussed in
more detail below. The various levels of healthiness or unhealthiness of the buffer are merely for
illustrative purposes. Other indications are contemplated.

[00182] The consumer may request a bit rate increment depending on the level of healthiness
of the buffer and/or depending on the current bit rate. For example, the consumer may request a
bit rate increment only if the state of the buffer remains in either healthy category for a sufficient
amount of time. The sufficient amount of time that the consumer waits may depend on the current
bit rate. For example, the higher the current bit rate, the longer the amount of time that the
consumer may wait between bit rate increments. In this regard, it is more difficult to get to the
higher bit rates, since the buffer must remain in the healthy state for longer periods of time as the
bit rate is increased. This is by design, since there is more risk associated with higher bit rates. In
one embodiment, the consumer may not request a bit rate increment past a certain
implementation-defined max bit rate.

[00183] In one embodiment, the max bit rate is static. In an alternate embodiment, the max
bit rate varies. For example, the max bit rate may change depending on the number of active
connections in the transfer session (e.g., the connections sending actual data, not test mode
packets). More specifically, if there is only a single active connection transferring data, the max
bit rate may be set at a fairly low value to ensure that a single connection is capable of sending
both video and audio data. With two connections, the max bit rate may be raised a bit higher, then
a bit higher for three connections, and may finally max out at four or more connections. If the
current bit rate is currently set to the max bit rate, no further bit rate increments may be requested.
[00184] If, at the end of the variable time period between bit rate increments, the buffer is in
the very healthy state (and also remained in either healthy category during the duration of the time
period), the consumer may request that the producer increase the bit rate.

[00185] In one embodiment, the bit rate increment may be predetermined and static. In an
alternate embodiment, the bit rate increment that is requested may be variable. More specifically,
the bit rate increment may be dependent on the current bit rate. For example, if the current bit rate
is relatively low, the bit rate increment requested may be proportionally larger than if the current

bit rate is relatively high. In one implementation, the lowest bit rate used is 1 Mbps, and this is the

-41 -

WO 2015/148965 PCT/US2015/023067

bit rate at which the broadcast is generally started. In another implementation, the starting bit rate
may be greater than 1 Mbps. As discussed above, a training session (¢.g., by using advanced test
connection phase) may be used to automatically calculate the buffer size. This training session
may also be used to set the starting bit rate at a rate greater than 1 Mbps as well, resulting in
higher quality from the start of the broadcast than is possible with a 1 Mbps bit rate.

[00186] However, if, at the end of the variable time period, the buffer is in the moderately
healthy category, a bit rate increment may not be requested. Instead, it will reset the timer and
start over checking the health of the buffer during a predetermined time period. In one
embodiment, the predetermined time period remains the same. In an alternate embodiment, the
predetermined time period may be increased to a higher value than used previously for the time
period.

[00187] If the state of the buffer ever drops into the unhealthy category, in one embodiment, a
bit rate decrement may be immediately requested by the consumer, unless the bit rate is already at
its lowest allowed value (1 Mbps is the lowest bit rate in one implementation). Alternatively, a bit
rate decrement is requested in response to the buffer being in the unhealthy category for a
predetermined amount of time.

[00188] In one embodiment, the decrement of the bit rate may be predetermined and fixed. In
an alternate embodiment, the amount of the decrement in the bit rate may be variable. The
varying amount of the decrement in the bit rate may depend on one or more factors, such as the
size of the buffer and/or the number of active connections. For example, if the buffer size is
relatively small (e.g., less than 2.5 seconds worth of media), the bit rate may be dropped to the
lowest allowed value. With relatively small buffer sizes, after half of the buffer has been drained,
little time remains in the buffer, and it is safer to drop the bit rate down to its lowest possible value
in order to give the buffer the best chance of recovering. If the buffer size is not relatively small,
the bit rate may be decremented down to fixed values in the range of the maximum bit rate to the
minimum bit rate. For example, if the current bit rate is greater than or equal to 3 Mbps, the bit
rate may be dropped to 2.5 Mbps. If greater than or equal to 2.75 Mbps (and less than 3 Mbps),
the bit rate may be dropped to 2.25 Mbps. The step-wise decrement approach may be extended
further down the line.

[00189] In addition, if the number of active connections drops below a certain number of
connections (such as four connections), this may result in a new maximum bit rate (as described
previously), which may necessitate an immediate bit rate drop depending on the current bit rate.

In this regard, the bit rate may be determined based on one or more criteria, such as the healthiness
of the buffer and/or the number of active connections.

[00190] If the consumer requests that the producer change the bit rate, after this point, the
consumer will not request any further bit rate adjustments until the producer has changed the bit

rate and notified the server of this bit rate change.

_40 .

WO 2015/148965 PCT/US2015/023067

[00191] As discussed above, the determination whether to change the bit rate may be
determined by the producer. For example, in the broadcasting example from the client device to
the server, the producer may adjust the bit rate based on a change in at least one aspect of the
connection and/or based on a change in at least one aspect of the multiple connections. More
specifically, the producer may adjust the bit rate in response to certain predetermined events for a
connection, such as: a connection has been terminated and/or connection has entered into test
mode. In an alternate embodiment, the producer may analyze the data transfer session across
multiple network connections (such as the data transfer as a whole) in order to determine whether
to adjust the bit rate (such as decrease the bit rate).

[00192] In a more specific embodiment, in response to the producer determining that the
overall throughput of the bonded network connections is decreasing, the producer may initiate a
bit rate change. The analysis of the throughput may be performed by the producer at multiple
times, with a first time analyzing to determine a first aggregate throughput and a second time
analyzing to determine a second aggregate throughput. The producer may then compare the first
throughput with the second throughput in order to determine whether the throughput is decreasing.
And, in response to determining that the throughput is decreasing (such as decreasing by more
than a predetermined amount), the producer may initiate a bit rate decrement. As discussed above,
the decrease in the bit rate may be static or may be dynamic. As one example, the decrease in the
bit rate may be predetermined regardless of the amount of decrease in the throughput. In another
embodiment, the decrease in the bit rate may be dynamically determined based on the amount of
decrease in the throughput. In this regard, rather than waiting for the consumer to instruct the
producer to drop the bit rate, the consumer may do so proactively.

[00193] The CMC may notify the broadcasting bonding application of the change in the state
of the connection (e.g., termination or entry into test mode), along with the number of active
connections left in the transfer session. This may occur on either the client device or the server or
both.

[00194] In one embodiment, the amount of change in the bit rate determined by the producer
may be predetermined and fixed. In an alternate embodiment, the amount of change (e.g., the
decrement) in the bit rate may be variable. In one aspect, the amount of change may be dependent
on the number of active connections and/or the most recent non-zero throughput value of the
problematic connection (in the example of a dropped connection triggering the bit rate change, the
amount of change in the bit rate may be equal to the most recent non-zero throughput of the
connection). For example, if, as a result of the dropped connection, there are less than four active
connections left in the transfer session, the bit rate may be immediately dropped such that the
amount decremented is equal to the most recent throughput value for the dropped connection,
although the bit rate may not be dropped below the minimum bit rate.

[00195] Regardless of the origination of the bit rate change (e.g., producer or consumer),

since the producer is encoding video, it is responsible for applying the bit rate change. To do so,

-43 -

WO 2015/148965 PCT/US2015/023067

the producer drains the encoder of already encoded video frames that have been encoded using the
current bit rate. While the drain operation is ongoing, no new raw video frames may be added to
the encoder. As soon as the drain operation is completed, the new bit rate is set in the encoder and
raw frames continue to be passed to the encoder for encoding. Since no new frames can be passed
to the encoder during the drain operation, this slightly reduces the efficiency of the encoder while
the drain operation occurs, and new frames will simply accumulate in a buffer in the producer
until it completes. As such, it is advisable to minimize the number of bit rate changes initiated
during a relatively short period of time. If the encoder spends more time draining than encoding
frames, then this will have a negative impact on the broadcasting session.

[00196] Figures 15-17 illustrate different ways in which to determine whether and/or how to
change the bit rate. Figure 15 illustrates a flow diagram 1500 for the broadcasting consumer. The
broadcasting consumer may analyze multiple aspects of the transfer session and/or its own internal
data to determine whether to adjust the bit rate of encoded media. At 1502, at least one aspect of
the transfer session and/or the broadcasting process are analyzed by the consumer. At 1504, based
on the analysis, it is determined whether to modify the bit rate. If no, the flow diagram 1500 loops
back to 1502. Ifyes, at 1506, the bit rate change is determined. At 1508, the producer is informed
of the determined bit rate change. At 1510, the producer adjusts the bit rate if appropriate. In the
context of the broadcasting application, this step may occur on the client device, whereas the
previous steps may occur on the server. Finally, the flow diagram loops back to 1502, and the
process continues throughout the broadcasting session.

[00197] Figure 16 illustrates one example of a flow diagram 1600 for the broadcasting
consumer to analyze the health of its video buffer in order to determine whether or not to adjust
the bitrate. All the steps in this flow diagram are performed from the perspective of the
consumer. At 1602, the current number of video frames in the video buffer that are available (Y)
is analyzed versus the total number of video frames that can be stored in the video buffer (X).
Based on this analysis, at 1604, it is determined whether the state of the video buffer is healthy. If
yes, at 1606, an indicator of the amount of time of healthiness is incremented by one. Further, at
1608, based on the current bit rate, the duration of healthiness needed before increasing the bit rate
is determined. At 1610, it is determined whether the indicator from 1606 is greater than the
amount of time of healthiness needed before increasing the bit rate. If no, the flow diagram loops
back to 1602. If yes, at 1612, it determines if the state of the buffer is very healthy (distinguished
from moderately healthy as described earlier). If not, the flow diagram loops back to 1602. If yes,
at 1614, the amount to increase the bit rate is determined based on the current bit rate. At 1618, the
producer is informed of the bit rate change. Then, at 1620, the consumer waits for the producer to
apply or disregard the bit rate change request. The flow diagram then loops back to 1602. The
consumer may disregard the bit rate change request in the event that the consumer has also

initiated a competing bit rate change at around the same time. As previously discussed, the

- 44 -

WO 2015/148965 PCT/US2015/023067

consumer may initiate bit rate changes as well. Consumer-initiated bit rate changes may generally
take precedence over bit rate change requests from the producer.

[00198] If instead, at 1604, it is determined that the state of the buffer is not healthy, at 1616,
the amount to decrease the bit rate is determined based on the current bit rate. It then proceeds to
1618 and proceeds from there as already described.

[00199] Figure 17 illustrates a flow diagram 1700 for the producer to potentially make out-of-
band bit rate decrements based on notifications from the CMC about the state of the network
connections. All steps in this flow diagram are performed from the perspective of the producer.
At 1702, a notice from the CMC is received by the producer that there is a problem with at least
one network connection. At 1704, the producer determines if the aggregate health of the
remaining viable network connections necessitates a bit rate decrement. If not, the flow is
finished. If yes, at 1706, the bit rate is immediately decreased based on the analysis. At 1708, the
consumer is informed of the out-of-band bit rate change—that is, a bit rate change that was not
requested by the consumer. At this point, the flow ends.

[00200] As discussed above, the state of the video buffer in the consumer may trigger a
change in the bit rate. For example, a healthy state of the buffer may result in an increase in the bit
rate, whereas an unhealthy state of the buffer may result in a decrease in the bit rate. In addition,
various other techniques may be utilized that are dependent on the state of the buffer, particularly
when the buffer is in the unhealthy state. Figure 18 illustrates a block diagram 1800 of some of
the techniques that are used for dealing with unhealthy media buffers in order to bring the media
buffers back to a healthy state. Such techniques are described as being performed by the
broadcasting consumer 1802, although some of the techniques may necessitate involvement from
the consumer (e.g., changing the bit rate). Examples of techniques for dealing with an unhealthy
video buffer 1804 include, but are not limited to, the following: decrement bit rate 1806; move-on
technique 1808; resize video 1810; lower frame rate 1812; and add latency 1814. In addition,
even though it has not been elaborated earlier, it is possible for the audio buffer to enter an
unhealthy state. In the case that the audio buffer is in an unhealthy state, there are also some
techniques 1816 that may be used to improve its health. Examples of such techniques include, but
are not limited to, the following: decrement bit rate 1818; move-on technique (for audio) 1820;
and drop audio 1822. Each of these techniques will be discussed in more detail below.

[00201] The decrement bit rate technique as an approach for dealing with an unhealthy video
buffer has already been described in detail. This may be the primary technique for dealing with an
unhealthy video buffer. A similar technique may be used for audio and would work similarly.
However, very little might be gained from doing so, since the audio bit rate may be very low to
begin with (e.g., 128 kbps).

[00202] The resize video technique may be used in the case that bit rate decrements are not
sufficient, even down to the minimum video bit rate (¢.g. 1 Mbps). If the aggregate health of the

different network connections in the transfer session is not sufficient to even handle the minimum

_45 .

WO 2015/148965 PCT/US2015/023067

bit video bit rate, the consumer may request that the producer resize video frames to use a smaller
frame size prior to encoding them. Resizing a video frame in this fashion reduces image quality,
since pixel data is lost through the resize operation. However, such resized video may be encoded
at an even lower bit rate than the minimum bit rate that is typically used. The aggregate health of
the different network connections may be sufficient to accommodate this lessened bit rate. On the
consumer side, after decoding resized video, the resulting frames are resized back to the original
resolution, since the broadcast is expected to output over SDI the same video format as used by
the actual input media. The original pixel data that was lost due to the original resize operation
will not be restored by this operation, although it may be possible to use interpolation to estimate
missing pixel data as part of the resize operation. In addition, if the aggregate health of the
network connections improves, the consumer may notice this and request that the producer restore
the original frame size. It is important to note that a change to the frame size typically will result
in the need to drain the H.264 encoder prior to applying the change.

[00203] The resize video technique is relatively straightforward for progressive video, but a
direct resize of a video frame will not work properly for interlaced video. Generally, interlaced
video must be de-interlaced first prior to resizing. Alternatively, either the top or bottom fields of
an interlaced frame may be considered independently, and individual fields may be considered as
targets for a resize operation without de-interlacing. On the consumer side, in addition to having
to resize the video to get it back to the original frame size, it may be necessary to de-interlace as
well.

[00204] It is important to note that a technique like resizing video increases the broadcasting
overhead, since it represents an additional step that both the producer and consumer need to
perform, and this takes time. If de-interlacing is required, this further increases the broadcasting
overhead.

[00205] The lower frame rate technique may also be used in the case that bit rate decrements
are not sufficient, even down to the minimum video bit rate (e.g. | Mbps). If the aggregate health
of the different network connections in the transfer session is not sufficient to even handle the
minimum bit video bit rate, then the lower frame rate technique may be a good choice, and it may
be possible to use this technique without increasing the broadcasting overhead, unlike the case of
the resize video technique.

[00206] The frame rate at which video is encoded is easily modified for progressive video.
For example, halving the frame rate means that every other frame should be dropped. No special
analysis need to be performed to do this. Any time the frame rate is divided by an integer (2, 3, 4,
etc.), the frame rate conversion is easily applied (e.g., if divided by 3, one frame is kept and the
next two are dropped and the cycle repeats). If, however, the H.264 encoder is configured to use
this new frame rate, as opposed to the original frame rate associated with the input media, and
with the same bit rate scheme as utilized with the original frame rate, then the H.264 encoder will

simply pack more detail into each frame, satisfying the requested bit rate. For example, if the

- 46 -

WO 2015/148965 PCT/US2015/023067

H.264 encoder would have been configured for 720p59.94 at 1 Mbps, and it is instead configures
at 720p29.97 at 1 Mbps, it will still generate a 1| Mbps video stream but will instead pack more
detail into each encoded frame. Instead, what is needed is to configure the H.264 encoder to use
720p29.97 at .5 Mbps or to configure the H.264 encoder to use 720p59.94 at 1 Mbps but feed it
frames at half the normal rate. In the latter case, it will only pack detail into each encoded frame
as if the frame rate is 59.94 fps, even though the encoder is only being fed every other frame.
Being used this way, the encoder effectively generates half of the data it would normally generate.
So, for example, at a starting bit rate of 1 Mbps, the actual amount of data for the video stream is
closer to .5 Mbps.

[00207] When the effective frame rate is reduced, frames are not removed from the consumer
video buffer as quickly. This makes it more likely that the buffer will recover in the case of
poorly performing network connections. In terms of video quality, 29.97 fps is generally more
than adequate for a news program; however, the quality may not be appropriate for some types of
television broadcasts. In one embodiment, the hardware decoder may provide a feature that
permits the intelligent reconstruction of the missing frames at decoding time, which would make it
possible to get back to a 59.94 fps frame rate.

[00208] Further, in the case of interlaced video, reduction of the frame rate is different from
the frame rate modification as described above. Instead, in the instance of halving the frame rate,
the “half frame rate” technique for interlaced video may comprise encoding only the top field as
progressive video, similar to one of the approaches discussed for resizing interlaced video earlier.
For example, with 1080i159.94, an interlaced video frame is delivered every 1/29.97 seconds (so
that there are 29.97 interlaced video frames per second). The top field in a 10801 frame was
captured at a different time period than the bottom field, with the field rate being 59.94 fields per
second. Hence, the “59.94” in 1080159.94 corresponds to the field rate, not the frame rate, as is
the case with progressive video. Thus, if just one of the two fields is considered and only this
field is considered, the resulting frame may be treated as a progressive frame and encoded as
progressive (such as encoded using H.264 encoders, which may be more adept at encoding
progressive video than interlaced video). On the consumer side, the consumer decodes the video
as progressive video and reassembles an interlaced frame by copying the contents of the top field
into the bottom field of an interlaced frame. As such, the original video mode is maintained while
only half the data is encoded. In this context, half of the video data is lost, resulting in a reduction
in quality; however, the reduction may not be noticeable to viewers.

[00209] Up till this point, the resize video and lower frame rate techniques have been
discussed in the context of dealing with an unhealthy buffer. However, either or both of these
techniques may be applied from the start of a broadcasting session and configured to do so by the
user. For example, the user could choose to turn on a “half frame rate” mode, which may be a
good choice in the case that the client device 1s in a moving vehicle or in any situation in which

the networking conditions are expected to be highly variable. The user may also configure the

-47.-

WO 2015/148965 PCT/US2015/023067

broadcasting session to resize all video to perhaps 1/2 the frame size or 1/4 the frame size, which,
respectively, result in a pixel count that is 1/4 or 1/16 of the original pixel count. In this sort of
configuration, these techniques are not applied dynamically and are instead always on.

[00210] Another technique to ameliorate an unhealthy video buffer comprises the “move-on”
technique. On occasion, the circular buffer of video frames that are ready to be played out over
SDI may drop into the unhealthy state, as discussed previously. This may result in an immediate
bit rate decrement request sent to the producer; however, it is important to note that this is simply
the request. It takes some time for the producer to make the bit rate change and then notify the
consumer that the change has taken place. The number of frames in the buffer may continue to
drop. It is important that the number of frames in the buffer not go down to 0 if at all possible, as
previously mentioned. In response to certain predetermined conditions of the buffer, the “move-
on” technique may be used to reduce the possibility that this occurs.

[00211] The following is an example of the “move-on” technique. With bonding, data
packets may arrive out of order. For example, video packets 1 and 3-10 may have arrived in the
buffer, but the buffer is missing packet 2. The consumer reads the data in packet 1, but then stops
making progress, because packet 2 has not been received yet. If the “move-on” technique is
applied, the broadcasting application may skip past packet 2 and continue with packet 3, allowing
it to make progress. Packet 2 may contain important data, but the H.264 decoder that is being
used may be somewhat resilient and can handle some data loss. Using this technique may result in
some garbled video when played out over SDI, however. As such, it may only be used if the
number of frames ready to be played drops below a certain threshold, as described below (using

the quantities X and Y as mentioned earlier):

[00212] “Move-on” technique criteria:

[00213] if X <110: Y <(X*2)/5

[00214] ifX>110: Y <44

[00215] The above formulae are merely for illustration. Other rules for triggering the “move-

on” technique are contemplated.

[00216] In one embodiment, the “move-on” technique may only be applied if there is a gap of
a single packet with another packet that has already been received immediately after it. If two or
more consecutive packets are missing, then the technique will not be applied. In an alternate
embodiment, the “move-on” technique is applied if there is a gap of more than one packet, such as
a gap of two packets.

[00217] Further, in one embodiment, the broadcasting application may skip past the missing
packet, such as discussed above. In an alternative embodiment, the broadcasting application may
insert a duplicate packet, such as the packet immediately preceding the missing packet or the
packet immediately following the missing packet. In the example above where packet 2 is
missing, the contents of packet 1 or packet 3 may be duplicated and inserted into the place in the

buffer for packet 2.

- 48 -

WO 2015/148965 PCT/US2015/023067

[00218] The “move-on” technique discussed above is directed to video. A similar “move-on™
technique may also be applied for audio. In one embodiment, if the number of available audio
samples goes below an implementation-defined threshold, and there is a gap of only one audio
packet that is missing, the “move-on” technique for audio will be applied, and this packet will be
skipped. Because entire samples may be encapsulated in an audio packet, when this is done, some
audio will simply be lost, but unless this technique is applied very frequently, it is unlikely to be
noticeable by the viewer. In an alternate embodiment, if the number of available audio samples
goes below an implementation-defined threshold, and there is a gap of more than one audio packet
(such as two audio packets) that are missing, the “move-on” technique for audio will be applied,
and these packets will be skipped.

[00219] Still another technique to combat an unhealthy video buffer comprises the add
latency technique. In one embodiment, the trigger to determine whether to apply the add latency
technique may be based on an analysis of the buffer. In one embodiment, the analysis of the
buffer may be at a single point in time. For example, if the current state of the buffer is very
unhealthy, the add latency technique may be applied. In an alternate embodiment, the analysis of
the buffer may be at different points in time. For example, the analysis of the buffer may conclude
that the health of the buffer is deteriorating. More specifically, if the number of frames available
to be played continues to drop, it may be necessary to add some latency into the video playback
over SDI. That is, instead of playing the next frame in the circular buffer immediately, the
broadcasting application may push it out such that there is a gap of 2, 3 or 4 frames between the
last frame played and this frame. During this gap, the screen is not refreshed, and the previous
frame remains on the screen. This has the effect of pushing the server further out from real-time
compared to the client so that the delay increases. This may or may not be noticeable to the
viewer depending on how much latency needs to be added. In addition, the audio is pushed out

the same amount to ensure that video and audio remain in sync. The add latency technique may

be applied as follows:

[00220] Add latency technique criteria:

[00221] if X <110: Y £ (X/5)

[00222] ifX>110:Y<20

[00223] The above formulae are merely for illustration. Other rules for triggering the add

latency technique are contemplated.

[00224] Further, in one embodiment, in response to determining to use the add latency
technique, the broadcasting application may push it out such that there is a gap of a predetermined
number of frames between the last frame played and this frame. The predetermined number may
be 2 or 4 frames, for example. In an alternative embodiment, in response to determining to use the
add latency technique, the broadcasting application may first determine the number of frames to
generate a gap between the last frame played and this frame. The number of frames determined

may be based on the state of health of the buffer (such as the state of the buffer at a single point in

-49.

WO 2015/148965 PCT/US2015/023067

time or the state of the buffer across multiple points in time). The more unhealthy the buffer, the
greater the gap that may be generated.

[00225] In addition, in one embodiment, once the number of frames is determined (whether
predetermined or variable), the broadcasting application may push video out by this number of
frames all at once. For example, if the determined number of frames is 4, the video may be
pushed out by all 4 frames at once. In an alternate embodiment, once the number of frames is
determined, the broadcasting application may push the video out gradually. The gradual push out
of the frames may be less noticeable to the viewer.

[00226] Even after requesting that the bit rate be dropped, applying the “move-on” technique,
and adding latency, or using other techniques, it may still be impossible for the consumer to
prevent the buffer from being completely exhausted. In the event that no frames remain in the
buffer, and it is now time to play the next frame, the consumer can do little in this case. For this to
happen, the quality of the network connections would likely be very poor and/or the combined
throughput of the network connections would not be sufficient to send the video and audio
streams.

[00227] When this situation occurs, the consumer may simply keep the last frame that was
played up in the display (i.¢., playback will freeze). As soon as the next frame becomes available,
it may push it out a sufficient amount in order to accumulate a buffer worth of frames. There is
little point in playing this frame immediately, as it is unlikely that another frame will be ready by
the time the frame after this frame should be played, which would necessitate adding more
latency. It also must recalculate the delay, which may be significant depending on how long it has
been since the last frame was played.

[00228] In a broadcasting bonding application, both audio and video data are transmitted. In
one embodiment, the audio and video data are not interleaved in the same packet. There are
separate audio stream data packets and video stream data packets. When the CMC on the server
receives an audio packet, it is added at the proper location in an audio-only circular buffer in the
consumer. The same approach is used for video packets. In addition, there may be separate
software threads in the consumer for handling audio and video which are used to decode the data
into raw audio samples and raw video frames, respectively, which are each added to the respective
circular buffers that are ready to play out over SDI (the circular buffer used for video was
discussed above; the circular buffer used for audio works in a similar fashion). Additionally, the
span of time associated with an audio sample may be different from that associated with a video
frame. Each video frame should play for the same amount of time, since the frame rate is
constant. In contrast, an audio sample is comprised of many different audio “frames”, and the
number of “frames” in an audio sample may vary. In addition, audio may not necessarily be
sampled continuously on the client, unlike video. So, there may be very short gaps between audio
samples during which no audio should be played. However, regardless of all of this, the first

audio sample is guaranteed to start at the same time as the first video frame.

-50 -

WO 2015/148965 PCT/US2015/023067

[00229] Given the above information, after accumulating a sufficient buffer of audio samples
and video frames that are ready to be played out over SDI in the consumer, the consumer will
issue a command to the SDI playback hardware to start both video and audio playback
simultaneously. Subsequent video frames may be played back out at the same rate, and
subsequent audio samples may be scheduled based on each sample's start time. In theory, this
should be sufficient to ensure that audio and video remain synchronized.

[00230] As mentioned carlier, in the case that the add latency technique is used, audio is also
pushed out the equivalent amount of time associated with the frame push out in order to ensure
audio/video synchronization.

[00231] The consumer assumes that there are no gaps between video frames that are ready to
be played back. That is, if the next two video frames to be played are frames 1 and 2, when
originally captured on the client device, they would also have been consecutive frames. However,
this may not always be the case. At a broadcast standard frame rate of 59.94 fps, that means that
new frames should be received from the video input source every 0.01668 seconds. That is, there
is a 0.01668 second gap between each video frame. But, there could be something that slows the
frame grabbing process down on the client device temporarily, resulting in a gap of 5 frames, or
0.0834 seconds, between frame | and the next frame, which is technically frame 7, but may appear
to be the next frame. If the consumer is not informed of this, it will play frame 7 as if it were
actually frame 2, and if this kind of thing happens a sufficient number of times during a broadcast,
video will become out of sync with audio (video will play before audio), since audio samples are
always played using the start time of a sample, whereas video frames are played continuously.
The producer detects this situation by comparing the time stamp of the current frame against the
time stamp of the last frame that it received, and if the time stamp is greater than the time gap that
is supposed to be used given the frame rate, the producer may inform the consumer that there is a
video frame gap at the appropriate location. When the consumer notices this, at the point at which
it gets to frame 7 (or rather, what it thinks is frame 2 in this example), it will schedule the frame to
play not immediately but with a five frame gap. As such, frame 1 will appear for a total of six
frame lengths. In this regard, video will temporarily freeze; however, it may not be noticeable if
the number of missing frames is relatively low.

[00232] Figure 19 illustrates two concurrent flow diagrams 1900 for synchronizing audio and
video playback and for video playback. Both flow diagrams would typically be operating at the
same time, likely on different software threads. All the steps in each flow diagram are performed
from the perspective of the consumer. In the first flow diagram, at 1902, the consumer
continuously accumulates audio samples in the audio buffer and video frames in the video buffer.
At 1904, it checks if audio/video playback has already been started. If yes, the flow diagram loops
back to 1902. If not (as would be the case when initially starting a broadcast session), at 1906, it
checks if there are sufficient buffer samples to begin playback. If not, the flow diagram loops

back to 1902. If yes (which means that the requested buffer size worth of media has been

-51-

WO 2015/148965 PCT/US2015/023067

accumulated, as discussed previously), at 1908, it sends a command to the playback hardware to
start both video and audio playback simultancously. Finally, it loops back to 1902.

[00233] At this point, the second flow diagram may start while the first flow chart continues
to operate for the purpose of continuously accumulated raw media that is ready to be played back
in the audio and video buffers. In the second flow diagram, at 1910, it checks if a video frame is
available for playback. If not, the flow ends. If yes, at 1912, it checks if the add latency technique
needs to be used. If yes, at 1914, it pushes video frame scheduling out a sufficient amount. It also
pushes out audio sample scheduling the same amount. It then proceeds to 1916. It also proceeds
to 1916 in the case that the latency technique was notused at 1912. At 1916, it determines if a
frame gap command was received. If yes, at 1918, it pushes video frame scheduling out a
sufficient amount. It then proceeds to 1920. It also proceeds to 1920 in the case that a frame gap
command was not received at 1916. Finally, at 1920, it schedules the video frame for playback
and terminates. This flow is expected to be repeated multiple times, but typically the scheduling
of each frame is considered to be a separate process, so that is why it does not loop continuously
the second flow diagram in Figure 19.

[00234] As discussed above, a bonding application, such as broadcasting, provides the
following components in order to interact with bonding: an initiator (e.g., used on the client
system to initiate a broadcast session with the server); a receptor (e.g., used on the server system
in combination with the initiator on the client system to setup the broadcast session). In addition,
one or more producers and consumers may also be provided.

[00235] The following may comprise producer/consumer combinations:

[00236] Data flow direction: client device to server: a producer on the client device, used to
generate audio and video packets and make them available to the bonding layer for sending to the
server. Also, the producer may be used for a limited number of special packets (like the packet
used to inform the consumer of a video bit rate change); a consumer on the server, used to
consume the audio and video packets sent by the producer on the client device.

[00237] Data flow direction: server to client device: a producer on the server, used for
occasional communications back to the client, such as the communication needed to request a bit
rate change; and a consumer on the client device, used to consume back channel communications.
[00238] Two different types of data packets may exist for broadcasting: audio packets and
video packets. An audio packet may be comprised of one or more encoded audio samples. Each
audio sample includes its time stamp (e.g., start time), duration, size, and the encoded audio data.
Because the audio bit rate may be fixed at 128 kbps, more than one audio sample can fit within a
single audio packet, although there almost always will be some unused space in an audio packet.
By default, each data packet may only hold 1370 bytes of data. If there are five audio samples
ready to be “packetized”, and each audio sample takes up 300 bytes, the first four samples can
completely fit within a single packet. Since the last sample does not fit in the remaining space,

part or all of it may be placed in the next audio packet.

-5

WO 2015/148965 PCT/US2015/023067

[00239] Video packets, unlike audio packets, only include encoded video data. For example,
the video packets may simply include the data from a H.264 stream. While it is possible that a
single encoded frame may fit entirely within a single data packet, this is unlikely, particularly as
the bit rate is increased. Because only the H.264 stream is sent, it is inefficient to leave any gaps
in a video packet. If a video packet is not entirely filled up by extracting the bytes from the
current encoded video frame, it will not be passed to bonding until it is filled up with sufficient
data from the next encoded video frame.

[00240] For example, an encoded video frame's data is 5500 bytes, and the data for the next
encoded video frame is 6500 bytes. The first 5480 bytes will be distributed across four data
packets and passed to the CMC, and the remaining 20 bytes will be stored in the sixth data packet.
When it moves on to the next encoded video frame, it will extract the first 1350 bytes from this
frame, copy these bytes into the remaining 1350 bytes of the sixth data packet, and pass the packet
to the bonding layer.

[00241] The broadcasting application may keep track of the total time associated with both
the audio packets and the video packets it has sent and alternate between the two in order to keep
the bonded data stream balanced in terms of time. Regardless, since the minimum video bit rate
may be 1 Mbps and the fixed bit rate for audio may be 128 kbps (.128 Mbps), there will be
considerably more video data packets sent than audio data packets.

[00242] As discussed above, data may be transmitted from the client device to the server,
from the server to the client device, and between the client device and the server, as described in
Figures 4-6. In the broadcasting context, most data is typically sent from the client device to the
server. There may be other instances in the broadcasting context in which a producer on the
server may generate data for consumption by a consumer on the client device. For example, an
IFB was discussed previously in the context of having a delay of 2.5 seconds or less. In the
broadcasting context, reporters typically may listen to the live broadcast over a cell phone. This
means, however, that the cell phone is in use, and if an important telephone call comes in during
this time, the reporter may not be able to take it. It is preferable for the broadcasting software to
provide support for an IFB implicitly. Instead of the reporter having to call in, the reporter may
activate the IFB feature of the broadcasting application, and in response, the broadcasting
application would stream the live broadcast's audio from server to client device, allowing the user
to listen in using the client device (such as via a detachable in-ear receiver connected to the client
system using Bluetooth). The data transmission may be done using the producer/consumer combo
in which the producer is on the server and the consumer is on the client device. This would be in
addition to the producer on the client and the consumer on the server that is used for the standard
broadcasting data transmission.

[00243] In addition, an IFB can be used for two-way audio communication with someone at

the station (such as a reporter in the field speaking with a producer at the television station). In

-53.

WO 2015/148965 PCT/US2015/023067

this implementation, audio data may be sent via both producer/consumer combinations. This
audio data would be separate from the audio data associated with the actual broadcast.

[00244] In an alternate embodiment, instead of or in addition to having a one-way audio
communication or two-way audio communication, a return video feed from the server to the client
device may be implemented. This is similar to an IFB except instead of simply sending the audio
of the live broadcast, it may send the video (and potentially the audio as well). This may be
considered to be similar to a reverse broadcasting channel; however, since the video is only being
watched by the reporter, the video quality only need be adequate to get an idea what is happening
in the live broadcast.

[00245] Further, as discussed above, various bonding applications may be used with bonding.
One such application is file transfer. In one embodiment, the file may be transferred from the
client device to the server. In an alternate embodiment, the file may be transferred from the server
to the client. In still an alternate embodiment, files may be simultaneously transferred from the
client device to the server and from the server to the client.

[00246] One example of a file transfer may be in the broadcasting context. A reporter in the
field may generate a video, such as an interview of a person. The reporter may wish to transfer
the video to the TV station, which will be played during a live broadcast. Thus, in preparation for
the live broadcast, the reporter may use the client device to transfer the video (in the form of one
or more files) to the server. The transfer of the files may be achieved using bonding logic,
sending the files back over multiple network interfaces (e.g., multiple bonded cellular cards)
resulting in faster file transfers. Moreover, the user at the TV station may log into the server (or
may access the server directly) in order to determine the status of the transfer.

[00247] Another application comprises an audio application. In one embodiment, the audio
application may transfer audio data (such as a stream of audio data or an audio file) from the client
to a server. In an alternate embodiment, the audio application may transfer audio data from the
server to the client device. More specifically, the client device may transmit audio for broadcast
on a radio station. In still an alternate embodiment, audio data may be transferred from the client
device to the server and from the server to the client device.

[00248] The client device may receive audio (or may generate audio if the client device
includes a microphone or other transducer). The client device may transfer the stream of audio
data to a server (which may use the audio data, and/or may relay the audio data to a radio station
for use). The client device may perform the transfer using one or more network interfaces.
[00249] In one example, a radio field reporter may communicate with a radio station using a
client device that includes multiple network interfaces, such as multiple mobile broadband
interfaces, and establishing multiple connections using the multiple mobile broadband interfaces.
The client device in this example may be similar to the client device in the video broadcasting
example with the exception of removing the video processing capability (i.e., removing the video

bonding capability and maintaining the audio bonding capability). In another example, the radio

-54 -

WO 2015/148965 PCT/US2015/023067

station may communicate with the radio field reporter using a server transmitting audio data to a
client device over multiple connections using the multiple network interfaces. In still another
example, bonding may enable bi-directional audio communication between the radio field reporter
and the radio station, using the multiple network interfaces on the client device in order for the
client device to transfer audio to the server, and in order for the server to transfer audio to the
client device.

[00250] Still another application comprises video conferencing. Video may be sent from the
client device to the server (for use by the server or a device in communication with the server).
Similarly, video may be sent from the server to the client device. In this instance, there are two
producer/consumer combinations, with video being sent from client/server and server/client. In
this regard, the procedures outlined above for sending broadcast video from client to server may
apply to the producer/consumer combination of video being sent from client to server. Likewise,
the procedures outlined above for sending broadcast video from client to server may apply to the
producer/consumer combination of video being sent from server to client. For example, the
various bit rate adjustments attributed to the producer and consumer (in the instance of broadcast
video being sent from the client to the server) discussed above may be applied to both the client
and the server. More specifically, the functionality attributed to the producer may be imputed to
the client and the functionality attributed to the consumer may be imputed to the server in the
client/server combination (where the client is sending video to the server). The functionality
attributed to the producer may be imputed to the server and the functionality attributed to the
consumer may be imputed to the client in the client/server combination (where the client is
sending video to the server).

[00251] Further, the client device may include a user interface that may provide the user (at a
remote location from the broadcast studio) relevant information. One piece of information that
may be output from the client device (such as displayed on a monitor of the client device) is at
least one aspect of the delay (e.g., the initial delay, discussed above). Another piece of information
that may be output from the client device may comprise the connection status of one, some, or all
of the connections. For example, the connection status may comprise whether a particular
network connection is transmitting data, in test mode, or disconnected. Still another piece of
information that may be output from the client device may comprise the status of the transfer of
the video, file transfer or the like. For example, the status of the transfer may comprise a
percentage that has been transferred from the client device to the server.

[00252] In addition, the server (or a computer at the broadcast studio in communication with
the server) may include a user interface to provide a technician at the broadcast studio relevant
information regarding the data transfer. Similar to the client device, the server may output at least
one aspect of the delay (e.g., the initial delay, discussed above), connection status of one, some, or

all of the connections, and/or the status of the transfer.

-55-

WO 2015/148965 PCT/US2015/023067

[00253] The client device may further include video editing functionality, enabling a reporter
to edit raw video. After which, the edited video file may be sent to the server using bonding. In
one embodiment, the client device may be configured to switch between different modes, such as
a video editor mode (in which raw video is edited and saved to a file) and bonding mode (in which
the file may be transferred to the server using bonding). Alternatively, within the video editor
mode, the video editor may access the bonding library in order to transfer the edited video to the
server.

[00254] Figure 20 illustrates a general computer system 2000, programmable to be a specific
computer system 2000, which may represent any server or client device discussed herein. The
computer system 2000 may include an ordered listing of a set of instructions 2002 that may be
executed to cause the computer system 2000 to perform any one or more of the methods or
computer-based functions disclosed herein. The computer system 2000 may operate as a stand-
alone device or may be connected, ¢.g., using the network 2009, to other computer systems or
peripheral devices.

[00255] In a networked deployment, the computer system 2000 may operate in the capacity of
a server or as a client-user computer in a server-client user network environment, or as a peer
computer system in a peer-to-peer (or distributed) network environment. The computer system
2000 may also be implemented as or incorporated into various devices, such as a personal
computer or a mobile computing device capable of executing a set of instructions 2002 that
specify actions to be taken by that machine, including and not limited to, accessing the Internet or
Web through any form of browser. Further, each of the systems described may include any
collection of sub-systems that individually or jointly execute a set, or multiple sets, of instructions
to perform one or more computer functions. As discussed above, the instructions may be
manifested in logic.

[00256] The computer system 2000 may include a memory 2003 on a bus 2010 for
communicating information. Code operable to cause the computer system to perform any of the
acts or operations described herein may be stored in the memory 2003. The memory 2003 may be
a random-access memory, read-only memory, programmable memory, hard disk drive or any
other type of volatile or non-volatile memory or storage device.

[00257] The computer system 2000 may include a processor 2001, such as a central
processing unit (CPU) and/or a graphics processing unit (GPU), such as discussed above. The
processor 2001 may include one or more general processors, digital signal processors, application
specific integrated circuits, field programmable gate arrays, digital circuits, optical circuits, analog
circuits, combinations thereof, or other now known or later-developed devices for analyzing and
processing data. The processor 2001 may implement the set of instructions 2002 or other software
program, such as manually-programmed or computer-generated code for implementing logical
functions. The logical function or any system element described may, among other functions,

process and/or convert an analog data source such as an analog electrical, audio, or video signal,

- 56 -

WO 2015/148965 PCT/US2015/023067

or a combination thereof, to a digital data source for audio-visual purposes or other digital
processing purposes such as for compatibility for computer processing.

[00258] The computer system 2000 may also include a disk or optical drive unit 2004. The
disk drive unit 2004 may include a computer-readable medium 2005 in which one or more sets of
instructions 2002, e.g., software, can be embedded. Further, the instructions 2002 may perform
one or more of the operations as described herein. The instructions 2002 may reside completely,
or at least partially, within the memory 2003 and/or within the processor 2008 during execution by
the computer system 2000. Accordingly, the databases may be stored in the memory 2003 and/or
the disk unit 2004.

[00259] The memory 2003 and the processor 2008 also may include computer-readable media

LENT3

as discussed above. A “computer-readable medium,” “computer-readable storage medium,”

LIS

“machine readable medium,” “propagated-signal medium,” and/or “signal-bearing medium” may
include any device that includes, stores, communicates, propagates, or transports software for use
by or in connection with an instruction executable system, apparatus, or device. The machine-
readable medium may selectively be, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium.,
[00260] Additionally, the computer system 2000 may include an input device 2007, such as a
keyboard or mouse, configured for a user to interact with any of the components of system 2000.
It may further include a display, such as a liquid crystal display (LCD), a cathode ray tube (CRT),
or any other display suitable for conveying information. The display may act as an interface for
the user to see the functioning of the processor 2001, or specifically as an interface with the
software stored in the memory 2003 or the drive unit 2004. As discussed above, the customer-
controlled device may include a display and an input device, such as input device 2007.

[00261] The computer system 2000 may include a communication interface 2008 that enables
communications via the communications network 2009. The network 2009 may include wired
networks, wireless networks, or combinations thereof. The communication interface 2008
network may enable communications via any number of communication standards, such as
802.11, 802.17, 802.20, WiIMAX, 802.15 4, cellular telephone standards, or other communication
standards, as discussed above. Just because one of these standards is listed does not mean any one
is preferred as any number of these standards may never actually be adopted in a commercial
product.

[00262] Block diagrams of different aspects of the system may be implemented using the
computer functionality disclosed in Figure 20. Further, the flow diagrams may use computer
readable instructions that are executed by one or more processors in order to implement the
functionality disclosed. Finally, the displays may be output on an I/O device.

[00263] The present disclosure contemplates a computer-readable medium that includes
instructions or receives and executes instructions responsive to a propagated signal, so that a

device connected to a network may communicate voice, video, audio, images or any other data

-57.-

WO 2015/148965 PCT/US2015/023067

over the network. Further, the instructions may be transmitted or received over the network via a
communication interface. The communication interface may be a part of the processor or may be
a separate component. The communication interface may be created in software or may be a
physical connection in hardware. The communication interface may be configured to connect
with a network, external media, the display, or any other components in system, or combinations
thereof. The connection with the network may be a physical connection, such as a wired Ethernet
connection or may be established wirelessly as discussed below. In the case of a service provider
server, the service provider server may communicate with users through the communication
interface.

[00264] The computer-readable medium may be a single medium, or the computer-readable
medium may be a single medium or multiple media, such as a centralized or distributed database,
and/or associated caches and servers that store one or more sets of instructions. The term
“computer-readable medium” may also include any medium that may be capable of storing,
encoding or carrying a set of instructions for execution by a processor or that may cause a
computer system to perform any one or more of the methods or operations disclosed herein.
[00265] The computer-readable medium may include a solid-state memory such as a memory
card or other package that houses one or more non-volatile read-only memories. The computer-
readable medium also may be a random access memory or other volatile re-writable memory.
Additionally, the computer-readable medium may include a magneto-optical or optical medium,
such as a disk or tapes or other storage device to capture carrier wave signals such as a signal
communicated over a transmission medium. A digital file attachment to an email or other self-
contained information archive or set of archives may be considered a distribution medium that
may be a tangible storage medium. The computer-readable medium is preferably a tangible and
non-transitory storage medium. Accordingly, the disclosure may be considered to include any one
or more of a computer-readable medium or a distribution medium and other equivalents and
successor media, in which data or instructions may be stored.

[00266] Alternatively or in addition, dedicated hardware implementations, such as application
specific integrated circuits, programmable logic arrays and other hardware devices, may be
constructed to implement one or more of the methods described herein. Applications that may
include the apparatus and systems of various embodiments may broadly include a variety of
electronic and computer systems. One or more embodiments described herein may implement
functions using two or more specific interconnected hardware modules or devices with related
control and data signals that may be communicated between and through the modules, or as
portions of an application-specific integrated circuit. Accordingly, the present system may
encompass software, firmware, and hardware implementations.

[00267] The methods described herein may be implemented by software programs executable
by a computer system. Further, implementations may include distributed processing,

component/object distributed processing, and parallel processing. Alternatively or in addition,

-58-

WO 2015/148965 PCT/US2015/023067

virtual computer system processing maybe constructed to implement one or more of the methods
or functionality as described herein.

[00268] Although components and functions are described that may be implemented in
particular embodiments with reference to particular standards and protocols, the components and
functions are not limited to such standards and protocols. For example, standards for Internet and
other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, and HTTP) represent
examples of the state of the art. Such standards are periodically superseded by faster or more
efficient equivalents having essentially the same functions. Accordingly, replacement standards
and protocols having the same or similar functions as those disclosed herein are considered
equivalents thereof.

[00269] The illustrations described herein are intended to provide a general understanding of
the structure of various embodiments. The illustrations are not intended to serve as a complete
description of all of the elements and features of apparatus, processors, and systems that utilize the
structures or methods described herein. Many other embodiments may be apparent to those of
skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived
from the disclosure, such that structural and logical substitutions and changes may be made
without departing from the scope of the disclosure. Additionally, the illustrations arec merely
representational and may not be drawn to scale. Certain proportions within the illustrations may
be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the
figures are to be regarded as illustrative rather than restrictive.

[00270] The above disclosed subject matter is to be considered illustrative, and not restrictive,
and the appended claims are intended to cover all such modifications, enhancements, and other
embodiments, which fall within the true spirit and scope of the description. Thus, to the
maximum extent allowed by law, the scope is to be determined by the broadest permissible
interpretation of the following claims and their equivalents, and shall not be restricted or limited

by the foregoing detailed description.

-59.

WO 2015/148965 PCT/US2015/023067

What is Claimed:
1. An apparatus configured to communicate via a plurality of network interfaces, the
apparatus comprising:
the plurality of network interfaces;
a memory configured to store at least a part of one or more data streams; and
at least one processor in communication with the plurality of network interfaces and the
memory, the processor configured to:
establish, for each of the plurality of network interfaces, a respective network
connection with a remote device;
packetize the one or more data streams into a plurality of packets;
transmit the plurality of packets using the plurality of network connections to the
remote device; and
evaluate performance of one network connection in transmitting the packets in
relation to one or more of remainder of the network connections.
2. The apparatus of claim 1, wherein the processor is configured to evaluate the performance
of the one network connection in relation to all of the remainder of the network connections.
3. The apparatus of claim 1, wherein the processor is configured to evaluate a first criterion
for the one network connection in relation to a second criterion for the one or more of the
remainder of the network connections.
4. The apparatus of claim 3, wherein the first criterion comprises acknowledgment
checking; and
wherein the second criterion is an indication of time of transmittal of packets for at least a
part of a route to the remote device or of acknowledgments of receipt of the packets for at least a
part of the route from the remote device.
5. The apparatus of claim 4, wherein the second criterion comprises round trip time (RTT);
wherein the processor is configured to determine an average RTT for the one or more of
the remainder of the network connections; and
wherein the processor is configured to base the amount of time that it waits for
acknowledgments for packets transmitted by the one network connection on the average RTT for
the one or more of the remainder of the network connections.
6. The apparatus of claim 1, wherein the processor is further configured, based on the
evaluation, to cease using the one network connection to transmit, at least in part, the plurality of
packets.
7. An apparatus configured to communicate via a plurality of network interfaces, the
apparatus comprising:
the plurality of network interfaces;

a memory configured to store at least a part of one or more data streams; and

- 60 -

WO 2015/148965 PCT/US2015/023067

at least one processor in communication with the plurality of network interfaces and the
memory, the processor configured to:
establish, for each of the plurality of network interfaces, a respective network
connection with a remote device;
packetize the one or more data streams into a plurality of packets;
transmit the plurality of packets using the plurality of network connections to the
remote device;
evaluate performance of one network connection in transmitting the packets; and
in response to evaluating the performance of the one network connection, operate
the one network connection in test mode.
8. The apparatus of claim 7, wherein the processor is configured to operate the one network
connection in the test mode by transmitting test packets to the remote device; and
wherein the processor is further configured to evaluate the transmission of the test
packets.
9. The apparatus of claim 8, wherein the processor is further configured to determine, based
on the evaluation of the transmission of the test packets, whether to stop operating the one
network connection in test mode and to assign packets from the plurality of packets for
transmission to it instead.
10. The apparatus of claim 9, wherein the processor is configured to evaluate the transmission
of the test packets by analyzing the acknowledgment time(s) associated with the test packets.
11. The apparatus of claim 9, wherein the processor is configured to evaluate the transmission
of the test packets by analyzing round trip time(s) (RTT) associated with the test packets.
12. The apparatus of claim 7, wherein the processor is configured to evaluate the performance
of the one network connection in relation to the performance of one or more of a remainder of the
network connections.
13. An apparatus configured to communicate via a plurality of network interfaces, the
apparatus comprising:
the plurality of network interfaces;
a memory configured to store at least a part of one or more data streams; and
at least one processor in communication with the plurality of network interfaces and the
memory, the processor configured to:
receive an indication to transmit the one or more data streams to a remote device;
in response to receiving the indication to transmit the one or more data streams:
establish, for each of the plurality of network interfaces, a respective
network connection with a remote device;
packetize the one or more data streams into a plurality of packets; and
transmit the plurality of packets using the plurality of network

connections to the remote device whereby a rate at which packets are assigned to

-6l -

WO 2015/148965 PCT/US2015/023067

one network connection is determined by a rate at which packets previously
transmitted by the one network connection are acknowledged as having been
received.
14. The apparatus of claim 13, wherein each of the plurality of network connections is
assigned up to a predetermined number of packets; and
wherein, for the one network connection, when a packet that was previously transmitted is
acknowledged as having been received, the processor is configured to assign another packet to the
one network connection.
15. The apparatus of claim 14, wherein each of the plurality of network connections uses the
same value for the predetermined number of packets that can be assigned thereto.
16. The apparatus of claim 14, wherein, in response to receiving the indication to transmit the
one or more data streams, the processor is configured to assign packets to the plurality of network
connections without first undergoing a training phase.
17. An apparatus configured to determine whether to instruct a bit rate change, the apparatus
comprising:
a network interface configured to receive one or more streams of packets from a remote
device;
a buffer configured to store video frames derived from the one or more streams of
packets; and
at least one processor in communication with the network interface and the buffer, the
processor configured to:
derive, based on the one or more streams of packets, the video frames;
store the video frames in the buffer;
analyze a fullness of the buffer;
in response to the analysis, determine whether to instruct a bit rate change; and
in response to determining to instruct the bit rate change, send an indication of
the bit rate change to the remote device.
18. The apparatus of claim 17, wherein the processor is configured to analyze the fullness of
the buffer by analyzing a current number of video frames stored in the buffer.
19. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer to determine a healthiness of the buffer for playback of video, the healthiness being
based on the current number of frames stored in the buffer.
20. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer by determining whether the current number of frames is less than a predetermined
amount; and
wherein the processor is configured to, in response to determining that the current number

of frames is less than the predetermined amount, instruct a reduction in a bit rate.

-62 -

WO 2015/148965 PCT/US2015/023067

21. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer by determining whether the current number of frames is less than a dynamically
determined amount; and

wherein the processor is configured to, in response to determining that the current number
of frames is less than the dynamically determined amount, instruct a reduction in a bit rate.
22. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer by determining whether the current number of frames is greater than a predetermined
amount; and

wherein the processor is configured to, in response to determining that the current number
of frames is greater than the predetermined amount, instruct an increase in a bit rate.
23. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer by determining whether the current number of frames is greater than a dynamically
determined amount; and
wherein the processor is configured to, in response to determining that the current number of
frames is greater than the dynamically determined amount, instruct an increase in a bit rate.
24. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer by determining whether the current number of frames is less than a predetermined
amount and greater than another predetermined amount; and

wherein the processor is configured to, in response to this determination, leave a bit rate
unchanged.
25. The apparatus of claim 18, wherein the processor is configured to analyze the fullness of
the buffer by determining whether the current number of frames is less than a dynamically
determined amount and greater than another dynamically determined amount; and

wherein the processor is configured to, in response to this determination, leave a bit rate
unchanged.
26. The apparatus of claim 17, wherein the one or more streams of packets received are

encoded using the bit rate.

-63 -

WO 2015/148965

1720

Client Device 102

PCT/US2015/023067

100

Packetized
Data

Bonding
Support

i :

Producers | |Consumers

Depending on transfer direction, for each
transfer a single producer and consumer
will participate on the appropriate system

Network
Interfaces

N

saoeLIg)U|
S|qeIA
IV UQ
ejeq

N L
NS

Server 104
: [>
]
Producers I Bonding
. <> Support
| Consumers

Packetized
Data

FIG. 1

WO 2015/148965

200 2 / 20
N

PCT/US2015/023067

Compound device (e.g., smartphone) 242
Compound Communication Embedded
Device Interface (e.g. Mobile
Network USB, Bluetooth, Processor 206 || Broadband
Interface etc.) Device
202 204 208
Mobile broadband device 244
Mobile o
Broadband ﬁﬁg?:orzc(ae“g”
Network USB, PC, efc) Processor 214
Interface 212
210
Wi-Fi device 246
Wi-Fi Communication
Network Interface (e.g.
Interface USB, PC, etc.) Processor 222
218 220
Satellite device 248
Satellite Communication
Network Interface (e.g.
Interface USB, PC, etc.) Processor 230
226 228
Ethernet device 250
Ethernet Communication
Network Interface (e.g.
Interface USB, PC, etc.) Processor 238
234 236

FIG. 2

300

WO 2015/148965 PCT/US2015/023067
Client Device 102
Memory 306
Processor Bonding Bopding
N | e | | o
308 3190
Network Interface Possibilities 312
Mobile .)
Wi-Fi Ethernet Satellite
Broadband 316 318 20
314
Server Network
Interface
340
Memory 334
Server , Bonding
Processor Bond!ng Application
332 Logic Logic
> 336 33?8
Server 104

FIG. 3

WO 2015/148965 PCT/US2015/023067

4/ 20

400

N

Client Device 102
Bonding Logic 308
Bonding Application Logic 310 Queue(s) 414
CMC Send Resend
412 queue queue
Data for Packetize | | 416 418
transmission Data |_Packets
406 408
Connection Connection Connection
thread #1 thread#2 |[. . .| thread#N
420 422 424
Network Network Network
Interface #1 Interface #2 | = « = | Interface #N
426 428 430
X d

Server Network

Interface
340
Bonding Application Logic 338 Bonding Logic 336
Connection Connection Connection
thread #1 thread#2 |« = « | thread #N
Use de- De- Received 454 456 458
packetized | | packetize packet Packets
Data Data buffer Place
446 448 450 CMC packets
460 in order
462
Server 104

FIG. 4

WO 2015/148965 PCT/US2015/023067
500
Client Device 102
Bonding Application Logic 310 Bonding Logic 308
Place
CMC packets
Use de- De- Received 412 in order
packetized || packetize packet Packets 462
Data Data buffer
446 448 450
Connection Connection Connection
thread #1 thread#2 |= = «| thread #N
420 422 424
Network Network Network
Interface #1 || Interface #2 | * | Interface #N
426 428 430
Server Network
Interface
340
Bonding Application Logic 338 Bonding Logic 336
Connection Connection Connection
thread #1 thread#2 |[. . .| thread#N
454 456 458
Data for Packetize
transmission Data Packets Queue(s) 414
406 408
CMC Send Resend
460 queue queue
416 418
Server 104

FIG. 5

WO 2015/148965 PCT/US2015/023067
Client Device 102
Bonding Application Logic 310 Bonding Logic 308
Queue(S) 414 Place
CMC Send | | Resend packets
. 412 queue | | queue in order
Data for Packetize 416 418 462
transmission Data
406 408
Connection Connection Connection
thread #1 thread #2 thread #N
420 422 424
Use de- De- Received
packetized || packetize || packet Auxiliary Auxiliary Auxiliary
Data Data buffer Connection || Connection Connegtion
446 448 450 Packets thread #1 thread #2 thread #N
602 604 606
Network Network Network
Interface #1 Interface #2 *| Interface #N
426 428 430
X
) - %
Y
Server Network
Interface
340
Bonding Application Logic 338 Bonding Logic 336
: Connection Connection Connection
Data. for Packetize thread #1 thread #2 thread #N
transmission Data 151 456 458
406 408 Packets
Auxiliary Auxiliary Auxiliary
Connection Connection Connection
) thread #1 thread #2 thread #N
Use de- De- Received 608 610 612
packetized | | packetize packet
Data Data bufter 1 Packets Queve(s) 414 Place
446 448 450 CMC Send | | Resend packets
460 queue | | queue in order
416 418 462
Server 104

FIG. 6

WO 2015/148965

700

7120

Connection Thread 420

Transmission Analytics 702

ACK RTT
Checking Checking
704 706

Transmission Modes 708

Normal Test
Mode Mode
710 712

FIG. 7

PCT/US2015/023067

WO 2015/148965

800

8/20

CMC 412 or CMC 460

Connection phases 802

Normal Test Advanced
i . test
connection Connection Connection
804 806 808

Additional Analytics 816

Clock
Skew
818

FIG. 8

PCT/US2015/023067

WO 2015/148965

9/20

PCT/US2015/023067

900

s

;

Reset ACK failure
counter
924

Isin no new
packets mode?
926

Has
received
ACKs for all
released
packets?
928
N

Yes

ACK received? No

eceived within
dynamically

906

Send new packets
904

T

Get ownership of new packets
902

Indicate in no new packets

922

FIG. 9

determined time
[imit?
908

No

Add any remaining
unacknowledged packets to
resend queue
910

'

Increment ACK failure
counter
912

Has ACK failure
counter exceeded
threshold?
914

mode -

Connection not viable
916

:

Connection taken
offline
18

!

Connection may enter
into test mode
depending on certain
conditions
920

WO 2015/148965 PCT/US2015/023067

No (perform ACK 10 / 20 1000
“ s

ecking logic)

Is RTT

sufficiently
ACK received? Access RTT greater than average Yes
906 1002 RTT for other
o connections?

Is RTT
greater than allotted
RTT limit?
1004

Send new packets
904

T

Get ownership of new packets

902 1008 i

Increment RTT failure counter
1010

Reset RTT failure counter

Has RTT failure
counter exceeded threshold 1?
1012

Is in no new
packets mode?
926

Add any remaining
unacknowledged packets to
resend queue
910

received
ACKs for all
released
packets?
928
N
No

Yes

counter exceeded threshold 2?

Indicate in no new packets

mode Connection not viable
912 916

l

Connection taken offline
18

l

Connection may enter into
test mode depending on
certain conditions
920

FIG. 10

WO 2015/148965

Start (in test
mode)

Reestablish connection
1116

PCT/US2015/023067

11720

1100

Send test mode packets
1102

Failed due to
ACKor RTT
checking?
1106
N

Yes

Terminate connection
1108

Increment counter for number of
times connection terminated
1110

Determine how long to wait to
Wait determined amount of reestablish connection based on
time — number of times connection
1114 terminated
12

FIG. 11

WO 2015/148965 PCT/US2015/023067

12/ 20

1200

Receive time packets from at least
—P> two different connections
1202

s the number
of packets greater than
a threshold?
1204

Calculate clock skew between client
device and server
1206

Optionally, inform client device of
determined clock skew
1208

End

FIG. 12

WO 2015/148965 PCT/US2015/023067

13 /20

1300

CMC 412 or CMC 460

Network interface prioritization criteria 1304

Cost Data limits Location Time of day
1306 1308 1310 1312

Network interface prioritization techniques 1314

Disable I
interface We;g?;ng
1316

FIG. 13

WO 2015/148965 PCT/US2015/023067
1400
Client Device 102
Data in Network
(e.g., encoded Interface #1 Hardware
video 426 Encoding
and/or audio) Processor 1408
Network 304 (e.g., video
Interface #2 (executing encoding)
[——¥ bonding logic
428
Data out : and bonding Hardware
(6.9., encoded application Decoding
video . . logic) 1410
and/for audio) Network (e.g., video
Interface #N decoding)
430 3
Hardware
Media
Interface
1412

Camera
1414

FIG. 14

WO 2015/148965 PCT/US2015/023067

15720

1500

In consumer, analyze multiple
aspects of the transfer session and/
or broadcasting process
1502

Adjust bit rate
based on analysis?
1504

Determine bit rate change
1506

l

Inform producer of the bit rate
change
1508

l

Producer adjusts bit rate if
— appropriate
1510

FIG. 15

WO 2015/148965 PCT/US2015/023067

16/ 20

Analyze the current number of available video frames (Y) in a video
buffer that can store a total number of video frames (X)

1602

1600

Yes Is state of video

No

buffer healthy?
1604

Increment indicator (e.g., counter) of
amount of time of healthiness
1606

'

Determine, based on current bit
rate, duration of healthiness needed
before increasing bit rate
1608

Indicator greater
than amount of time
needed to increase bit
rate?
1610

Is the state of
the video buffer very
healthy?
1612

Determine, based on current bit
rate, amount to increase bit rate
1614

Y

Determine, based on current bit
rate, amount to decrease bit rate
1616

Y

Inform producer of bit rate change
1618

Wait for producer to apply or
disregard bit rate change request

1620

FIG. 16

WO 2015/148965

17120

In broadcasting producer, receive

Start notice of a problem with at least one
a network connection from CMC

1702

Does the aggregate
health of the remaining viable
connections necessitate a bi
rate decrement?
1704

Determine bit rate change and
immediately apply
1706

Inform consumer of out-of-band bit
rate change
1708

FIG. 17

PCT/US2015/023067

1700

WO 2015/148965

18 /20

PCT/US2015/023067

1800

Broadcasting Consumer 1802

Techniques for dealing with an unhealthy video buffer 1804

Decrement
bit rate
1806

Move-on
technique
1808

Resize
video
1810

Lower
frame rate
1812

Add latency
1814

Techniques for dealing with an unhealthy audio buffer 1816

Decrement
bit rate
1818

Move-on
technique
1820

Drop audio
1822

FIG. 18

WO 2015/148965

Continuously accumulate audio
samples in audio buffer and video
frames in video buffer
1902

Has audio/video
playback been started?
1904

Yes

Are there
sufficient buffered
samples
to begin play?
1906

Yes

Send command to the playback
hardware to start both video and

19/ 20

Video frame
available for playback?
1910

PCT/US2015/023067

1900

Use latency
technique?
1912

Push video frame scheduling
out sufficient amount. Push
out audio sample scheduling
the same.
1914

Frame gap

Push video frame scheduling

audio playback simultaneously
1908

command received? out sufficient amount
1916 Yes 1918
Schedule video frame for
playback B
1920
End

FIG. 19

WO 2015/148965 PCT/US2015/023067

20/ 20

2000
2010
l
2001 A 2006
/ L7
Processor ————p Display
——————————— P
Instructions
| N 002 2007
2003 L
L /
) ——————p Input Device
Memory
‘ Instructions /
2008
2004 L
L7 J
Drive Unit Communication
—P
2004 Interface
—>
L Computer
7 Readable
Medium
N
2009

FIG. 20

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings

