The present invention relates to a boltless bonnet assembly (14) for use in a blowout preventer (BOP). In some embodiments, the boltless bonnet assembly (14) includes a bonnet (12) having a forward end facing a ram body (10) of the BOP stack, and a bonnet latch (24) disposed within the bonnet, the bonnet latch attached to the forward end of the bonnet. The boltless bonnet assembly further includes a bonnet positioning mechanism (26) in communication with the bonnet latch to move the bonnet latch into and out of engagement with the ram body.
BOLTLESS RAM BLOWOUT PREVENTER BONNET

FIELD OF THE INVENTION

[0001] This technology relates to oil and gas wells, and in particular to a boltless bonnet assembly for a blowout preventer (BOP) for use in wellbore operations.

BACKGROUND

[0002] The existing technologies for extracting fossil fuels use components such as a blowout preventer (BOP) for preventing well blowouts. A typical BOP includes a bore that runs through the BOP and connects to a wellbore. Due to the physical and mechanical demands placed on BOPs in the field, the components of a BOP assembly, such as the BOP rams, need to be examined, adjusted, machined and/or replaced periodically. The BOP bonnet assembly typically must be separated from the ram body of the BOP to allow access to serviceable components such as the ram block.

[0003] The operation of disengaging the BOP bonnets from the ram body can be very laborious, typically requiring specialized tools designed to accommodate connectors such as the large diameter bolts employed in these systems, and therefore requires appreciable time, effort and cost for the technicians and engineers charged with separating the bonnets. In addition, there is a significant concern related to the amount of down time for the rig, which requires the BOP for operation, and the potential millions of dollars that may be lost while the wellbore equipment is idle. Moreover, a wellbore may be located in an environment that may be difficult to access, such as a deep water wellbore, where even greater costs, time, and associated operator safety concerns must be addressed.

BRIEF DESCRIPTION

[0004] The present invention relates to a boltless bonnet assembly for use in a BOP stack. In some embodiments, the boltless bonnet assembly can include a bonnet having a forward end facing a ram body of the BOP stack, a bonnet latch disposed within the bonnet, the bonnet latch attached to the forward end of the bonnet, and a bonnet positioning mechanism in communication with the bonnet latch to move the bonnet latch into and out of engagement with the ram body.
Alternate embodiments of the boltless bonnet assembly can include a bonnet having a forward end facing a ram body of the BOP stack, a bonnet latch disposed within the bonnet, the bonnet latch attached to the forward end of the bonnet, and a screw operably attached to the bonnet and bonnet latch for driving the bonnet latch into and out of engagement with the ram body.

Some embodiments of the present invention can further include a method for attaching a bonnet to a ram body of a BOP. The method can include the steps of positioning the bonnet adjacent the ram body, and rotating an engagement/disengagement screw attached to a bonnet latch in a first direction in the bonnet to drive a bonnet latch into engagement with the ram body.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the features, advantages and objects of the invention, as well as others which will become apparent, are attained, and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the invention and are therefore not to be considered limiting of its scope as the invention may admit to other equally effective embodiments. The present technology will be better understood on reading the following detailed description of nonlimiting embodiments thereof, and on examining the accompanying drawings, in which:

Figure 1 is a top view of a BOP assembly according to an embodiment of the present technology;

Figure 2 is a top view of the BOP assembly of Figure 1 with the bonnet disengaged from a ram body;

Figure 3 is an enlarged top cross-sectional view of a boltless bonnet assembly according to an embodiment of the present technology;

Figure 4 is an enlarged top cross-sectional view of the boltless bonnet assembly of Figure 3 with the bonnet latch disengaged from the body latch; and

Figure 5 is a perspective cutaway view of the BOP assembly according to an embodiment of the present technology.
DETAILED DESCRIPTION

[0013] The foregoing aspects, features, and advantages of the present technology will be further appreciated when considered with reference to the following description of preferred embodiments and accompanying drawings, wherein like reference numerals represent like elements. In describing the preferred embodiments of the technology illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the technology is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.

[0014] A "connector", in accordance with the present invention, refers to a composition or device capable of adjoining two or more components through one or more machined perforations, insertions, latches and/or welds, including but not limited to threading, perforation, wedge connection and key connection.

[0015] As used herein, the term "boltless" refers to a type of connection or engagement using a connector that lacks or does not require a torquable bolt, fastener, a hinge, a wedge including a multiple wedge, a lockable key connector or key plate or any other connector capable of reversibly engaging two or more components where at least one of the connectable components possesses a machined perforation or insertion. For instance, a boltless connector does not require the machining of threads or one or more wedge connectors or key plates for adjoining one or more connectable components such as a boltless ram blowout preventer bonnet assembly and/or an operator body. In a preferred embodiment, a boltless connection may be exemplified by a bonnet latch comprising a series of toothed latches for engaging or attaching a boltless ram blowout preventer bonnet assembly to an operator body.

[0016] Referring to Figure 1, there is shown a top view of a BOP assembly, including a ram body 10 and a bonnet 12. The ram body 10 is attached to the bonnet 12 by a boltless bonnet assembly 14. The bonnet 12 is in turn attached to additional components of the BOP assembly, such as the BOP rams 16 (shown in Figure 2). Figure 2 depicts an alternate top view of the BOP assembly wherein the bonnet 12 on one side of the ram body 10 is separated from the ram body 10 to provide access to the BOP rams 16.

[0017] As shown in Figure 2, the bonnet 12 and BOP rams 16 can slide on rollers 17 engaged with rails 18 attached to the ram body 10. The bonnet 12 can be attached to a swiveling yoke (not
shown) that is mechanically connected to the rollers 17 and the rails 18, but that is free to swivel relative to the rails 18. Thus, the bonnet 12 can be pulled away from the ram body 10 until the BOP rams 16 are clear of the ram body 10. Then, the bonnet 12 can swivel to orient the BOP rams 16 in a direction away from the ram body 10. This provides access to the BOP rams 16 for servicing, replacement, etc. As further shown in Figure 2, some embodiments allow one bonnet 12 and BOP ram 16 to swivel, while other bonnets 12' and BOP rams 16' do not swivel. Thus, an operator can access discrete BOP rams as necessary, without rotating all of the rams associated with a particular BOP assembly.

[0018] Although the ability to remove the bonnet 12 and BOP rams 16 from the ram body 10 may be desirable for purposes of servicing the BOP rams 16, during normal operations, the bonnet 12 must be fixed relative to the ram body 10 so that the BOP rams can close across the bore 20 of the ram body 10, as needed. Accordingly, the present technology provides a boltless bonnet assembly 14 that allows for easy attachment and release of the bonnet 12 to and from the ram body 10.

[0019] Referring now to Figure 3, there is shown an enlarged top cross-sectional view of the boltless bonnet assembly 14, including a body latch 22, a bonnet latch 24, and an engagement/disengagement positioning mechanism, which can optionally be a screw 26. In some embodiments, the body latch 22 can be bolted to the ram body 10, although this is not required. The body latch 22 could be attached to the ram body 10 by other appropriate means, or could be integral to the ram body 10. The engagement/disengagement positioning screw 26 can, in some embodiments, be attached to the bonnet latch 24 by a fastener 25. The fastener 25 can be inserted through the engagement/disengagement screw 26 and into threaded engagement with the bonnet latch 24. In the embodiment shown, the fastener 25 is not fixed relative to the engagement/disengagement screw 26 so that the engagement/disengagement screw 26 can rotate independently of the fastener 25.

[0020] The bonnet latch 24 is contained with a bonnet recess 27 in the bonnet 12, and may have a length substantially equal to the thickness of the bonnet 12. The bonnet recess 27 can be shaped to receive the bonnet latch 24 when in a retracted position (discussed below). The bonnet latch 24 includes bonnet latch teeth 28 that engage corresponding body latch teeth 30 on the body latch 22. Although the bonnet latch teeth 28 and the body latch teeth 30 are shown to be a particular shape
in the figures, it is to be understood that the teeth can be any appropriate shape or configuration. In addition, the cross-sectional areas of the individual bonnet latch teeth 28 and body latch teeth 30 can vary from tooth to tooth.

[0021] The engagement/disengagement screw 26 is attached to the bonnet latch 24 by the fastener 25 and extends through the bonnet 12 to an outside surface 29 of the bonnet 12. The engagement/disengagement screw 26 can be moved axially along axis \(A_x \) relative to the bonnet 12 to move the bonnet latch 24 from an engaged position (as shown in Figure 3, wherein the bonnet latch teeth 28 are engaged with the body latch teeth 30) and a disengaged position (as shown in Figure 4, wherein the bonnet latch teeth 28 are disengaged from the body latch teeth 30). In some embodiments, the engagement/disengagement screw 26 may have external threads that correspond to internal threads in the bonnet 12 so that by rotating the engagement/disengagement screw 26, the threads drive the engagement/disengagement screw 26 axially toward or away from the ram body 10. As will be appreciated by the skilled artisan, the use of toothed latches 22, 24 to attach the bonnet 12 to the ram body 10 advantageously eliminates the need to attach the bonnet 12 to the ram body 10 using bolts or similar connectors, and reduces the number of parts required for the assembly.

[0022] Referring to Figure 4, and as briefly described above, there is shown the boltless bonnet assembly 14, including the bonnet latch 24, the engagement/disengagement screw 26, and the bonnet 12. In Figure 4, the bonnet latch 24 is disengaged from the body latch 22 attached to the ram body 10.

[0023] The toothed bonnet latch 24 and body latch 22, in addition to reducing the requisite number of parts associated with the boltless bonnet assembly 14 and the ram body 10, advantageously decrease the human operator time and effort required for disengagement of the boltless bonnet assembly 14 from the ram body 10. For example, a traditional bonnet assembly, where the bonnet is bolted directly to the ram body 10, may require 30-50 minutes or more to disassemble from a ram body 10. This is because each individual bolt must be removed before the bonnet can be separated from the ram body. The boltless bonnet assembly 14 of the present invention, however, may be removed from a ram body 10 in approximately 10 minutes. This is because all that is required is to rotate the engagement/disengagement screw 26 until the bonnet latch teeth 28 disengage from the body latch teeth 30. Rotation of the engagement/disengagement
screw 26 can be accomplished by any method, including, for example, using a remotely operated device (ROV).

[0024] Referring to Figure 5, to better understand the spatial arrangement of the components, there is shown a perspective cutaway view of a boltless ram blowout preventer according to an embodiment of the present technology. As shown, the bonnet latch 24 is engaged with the body latch 22 of the ram body 10 of a blowout preventer assembly. More specifically, the boltless bonnet assembly 14 is shown engaged with a ram body 10 as would occur during normal operations (i.e., when the BOP rams (not shown in Figure 5) are operably positioned in the ram body 10). In Figure 5, a ram cavity 32 is shown in the ram body 10. The ram cavity 32 is configured to accept the BOP rams 16 (shown in Figs. 1 and 2).

[0025] Each of the features of the present technology, as described and shown in various combinations in the above-described embodiments, increase the ease with which a bonnet assembly may be operably attached to a ram body for assembling a BOP for wellbore applications. In fact, the boltless ram assembly shown and described herein significantly decreases the time and effort required to assemble and disassemble commonly used, bolt jointed ram BOP bonnets.

[0026] The present technology advantageously reduces the servicing time of the ram block as well as the physical demands associated with the servicing. In addition, the external latching associated with the boltless bonnet assembly of the present invention beneficially allows for easier visual inspection of the engagement of the locking components of the BOP. The elimination of bolts and other connectors further allows the boltless bonnet assembly to exhibit an improved tolerance towards debris and related components that may adversely affect BOP function.

[0027] While the technology has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention. Furthermore, it is to be understood that the above disclosed embodiments are merely illustrative of the principles and applications of the present invention. Accordingly, numerous modifications may be made to the illustrative embodiments and other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

[0028] The singular forms "a", "an" and "the" include plural referents, unless the context clearly dictates otherwise.
"Optional" or "optionally" means that the subsequently described component may or may not be present or the event or circumstances may or may not occur. The description includes instances where the component is present and instances where it is not present, and event or circumstance occurs and instances where it does not occur.
CLAIMS

What is claimed is:

1. A boltless bonnet assembly for use in a blowout preventer (BOP), the boltless bonnet assembly comprising:

 a bonnet having a forward end facing a ram body of the BOP stack;
 a bonnet latch disposed within the bonnet, the bonnet latch attached to the forward end of the bonnet; and
 a bonnet positioning mechanism in communication with the bonnet latch to move the bonnet latch into and out of engagement with the ram body.

2. The boltless bonnet assembly of claim 1, wherein the bonnet positioning mechanism is selected from the group consisting of threadless mechanical fittings, hydraulic fittings, pressed fittings, and flange fittings.

3. The boltless bonnet assembly of claim 1, further comprising:

 a plurality of bonnet latch teeth extending from the bonnet latch for engaging the ram body in the absence of additional connectors.

4. The boltless bonnet assembly of claim 1, further comprising a body latch fixedly attached to the ram body and positioned for engagement with the bonnet latch.

5. The boltless bonnet assembly of claim 4, wherein the body latch has a plurality of body latch teeth that correspond to the bonnet latch teeth so that when the bonnet latch engages the body latch, the bonnet latch teeth engage the body latch teeth to strengthen the connection between the bonnet latch and the body latch.

6. The boltless bonnet assembly of claim 5, wherein the plurality of bonnet latch teeth and the plurality of body latch teeth have variable cross-sectional areas.

7. A boltless bonnet assembly for use in a blowout preventer (BOP), the boltless bonnet assembly comprising:

 a bonnet having a forward end facing a ram body of the BOP stack;
 a bonnet latch disposed within the bonnet, the bonnet latch attached to the forward end of
the bonnet; and

a screw operably attached to the bonnet and bonnet latch for driving the bonnet latch into
and out of engagement with the ram body.

8. The boltless bonnet assembly of claim 7, further comprising:

a plurality of bonnet latch teeth extending from the bonnet latch for engaging the ram body
in the absence of additional connectors.

9. The boltless bonnet assembly of claim 7, wherein the screw attached to the bonnet
and the bonnet latch is moveable relative to the bonnet between a first position and a second
position, wherein when in the first position, the bonnet latch engages the ram body, and when in
the second position, the bonnet latch disengages the ram body.

10. The boltless bonnet assembly of claim 7, wherein the screw extends through the
bonnet from the bonnet latch to an outside surface of the bonnet.

11. The boltless bonnet assembly of claim 8, further comprising a body latch fixedly
attached to the ram body and positioned for engagement with the bonnet latch.

12. The boltless bonnet assembly of claim 11, wherein the body latch has a plurality of
body latch teeth that correspond to the bonnet latch teeth so that when the bonnet latch engages
the body latch, the bonnet latch teeth engage the body latch teeth to strengthen the connection
between the bonnet latch and the body latch.

13. The boltless bonnet assembly of claim 12, wherein the plurality of bonnet latch
teeth and the plurality of body latch teeth have variable cross-sectional areas.

14. The boltless bonnet assembly of claim 7, wherein two or more screws are attached
to the bonnet and the bonnet latch.

15. The boltless bonnet assembly of claim 14, wherein the two or more screws extend
through the bonnet and attach to the bonnet latch.

16. A method for attaching a bonnet to a ram body of a blowout preventer (BOP), the
method comprising:

a) positioning the bonnet adjacent the ram body; and
b) rotating an engagement/disengagement screw attached to a bonnet latch in a first direction in the bonnet to drive a bonnet latch into engagement with the ram body.

17. The method of claim 16, further comprising:

rotating the engagement/disengagement screw in a second direction to release the bonnet latch from engagement with the ram body.

18. The method of claim 16, further comprising:

with the bonnet latch disengaged from the ram body, sliding the bonnet away from the ram body until BOP rams in the body are accessible for repair or replacement.

19. The method of claim 18, further comprising:

rotating the bonnet and BOP rams relative to the ram body to improve accessibility of the BOP rams.
A. CLASSIFICATION OF SUBJECT MATTER
INV. E21B33/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paragraph [0074] - paragraph [0084]; figures 1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 3b</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 253 638 A (TRÖXELL JR JOHN N) 3 March 1981 (1981-03-03) the whole document</td>
<td>1-19</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search: 21 September 2016

Date of mailing of the international search report: 04/10/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Ott, Stephane
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2003085040 AI</td>
<td>08-05-2003</td>
<td>AU 2003297252 AI</td>
<td>22-07 -2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0317542 A</td>
<td>22-11 -2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2510613 AI</td>
<td>15-07 -2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1738960 A</td>
<td>22-02 -2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101139917 A</td>
<td>12- 03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1588014 AI</td>
<td>26- 10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05006509 A</td>
<td>17- 02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 336133 BI</td>
<td>18- 05-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2346141 C2</td>
<td>10-02 -2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003085040 AI</td>
<td>08-05 -2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006162936 AI</td>
<td>27- 07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006283602 AI</td>
<td>21-12 -2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007102656 AI</td>
<td>10-05 -2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008142746 AI</td>
<td>19- 06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011005743 AI</td>
<td>13- 01-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2004059118 AI</td>
<td>15-07 -2004</td>
</tr>
<tr>
<td>US 2006000992 AI</td>
<td>05-01-2006</td>
<td>AT 395499 T</td>
<td>15-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0512442 A</td>
<td>04-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2572478 AI</td>
<td>12-01-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1766182 AI</td>
<td>28-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 336365 BI</td>
<td>10-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006000992 AI</td>
<td>05-01-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2006003469 AI</td>
<td>12-01-2006</td>
</tr>
<tr>
<td>US 4253638</td>
<td>03-03-1981</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>