发明名称
压纹非织造布及其制造方法

摘要
本发明公开了一种压纹非织造布及其制造方法，该压纹非织造布由依次设置的上表面层、中间层和下表面层通过压辊压制复合形成，且在压辊压制复合后上表面层和下表面层的表面上分别对应形成有若干排间隔设置的弧月形压纹，相邻两排弧月形压纹朝相反方向设置：所述弧月形压纹包括间隔设置的第一圆弧和第二圆弧，该第一圆弧和第二圆弧两端点处分别通过第一侧边和第二侧边连接形成一体，第一圆弧和第二圆弧具有相同圆心角但半径不同。所述第一侧边和第二侧边分别位于所述第一圆弧和第二圆弧的半径所在直线上。该压纹非织造布上下表面形成的弧月形压纹整齐规则排列，清晰美观；同时柔软，抗拉能力好，制作工艺简单，材料成本低，大大提高了企业竞争力。
1. 一种压纹非织造布，包括依次设置的上表面层(1)、中间层(2)和下表面层(3)，其特征在于：所述压纹非织造布由所述上表面层、中间层和下表面层通过压辊压制复合形成，且在压辊压制复合后所述上表面层和下表面层的表面上分别对应形成有若干排间隔设置的弧月形压纹(4)，相邻两排所述弧月形压纹朝相反方向设置；所述弧月形压纹包括间隔设置的第一圆弧(41)和第二圆弧(42)，所述第一圆弧和第二圆弧两端点处分别通过第一侧边(43)和第二侧边(44)连接形成一体，所述第一圆弧和第二圆弧具有相同圆心角但半径不同，所述第一侧边和第二侧边分别位于所述第一圆弧和第二圆弧的半径所在直线上。

2. 根据权利要求1所述的压纹非织造布，其特征在于：所述上表面层为 SMS 熔喷非织造布，所述下表面层为亲水非织造布，所述中间层为多层聚丙烯短纤维层。

3. 根据权利要求1或2所述的压纹非织造布，其特征在于：所述每排弧月形压纹中相邻两个弧月形压纹之间的距离相等。

4. 根据权利要求1或2所述的压纹非织造布，其特征在于：所述弧月形压纹的第一圆弧和第二圆弧的长度均在 10mm 以上，所述弧月形压纹的第一侧边和第二侧边的宽度均在 3mm 以下。

5. 根据权利要求1或2所述的压纹非织造布，其特征在于：所述弧月形压纹的深度在 0.2mm 以下。

6. 一种如权利要求1-5中任一项所述的非织造布的制造方法，其特征在于：将所述上表面层、中间层和下表面层依次设置并通过热轧机热轧复合形成，所述上表面层和下表面层呈纵向分布，所述中间层呈横向分布。
压纹非织造布及其制造方法

技术领域
[0001] 本发明涉及一种非织造布，尤其涉及一种压纹非织造布及其制造方法。

背景技术
[0002] 非织造布是一种不需要纺纱织布而形成的织物，主要采用机械、热粘或化学方法加固形成。具有工艺流程短、生产速度快，产量高、成本低、用途广、原料来源多等特点，同时非织造布本身也具有柔软、透气、抗菌等特点，因此被广泛应用于医疗卫生、家庭装饰、以及农业等。
[0003] 但在医疗或卫生等领域，由于特殊的需要，对非织造布的某些性能具有特殊的要求，比如需要兼顾柔软、抗拉、成本以及外观等，现有的无纺布还不能同时满足这些特殊的需求。

发明内容
[0004] 为了克服上述缺陷，本发明提供了一种压纹非织造布及其制造方法，能够满足医疗卫生等领域的需求。
[0005] 本发明为了解决其技术问题所采用的技术方案是：一种压纹非织造布，包括依次设置的上表面层、中间层和下表面层，所述压纹非织造布的上表面层为上表面层，中间层为中间层，上表面层为上表面层，所述压纹非织造布由所述上表面层、中间层和下表面层通过压纹等复合形成，且在压纹抑制复合后所述上表面层和下表面层的表面上分别对应形成有若干排间隔设置的弧月形压纹，相邻两排所述弧月形压纹朝相反方向设置，所述弧月形压纹包括间隔设置的第一圆弧和第二圆弧，该第一圆弧和第二圆弧两端点处分别通过第一侧边和第二侧边连接形成一体，第一圆弧和第二圆弧具有相同圆心角但半径不同，所述第一侧边和第二侧边分别位于所述第一圆弧和第二圆弧的半径所在直线上。
[0006] 作为本发明的优选方案，所述上表面层为 SMS 熔喷非织造布，所述下表面层为亲水非织造布，所述中间层为多层聚丙烯短纤维层。
[0007] 作为本发明的优选方案，所述每排弧月形压纹中相邻两个弧月形压纹之间的距离相等。
[0008] 作为本发明的优选方案，所述弧月形压纹的第一圆弧和第二圆弧的长度均在 10mm 以上，所述弧月形压纹的第一侧边和第二侧边的宽度均在 3mm 以下。
[0009] 作为本发明的优选方案，所述弧月形压纹的深度在 0.2mm 以下。
[0010] 本发明还提供一种如上述所述的非织造布的织造方法，将所述上表面层、中间层和下表面层依次设置并通过热轧机热轧复合形成，所述上表面层和下表面层呈纵向分布，所述中间层呈横向分布。
[0011] 本发明的有益效果是：该压纹非织造布上下表面形成的弧月形压纹整齐规则排列，清晰美观；同时柔软，抗拉力好，在 90 度直拉情况下，拉力可达 3N 以上，在 180 度平拉情况下，拉力能达 12N 以上；并且，该压纹非织造布采用 SMS 熔喷非织造布、多层聚丙烯短纤维层和亲水非织造布通过纵向和横向的交叉复合热轧形成，工艺简单，材料成本低，大大提高
了企业竞争力。

附图说明

[0012] 图 1 为本发明所述压纹非织造布剖面结构示意图；
[0013] 图 2 为本发明所述压纹非织造布上表面结构示意图；
[0014] 图 3 为本发明所述压纹非织造布下表面结构示意图；
[0015] 图 4 为本发明所述弧月形压纹结构示意图。
[0016] 结合附图，作以下说明：
[0017] 1——上表面层 2——中间层
[0018] 3——下表面层 4——弧月形压纹
[0019] 41——第一圆弧 42——第二圆弧
[0020] 43——第一侧边 44——第二侧边

具体实施方式

[0021] 以下结合附图，对本发明的一个较佳实施例作详细说明。但本发明的保护范围不限于上述实施例，即凡以本发明申请专利范围及说明书内容所作的简单的等效变化与修饰，均属本发明专利涵盖范围之内。
[0022] 如图 1-3 所示，一种压纹非织造布，由依次设置的上表面层 1、中间层 2 和下表面层 3，通过压辊压制复合形成，在压辊压制复合后上表面层和下表面层的表面上分别对应形成有若干排间隔设置的弧月形压纹 4，相邻两排弧月形压纹朝相反方向设置；如图 4 所示，弧月形压纹包括间隔设置的第一圆弧 41 和第二圆弧 42，该第一圆弧和第二圆弧两端点处分别通过第一侧边 43 和第二侧边 44 连接形成一体，第一圆弧和第二圆弧具有相同的半径不同，第一侧边和第二侧边分别位于第一圆弧和第二圆弧的半径所在直线上。
[0023] 所述上表面层为 SMS 熔喷非织造布，所述下表面层为亲水非织造布，所述中间层为多层聚丙稀短纤维层。
[0024] 所述每排弧月形压纹中相邻两个弧月形压纹之间的距离相等。
[0025] 所述弧月形压纹的第一圆弧和第二圆弧的长度均在 10mm 以上，所述弧月形压纹的第一侧边和第二侧边的宽度均在 3mm 以下。
[0026] 所述弧月形压纹的深度在 0.2mm 并内。
[0027] 一种如上述所述的非织造布的制造方法，将所述上表面层、中间层和下表面层依次设置并通过热轧机热轧复合形成，在复合时，所述上表面层和下表面层呈纵向分布，所述中间层呈横向分布。
[0028] 该压纹非织造布采用上述制造方法，通过热轧机热轧复合形成，该非织造布的两面均具有弧月型压纹，外观整齐、漂亮；同时柔软，抗拉能力好，在 90 度直拉情况下，拉力可达 3N 以上，在 180 度平拉下，拉力能达 12N 以上；并且，该压纹非织造布采用 SMS 熔喷非织造布，多层聚丙稀短纤维层和亲水非织造布通过纵向和横向的交叉复合热轧形成，工艺简单，材料成本低，大大提高企业竞争力。
图 3

图 4