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(87) Abstract

A method and apparatus for generating encryption stream ciphers. The recurrence relation is designed to operate over finite fields
larger than GF(2). The linear feedback shift register (52) used to implement the recurrence relation can be implemented using a circular
buffer (24a) or sliding a window (24b). Multiplications of the elements of the finite field are implemented using lookup tables. A non-linear
output can be obtained by using one or a combination of non-linear processes. The stream ciphers can be designed to support multi-tier
keying to suit the requirements of the applications for which the stream ciphers are used.
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METHOD AND APPARATUS FOR GENERATING
ENCRYPTION STREAM CIPHERS

BACKGROUND OF THE INVENTION
L Field of the Invention

The present invention relates to encryption. More particularly, the

present invention relates to a method and apparatus for generating
encryption stream ciphers.

IL Description of the Related Art

Encryption is a process whereby data is manipulated by a random
process such that the data is made unintelligible by all but the targeted
recipient. One method of encryption for digitized data is through the use of
stream ciphers. Stream ciphers work by taking the data to be encrypted and a
stream of pseudo-random bits (or encryption bit stream) generated by an
encryption algorithm and combining them, usually with the exclusive-or
(XOR) operation. Decryption is simply the process of generating the same
encryption bit stream and removing the encryption bit stream with the
corresponding operation from the encrypted data. If the XOR operation was
performed at the encryption side, the same XOR operation is also performed
at the decryption side. For a secured encryption, the encryption bit stream
must be computationally difficult to predict.

Many of the techniques used for generating the stream of pseudo-
random numbers are based on linear feedback shift register (LFSR) over the
Galois finite field of order 2. This is a special case of the Galois Finite field of
order 2" where n is a positive integer. For n =1, the elements of the Galois
field comprise bit values zero and one. The register is updated by shifting
the bits over by one bit position and calculating a new output bit. The new
bit is shifted into the register. For a Fibonacci register, the output bit is a
linear function of the bits in the register. For a Galois register, many bits are
updated in accordance with the output bit just shifted out from the register.
Mathematically, the Fibonacci and Galois register architectures are
equivalent.

The operations involved in generating the stream of pseudo-random
numbers, namely the shifting and bit extraction, are efficient in hardware
but inefficient in software or other implementations employing a general
purpose processor or microprocessor. The inefficiency increases as the
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length of the shift register exceeds the length of the registers in the processor
used to generate the stream. In addition, for n=0, only one output bit is
generated for each set of operations which, again, results in a very inefficient
use of the processor.

An exemplary application which utilizes stream ciphers is wireless
telephony. An exemplary wireless telephony communication system is a
code division multiple access (CDMA) system. The operation of CDMA
system is disclosed in U.S. Patent No. 4,901,307, entitled "SPREAD
SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING
SATELLITE OR TERRESTRIAL REPEATERS," assigned to the assignee of
the present invention, and incorporated by reference herein. The CDMA
system is further disclosed in U.S. Patent No. 5,103,459, entitled SYSTEM
AND METHOD FOR GENERATING SIGNAL WAVEFORMS IN A CDMA
CELLULAR TELEPHONE SYSTEM, assigned to the assignee of the present
invention, and incorporated by reference herein. Another CDMA system
includes the GLOBALSTAR communication system for world wide
communication utilizing low earth orbiting satellites. Other wireless
telephony systems include time division multiple access (TDMA) systems
and frequency division multiple access (FDMA) systems. The CDMA
systems can be designed to conform to the “TIA/EIA/IS-95 Mobile Station-
Base Station Compatibility Standard for Dual-Mode Wideband Spread
Spectrum Cellular System”, hereinafter referred to as the 1S-95 standard.
Similarly, the TDMA systems can be designed to conform to the
TIA/EIA/IS-54 (TDMA) standard or to the European Global System for
Mobile Communication (GSM) standard.

Encryption of digitized voice data in wireless telephony has been
hampered by the lack of computational power in the remote station. This
has led to weak encryption processes such as the Voice Privacy Mask used in
the TDMA standard or to hardware generated stream ciphers such as the A5
cipher used in the GSM standard. The disadvantages of hardware based
stream ciphers are the additional manufacturing cost of the hardware and
the longer time and larger cost involved in the event the encryption process
needs to be changed. Since many remote stations in wireless telephony
systems and digital telephones comprise a microprocessor and memory, a

stream cipher which is fast and uses little memory is well suited for these
applications.
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SUMMARY OF THE INVENTION

The present invention is a novel and improved method and
apparatus for generating encryption stream ciphers. In accordance with the
present invention, the recurrence relation is designed to operate over finite
fields larger than GF(2). The linear feedback shift register used to implement
the recurrence relation can be implemented using a circular buffer or sliding
a window. In the exemplary embodiment, multiplications of the elements
of the finite field are implemented using lookup tables. A non-linear
output can be obtained by using one or a combination of non-linear
processes. The stream ciphers can be designed to support multi-tier keying
to suit the requirements of the applications for which the stream ciphers are
used.

It is an object of the present invention to generate encryption stream
ciphers using architectures which are simple to implement in a processor.
In particular, more efficient implementations can be achieved by selecting a
finite field which is more suited for the processor. The elements and
coefficients of the recurrence relation can be selected to match the byte or
word size of the processor. This allows for efficient manipulation of the
elements by the processor. In the exemplary embodiment, the finite field
selected is the Galois field with 256 elements (GF(ZS)). This results in
elements and coefficients of the recurrence relation occupying one byte of
memory which can be efficiently manipulated. In addition, the use of a
larger finite field reduces the order of the recurrence relation. For a finite
field GF(Zn), the order k of the recurrence relation which encodes the same
amount of states is reduced by a factor of n (or a factor of 8 for the exemplary
GF(2%)).

It is another object of the present invention to implement field
multiplications using lookup tables. In the exemplary embodiment, a
multiplication (of non-zero elements) in the field can be performed by
taking the logarithm of each of the two operands, adding the logarithmic
values, and exponentiating the combined logarithmic value.  The
logarithmic and exponential tables can be created using an irreducible
polynomial. In the exemplary embodiment, the tables are pre-computed
and stored in memory. Similarly, a field multiplication with a constant
coefficient can be performed using a simple lookup table. Again, the table

can be pre-computed using the irreducible polynomial and stored in
memory.
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It is yet another object of the present invention to remove linearity in
the output of a linear feedback shift register by the use of one or a
combination of the following processes: irregular stuttering (sometimes
referred to as decimation), non-linear function, multiple shift registers and
combining outputs from the registers, variable feedback polynomial on one
register, and other non-linear processes. In the exemplary embodiment, the
non-linear output can be use to randomly control the stuttering of the shift
register. Additionally, a non-linear output can be derived by performing a
non-linear operation on selected elements of the shift register.
Furthermore, the output from the non-linear function can be XORed with a
set of constants such that the non-linear output bits are unpredictably
inverted.

It is yet another object of the present invention to implement the
linear feedback shift register using a circular buffer or a sliding window.
With the circular buffer or sliding window implementation, the elements
are not shifted within the buffer. Instead, a pointer or index is used to
indicate the location of the most recently computed element. The pointer is
moved as new elements are computed and shifted into the circular buffer or
sliding window. The pointer wraps around when it reaches an edge.

It is yet another object of the present invention to provide stream
ciphers having multi-tier keying capability. In the exemplary embodiment,
the state of the shift register is first initialized with a secret key. For some
communication system wherein data are transmitted over frames, a stream
cipher can be generated for each frame such that erased or out of sequence
frames do not disrupt the operation of the encryption process. A second tier

keying process can be initialized for each frame using a frame key
initialization process.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present invention will
become more apparent from the detailed description set forth below when
taken in conjunction with the drawings in which like reference characters
identify correspondingly throughout and wherein:

FIG. 1 is a block diagram of an exemplary implementation of a
recurrence relation;

FIG. 2 is a exemplary block diagram of an stream cipher generator
utilizing a processor;
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FIG. 3A and 3B are diagrams showing the contents of a circular buffer
at time n and time n+1, respectively;

FIG. 3C is a diagram showing the content of a sliding window;

FIG. 4 is a block diagram of an exemplary stream cipher generator of
the present invention;

FIG. 5 is a flow diagram of an exemplary secret key initialization
process of the present invention; and

FIG. 6 is a flow diagram of an exemplary per frame initialization
process of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Linear feedback shift register (LFSR) is based on a recurrence relation

over the Galois field, where the output sequence is defined by the following
recurrence relation :

Soik = CooiSpnt TGSy iy +o00 + CS, +GCS, (1)

where S, is the output element, G are constant coefficients, k is the order
of the recurrence relation, and n is an index in time. The state variables S
and coefficients C are elements of the underlying finite field. Equation (1) is
sometimes expressed with a constant term which is ignored in this
specification.

A block diagram of an exemplary implementation of the recurrence
relation in equation (1) is illustrated in FIG. 1. For a recurrence relation of
order k, register 12 comprises k elements S, to Sy,,.;. The elements are
provided to Galois field multipliers 14 which multiplies the elements with
the constants C. The resultant products from multipliers 14 are provided
Galois field adders 16 which sum the products to provide the output
element.

For n =1, the elements of GF(2) comprise a single bit (having a value
of 0 or 1) and implementation of equation (1) requires many bit-wise
operations. In this case, the implementation of the recurrence relation
using a general purpose processor is inefficient because a processor which is

designed to manipulate byte or word sized objects is utilized to perform
many operations on single bits.
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In the present invention, the linear feedback shift register is designed
to operate over finite fields larger than GF(2). In particular, more efficient
implementations can be achieved by selecting a finite field which is more
suited for a processor. In the exemplary embodiment, the finite field
selected is the Galois field with 256 elements (GF(28)) or other Galois fields
with 2" elements, where n is the word size of the processor.

In the preferred embodiment, a Galois field with 256 elements
(GF(28)) is utilized. This results in each element and coefficient of the
recurrence relation occupying one byte of memory. Byte manipulations can
be performed efficiently by the processor. In addition, the order k of the
recurrence relation which encodes the same amount of states is reduced by a
factor of n, or 8 for GF(ZS).

In the present invention, a maximal length recurrence relation is
utilized for optimal results. Maximal length refers to the length of the
output sequence (or the number of states of the register) before repeating.
For a recurrence relation of order k, the maximal length is I\Ik -1, where N is
the number of elements in the underlying finite field, and N = 256 in the
preferred embodiment. The state of all zeros is not allowed.

An exemplary block diagram of a stream cipher generator utilizing a
processor is shown in FIG. 2. Controller 20 connects to processor 22 and
comprises the set of instructions which directs the operation of processor 22.
Thus, controller 20 can comprise a software program or a set of microcodes.
Processor 22 is the hardware which performs the manipulation required by
the generator. Processor 22 can be implemented as a microcontroller, a
microprocessor, or a digital signal processor designed to performed the
functions described herein. Memory element 24 connects to processor 22
and is used to implement the linear feedback shift register and to store pre-
computed tables and instructions which are described below. Memory
element 24 can be implemented with random-access-memory or other
memory devices designed to perform the functions described herein. The
instructions and tables can be stored in read-only memory, only the memory

for the register itself needs to be modified during the execution of the
algorithm.

L Generating Non-Linear Output Stream

The use of linear feedback shift register for stream ciphers can be
difficult to implement properly. This is because any linearity remaining in
the output stream can be exploited to derive the state of the register at a
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point in time. The register can then be driven forward or backward as
desired to recover the output stream. A number of techniques can be used
to generate non-linear stream ciphers using linear feedback shift register. In
the exemplary embodiment, these non-linear techniques comprise
stuttering (or unpredictable decimation) of the register, the use of a non-
linear function on the state of the register, the use of multiple registers and
non-linear combination of the outputs of the registers, the use of variable
feedback polynomials on one register, and other non-linear processes. These
techniques are each described below. Some of the techniques are illustrated
by the example below. Other techniques to generate non-linear stream
ciphers can be utilized and are within the scope of the present invention.

Stuttering is the process whereby the register is clocked at a variable
and unpredictable manner. Stuttering is simple to implement and provides
good results. With stuttering, the output associated with some states of the
register are not provided at the stream cipher, thus making is more difficult
to reconstruct the state of the register from the stream cipher.

Using a non-linear function on the state of the shift register can also
provide good results. For a recurrence relation, the output element is
generated from a linear function of the state of the register and the
coefficients, as defined by equation (1). To provide non-linearity, the output
element can be generated from a non-linear function of the state of the
register. In particular, non-linear functions which operate on byte or word
sized data on general purpose processors can be utilized.

Using multiple shift registers and combining the outputs from the
registers in a non-linear fashion can provide good results. Multiple shift
registers can be easily implemented in hardware where additional cost is
minimal and operating the shift registers in parallel to maintain the same
operating speed is possible. For implementations on a general purpose
processor, a single larger shift register which implements the multiple shift
registers can be utilized since the larger shift register can be updated in a
constant time (without reducing the overall speed).

Using a variable feedback polynomial which changes in an
unpredictable manner on one register can also provide good results.
Different polynomials can be interchanged in a random order or the
polynomial can be altered in a random manner. The implementation of
this technique is can be simple if properly designed.
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I Operations on Elements of Larger Order Finite Fields

The Galois field GF(28) comprises 256 elements. The elements of
Galois field GF(28) can be represented in one of several different ways. A
common and standard representation is to form the field from the
coefficients modulo 2 of all polynomials with degree less than 8. That is, the
element o of the field can be represented by a byte with bits (ay, ag, ..., agp)
which represent the polynomial :

a,x’ +agx® + ..tax +a, . (2)

The bits are also referred to as the coefficients of the polynomial. The
addition operation on two polynomials represented by equation (2) can be
performed by addition modulo two for each of the corresponding
coefficients (ay, ag, ..., ag). Stated differently, the addition operation on two
bytes can be achieved by performing the exclusive-OR on the two bytes. The
additive identity is the polynomial with all zero coefficients (0, 0, ..., 0).
Multiplication in the field can be performed by normal polynomial
multiplication with modulo two coefficients. However, multiplication of
two polynomials of order n produces a resultant polynomial of order (2n-1)
which needs to be reduced to a polynomial of order n. In the exemplary
embodiment, the reduction is achieved by dividing the resultant
polynomial by an irreducible polynomial, discarding the quotient, and
retaining the remainder as the reduced polynomial. The selection of the
irreducible polynomial alters the mapping of the elements of the group into
encoded bytes in memory, but does not otherwise affect the actual group

operation. In the exemplary embodiment, the irreducible polynomial of
degree 8 is selected to be :

Xrxb e+ (3)

Other irreducible monic polynomial of degree 8 can also be used and are
within the scope of the present invention. The multiplicative identity
element is (ay, ag, ..., ag) = (0, 0, ..., 1).

Polynomial multiplication and the subsequent reduction are
complicated operations on a general purpose processor. However, for Galois
fields having a moderate number of elements, these operations can be
performed by lookup tables and more simple operations. In the exemplary
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performed by lookup tables and more simple operations. In the exemplary
embodiment, a multiplication (of non-zero elements) in the field can be
performed by taking the logarithm of each of the two operands, adding the
logarithmic values modulo 255, and exponentiating the combined
logarithmic value. The reduction can be incorporated within the lookup
tables.

The exponential and logarithm tables can be generated as follows.
First, a generator g of the muitiplicative subgroup GF(28) is determined. In
this case, the byte value g=2 (representing the polynomial x) is a generator.

The exponential table, shown in Table 1, is a 256-byte table of the values gl,

fori=0,1, .. 28-1. For g1 (considered as an integer) of less than 256, the value
of the exponential is as expected as evidenced by the first eight entries in the
first row of Table 1. Since g=2, each entry in the table is twice the value of
the entry to the immediate left (taking into account the fact that Table 1

wraps to the next row). However, for each g1 greater than 255, the
exponential is reduced by the irreducible polynomial shown in equation (3).

8
For example, the exponential x~ (first row, ninth column) is reduced by the

. . . 8 6 3 2 . 6 3 2
irreducible polynomial x +x +x +x"+1 to produce the remainder -x -x -x -1.

. . . . 6 3 2 .
This remainder is equivalent to x +x +x"+1 for modulo two operations and

is represented as 77 (26+23+22+1) in Table 1. The process is repeated until g1
for all index i = 0 to 255 are computed.

Having defined the exponential table, the logarithm table can be
computed as the inverse of the exponential table. In Table 1, there is a

unique one to one mapping of the exponential value g1 for each index i
which results from using an irreducible polynomial. For Table 1, the

mapping is i < 2", or the value stored in the i-th location is 2. Taking log,
of both sides results in the following : log,(i) < i. These two mappings

indicate that if the content of the i-th location in the exponential table is
used as the index of the logarithm table, the log of this index is the index of

the exponential table. For example, for i=254, the exponential value
i 2
2 =0 166 as shown in the last row, fifth column in Table 1. Taking log,

of both sides yields 254 = log,(166). Thus, the entry for the index i=166 in
the logarithmic table is set to 254. The process is repeated until all entries in
the logarithmic table have been mapped. The log of 0 is an undefined
number. In the exemplary embodiment, a zero is used as a place holder.
Having defined the exponential and logarithmic tables, a
multiplication (of non-zero elements) in the field can be performed by
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looking up the logarithmic of each of the two operands in the logarithmic
table, adding the logarithmic values using modulo 255, and exponentiating
the combined logarithmic value by looking up the exponential table. Thus,
the multiplication operation in the field can be performed with three
lookup operations and a truncated addition. In the exemplary Galois field

GF(28), each table is 255 bytes long and can be pre-computed and stored in
memory. In the exemplary embodiment, the logarithm table has an unused
entry in position 0 to avoid the need to subtract 1 from the indexes. Note
that when either operand is a zero, the corresponding entry in the
logarithmic table does not represent a real value. To provide the correct
result, each operand needs to be tested to see if it is zero, in which case the
result is 0, before performing the multiplication operation as described.

For the generation of the output element from a linear feedback shift
register using a recurrence relation, the situation is simpler since the
coefficients  are constant as shown in equation (1). For efficient

implementation, these coefficients are selected to be 0 or 1 whenever
possible. Where C have values other than 0 or 1, a table can be pre-

T . ) 8 .
computed for the multiplication t; = C]--1, where 1=0, 1, 2, ..., 2°-1. In this

case, the multiplication operation can be performed with a single table

lookup and no tests. Such a table is fixed and can be stored in read-only
memory.
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Table 1 - Exponential Table

i xx0 | xx1 | xx2 | xx3 | xx4 | xx5 | xx6 | xx7 | xx8 | xx9
00x 1 2 4 8 16 32 64 128 77 154
0lx | 121 | 242 | 169 31 62 124 248 | 189 55 110
02x | 220 | 245 | 167 3 6 12 24 48 96 192
03x | 205 | 215 | 227 | 139 91 182 33 66 132 69
04x | 138 89 178 41 82 164 5 10 20 40

05x 80 160 13 26 52 104 | 208 | 237 | 151 99
06x | 198 | 193 | 207 | 211 235 | 155 | 123 | 246 | 161 15
07x 30 60 120 | 240 | 173 23 46 92 184 61
08x | 122 | 244 | 165 7 14 28 56 112 | 224 | 141
09x 87 174 17 34 68 136 93 186 57 114
10x | 228 | 133 71 142 81 162 9 18 36 72
11x | 144 | 109 | 218 | 249 | 191 51 102 | 204 | 213 | 231
12x | 131 75 150 97 194 | 201 | 223 | 243 | 171 27
13x 54 108 | 216 | 253 | 183 | 35 70 140 85 170
14x | 25 50 100 ] 200 | 221 | 247 | 163 11 22 44
15x 88 176 | 45 90 180 37 74 148 | 101 | 202
16x | 217 | 255 | 179 43 86 172 21 42 84 168
17x 29 58 116 | 232 | 157 | 119 | 238 | 145 | 111 | 222
18x | 241 | 175 19 38 76 152 | 125 | 250 | 185 63
19x | 126 | 252 | 181 39 78 156 | 117 | 234 | 153 | 127
20x | 254 | 177 | 47 94 188 53 106 | 212 | 229 | 135
21x 67 134 65 130 73 146 { 105 | 210 | 233 | 159
22x { 115 [ 230 | 129 79 158 | 113 | 226 | 137 | 95 190
23x 49 98 196 | 197 | 199 | 195 | 203 | 219 | 251 | 187

24x | 59 118 | 236 | 149 | 103 | 206 | 209 | 239 | 147 | 107
25x | 214 | 225 | 143 83 166




WO 99/16208 PCT/US98/19804

12

Table 2 - Logarithmic Table

i xx0 | xx1 | xx2 | xx3 | xx4 | xx5 | xx6 | xx7 | xx8 | xx9
00x 0 0 1 23 2 46 24 83 3 106
0lx | 47 | 147 | 25 52 84 69 4 92 107 | 182
02x | 48 166 | 148 | 75 26 140 | 53 129 85 170
03x | 70 13 5 36 93 135 | 108 | 155 | 183 | 193
04x | 49 43 | 167 | 163 | 149 | 152 | 76 | 202 | 27 | 230
05x | 141 | 115 | 54 | 205 | 130 18 86 98 171 | 240
06x 71 79 14 | 189 6 212 | 37 | 210 94 39
07x | 136 1 102 | 109 | 214 | 156 | 121 | 184 8 194 | 223
08x 50 | 104 | 44 | 253 | 168 | 138 | 164 | 90 150 | 41
09x | 153 | 34 77 96 | 203 | 228 | 28 123 | 231 59
10x | 142 | 158 | 116 | 244 | 55 | 216 | 206 | 249 | 131 | 111
11x 19 | 178 | 87 | 225 | 99 | 220 | 172 | 196 | 241 | 175
12x 72 10 80 66 15 186 | 190 | 199 7 222
13x | 213 | 120 | 38 101 | 211 [ 209 | 95 227 40 33
14x | 137 | 89 103 | 252 [ 110 [ 177 | 215 | 248 | 157 | 243
15x | 122 | 58 185 | 198 9 65 195 | 174 | 224 | 219
16x | 51 68 105 | 146 | 45 82 | 254 | 22 169 12
17x | 139 | 128 | 165 74 91 181 | 151 | 201 42 162
18x | 154 | 192 | 35 134 | 78 188 | 97 | 239 | 204 17
19x | 229 | 114 | 29 61 124 | 235 | 232 | 233 60 234
20x | 143 | 125 | 159 | 236 | 117 | 30 | 245 62 56 | 246
21x | 217 | 63 | 207 | 118 | 250 | 31 132 | 160 | 112 | 237
22x | 20 144 | 179 | 126 | 88 | 251 | 226 | 32 100 | 208
23x | 221 | 119 [ 173 | 218 | 197 | 64 | 242 | 57 | 176 | 247
24x 73 | 180 | 11 127 | 81 21 67 145 16 113
25x | 187 | 238 | 191 | 133 | 200 | 161

OIL.  Memory Implementation

When implemented in hardware, shifting bits is a simple and
efficient operation. Using a processor and for a shift register larger than the
registers of the processor, shifting bits is an iterative procedure which is very
inefficient. When the units to be shifted are bytes or words, shifting
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becomes simpler because there is no carry between bytes. However, the
shifting process is still iterative and inefficient.

In the exemplary embodiment, the linear feedback shift register is
implemented with circular buffer or sliding window. The diagrams
showing the contents of circular buffer 24a at time n at time n+1 are shown
in FIGS. 3A and 3B, respectively. For circular buffer 24a, each element of the
shift register is stored in a corresponding location in memory. A single

index, or pointer 30, maintains the memory location of the most recent
element stored in memory, which is S _; in FIG. 3A. At time n+1, the new

element Sy is computed and stored over the oldest element Sy in memory,
as shown in FIG. 3B. Thus, instead of shifting all elements in memory,
pointer 30 is moved to the memory location of the new element S,. When
pointer 30 reaches the end of circular buffer 24a, it is reset to the beginning
(as shown in FIGS. 3A and 3B). Thus, circular buffer 24a acts as if it is a circle
and not a straight line.

Circular buffer 24a can be shifted from left-to-right, or right-to-left as
shown in FIGS, 3A and 3B. Correspondingly, pointer 30 can move left-to-
right, or right-to-left as shown in FIGS. 3A and 3B. The choice in the
direction of the shift is a matter of implementation style and does not affect
the output result.

To generate an output element in accordance with a recurrence
relation, more than one elements are typically required from memory. The
memory location associated with each required element can be indicated by a
separate pointer which is updated when the register is shifted.
Alternatively, the memory location associated with each required element
can be computed from pointer 30 as necessary. Since there is a one-to-one
mapping of each element to a memory location, a particular element can be
obtained by determining the offset of that element from the newest element
(in accordance with the recurrence relation), adding that offset to pointer 30,
and addressing the memory location indicated by the updated pointer.
Because of the circular nature of the memory, the calculation of the updated
pointer is determined by an addition modulo k of the offset to pointer 30.
Addition modulo k is simple when k is a power of two but is otherwise an
inefficient operation on a processor.

In the preferred embodiment, the shift register is implemented with
sliding window 24b as shown in FIG. 3C. Sliding window 24b is at least twice
as long as circular buffer 24a and comprises two circular buffers 32a and 32b
arranged adjacent to each other. Each of circular buffers 32a and 32b behaves
like circular 24a described above. Circular buffer 32b is an exact replica of
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circular buffer 32a. Thus, each element of the shift register is stored in two
corresponding locations in memory, one each for circular buffers 32a and
32b. Pointer 34 maintains the memory location of the most recent element
stored in circular buffer 32a, which is Sy.; in FIG. 3C. In the exemplary
embodiment, pointer 34 starts at the middle of sliding window 24b, moves
right-to-left, and resets to the middle again when it reaches the end on the
left side.

From FIG. 3C, it can be observed that no matter where in circular
buffer 32a pointer 34 appears, the previous k-1 elements can be addressed to
the right of pointer 34. Thus, to address an element in the shift register in
accordance with the recurrence relation, an offset of k-1 or less is added to
pointer 34. Addition modulo k is not required since the updated pointer is
always to the right of pointer 34 and computational efficiency is obtained.
For this implementation, sliding window 24b can be of any length at least

twice as long as circular buffer 24a, with any excess bytes being ignored.
Furthermore, the update time is constant and short.

IV.  Exemplary Stream Cipher Based on LFSR Over GF(2°%)

The present invention can be best illustrated by an exemplary
generator for a stream cipher based on a linear feedback shift register over
GF(ZS). The stream cipher described below uses the byte operations described
above over the Galois field of order 8 with the representation of @ and ® for
operations of addition and multiplication, respectively, over the Galois field.

In the exemplary embodiment, table lookup is utilized for the required
multiplication with constants G In the exemplary embodiment, a sliding

window is used to allow fast updating of the shift register.
A block diagram of the exemplary generator is shown in FIG. 4. In the
exemplary embodiment, linear feedback shift register 52 is 17 octets (or 136

bits) long which allows shift register 52 to be in 2% 4 (or approximately

8.7 x 1040) states. The state where the entire register is 0 is not a valid state
and does not occur from any other state. The time to update register 52 with
a particular number of non-zero elements in the recurrence relation is
constant irrespective of the length of register 52. Thus, additional length for
register 52 (for higher order recurrence relation) can be implemented at a
nominal cost of extra bytes in memory.

In the exemplary embodiment, linear feedback shift register 52 is
updated in accordance with the following recurrence relation :
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8,07 =(100®5, ,)®S,,, ©(14195,) , (4)

where the operations are defined over GF(28), @ is the exclusive-OR
operation on two bytes represented by Galois adders 58, and ® is a
polynomial modular multiplication represented by Galois multipliers 54
(see FIG. 4). In the exemplary embodiment, the modular multiplications on
coefficients 56 are implemented using byte table lookups on pre-computed
tables as described above. In the exemplary embodiment, the polynomial
modular multiplication table is computed using the irreducible polynomial
defined by equation (3). The recurrence relation in equation (4) was chosen
to be maximal length, to have few non-zero coefficients, and so that the shift
register elements used were distinct from ones used for the non-linear
functions below.

In the exemplary embodiment, to disguise the linearity of shift
register 52, two of the techniques described above are used, namely stuttering
and using a non-linear function. Additional non-linearity techniques are
utilized and are described below.

In the exemplary embodiment, non-linearity is introduced by
performing a non-linear operation on multiple elements of shift register 52.
In the exemplary embodiment, four of the elements of shift register 52 are

combined using a function which is non-linear. An exemplary non-linear
function is the following :

‘/n = (Sn + Sn+5) X (Sn+2 + Sn+12) ’ (5)

where V, is the non-linear output (or the generator output), + is the
addition truncated modulo 256 represented by arithmetic adders 60, and x is
the multiplication modulo 257 represented by modular multiplier 62 and
described below. In the exemplary embodiment, the four bytes used are S,
Sn+2 Snss and S;,1p, where S, is the oldest calculated element in the
sequence according to the recurrence relation in equation (4). These
elements are selected such that, as the register shifts, no two elements are
used in the computation of two of the generator outputs. The pairwise
distances between these elements are distinct values. For example, S.q5 is
not combined with S5, Sj,,9, nor S, again as it is shifted through register 52.

Simple byte addition, with the result truncated modulo 256, is made
non-linear in GF(28) by the carry between bits. In the exemplary
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embodiment, two pairs of elements in the register {(S, and S,,s5) and (S,
and Spi1p)} are combined using addition modulo 256 to yield two
intermediate results. However, addition modulo 256 is not ideal since the
least significant bits have no carry input and are still combined linearly.

Another non-linear function which can be computed conveniently
on a processor is multiplication. = However, truncation of a normal
multiplication into a single byte may not yield good result because
multiplication modulo 256 does not form a group since the results are not
well distributed within the field. A multiplicative group of the field of
integers modulo the prime number 257 can be used. This group consists of
integers in the range of 1 to 256 with the group operation being integer
multiplication reduced modulo 257. Note that the value 0 does not appear
in the group but the value 256 does. In the exemplary embodiment, the
value of 256 can be represented by a byte value of 0.

Typically, processors can perform multiplication instructions
efficiently but many have no capability to perform, nor to perform
efficiently, divide or modulus instructions. Thus, the modulo reduction by
257 can represent a performance bottleneck. However, reduction modulo
257 can be computed using other computational modulo 2", which in the
case of n=8 are efficient on common processors. It can be shown that for a
value X in the range of 1 to 2'%.1 (where X is the result of a multiplication of
two 8th order operands), reduction modulo 257 can be computed as :

X
Xosr = {Xzss - ﬁ}m ’ (6)

where Xps57 is the reduction modulo 257 of X and Xps4 is the reduction

modulo 256 of X. Equation (6) indicates that reduction modulo 257 of a 16-
bit number can be obtained by subtracting the 8 most significant bits (X/256)
from the 8 least significant bits (X554). The result of the subtraction is in the
range of -255 and 255 and may be negative. If the result is negative, it can be
adjusted to the correct range by adding 257. In the alternative embodiment,
reduction modulo 257 can be performed with a lookup table comprising
65,536 elements, each 8 bits wide.

Multiplication of the two intermediate results is one of many non-
linear functions which can be utilized. Other non-linear functions, such as
bent functions or permuting byte values before combining them, can also be
implemented using lookup tables. The present invention is directed at the
use of these various non-linear functions for producing non-linear output.
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implemented using lookup tables. The present invention is directed at the
use of these various non-linear functions for producing non-linear output.

In the exemplary embodiment, stuttering is also utilized to inject
additional non-linearity. The non-linear output derived from the state of
the linear feedback shift register as described above may be used to
reconstruct the state of the shift register. This reconstruction can be made
more difficult by not representing some of the states at the output of the
generator, and choosing which in an unpredictable manner. In the
exemplary embodiment, the non-linear output is used to determine what
subsequent bytes of non-linear output appear in the output stream. When
the generator is started, the first output byte is used as the stutter control
byte. In the exemplary embodiment, each stutter control byte is divided into
four pairs of bits, with the least significant pair being used first. When all
four pairs have been used, the next non-linear output byte from the
generator is used as the next stutter control byte, and so on.

Each pair of stutter control bits can take on one of four values. In the

exemplary embodiment, the action performed for each pair value is
tabulated in Table 3.

Table 3

Pair Action of Generator
Value

(0,0) Register is cycled but no output is produced

0, 1) Register is cycled and the non-linear output XOR with
the constant (011010 0 1), becomes the output of the

generator. Register is cycled again.

(1,0) Register is cycled twice and the non-linear output
becomes the output of the generator.

(1,1) Register is cycled and the non-linear output XOR with
the constant (11000 10 1) , becomes the output of the

generator.

As shown in Table 3, in the exemplary embodiment, when the pair
value is (0, 0), the register is cycled once but no output is produced. Cycling
of the register denotes the calculation of the next sequence output in
accordance with equation (4) and the shifting this new element into the

register. The next stutter control pair is then used to determine the action to
be taken next.
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In the exemplary embodiment, when the pair value is (0, 1) the
register is cycled and the non-linear output generated in accordance with
equation (5). The non-linear output is XORed with the constant
(01101001); and the result is provided as the generator output. The
register is then cycled again. In FIG. 4, the XORed function is performed by
XOR gate 66 and the constant is selected by multiplexer (MUX) 64 using the
stutter control pair from buffer 70. The output from XOR gate 66 is provided
to switch 68 which provides the generator output and the output byte for
stutter control in accordance with the value of the stutter control pair. The
output byte for stutter control is provided to buffer 70.

In the exemplary embodiment, when the pair value is (1, 0) the
register is cycled twice and the non-linear output generated in accordance
with equation (5) is provided as the generator output.

In the exemplary embodiment, when the pair value is (1, 1) the
register is cycled and the non-linear output generated in accordance with
equation (5). The non-linear output is then XORed with the constant
(11000101); and the result is provided as the generator output.

In the exemplary embodiment, the constants which are used in the
above steps are selected such that when a generator output is produced, half
of the bits in the output are inverted with respect to the outputs produced by
the other stutter control pairs. For stutter control pair (1, 0), the non-linear
output can be viewed as being XORed with the constant (00 000000),.
Thus, the Hamming distance between any of the three constants is four.
The bit inversion further masks the linearity of the generator and frustrates
any attempt to reconstruct the state based on the generator output.

The present invention supports a multi-tier keying structure. A
stream cipher which supports multi-tier keying structure is especially useful
for wireless communication system wherein data are transmitted in frames
which may be received in error or out-of-sequence. An exemplary two-tier
keying structure is described below.

In the exemplary embodiment, one secret key is used to initialized the
generator. The secret key is used to cause the generator to take an
unpredictable leap in the sequence. In the exemplary embodiment, the
secret key has a length of four to k-1 bytes (or 32 to 128 bits for the exemplary
recurrence relation of order 17). Secret keys of less than 4 bytes are not
preferred because the initial randomization may not be adequate. Secret
keys of greater than k-1 bytes can also be utilized but are redundant, and care
should be taken so that a value for the key does not cause the register state to
be set to all 0, a state which cannot happen with the current limitation.
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embodiment, at block 112, the state of the shift register is first initialized
with the Fibonacci numbers modulo 256. Thus, elements Sy, S;, Sy, Ss, Sy,
S5, and so on, are initialized with 1,1, 2, 3, 5, 8, and so on, respectively.
Although Fibonacci numbers are used, any set of non-zero numbers which
are not linearly related in the Galois field can be used to initialized the
register. These number should not have exploitable linear relationship
which can be used to reconstruct the state of the register.

Next, the loop index n is set to zero, at block 114. The secret key
initialization process then enters a loop. In the first step within the loop, at
block 116, the first unused byte of the key material is added to S,. Addition
of the key material causes the generator to take an unpredictable leap in the
sequence. The key is then shifted by one byte, at block 118, such that byte
used in block 116 is deleted. The register is then cycled, at block 120. The

combination of blocks 116 and 120 effectively performs the following
calculation :

S, =(100®8,,,)®S,,, ® (141 ®(S, @ K)) , (7)

where K is the first unused byte of the key material. The loop index n is
incremented, at block 122. A determination is then made whether all key
material have been used, at block 124. If the answer is no, the process
returns to block 116. Otherwise, the process continues to block 126.

In the exemplary embodiment, the length of the key is added to S,,, at
block 126. Addition of the length of the key causes the generator to take an
additional leap in the sequence. The process then enters a second loop. In
the first step within the second loop, at block 128, the register is cycled The
loop index n is incremented, at block 130, and compared against the order k
of the generator, at block 132. If n is not equal to k, the process returns to
block 128. Otherwise, if n is equal to k, the process continues to block 134
where the state of the generator are saved. The process then terminates at
block 136.

In addition to the secret key, a secondary key can also be used in the
present invention. The secondary key is not considered secret but is used in
an exemplary wireless telephony system to generate a unique cipher for each
frame of data. This ensures that erased or out-of-sequence frames do not
disrupt the flow of information. In the exemplary embodiment, the stream
cipher accepts a per-frame key, called a frame key, in the form of a 4-octet
unsigned integer. The per-frame initialization is similar to the secret key
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cipher accepts a per-frame key, called a frame key, in the form of a 4-octet
unsigned integer. The per-frame initialization is similar to the secret key
initialization above but is performed for each frame of data. If the use of the
stream cipher is such that it is unnecessary to utilize per-frame key
information, for example for file transfer over a reliable link, the per-frame
initialization process can be omitted.

A flow diagram of an exemplary per-frame initialization process with
the frame key is shown in FIG. 6. The process starts at block 210. In the
exemplary embodiment, at block 212, the state of the generator is initialized
with the state saved from the secret key initialization process as described
above. Next, the loop index n is set to zero, at block 214. The per-frame
initialization process then enters a loop. In the first step within the loop, at
block 216, the least significant byte of the frame key is added modulo 256 to
Sn- The frame key is then shifted by three bits, at block 218, such that the
three least significant bits used in block 216 are deleted. The register is then
cycled, at block 220. In the exemplary embodiment, the loop index n is
incremented at block 222 and compared against 11 at block 224. The value of
11, as used in block 224, corresponds to the 32 bits used as the frame key and
the fact that the frame key is shifted three bits at a time. Different selections
of the frame key and different numbers of bits shifted at a time can result in
different comparison values used in block 224. If n is not equal to 11, the
process returns to block 216. Otherwise, if n is equal to 11, the process
continues to block 226 and the register is cycled again. The loop index n is
incremented, at block 228, and compared against 2k, at block 230. If n is not
equal to 2k, the process returns to block 226. Otherwise, if n is equal to 2k,
the process terminates at block 232.

The present invention has been described for the exemplary Galois
finite field having 256 elements. Different finite fields can also be utilized
such that the size of the elements matches the byte or word size of the
processor used to manipulate the elements and/or the memory used to
implement the shift register, or having other advantages. Thus, various
finite fields having more than two elements can by utilized and are within
the scope of the present invention.

The example shown above utilizes a variety of non-linear processes to
mask the linearity of the recurrence relation. Other generators can be design
utilizing different non-linear processes, or different combinations of the
above described non-linear processes and other non-linear processes. Thus,
the use of various non-linear processes to generate non-linear outputs can
be contemplated and is within the scope of the present invention.
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The example shown above utilizes a recurrence relation having an
order of 17 and defined by equation (4). Recurrence relation having other
orders can also be generated and are within the scope of the present
invention. Furthermore, for a given order, various recurrence relations can
be generated and are within the scope of the present invention. In the
present invention, a maximal length recurrence relation is preferred for
optimal results.

The previous description of the preferred embodiments is provided to
enable any person skilled in the art to make or use the present invention.
The various modifications to these embodiments will be readily apparent to
those skilled in the art, and the generic principles defined herein may be
applied to other embodiments without the use of the inventive faculty.
Thus, the present invention is not intended to be limited to the
embodiments shown herein but is to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

I CLAIM:
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CLAIMS

1. A method for generating a stream cipher comprising :
selecting a finite field having an order greater than one;
selecting a recurrence relation over said finite field;
selecting at least one non-linear process; and

computing said stream cipher in accordance with said recurrence
relation and said non-linear process.

2. The method of claim 1 wherein said finite field is selected based
on a word size of a processor used to compute said stream cipher.

3. The method of claim 1 wherein said finite field is a Galois field
comprising 256 elements.

4, The method of claim 1 wherein said recurrence relation is
maximal length.

5. The method of claim 1 wherein said recurrence relation has an
order of 17.
6. The method of claim 1 wherein said recurrence relation is

implemented with a linear feedback shift register.

7. The method of claim 6 wherein said linear feedback shift
register is implemented with a circular buffer.

8. The method of claim 6 wherein said linear feedback shift
register is implemented with a sliding window.

9. The method of claim 1 wherein said at least one non-linear

process comprises stuttering a shift register used to implement said
recurrence relation.

10.  The method of claim 9 wherein said stuttering is performed in
accordance with said stream cipher.
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11. The method of claim 1 wherein said at least one non-linear

process comprises computing a non-linear function of a state of said
generator.

12 The method of claim 1 wherein said at least one non-linear
process comprises bit inversion of selected bits of said stream cipher.

13. The method of claim 12 wherein said bit inversion is
performed in accordance with a set of constants having a Hamming distance
chosen to invert half of the bits in said stream cipher.

14. The method of claim 1 wherein said computing step comprises
field multiplication and modulo addition.

15, The method of claim 14 wherein a result of said field
multiplication is reduced by a modulus of a prime number.

16.  The method of claim 15 wherein said prime number is 257.

17. The method of claim 14 wherein said field multiplication is
performed with lookup tables.

18.  The method of claim 17 wherein said lookup tables are pre-
computed and stored in a memory element.

19. The method of claim 14 wherein said field multiplication is
performed by :

looking up a table of the logarithmic value of each of two operands;

modulo adding logarithmic values of said two operands to obtain a
combined logarithmic value; and

looking up a table of exponential value of said combined logarithmic
value.

20.  The method of claim 1 further comprising the step of :
initializing said generator with a secret key.

21.  The method of claim 20 wherein said initializing  step
comprises the steps of :



WO 99/16208 PCT/US98/19804

24
adding a least significant byte of said secret key to said recurrence
relation;
shifting said secret key by one byte; and

repeating said adding step and said shifting steps until all bytes in said
secret key are added to said recurrence relation.

22.  The method of claim 20 wherein a length of said secret key is
less than an order of said recurrence relation.

23.  The method of claim 20 further comprising the step of :
initializing said generator with a per frame key.

24.  The method of claim 23 wherein said initializing said generator
with a per frame key step comprises the steps of :

adding a least significant byte of said per frame key to said recurrence
relation;

shifting said per frame key by three bits;

repeating said adding step and said shifting steps until all bytes in said
per frame key are added to said recurrence relation.

25.  The method of claim 23 wherein a length of said per frame key
is four octets long.

26.  The method of claim 23 wherein said initializing said generator
with a per frame key step is performed for each data frame.

27.  An apparatus for generating a stream cipher comprising :

a processor for receiving instructions for performing a recurrence
relation and at least one non-linear process, said processor performing
manipulations on elements in accordance with said instructions.

28.  The apparatus of claim 27 wherein said recurrence relation is
defined over a finite field having an order of greater than one.

29. The apparatus of claim 28 wherein said finite field is selected
based on a word size of said processor.

30.  The apparatus of claim 28 wherein said finite field is a Galois
field comprising 256 elements.
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31.  The apparatus of claim 27 wherein said recurrence relation is
maximal length.

32.  The apparatus of claim 27 wherein said recurrence relation has
an order of 17.

33.  The apparatus of claim 27 wherein said recurrence relation is
implemented with a linear feedback shift register.

34.  The apparatus of claim 33 wherein said linear feedback shift
register is implemented with a circular buffer.

35.  The apparatus of claim 33 wherein said linear feedback shift
register is implemented with a sliding window.
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