METHODS, APPARATUS AND SYSTEM FOR FILM GRAIN CACHE SPLITTING FOR FILM GRAIN SIMULATION

The present invention provides a method, apparatus and system for film grain cache splitting for film grain simulation. In one embodiment of the present invention a method for storing film grain patterns includes storing at least a first portion of film grain patterns in an internal memory and storing at least a second portion of the film grain patterns in an external memory. That is, in the present invention a method for film grain cache splitting for film grain simulation includes splitting the storage of film grain patterns between an internal cache and an external memory. In one embodiment of the present invention, the internal cache is integrated into an integrated circuit chip of a decoder.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHODS, APPARATUS AND SYSTEM FOR FILM GRAIN CACHE SPLITTING FOR FILM GRAIN SIMULATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to United States Provisional Patent Application Serial No. 60/630,049, filed November 22, 2004, which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention generally relates to film grain simulation and, more particularly, to methods and system for efficient, low-cost film grain simulation implementations.

BACKGROUND OF THE INVENTION

Film grain forms in motion picture images during the process of development. Film grain is clearly noticeable in HD images and becomes a distinctive cinema trait that is becoming more desirable to preserve through the whole image processing and delivery chain. Nevertheless, film grain preservation is a challenge for current encoders since compression gains related to temporal prediction cannot be exploited. Because of the random nature of the grain, visually lossless encoding is only achieved at very high bit-rates. Lossy encoders tend to suppress the film grain when filtering the high frequencies typically associated with noise and fine textures.

In the recently created H.264 | MPEG-4 AVC video compression standard, and in particular in its Fidelity Range Extensions (FRExt) Amendment 1 (JVT-K051, ITU-T Recommendation H.264 | ISO/IEC 14496-10 International Standard with Amendment 1, Redmond, USA, June 2004), a film grain Supplemental Enhancement Information (SEI) message has been defined. Such a message describes the film grain characteristics regarding attributes like size and intensity, and allows a video decoder to simulate the film grain look onto a decoded picture. The H.264 | MPEG-4 AVC standard specifies which parameters are present in the
film grain SEI message, how to interpret them and the syntax to be used to encode the SEI message in binary format. The standard does not specify, however, the exact procedure to simulate film grain upon reception of the film grain SEI message.

Film grain simulation is a relatively new technology used in post-production to simulate film grain on computer-generated material, as well as during restoration of old film stocks. For this kind of applications, there exists commercial software in the market like Cineon®, from Eastman Kodak Co, Rochester, NY, and Grain Surgery™, from Visual Infinity. These tools require user interaction and are complex to implement, which makes them unsuitable for real-time video coding applications. Furthermore, none of these tools has the capability to interpret a film grain SEI message as specified by the H.264 / AVC video coding standard.

SUMMARY OF THE INVENTION

The present invention provides a method, apparatus and system for film grain cache splitting for film grain simulation.

In one embodiment of the present invention a method for storing film grain patterns includes storing at least a first portion of film grain patterns in an internal memory and storing at least a second portion of the film grain patterns in an external memory.

In an alternate embodiment of the present invention an apparatus for film grain simulation includes a means for receiving at least an encoded image and supplemental information including film grain characterization information for use in a film grain simulation process, an internal storage means for storing at least a first portion of film grain patterns, and an external storage means for storing at least a second portion of the film grain simulation patterns.

In an alternate embodiment of the present invention a system for simulating film grain includes a decoder for receiving at least an encoded image and a supplemental information message including film grain characterization information for use in a film grain simulation process, an internal storage means for storing at least at least a first portion of film grain patterns, and an external
storage means for storing at least a second portion of the film grain simulation patterns, wherein the internal storage means is located in the decoder.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:

FIG. 1 depicts a high level block diagram of a video decoder subsystem having film grain simulation capabilities in accordance with one embodiment of the present invention; and

FIG. 2 depicts a high level block diagram of a typical arrangement of the film grain database of FIG. 1.

It should be understood that the drawings are for purposes of illustrating the concepts of the invention and are not necessarily the only possible configuration for illustrating the invention. To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.

DETAILED DESCRIPTION OF THE INVENTION

The present invention advantageously provides methods, apparatuses and systems for film grain cache splitting for film grain simulation. Although the present invention will be described primarily within the context of a video decoder subsystem for application in, for example, IC designs for consumer HD DVD players, the specific embodiments of the present invention should not be treated as limiting the scope of the invention. It will be appreciated by those skilled in the art and informed by the teachings of the present invention that the concepts of the present invention can be advantageously applied in any film grain simulation processes in, for example, media player/receiver devices, decoders, set-top boxes, television sets or the like.

FIG. 1 depicts a high level block diagram of a video decoder subsystem having film grain simulation capabilities in accordance with one embodiment of the
present invention. The video decoder subsystem 100 of FIG. 1 illustratively comprises a video decoder (illustratively a H.264 decoder) 106, a video display and graphics engine and film grain simulator 108, a host interface 110, an interface controller (illustratively a RAM interface controller) 112, and a memory (illustratively an external Ram memory) 114 implemented as a film grain cache for storing at least a small subset of the film grain patterns of the remote film grain database 104. The video display and graphics engine and film grain simulator 108 of FIG. 1 illustratively further comprises internal storage capabilities illustratively depicted as internal film grain cache 109. Although in FIG. 1, the internal film grain cache 109 is depicted as being located in the video display and graphics engine and film grain simulator 108, in alternate embodiments of the present invention, the internal film grain cache of the present invention may be located internal to the video decoder 106 or other components of the video decoder subsystem 100 of FIG. 1.

FIG. 1 further depicts a host CPU 102 and a permanent storage program memory (illustratively a remote permanent storage memory) 104 comprising a film grain database. Although in the video decoder subsystem 100 of FIG. 1, the host CPU 102 and the remote film grain database 104 are depicted as comprising separate components, in alternate embodiments of the present invention, the remote film grain database 104 can be located in a permanent memory of the CPU 102. Furthermore, although in the video decoder subsystem 100 of FIG. 1, the video decoder 106, the video display and graphics engine 108, the host interface 100, and the interface controller 112 are depicted as comprising separate components, in alternate embodiments of the present invention, the video decoder 106, the video display and graphics engine 108, the host interface 100, and the interface controller 112 can comprise a single component and can be integrated in a single integrated system-on-chip (SoC). In such an embodiment, the video decoder subsystem 100 of FIG. 1 would comprise an internal on chip film grain cache 109 and an external film grain cache 114.

Furthermore, although in the video decoder subsystem 100 of FIG. 1, the means for storing the film grain patterns are depicted as an external Ram memory 114 (cache), an internal cache memory 109 and a remote film grain database 104,
in alternate embodiments of the present invention, substantially any accessible storage means may be implemented to maintain a subset of the film grain patterns and the total number of film grain patterns. Such means may include storage disks, magnetic storage media, optical storage media or substantially any storage means. In addition, one or more storage means may be implemented for each of the storage devices. Even further, although the film grain database 104 of FIG. 1 is depicted as being located remotely from the external Ram memory 114 and the internal cache memory 109, in alternate embodiments of the present invention, the film grain patterns storage means may be located in close proximity or at great distances from each other.

In film grain simulation systems such as the video decoder subsystem 100 of FIG. 1, the remote film grain database 104 is typically relatively large. In one embodiment of the present invention, the H.264 video decoder 106, the video display and graphics engine 108, the host interface 110, the interface controller 112, and the external Ram memory 114 comprise components of an HD DVD player. Film grain patterns from the remote film grain database 104 are needed to be accessed at the sample rate of, for example, the HD DVD player. Therefore, fast access to the large film grain database 104 is necessary. In the video decoder subsystem 100 of FIG. 1 in accordance with the present invention, only a small portion of the remote film grain database 104 is used during Supplemental Enhancement Information (SEI) film grain periods, which are leveraged to develop a caching technique to reduce complexity.

More specifically, the film grain simulation process of FIG. 1 requires the decoding of film grain SEI messages, conveyed in the International Standard ITU-T Rec. H.264 l ISO/IEC 14496-10 bit-streams as specified by Amendment 1 (Fidelity Range Extensions), which are both herein included by reference in their entirities. In one embodiment of the present invention, film grain SEI messages are sent preceding I (intra-coded) pictures, and only one film grain SEI message precedes a particular I picture.

In one embodiment of the present invention and in accordance with the standards specifications, the remote film grain database 104 of film grain patterns is composed of 169 patterns of 4,096 film grain samples, each representing a
64x64 film grain image. For example, FIG. 2 depicts a high level block diagram of a typical arrangement of the film grain database of FIG. 1. FIG. 3 depicts a 64x64 sample film grain pattern with i_offset in the x-axis and j_offset in the y-axis. FIG. 2 further depicts the 169 film grain patterns of the various types.

In the film grain database 104, each film grain pattern is synthesized using a different pair of cut frequencies according to a frequency filtering model of the standard specifications. The cut frequencies transmitted in the SEI message are used to access the remote film grain database 104 of film grain patterns during the film grain simulation process. The film grain database 104 is stored in ROM, Flash, or other permanent storage device, such as the film grain database 104 of the video decoder subsystem 100 of FIG. 1, and typically does not change. The film grain database 104 contains random film grain patterns in a very large variety of film grain shapes and sizes. However, for a specific video content sequence only a small subset of this database is actually needed to effectively simulate film grain. The specification limits the number of film grain patterns to a small subset for any SEI message period. Therefore, the present invention implements small film grain caches, such as the external Ram memory 114 and the internal cache memory 109, which are updated on receipt of SEI messages.

Typically, the remote film grain database 104 is stored in the permanent storage of the host CPU 102 or at the site of the host CPU 102. However, it is the video decoder 106 and the video display and graphics engine 108 that need fast access to the film grain database 104. As such, and in accordance with the present invention, the external memory 114 and the internal cache 109 are provided for fast access to at least a subset of the film grain patterns. That is, at least a small subset of the film grain patterns needed or most implemented by the existing SEI message period is transferred to and stored in the external memory 114 and the internal cache 109 as described below.

More specifically, in accordance with the present invention, a solution that minimizes the overall design cost of a film grain simulation system, such as the video decoder subsystem 100 of FIG. 1, is to split the storage of film grain patterns between the cache internal to the decoder IC 109 and the remaining external memory 114. For example, in an implementation where a total of 10 film
grain patterns are to be stored, if the internal cache 109 stores N film grain
patterns, then the external memory 114 stores the remaining 10-N film grain
patterns. Splitting the storage of film grain patterns between an internal cache
109 and an external memory 114 in accordance with the present invention
provides reduced internal memory size requirements resulting in reduced chip
area and reduced typical and average memory bandwidth over solutions having
only an external memory for storing film grain patterns. In various embodiment of
the present invention, the memory bandwidth (BW) required for film grain
simulation in accordance with the present invention can be reduced to zero since
not all stored film grain patterns are used for a specific film content.

In embodiments of the present invention, different cache splits can be used
for storing necessary film grain patterns. That is, in accordance with the present
invention, any split is possible. The more film grain patterns that are stored in the
internal cache 109, the lower the probability that the worst case external memory
BW will be needed. In addition, since not all of the film grain cache is needed
during a given content simulation, in many cases the memory BW is reduced
significantly.

For example, in one embodiment of the present invention in which ten (10)
film grain patterns are to be stored, if half (5) of the film grain patterns are stored
in an internal cache, such as the internal cache 109 of the video decoder
subsystem 100 of FIG. 1, then the internal memory size is half of a total memory
required to store the 10 film grain patterns. In such an embodiment of the present
invention, the memory bandwidth for most content is reduced below 36
Mbytes/sec, and for some cases will be much less.

If, in the example described above, only one (1) of the film grain patterns
out of ten is to be stored in the internal cache (e.g., N =1), then only a very small
amount of internal cache is needed in such an embodiment of the present
invention. Such an embodiment of the present invention requires only a very
small additional chip area for providing the internal cache required to store only
one film grain pattern. In such an embodiment, the memory BW would be
reduced by a significant amount since the most frequently implemented film grain
pattern can be placed in the internal cache.
In an alternate embodiment of the present invention, an internal cache and external memory are implemented for separately storing luma and chroma components. That is, the luma can be placed in internal cache, while the chroma can be placed in external memory. In this embodiment of the present invention, it is guaranteed that the worst case memory BW for film grain simulation is 36 Mbytes/sec (chroma only) and the internal cache size only needs to hold the luma portion of the cache. However, such embodiments of the present invention require that film grain simulation specifications include a definition of the split between luma cache size and chroma cache size for configuring the internal cache and the external memory.

In an embodiment of the luma/chroma split of the present invention in which only one component of chroma is stored in the external memory, the memory BW is lowered to 18 Mbytes per second. Such an embodiment requires more internal cache but less than a maximum.

In another embodiment of the present invention, the SEI message of the film grain simulation process includes additional information indicating a priority order for the stored film grain patterns. This priority order is used by, for example, the video decoder subsystem 100 of FIG. 1, to store the most frequently required film grain patterns in the internal cache of the decoder IC, therefore optimizing the use of the internal cache and minimizing external memory BW. For film grain simulation processes, this could be accomplished with a new SEI syntax element characterized by equation one (1) as follows:

\[
\text{fg_pattern_priority} \cdot \text{specifies the } [h,v] \text{ pairs of cut frequencies in priority order. } [h,v] = (\text{comp_model_value}[j][i][1], \text{comp_model_value}[j][i][2]).
\]

In another embodiment of the present invention, a priority order of film grain patterns is derived from a standardized film grain SEI message. That is, since the SEI message contains a list of intensity intervals, each one with its own film grain parameters, the intensity intervals could be listed according to their priority (instead of being listed with increasing intensity interval bounds). It should be noted that this change is compliant with the H.264 | MPEG AVC standard. Then,
for each color component, the first N film grain patterns are stored in the internal cache because those first N film grain patterns are the film grain patterns most implemented. In addition, rules can be generated to prioritize between color components. For example, up to the first N/2 Y film grain patterns, up to the first N/4 U film grain patterns, and up to the first N/4 V film grain patterns are placed in the internal cache, while the remaining film grain patterns being are stored in the external memory.

Having described various embodiments for methods, apparatus and systems for film grain cache splitting for film grain simulation (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the scope and spirit of the invention as outlined by the appended claims. While the forgoing is directed to various embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. As such, the appropriate scope of the invention is to be determined according to the claims, which follow.
Claims

1. A method for storing film grain patterns, comprising:
 storing at least a first portion of said film grain patterns in an internal
 memory; and
 storing at least a second portion of said film grain patterns in an external
 memory.

2. The method of claim 1, wherein said internal memory is located in a
 video decoder.

3. The method of claim 1, wherein said internal memory is located in a
 video decoder integrated circuit chip.

4. The method of claim 3, wherein only a small portion of said film grain
 patterns are stored in said internal memory such that only a small additional chip
 area is required for providing said internal memory.

5. The method of claim 1, wherein said internal memory stores at least
 film grain patterns most commonly implemented in a film grain simulation process.

6. The method of claim 1, wherein said internal memory and said
 external memory together store all film grain patterns required in a film grain
 simulation process.

7. The method of claim 1, wherein luma components and chroma
 components of said film grain patterns are stored separately in said internal
 memory and said external memory.

8. The method of claim 7, wherein said luma components are stored in
 said internal memory and said chroma components are stored in said external
 memory.
9. The method of claim 1, wherein a priority order for storing said film grain patterns in said internal memory and said external memory is derived from a standardized film grain supplemental information message.

10. A method for storing film grain patterns for a film grain simulation process, comprising:
 splitting the storage of film grain patterns between an internal cache and an external memory.

11. The method of claim 10, wherein said internal cache is located in a video decoder.

12. The method of claim 10, wherein said internal cache is located in a video decoder integrated circuit chip.

13. The method of claim 12, wherein only a small portion of said film grain patterns are stored in said internal cache such that only a small additional chip area is required for providing said internal cache.

14. The method of claim 10, wherein said internal cache stores at least film grain patterns most commonly implemented in said film grain simulation process.

15. The method of claim 10, wherein a priority order for storing said film grain patterns in said internal memory and said external memory is derived from a standardized film grain supplemental information message.

16. An apparatus, comprising:
 a means for receiving at least an encoded image and supplemental information including film grain characterization information for use in a film grain simulation process;
 an internal storage means for storing at least a first portion of film grain patterns; and
 an external storage means for storing at least a second portion of said film grain simulation patterns.
17. The apparatus of claim 15, wherein said means for receiving comprises a decoder.

18. The apparatus of claim 16, wherein said internal storage means comprises an internal cache.

19. The apparatus of claim 16, wherein said internal storage means comprises at least film grain patterns most commonly implemented in said film grain simulation process.

20. A system for simulating film grain, comprising:
 a decoder for receiving at least an encoded image and a supplemental information message including film grain characterization information for use in a film grain simulation process;
 an internal storage means for storing at least at least a first portion of film grain patterns; and
 an external storage means for storing at least a second portion of said film grain simulation patterns.

21. The system of claim 20, wherein said internal storage means is located in said decoder.