wo 2014/159195 A1 [N 000 O Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/159195 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

2 October 2014 (02.10.2014) WIPOIPCT
International Patent Classification: (81)
GO6F 9/30 (2006.01)
International Application Number:

PCT/US2014/022457

International Filing Date:
10 March 2014 (10.03.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/829,315 14 March 2013 (14.03.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
5775 Morehouse Drive, San Diego, California 92121 (US).

Inventors: BROWN, Melinda, J.; 5775 Morehouse Drive,
San Diego, California 92121 (US). DIEFFENDERFER,
James, Norris; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121 (US). MCILVAINE, Michael, Scott; 5775
Morehouse Drive, San Diego, California 92121 (US).
STEMPEL, Brian, Michael; 5775 Morehouse Drive, San
Diego, California 92121 (US). STREETT, Daren, Eu-
gene; 5775 Morehouse Drive, San Diego, California 92121
(US).

Agent: TERRANOVA, Steven, N.; Withrow & Terran-
ova, PLLC, 100 Regency Forest Drive Suite 160, Cary,
North Carolina 27518 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: ELIMINATING REDUNDANT SYNCHRONIZATION BARRIERS IN INSTRUCTION PROCESSING CIRCUITS,
AND RELATED PROCESSOR SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA

Instruction Stream (18)

v

Instruction Processing Circuit (14)

Fo—d3————— Execution
! Pipeline(s) (12)
Instruction ! Instruction |
: Decode Circuit : Po
—-_———— - (28) ————n
Instruction | Instruction | InsFtreutgHon | 0 |) Instruction| P
Memory [—w Cache ks ~roii How! 0 = Queue
@) |2y we 1] ey | : | ©2) |
_____ 1 | —_————
| In | Pq
I i
I \
Register(s) (16) : Synchranization | 30
Event Detection | |
Ro : Circuit (34) :
|
| Optimization :
| Circuit (36)
|
Rm | |
I [synchronization | | 10
: Flag (38) :
e - d
FIG. 1

(57) Abstract: Embodiments disclosed herein include eliminating redundant synchronization barriers from execution pipelines in in -
struction processing circuits. Related processor systems, methods, and computer-readable media are also disclosed. By tracking the
occurrence of synchronization events, unnecessary sottware synchronization operations may be identified and eliminated, thus im -
proving performance of a central processing unit (CPU). In one embodiment, a method for eliminating redundant synchronization
barriers in an instruction stream is provided. The method comprises determining whether a next instruction comprises a synchroniza-
tion barrier of a type corresponding to a first synchronization event. The method also comprises eliminating the next instruction from
the instruction stream, responsive to determining that the next instruction comprises a synchronization barrier of a type correspond -
ing to the first synchronization event. In this manner, the average number of instructions executed during each CPU clock cycle may

be increased by avoiding unnecessary synchronization operations.

WO 2014/159195 A1 AT 00T 000 T A

Published:
— with international search report (Art. 21(3))

WO 2014/159195 PCT/US2014/022457

1/22

ELIMINATING REDUNDANT SYNCHRONIZATION BARRIERS IN
INSTRUCTION PROCESSING CIRCUITS, AND RELATED PROCESSOR
SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA

PRIORITY APPLICATION
[0001] The present application claims priority to U.S. Patent Application Serial
Number 13/829,315, filed March 14, 2013, entitled “ELIMINATING REDUNDANT
SYNCHRONIZATION BARRIERS IN INSTRUCTION PROCESSING CIRCUITS,
AND RELATED PROCESSOR SYSTEMS, METHODS, AND COMPUTER-
READABLE MEDIA,” which is incorporated herein by reference in its entirety.

BACKGROUND
I. Field of the Disclosure

[0002] The technology of the disclosure relates to processing of pipelined computer

instructions in central processing unit (CPU)-based systems.

IL. Background
[0003] The advent of “instruction pipelining” in modern computer architectures has
yielded improved utilization of central processing unit (CPU) resources and faster
execution times of computer applications. Instruction pipelining is a processing
technique whereby a throughput of computer instructions being processed by a CPU
may be increased by splitting the processing of each instruction into a series of steps.
The instructions are executed in an “execution pipeline” composed of multiple stages,
with each stage carrying out one of the steps for each of a series of instructions. As a
result, in each CPU clock cycle, steps for multiple instructions can be evaluated in
parallel. A CPU may employ multiple execution pipelines to further boost performance.
[0004] Some computer architectures that implement instruction pipelining may
permit processor optimizations, such as speculative data reads and out-of-order
execution of program instructions. While providing further CPU performance
improvement, these optimizations may lead to unintended and/or undesirable program
behavior if, for example, the executing program depends on data being accessed or
instructions being executed in a specified order. Additionally, an executing instruction
may effect a change in a state of the CPU that must be successfully completed before

subsequent instructions are allowed to execute. For example, a change in a state of the

WO 2014/159195 PCT/US2014/022457

2/22

CPU may include changes that affect how the subsequent instructions access resources,
such as a change in processor mode or a modification of a page table.

[0005] To ensure proper program execution, a “synchronization barrier” may be
used in software to ensure that a prior operation (i.e., a data access or instruction
execution) completes before code execution is permitted to continue. A synchronization
barrier may be expressly provided by an instruction, such as the ARM architecture ISB
(instruction synchronization barrier) instruction, or may be implemented as part of
another instruction or operation. A computer’s architecture may provide that specific
operations requiring a synchronization barrier may have the synchronization
automatically handled by the computer’s hardware, while other operations require
software to expressly include a synchronization barrier. Note however, that for
scenarios in which a software synchronization barrier is present, the software
synchronization barrier may prove redundant if another synchronization operation

occurs immediately prior to execution of the software synchronization barrier.

SUMMARY OF THE DISCLOSURE

[0006] Embodiments of the disclosure include eliminating redundant

synchronization barriers from execution pipelines in instruction processing circuits, and
related processor systems, methods, and computer-readable media. For some
operations, a computer’s architecture may require that a software synchronization
barrier be employed, even though a synchronization operation may also occur
immediately prior to execution of the software synchronization barrier. By tracking the
occurrence of synchronization events, unnecessary software synchronization barriers
may be identified and eliminated, thus improving performance of a central processing
unit (CPU).

[0007] In this regard, in one embodiment, a method for eliminating redundant
synchronization barriers in an instruction stream is provided. The method comprises
detecting a first synchronization event. The method further comprises detecting a next
instruction in an instruction stream. The method additionally comprises determining
whether the next instruction comprises a synchronization barrier of a type corresponding
to the first synchronization event. The method also comprises eliminating the next
instruction from the instruction stream, responsive to determining that the next

instruction comprises a synchronization barrier of a type corresponding to the first

WO 2014/159195 PCT/US2014/022457

3/22

synchronization event. In this manner, the average number of instructions executed
during each clock cycle by the CPU may be increased by avoiding unnecessary
synchronization operations.

[0008] In another embodiment, an instruction processing circuit is provided. The
instruction processing circuit comprises a synchronization event detection circuit and an
optimization circuit. The synchronization event detection circuit is configured to detect
a first synchronization event. The optimization circuit is configured to detect a next
instruction in an instruction stream, and determine whether the next instruction
comprises a synchronization barrier of a type corresponding to the first synchronization
event. The optimization circuit is further configured to eliminate the next instruction
from the instruction stream, responsive to determining that the next instruction
comprises a synchronization barrier of a type corresponding to the first synchronization
event.

[0009] In another embodiment, an instruction processing circuit is provided. The
instruction processing circuit comprises a means for detecting a first synchronization
event. The instruction processing circuit further comprises a means for detecting a next
instruction in an instruction stream. 'The instruction processing circuit additionally
comprises a means for determining whether the next instruction comprises a
synchronization barrier of a type corresponding to the first synchronization event. The
instruction processing circuit also comprises a means for eliminating the next
instruction from the instruction stream, responsive to determining that the next
instruction comprises a synchronization barrier of a type corresponding to the first
synchronization event.

[0010] In another embodiment, a non-transitory computer-readable medium is
provided, having stored thereon computer-executable instructions to cause a processor
to implement a method. The method implemented by the computer-executable
instructions comprises detecting a first synchronization event. The method
implemented by the computer-executable instructions further comprises detecting a next
instruction in an instruction stream. The method implemented by the computer-
executable instructions additionally comprises determining whether the next instruction
comprises a synchronization barrier of a type corresponding to the first synchronization
event. The method implemented by the computer-executable instructions also

comprises eliminating the next instruction from the instruction stream, responsive to

WO 2014/159195 PCT/US2014/022457

4/22

determining that the next instruction comprises a synchronization barrier of a type

corresponding to the first synchronization event.

BRIEF DESCRIPTION OF THE FIGURES

[0010] Figure 1 is a block diagram of exemplary components provided in a
processor-based system, including an exemplary instruction processing circuit
configured to detect and eliminate redundant synchronization barriers in an instruction
stream;

[0011] Figure 2 is a diagram illustrating an exemplary optimized instruction stream
based on detecting and eliminating redundant synchronization barriers;

[0012] Figure 3 is a flowchart illustrating an exemplary process of an instruction
processing circuit for detecting and eliminating redundant synchronization barriers;
[0013] Figure 4 is a flowchart illustrating a more detailed exemplary process of an
instruction processing circuit for eliminating redundant synchronization barriers;

[0014] Figure 5 is a diagram illustrating optimization of an exemplary instruction
stream containing an instruction triggering a synchronization event and a redundant
synchronization barrier;

[0015] Figure 6 is a diagram illustrating exemplary optimized instruction streams
that may result from elimination of redundant synchronization barriers;

[0016] Figure 7 is a diagram illustrating optimization of an exemplary instruction
stream containing a redundant synchronization barrier; and

[0017] Figure 8 is a block diagram of an exemplary processor-based system that can
include instruction processing circuits, including the instruction processing circuit of

Figure 1, configured to detect and eliminate redundant synchronization barriers.

DETAILED DESCRIPTION

[0018] With reference now to the drawing figures, several exemplary embodiments

of the present disclosure are described. The word “exemplary” is used herein to mean
“serving as an example, instance, or illustration.” Any embodiment described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other
embodiments. It is also to be understood that, although the terms “first,” “second,” etc.
may be used herein to describe various elements, these terms are only used to

distinguish one element from another, and the elements thus distinguished are not to be

WO 2014/159195 PCT/US2014/022457

5/22

limited by these terms. For example, a first instruction could be termed a second
instruction, and, similarly, a second instruction could be termed a first instruction,
without departing from the teachings of the disclosure.

[0019] Embodiments of the disclosure include eliminating redundant
synchronization barriers from execution pipelines in instruction processing circuits, and
related processor systems, methods, and computer-readable media. For some
operations, a computer’s architecture may require that a software synchronization
barrier be employed, even though a synchronization operation may also occur
immediately prior to execution of the software synchronization barrier. By tracking the
occurrence of synchronization events, unnecessary software synchronization barriers
may be identified and eliminated, thus improving performance of a central processing
unit (CPU).

[0020] In this regard, in one embodiment, a method for eliminating redundant
synchronization barriers in an instruction stream is provided. The method comprises
detecting a first synchronization event. The method further comprises detecting a next
instruction in an instruction stream. The method additionally comprises determining
whether the next instruction comprises a synchronization barrier of a type corresponding
to the first synchronization event. The method also comprises eliminating the next
instruction from the instruction stream, responsive to determining that the next
instruction comprises a synchronization barrier of a type corresponding to the first
synchronization event. In this manner, the average number of instructions executed
during each clock cycle by the CPU may be increased by avoiding unnecessary
synchronization operations.

[0021] In this regard, Figure 1 is a block diagram of an exemplary processor-based
system 10 for retrieving and processing computer instructions to be placed into one or
more execution pipelines 12(0)-12(Q). The processor-based system 10 provides an
instruction processing circuit 14 that is configured to detect and eliminate redundant
synchronization barriers. As used herein, an “instruction” may refer to a combination of
bits defined by an instruction set architecture that direct a computer processor to carry
out a specified task or tasks. For example, an instruction may indicate operations for
reading data from and/or writing data to registers 16(0)-16(M), which provide local
storage accessible by the processor-based system 10. Exemplary instruction set

architectures include, but are not limited to, ARM, Thumb, and A64 architectures.

WO 2014/159195 PCT/US2014/022457

6/22

[0022] With continuing reference to Figure 1, instructions are processed in the
processor-based system 10 in a continuous flow represented by an instruction stream 18.
The instruction stream 18 may be continuously processed as the processor-based system
10 is operating and executing the instructions. In this illustrated example, the
instruction stream 18 begins with an instruction memory 20, which provides persistent
storage for instructions in a computer-executable program. An instruction fetch circuit
22 reads an instruction represented by arrow 24 (hereinafter “instruction 24”) from the
instruction memory 20 and/or optionally from an instruction cache 26. The instruction
fetch circuit 22 may increment a program counter (not shown), which may be stored in
one of the registers 16(0)-16(M). Once the instruction 24 is fetched by the instruction
fetch circuit 22, the instruction 24 proceeds to an instruction decode circuit 28 that
translates the instruction into processor-specific microinstructions. In this embodiment,
the instruction decode circuit 28 stores a group of multiple instructions 30(0)-30(N)
simultaneously for decoding.

[0023] After the instructions 30(0)-30(N) have been fetched and decoded, they are
optionally issued to an instruction queue 32 as a buffer for storing the instructions
30(0)-30(N). The instructions 30(0)-30(N) are then issued to one of the execution
pipelines 12(0)-12(Q) for execution. In some embodiments, the execution pipelines
12(0)-12(Q) may restrict the types of operations that may be carried out by instructions
that execute within the execution pipelines 12(0)-12(Q). For example, pipeline Py may
not permit read access to the registers 16(0)-16(M); accordingly, an instruction that
indicates an operation to read register Ry may only be issued to one of the execution
pipelines P through Py,.

[0024] The instruction processing circuit 14 may be any type of device or circuit,
and may be implemented or performed with a processor, a digital signal processor
(DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate
array (FPGA) or other programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination thereof designed to perform the
functions described herein. In some embodiments, the instruction processing circuit 14
is incorporated into the instruction decode circuit 28.

[0025] With continuing reference to Figure 1, the instruction processing circuit 14
in this example is configured to detect and eliminate redundant synchronization barriers

in the instruction stream 18. The instruction processing circuit 14 may employ a

WO 2014/159195 PCT/US2014/022457

7/22

synchronization event detection circuit 34 configured to detect a synchronization event.
The instruction processing circuit 14 may also employ an optimization circuit 36
configured to detect a next instruction indicating a redundant synchronization barrier of
a type corresponding to the synchronization event. The optimization circuit 36 may be
further configured to eliminate the next instruction from the instruction stream 18. In
some embodiments, the instruction processing circuit 14 may utilize a synchronization
flag 38 to indicate an occurrence of a synchronization event and determine whether a
redundant synchronization barrier has been detected.

[0026] To provide an explanation of detecting and eliminating a redundant
synchronization barrier in the processor-based system 10 in Figure 1, Figure 2 is
provided. Figure 2 illustrates the instruction processing circuit 14 of Figure 1 detecting
a synchronization event, and subsequently detecting a redundant synchronization
barrier. In this example, a detected instruction stream 40 represents a series of
instructions fetched in the instruction stream 18 and detected by the instruction
processing circuit 14. First in the detected instruction stream 40 is an
INST_REQ_SYNC instruction 42. The INST_REQ_SYNC instruction 42 may be any
instruction indicating an operation for which the computer architecture requires
software to expressly include a subsequent synchronization barrier, and for which the
computer hardware is also permitted to perform a synchronization operation. In this
example, the computer hardware carries out a synchronization operation in response to
the INST_REQ_SYNC instruction 42, resulting in a synchronization event 44 being
detected by the instruction processing circuit 14. In some embodiments, the
synchronization event 44 may be a data synchronization operation, while some
embodiments may provide that the synchronization event 44 is an instruction
synchronization operation.

[0027] As noted above, the computer architecture requires the INST_REQ_SYNC
instruction 42 to be followed by a software synchronization barrier. Accordingly, a
SYNC BARRIER INST instruction 46 is detected next in the detected instruction
stream 40 by the instruction processing circuit 14. The SYNC_BARRIER_INST
instruction 46 is a synchronization barrier instruction that causes a synchronization
event 48 to occur. The synchronization event 48 triggered by the
SYNC_BARRIER_INST instruction 46 is of the same type as the synchronization event

44. As used herein, the “type” of a synchronization event refers to a general

WO 2014/159195 PCT/US2014/022457

8/22

categorization of the synchronization event as, for example, a data synchronization
operation or an instruction synchronization operation. A synchronization event may be
considered a “full” synchronization event if it ensures barrier operations for both read
and write operations, and applies to both inner- and outer-cacheable memory systems
and both shareable and non-shareable memory. Alternatively, the synchronization event
may be more limited in scope in that it ensures barrier operations only in narrow
circumstances than a full synchronization event. It is to be understood that a
synchronization event may be considered of the same type as a preceding
synchronization event if the synchronization event belongs to the same general
categorization and is of a same or narrower scope as the preceding synchronization
event. In this example, note that because no other instruction executes after the
synchronization event 44 and before the synchronization event 48, the synchronization
event 48, and the SYNC_BARRIER_INST instruction 46 that triggered it, are
redundant and may be eliminated by the instruction processing circuit 14.A resulting
optimized instruction stream 50 illustrates one exemplary result of the process described
above. The resulting optimized instruction stream 50 includes an INSTR_REQ _SYNC
instruction 52 corresponding to the INSTR_REQ_SYNC instruction 42. Like the
INST_REQ_SYNC instruction 42, the INST _REQ_SYNC instruction 52 is an
instruction indicating an operation to be followed by a software synchronization barrier,
and for which the computer hardware is also permitted to perform a synchronization
operation. Accordingly, in this example, the computer hardware carries out a
synchronization operation in response to the INST_REQ_SYNC instruction 52,
resulting in a synchronization event 54. In some embodiments, the synchronization
event 54 may be a data synchronization operation, while some embodiments may
provide that the synchronization event 54 is an instruction synchronization operation.
As seen in Figure 2, the SYNC_BARRIER_INST instruction 46 has been replaced in
the resulting optimized instruction stream 50 with an NOP (no operation) instruction 56.
Consequently, there is no redundant synchronization event immediately following the
synchronization event 54, resulting in improved CPU performance and instruction
throughput.

[0028] Figure 3 is provided to illustrate an exemplary process for detecting and
eliminating a redundant synchronization barrier, with additional reference to Figures 1

and 2. In Figure 3, the exemplary process begins with the instruction processing circuit

WO 2014/159195 PCT/US2014/022457

9/22

14 detecting a first synchronization event, such as the synchronization event 44 of
Figure 2 (block 58). In some embodiments, the first synchronization event may be a
data synchronization operation, while some embodiments may provide that the first
synchronization event is an instruction synchronization operation. The first
synchronization event may result from the execution of an instruction, or may be caused
by an unrelated operation such as an interrupt or an exception return.

[0029] The instruction processing circuit 14 then detects a next instruction in an
instruction stream (block 60). The instruction processing circuit 14 determines whether
the next instruction comprises a synchronization barrier of a type corresponding to the
first synchronization event (block 62). For example, the instruction processing circuit
14 determines whether the first synchronization event and the next instruction are both
considered data synchronization operations, or whether both are instruction
synchronization operations. If the next instruction does not comprise a synchronization
barrier of a type corresponding to the first synchronization event, processing of the
instruction stream continues at block 64 of Figure 3. If the next instruction does
comprise a synchronization barrier corresponding to the first synchronization event, the
instruction processing circuit 14 eliminates the next instruction from the instruction
stream (block 66). In some embodiments, eliminating the next instruction may include
replacing the next instruction with an NOP instruction, while some embodiments may
provide that eliminating the next instruction comprises removing the next instruction
from the instruction stream. Processing of the instruction stream 18 then continues at
block 64.

[0030] Figure 4 is a flowchart illustrating a more detailed exemplary process of an
instruction processing circuit, such as the instruction processing circuit 14 of Figure 1,
for eliminating redundant synchronization barriers. The exemplary process illustrated in
Figure 4 begins with the instruction processing circuit determining whether a
synchronization event has been detected (block 68). In some embodiments, the
synchronization event may be a data synchronization operation, while some
embodiments may provide that the synchronization event is an instruction
synchronization operation. As noted above, a synchronization event may result from
execution of an instruction, or may arise from an unrelated operation such as an
interrupt or an exception return. Accordingly, detection of a synchronization event may

be made by detecting an effect of the synchronization event, such as a pipeline flush,

WO 2014/159195 PCT/US2014/022457

10722

and/or by comparing a detected instruction to a list of instructions known to trigger a
synchronization event.

[0031] If a synchronization event is detected at block 68, a synchronization flag
corresponding to a type of the synchronization event (e.g., data synchronization or
instruction synchronization) is set (block 70). The synchronization flag indicates
whether a synchronization event occurred immediately prior to execution of a next
instruction. Some embodiments may provide that the synchronization flag indicates the
occurrence of a data synchronization event, while in some embodiments the
synchronization flag corresponds to an occurrence of an instruction synchronization
event. Processing then resumes at block 72 of Figure 4. If no synchronization event is
detected at block 68, processing returns to block 72.

[0032] The instruction processing circuit then detects a next instruction in an
instruction stream, such as the instruction stream 18 (block 72). The instruction
processing circuit determines whether a synchronization event, for example the
synchronization event 44 of Figure 2, is caused by the detected instruction (block 74).
In some embodiments, the synchronization event may be a data synchronization
operation, while some embodiments may provide that the synchronization event is an
instruction synchronization operation.

[0033] If the instruction processing circuit determines at block 74 of Figure 4 that
the detected instruction does not cause a synchronization event, the instruction
processing circuit clears the synchronization flag that corresponds to a type of
synchronization event (e.g., data synchronization or instruction synchronization) (block
75) if it was set previously (for example, in block 70), and continues processing of the
detected instruction continues (block 76). The instruction processing circuit then
returns to block 68. If the instruction processing circuit determines at block 74 that a
synchronization event is caused by the detected instruction, the instruction processing
circuit next evaluates whether the detected instruction is a redundant synchronization
barrier. To do so, the instruction processing circuit examines whether the
synchronization flag corresponding to the type of the synchronization event (e.g., data
synchronization or instruction synchronization) is set (block 78). If the synchronization
flag is not set, then a synchronization event of appropriate type and scope did not occur
immediately prior to the detected instruction, and therefore the detected instruction is

not a redundant synchronization barrier. Accordingly, the synchronization flag is set to

WO 2014/159195 PCT/US2014/022457

11722

indicate that a synchronization event was caused by the detected instruction (block 80),
and processing of the detected instruction continues at block 76. Afterwards, the
instruction processing circuit returns to block 68.

[0034] If, at decision block 78 of Figure 4, the instruction processing circuit
determines that the synchronization flag corresponding to the synchronization event is
set, the detected instruction has been identified as a redundant synchronization barrier.
The instruction processing circuit thus eliminates the detected instruction from the
instruction stream (block 82). In some embodiments, the instruction processing circuit
may eliminate the detected instruction by replacing the detected instruction with an
NOP instruction, such as the NOP instruction 56 of Figure 2, in the instruction stream,
while some embodiments may provide that the detected instruction is removed entirely
from the instruction stream. It is to be understood that, in some embodiments, the
occurrence of more than two consecutive instructions resulting in synchronization
events of the same type may be unlikely. Accordingly, in such embodiments, the
instruction processing circuit may clear the synchronization flag corresponding to the
synchronization event upon eliminating the detected instruction from the instruction
stream (block 83). In embodiments where the occurrence of more than two consecutive
instructions triggering a synchronization event of the same type is possible, the
operations of block 83 may be omitted.

[0035] It is to be understood that operations for detecting the detected instruction
and the synchronization event may be carried out by, for example, the synchronization
event detection circuit 34 of the instruction processing circuit 14 of Figure 1. It is to be
further understood that operations for detecting and eliminating a redundant
synchronization barrier may be carried out by, for example, the optimization circuit 36
of the instruction processing circuit 14 of Figure 1.

[0036] To illustrate optimization of an exemplary instruction stream containing an
instruction triggering a synchronization event and a redundant synchronization barrier,
Figure 5 is provided. In this example, a detected instruction stream 84 represents a
series of instructions fetched in the instruction stream 18 and detected by the instruction
processing circuit 14. First in the detected instruction stream 84 is an ARM architecture
MCR (“Move to coprocessor from ARM register(s)”) instruction 86. The MCR
instruction 86 is an instruction indicating an operation to write a value to translation

table base register 0 (I'TBRO), which, in a computer employing the ARM architecture,

WO 2014/159195 PCT/US2014/022457

12/22

stores a physical address of a translation table. Because subsequent instructions that
follow the MCR instruction 86 rely on the TTBRO to accurately map virtual addresses
to physical memory addresses, execution of the MCR instruction 86 must successfully
complete before the subsequent instruction execute. Thus, the ARM architecture
requires that the MCR instruction 86 be followed by a software instruction
synchronization operation. In some embodiments, however, the computer hardware
may also be permitted to perform an instruction synchronization operation after
execution of the MCR instruction 86. Accordingly, in this example, the computer
hardware automatically initiates a synchronization operation in response to execution of
the MCR instruction 86, resulting in a synchronization event 88.

[0037] As noted above, the ARM architecture requires the MCR instruction 86 to be
followed by a software instruction synchronization operation. Thus, an ARM
architecture ISB (“instruction synchronization barrier”) instruction 90 is detected next in
the detected instruction stream 84. The ISB instruction 90 is a synchronization barrier
instruction that causes a synchronization event 92 to occur. The synchronization event
92 triggered by the ISB instruction 90 is of the same type (i.e., an instruction
synchronization operation having the same or narrower scope) as the synchronization
event 88. Note that because no other instruction executes after the synchronization
event 88 and before the synchronization event 92, the synchronization event 92, and the
ISB instruction 90 that triggered it, are redundant and may be eliminated by the
instruction processing circuit 14.

[0038] A resulting optimized instruction stream 94 illustrates one exemplary result.
The resulting optimized instruction stream 94 includes an MCR instruction 96
corresponding to the MCR instruction 86. In response to execution of the MCR
instruction 96, the computer hardware carries out an instruction synchronization
operation, resulting in a synchronization event 98. However, the ISB instruction 90 has
been replaced in this instance by an NOP instruction 100 in the resulting optimized
instruction stream 94. Thus, there is no redundant synchronization event immediately
following the synchronization event 98, resulting in improved CPU performance and
instruction throughput.

[0039] As noted above with respect to Figure 4, a redundant synchronization barrier
may be eliminated from the instruction stream 18 by the instruction processing circuit

14 of Figure 1. The instruction processing circuit 14 may eliminate the redundant

WO 2014/159195 PCT/US2014/022457

13/22

synchronization barrier by replacing it with an NOP instruction indicating no operation,
or by removing it entirely from the instruction stream 18. Thus, the instruction
processing circuit 14 may process a given detected instruction stream into different
resulting instruction streams. In this regard, Figure 6 shows an exemplary detected
instruction stream 102 including a redundant synchronization barrier, and corresponding
resulting optimized instruction stream examples 104(1) and 104(2) that may be
generated by the instruction processing circuit 14. In this example, the detected
instruction stream 102 includes two ARM architecture instructions: an MCR instruction
that indicates an operation to write a value to TTBRO, followed by an ISB
synchronization barrier instruction that triggers an instruction synchronization event.
[0040] Resulting optimized instruction stream examples 104 illustrate exemplary
sequences of instructions into which the instructions in the detected instruction stream
102 may be processed by the instruction processing circuit 14 of Figure 1. In some
embodiments, the ISB instruction in the detected instruction stream 102 may be
replaced with an instruction indicating no operation (i.e., NOP). Accordingly,
exemplary instruction stream 104(1) comprises the MCR instruction followed by an
NOP instruction. In contrast, some embodiments described herein provide that the ISB
instruction in the detected instruction stream 102 will be removed entirely from the
instruction stream 18. Accordingly, instruction stream 104(2) comprises only the MCR
instruction.

[0041] As discussed above, a synchronization event preceding a software
synchronization barrier may result from operations unrelated to instruction execution,
such as an interrupt or an exception return. In this regard, Figure 7 illustrates
optimization of an exemplary instruction stream containing a redundant synchronization
barrier. In this example, a detected instruction stream 106 represents a series of
instructions fetched in the instruction stream 18 and detected by the instruction
processing circuit 14 of Figure 1. As the instructions in the detected instruction stream
106 are being processed, a synchronization event 108 occurs in response to an operation
such as an interrupt or an exception return. Immediately following the synchronization
event 108, an ARM architecture ISB instruction 110 is detected in the detected
instruction stream 106. The ISB instruction 110 is a synchronization barrier instruction
that causes a synchronization event 112 to occur. The synchronization event 112

triggered by the ISB instruction 110 is of the same type (i.e., an instruction

WO 2014/159195 PCT/US2014/022457

14/22

synchronization operation having the same or narrower scope) as the synchronization
event 108. Note that because no other instruction executes after the synchronization
event 108 and before the synchronization event 112, the synchronization event 112, and
the ISB instruction 110 that triggered it, are redundant and may be eliminated by the
instruction processing circuit 14.

[0042] A resulting optimized instruction stream 114 illustrates one exemplary result.
As the resulting optimized instruction stream 114 is being processed, a synchronization
event 116 occurs in response to an operation such as an interrupt or an exception return.
However, the ISB instruction 110 has been replaced in this instance by an NOP
instruction 118 in the resulting optimized instruction stream 114. Thus, there is no
redundant synchronization event immediately following the synchronization event 116,
resulting in improved CPU performance and instruction throughput.

[0043] Eliminating redundant synchronization barriers from execution pipelines in
instruction processing circuits, and related processor systems, methods, and computer-
readable media according to embodiments disclosed herein may be provided in or
integrated into any processor-based device. Examples, without limitation, include a set
top box, an entertainment unit, a navigation device, a communications device, a fixed
location data unit, a mobile location data unit, a mobile phone, a cellular phone, a
computer, a portable computer, a desktop computer, a personal digital assistant (PDA),
a monitor, a computer monitor, a television, a tuner, a radio, a satellite radio, a music
player, a digital music player, a portable music player, a digital video player, a video
player, a digital video disc (DVD) player, and a portable digital video player.

[0044] In this regard, Figure § illustrates an example of a processor-based system
120 that can employ the instruction processing circuit 14 of Figure 1. In this example,
the processor-based system 120 includes one or more CPUs 122, each including one or
more processors 124. The one or more processors 124 may comprise the instruction
processing circuit (IPC) 14. The CPU(s) 122 may have cache memory 126 coupled to
the processor(s) 124 for rapid access to temporarily stored data. The CPU(s) 122 is
coupled to a system bus 128 and can intercouple master and slave devices included in
the processor-based system 120. As is well known, the CPU(s) 122 communicates with
these other devices by exchanging address, control, and data information over the

system bus 128. For example, the CPU(s) 122 can communicate bus transaction

WO 2014/159195 PCT/US2014/022457

15722

requests to a memory controller 130 as an example of a slave device. Although not
illustrated in Figure 8, multiple system buses 128 could be provided.

[0045] Other master and slave devices can be connected to the system bus 128. As
illustrated in Figure 8, these devices can include a memory system 132 comprising the
memory controller 130 coupled to a plurality of DDR devise 144(0)-144(N), one or
more input devices 134, one or more output devices 136, one or more network interface
devices 138, and one or more display controllers 140, as examples. The input device(s)
134 can include any type of input device, including but not limited to input keys,
switches, voice processors, etc. The output device(s) 136 can include any type of output
device, including but not limited to audio, video, other visual indicators, etc. The
network interface device(s) 138 can be any device configured to allow exchange of data
to and from a network 142. The network 142 can be any type of network, including but
not limited to a wired or wireless network, a private or public network, a local area
network (LAN), a wide local area network (WLAN), and the Internet. The network
interface device(s) 138 can be configured to support any type of communication
protocol desired. The memory system 132 can include one or more memory units
144(0-N).

[0046] The CPU(s) 122 may also be configured to access the display controller(s)
140 over the system bus 128 to control information sent to one or more displays 146.
The display controller(s) 140 sends information to the display(s) 146 to be displayed via
one or more video processors 148, which process the information to be displayed into a
format suitable for the display(s) 146. The display(s) 146 can include any type of
display, including but not limited to a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, etc.

[0047] Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in connection with the
embodiments disclosed herein may be implemented as electronic hardware, instructions
stored in memory or in another computer-readable medium and executed by a processor
or other processing device, or combinations of both. The arbiters, master devices, and
slave devices described herein may be employed in any circuit, hardware component,
integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any
type and size of memory and may be configured to store any type of information

desired. To clearly illustrate this interchangeability, various illustrative components,

WO 2014/159195 PCT/US2014/022457

16/22

blocks, modules, circuits, and steps have been described above generally in terms of
their functionality. How such functionality is implemented depends upon the particular
application, design choices, and/or design constraints imposed on the overall system.
Skilled artisans may implement the described functionality in varying ways for each
particular application, but such implementation decisions should not be interpreted as
causing a departure from the scope of the present disclosure.

[0048] The various illustrative logical blocks, modules, and circuits described in
connection with the embodiments disclosed herein may be implemented or performed
with a processor, a DSP, an Application Specific Integrated Circuit (ASIC), an FPGA or
other programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. A processor may be a microprocessor, but in the alternative, the processor may
be any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or any other such configuration.
[0049] The embodiments disclosed herein may be embodied in hardware and in
instructions that are stored in hardware, and may reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), Flectrically
Programmable ROM (EPROM), Electrically Erasable Programmable ROM
(EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of
computer readable medium known in the art. An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
server.

[0050] It is also noted that the operational steps described in any of the exemplary
embodiments herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the illustrated
sequences. Furthermore, operations described in a single operational step may actually

be performed in a number of different steps. Additionally, one or more operational

WO 2014/159195 PCT/US2014/022457

17/22

steps discussed in the exemplary embodiments may be combined. It is to be understood
that the operational steps illustrated in the flow chart diagrams may be subject to
numerous different modifications as will be readily apparent to one of skill in the art.
Those of skill in the art will also understand that information and signals may be
represented using any of a variety of different technologies and techniques. Tor
example, data, instructions, commands, information, signals, bits, symbols, and chips
that may be referenced throughout the above description may be represented by
voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or
particles, or any combination thereof.

[0051] The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be applied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

WO 2014/159195 PCT/US2014/022457

18/22

‘What is claimed is:

1. A method for eliminating redundant synchronization barriers in an instruction
stream, comprising:
detecting a first synchronization event;
detecting a next instruction in an instruction stream;
determining whether the next instruction comprises a synchronization barrier of
a type corresponding to the first synchronization event; and
responsive to determining that the next instruction comprises a synchronization
barrier of a type corresponding to the first synchronization event,

eliminating the next instruction from the instruction stream.

2. The method of claim 1, wherein detecting the first synchronization event
comprises detecting an instruction synchronization event; and

wherein determining whether the next instruction comprises a synchronization
barrier of a type corresponding to the first synchronization event comprises detecting

whether the next instruction is an instruction synchronization barrier.

3. The method of claim 1, wherein detecting the first synchronization event
comprises detecting a data synchronization event; and

wherein determining whether the next instruction comprises a synchronization
barrier of a type corresponding to the first synchronization event comprises detecting

whether the next instruction is a data synchronization barrier.

4. The method of claim 1, wherein detecting the first synchronization event

comprises setting a synchronization flag.

5. The method of claim 4, further comprising clearing the synchronization flag
responsive to determining that the next instruction does not comprise a synchronization

barrier of a type corresponding to the first synchronization event.

6. The method of claim 4, wherein determining whether the next instruction
comprises a synchronization barrier of a type corresponding to the first synchronization

event comprises determining whether the synchronization flag is set.

WO 2014/159195 PCT/US2014/022457

19722

7. The method of claim 1, wherein eliminating the next instruction from the
instruction stream comprises replacing the next instruction in the instruction stream with

an instruction indicating no operation.

8. The method of claim 1, wherein eliminating the next instruction from the

instruction stream comprises removing the next instruction from the instruction stream.

0. An instruction processing circuit, comprising:
a synchronization event detection circuit configured to detect a first
synchronization event; and
an optimization circuit configured to:
detect a next instruction in an instruction stream;
determine whether the next instruction comprises a synchronization
barrier of a type corresponding to the first synchronization event;
and
responsive to determining that the next instruction comprises a
synchronization barrier of a type corresponding to the first
synchronization event, eliminate the next instruction from the

instruction stream.

10. The instruction processing circuit of claim 9, wherein the synchronization event
detection circuit is further configured to set a synchronization flag responsive to

detecting the first synchronization event.

11. The instruction processing circuit of claim 9, wherein the optimization circuit is
configured to eliminate the next instruction from the instruction stream by replacing the

next instruction in the instruction stream with an instruction indicating no operation.

12. The instruction processing circuit of claim 9, wherein the optimization circuit is
configured to eliminate the next instruction from the instruction stream by removing the

next instruction from the instruction stream.

WO 2014/159195 PCT/US2014/022457

20722

13. The instruction processing circuit of claim 9, wherein the optimization circuit
further configured to clear the synchronization flag responsive to determining that the
next instruction does not comprise a synchronization barrier of a type corresponding to

the first synchronization event.

14. The instruction processing circuit of claim 9, wherein the optimization circuit is
configured to determine whether the next instruction comprises a synchronization
barrier of a type corresponding to the first synchronization event by being configured to

determine whether the synchronization flag is set.

15. The instruction processing circuit of claim 9, wherein the next instruction is an
ARM instruction selected from the group consisting of: an ISB (instruction
synchronization barrier) instruction, a DSB (data synchronization barrier) instruction,

and a DMB (data memory barrier) instruction.

16. The instruction processing circuit of claim 9 integrated into an integrated circuit
die.
17. The instruction processing circuit of claim 9 integrated into a device selected

from the group consisting of a set top box, an entertainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile location data unit, a mobile
phone, a cellular phone, a computer, a portable computer, a desktop computer, a
personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

18. An instruction processing circuit, comprising:
a means for detecting a first synchronization event;
a means for detecting a next instruction in an instruction stream;
a means for determining whether the next instruction comprises a
synchronization barrier of a type corresponding to the first

synchronization event; and

WO 2014/159195 PCT/US2014/022457

21722

a means for eliminating the next instruction from the instruction stream,
responsive to determining that the next instruction comprises a
synchronization barrier of a type corresponding to the first

synchronization event.

19. A non-transitory computer-readable medium having stored thereon computer-
executable instructions to cause a processor to implement a method, comprising:
detecting a first synchronization event;
detecting a next instruction in an instruction stream;
determining whether the next instruction comprises a synchronization barrier of
a type corresponding to the first synchronization event; and
responsive to determining that the next instruction comprises a synchronization
barrier of a type corresponding to the first synchronization event,

eliminating the next instruction from the instruction stream.

20. The non-transitory computer-readable medium of claim 19 having stored thereon
the computer-executable instructions to cause the processor to implement the method
wherein eliminating the next instruction from the instruction stream comprises replacing

the next instruction in the instruction stream with an instruction indicating no operation.

21. The non-transitory computer-readable medium of claim 19 having stored thereon
the computer-executable instructions to cause the processor to implement the method
wherein eliminating the next instruction from the instruction stream comprises

removing the next instruction from the instruction stream.

22. The non-transitory computer-readable medium of claim 19 having stored thereon
the computer-executable instructions to cause the processor to implement the method
wherein determining that the next instruction comprises a synchronization barrier of a
type corresponding to the first synchronization event comprises determining that a

synchronization flag is set.

PCT/US2014/022457

WO 2014/159195

1/8

ld

.

0d

—

(Z1) (s)suledid

uonnoaxg

uoneziuol

(8¢) beld

UoUuAg

(9¢) yn2u1o
uoneziwndo

uono8le(

uoIeZIUOIYOUAS

JUSAg

_
_
_
_
_
_
_
(€) un2aID "
_
_
_
_
_
_
_

Ny

0y

(22)
UN2UID
oo
uononJisu|

_
———= | .
— enenp <+—— 0)
luoponysuy !l
===l (82)
| | ¥nonD epooe(
_ uoponJjsu|
_

ﬂlll_

(¥71) 1noua1D BuIsSSa201d UONRONISU|

(91) (s)ieysiboy

r———=-—-
IRCA (02)
< oyoe) _LM Aowsy
| uononnsuy | uonoNJSu|
|
uolnonsu|

(81) weans uononasu|

PCT/US2014/022457

WO 2014/159195

2/8

¢ OId

(#G) WueAz oukg

dON

—9G

L7
haN

ONAS O34 1SNI

—¢CS

(0g) weans uononisu|

paziwndQ bunnsey

(8%) JueAg oUAg

L1SNI H3194vg ONAS —9F

(%) JueAg oUAg

SN/ N

ONAS O3y 1SNI —2ZV

(0f7) weans uononisu|
p9109)9(]

WO 2014/159195

PCT/US2014/022457

3/8

58 —

Detect a first synchronization event

60

Detect a next instruction in an instruction stream

Next instruction
comprises synchronization
barrier corresponding
to first synchronization
event?

62 No

Yes

'

66—

Eliminate the next instruction from instruction stream

64—

Continue processing the instruction stream

FIG. 3

WO 2014/159195

PCT/US2014/022457

4/8

Synchronization

68 event detected?

No

Set synchronization
flag corresponding to
synchronization event

70

Detect next instruction in

72— instruction stream

Detected
instruction causes
synchronization
event?

74

Yes

Synchronization
flag corresponding
to synchronization
event set?

78

Yes

'

Eliminate detected
instruction from
instruction stream

82—

I
! Clear synchronization i
83— flag corresponding to !
! synchronization event :

75

No-»

Clear synchronization
flag corresponding to
synchronization event

80

No—»

Set synchronization

76

I

Continue
processing
of detected
instruction

A

flag corresponding to
synchronization event

FIG. 4

PCT/US2014/022457

WO 2014/159195

5/8

G Ol

(86) 1uaAZg ouAg

dON

—001

\
/

00019040 ‘'GLd YOI

— 96

($6) Weans uononIIsu|

paziwndQ bunnsey

(26) WueAg ouAg

asl — 06

(88) WueAg ouAg

N/ N

002 ‘19 ‘04 ‘0 'GLd YOW —98

($8) weans uononIsu|
pa10919(]

PCT/US2014/022457

WO 2014/159195

6/8

9 "OId

(2)¥01

00019040 ‘'GLd YOI

(1)¥0L —

dON

0°'00 19040 ‘'GLd YOI

weans uononisu| paziwndo Bunnsay

(#01) se|dwex3

asl

0001004 ‘0 ‘'G1Ld YO

(20l) weans
uolnonJsuj

pajoalaQ

PCT/US2014/022457

WO 2014/159195

7/8

(91 1) usng ouAg

dON

—8ll

(1 1) weans uononisuy
paziwndQ bunnsey

Z "Old

(Z11)usAg ouAg

(801) JusAg ouAg

NN

asl

—O0lL1

(901) weans uononisuy

pajoala(

PCT/US2014/022457

8/8

WO 2014/159195

8 'OId (NvpL !l fmm—————— 1
I [M¥aa - |- °yaa | "
> e
\ _ |
1) _ (ogt) "
(9g1) (veL) _ 49110407
(s)o21n9((s)921n9((s)ea1req _ fows _
INdino indu N _ |
YJOM]IBN .I|\|| 1
cel
(821) sng waysAg
(ov1)
(s)49)101u0D Ae|dsiq
(¥1) Odl “ “ (9z1) ‘—
(¥zZ1) OURE
(S)J0SS92014 (9p1) (8v1)
(s)Ae(dsiq «— (S)J0ssad0.1d
(zz1) (s)ndo . O3pIA

e

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/022457

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraph [0048]
paragraph [0055]
paragraph [0079]

16 June 2011 (2011-06-16)
paragraph [0046]

X US 2011/145512 Al (ADL-TABATABAI ALI-REZA 1-22
[US] ET AL) 16 June 2011 (2011-06-16)
paragraph [0038] - paragraph [0041]

X US 2011/145304 Al (GRAY JAN [US] ET AL) 1-22

A US 2004/154006 Al (HEISHI TAKETO [JP] ET 1-22
AL) 5 August 2004 (2004-08-05)
paragraph [0193] - paragraph [0194]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 May 2014

Date of mailing of the international search report

22/05/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moraiti, Marina

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/022457
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011145512 Al 16-06-2011 AU 2010337318 Al 12-07-2012
CN 102741806 A 17-10-2012
EP 2513779 A2 24-10-2012
JP 2013513887 A 22-04-2013
KR 20120103715 A 19-09-2012
US 2011145512 Al 16-06-2011
US 2013046924 Al 21-02-2013
US 2013046925 Al 21-02-2013
US 2013046947 Al 21-02-2013
WO 2011081718 A2 07-07-2011
US 2011145304 Al 16-06-2011 US 2011145304 Al 16-06-2011
US 2013238579 Al 12-09-2013
US 2004154006 Al 05-08-2004 CN 1521623 A 18-08-2004
JP 3896087 B2 22-03-2007
JP 2004234126 A 19-08-2004
US 2004154006 Al 05-08-2004

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report

