

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C08G 63/20, 63/60		A1	(11) International Publication Number: WO 97/43329 (43) International Publication Date: 20 November 1997 (20.11.97)
<p>(21) International Application Number: PCT/US97/08067</p> <p>(22) International Filing Date: 8 May 1997 (08.05.97)</p> <p>(30) Priority Data: 60/017,239 10 May 1996 (10.05.96) US 08/761,152 6 December 1996 (06.12.96) US</p> <p>(71) Applicant: EASTMAN CHEMICAL COMPANY [US/US]; 100 North Eastman Road, Kingsport, TN 37660 (US).</p> <p>(72) Inventor: KHEMANI, Kishan, Chand; 125 Millstone Drive, Johnson City, TN 37615 (US).</p> <p>(74) Agent: TUBACH, Cheryl, J.; P.O. Box 511, Kingsport, TN 37662-5075 (US).</p>		<p>(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	

(54) Title: BIODEGRADABLE FOAMABLE CO-POLYESTER COMPOSITIONS

(57) Abstract

A branched random aliphatic-aromatic copolymers suitable for foaming has increased melt viscosity and melt strength during extrusion and comprises repeating units of: $[-\{(O-R^1-O)_a(CO-R^2-CO)_b\}-\{(O-R^3-O)_c(CO-Ar-CO)_d\}-](BA)_x$. The mole percent of the acid components and diol components are each based on 100 mole percent. The aliphatic acid residue, $-CO-R^2-CO-$, is present in an amount b ranging from 30 to 95 percent and the aromatic acid residue, $-CO-Ar-CO-$, is present in an amount d ranging from 5 to 70 percent. The diol residues, $-O-R^1-O-$ and $-O-R^3-O-$, are present in an amount a of 0 to 100 mol percent and in an amount c of 100 to 0 mol percent, respectively. The branching agent, BA, is present in an amount x of 0.01 to 10 weight percent based on the total weight of acid residues, diol residues and branching agent. A foamed article of the branched random aliphatic-aromatic copolymers is disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

- 1 -

BIODEGRADABLE FOAMABLE CO-POLYESTER COMPOSITIONS

FIELD OF INVENTION

This invention relates to foamable copolyester compositions, and more particularly to such compositions that are biodegradable.

5

BACKGROUND OF THE INVENTION

Many polymeric materials are foamed to provide low density articles such as films, cups, food trays, decorative ribbons, and furniture parts. For example, 10 polystyrene beads containing low boiling hydrocarbons such as pentane are formed into lightweight foamed cups for hot drinks such as coffee, tea, hot chocolate, and the like. Polypropylene can be extruded in the presence of blowing agents such as nitrogen or carbon dioxide gas 15 to provide decorative films and ribbons for package wrappings. Also, polypropylene can be injection molded in the presence of blowing agents to form lightweight furniture such as lightweight chairs and table legs.

Polyesters and co-polyesters typically have a much 20 higher density (e.g. about 1.3 g/cc) than other polymers. Therefore, foaming of polyester materials is desirable to decrease weight for their use in making molded parts, films, sheets, food trays, and the like. Such foamed articles also have better insulating 25 properties than non-foamed parts. However, foaming polyesters is difficult. The low melt viscosity and low melt strength of typical poly(ethylene terephthalate) and related co-polyesters create polymer melts which do not adequately retain the bubbles of expanding gases 30 during molding or extrusion operations. Providing polyesters which could be foamed with conventional foaming systems is therefore desirable. Moreover, providing such foamable polyesters that are

- 2 -

biodegradable or environmentally non-persistent is even more desirable, especially for one time use items.

5 Polyesters with acceptable melt strength and melt viscosity for foaming have been prepared by treating preformed linear polyesters with monomeric branching agents such as multi-functional carboxylic acids, anhydrides or polyols to provide branched polyesters. These polyester compositions are disclosed in U.S. Patent Nos. 3,553,157; 4,132,707; 4,145,466; 4,999,388; 10 5,000,991; 5,110,844; 5,128,383; 5,134,028; 5,288,764; 5,399,595 and 5,519,066.

15 Several classes of biodegradable polymers are known in the prior art. For example, cellulose and cellulose derivatives with a low degree of substitution (i.e. less than one) are biodegradable. Polyhydroxyalkanoates (PHA), such as polyhydroxybutyrate (PHB), polycaprolactone (PCL), or copolymers of polyhydroxybutyrate and polyhydroxyvalerate (PHBV), have also been reported to be biodegradable.

20 Biodegradable polyesters include those prepared from aliphatic diacids or the corresponding carboxylic ester of lower alcohols and diols. The aliphatic polyesters have been used in very few applications mainly because of their low melting points and low glass 25 transition temperatures of generally less than 65°C and -30°C, respectively. At room temperature, the physical form of many of the aliphatic polyesters is a thick, viscous liquid. Therefore, aliphatic polyesters have not been generally useful. To the contrary aromatic 30 polyesters, such as poly(ethylene terephthalate), poly(cyclohexanedimethanol terephthalate), and poly(ethylene terephthalate-co-isophthalate), are commonly used materials yet are typically very resistant to biodegradation.

- 3 -

U.S. Patents 5,292,783 and 5,446,079 disclose block and random linear copolymers containing both aliphatic and aromatic structures which are biodegradable.

5 However, these polymers are difficult to foam because of their low melt viscosity and melt strength. Heretofore, aliphatic-aromatic copolymers have not been investigated for their foamability.

10 Thus, there exists a need in the art for a polyester composition having increased melt strength and viscosity suitable for foaming, yet also being biodegradable so as to be useful in disposable applications. Accordingly, it is to the provision of such an improved foamable polyester that the present invention is primarily directed.

15

SUMMARY OF THE INVENTION

20 A branched random aliphatic-aromatic copolyester suitable for foaming has increased melt viscosity and melt strength during extrusion and comprises repeating units of:

25 $[-\{(O-R^1-O)_a-(CO-R^2-CO)_b\}-\{(O-R^3-O)_c-(CO-Ar-CO)_d\}-](BA)_x$. The aliphatic acid residue, $-CO-R^2-CO-$, is present in an amount b ranging from 30 to 95 percent and contains from 3 to 40 carbon atoms. The aromatic acid residue, $-CO-Ar-CO-$, is present in an amount d ranging from 5 to 70 percent and contains from 8 to 40 carbon atoms. The diol residues, $-O-R^1-O-$ and $-O-R^3-O-$, are present in an amount a of 0 to 100 mol percent and in an amount c of 100 to 0 mol percent, respectively, and contain from 2 to 20 carbon atoms. The mole percent of the acid components and diol components are each based on 100 mole percent. The branching agent, BA, is present in an amount x of 0.01 to 10 weight percent based on the total weight of acid residues, diol residues and branching

- 4 -

agent. A foamed article of the branched random aliphatic-aromatic copolyester is disclosed.

DESCRIPTION OF THE INVENTION

5 Polyfunctional branching agents such as pentaerythritol, trimethylol propane, 1,2,4-butanetriol, trimellitic acid and pyromellitic acid are used as co-monomers to produce branched random aliphatic-aromatic copolyesters. These branched copolyesters have high
10 melt strength and melt viscosities and are foamable upon gas injection in an extruder. Their rheological properties are adequate to aid in cell formation, which is initiated by a cell nucleating agent, and in the expansion necessary for density reduction.

15 The branched random aliphatic-aromatic copolyesters of the present invention comprise repeating units of:
[$\{(\text{O}-\text{R}^1-\text{O})_a-(\text{CO}-\text{R}^2-\text{CO})_b\}-\{(\text{O}-\text{R}^3-\text{O})_c-(\text{CO}-\text{Ar}-\text{CO})_d\}\}-](\text{BA})_x$.
The aliphatic acid residue, $-\text{CO}-\text{R}^2-\text{CO}-$, is present in an amount b ranging from 30 to 95 mol percent, preferably 55 to 60 mol percent, and contains 3 to 40 carbon atoms, preferably 3 to 12 carbon atoms. The aromatic acid residue, $-\text{CO}-\text{Ar}-\text{CO}-$, is present in an amount d ranging from 5 to 70 mol percent, preferably 40 to 45 mol percent, and contains from 8 to 40 carbon atoms,
20 preferably 8 to 14 carbon atoms. The diol residues, $-\text{O}-\text{R}^1-\text{O}-$ and $-\text{O}-\text{R}^3-\text{O}-$, which contain from 2 to 20 carbon atoms are present in an amount a of 0 to 100 mol percent and in an amount c of 100 to 0 mol percent, respectively. The mole percent of the acid components
25 and diol components are each based on 100 mole percent.

30 The aliphatic acid components are preferably selected from the group consisting of malonic, succinic, glutaric, adipic, pimelic, azelaic, sebacic, fumaric, 2,2-dimethyl glutaric, suberic, 1,3-cyclopentane-
35 dicarboxylic, 1,4-cyclohexanedicarboxylic,

- 5 -

1,3-cyclohexanedicarboxylic, diglycolic, itaconic, maleic and 2,5-norbornanedicarboxylic. Hydroxy acids such as 4-(hydroxymethyl)cyclohexanecarboxylic acid, hydroxypivalic acid, 6-hydroxyhexanoic acid, glycolic acid, lactic acid and ester forming derivations thereof may also be used as aliphatic acid components to make these co-polyesters.

The aromatic acid components are preferably selected from the group consisting of 1,4-terephthalic, 10 1,3-terephthalic, 2,6-napthoic, 1,5-naphthoic, ester forming derivatives thereof and combinations thereof.

The diol components are preferably selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl 15 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, tetraethylene glycol, and combinations thereof. The diol components 20 may be the same or different.

The branching agent is represented by "(BA)_x" wherein "x" is the weight percent of the branching agent. The weight percent ranges from 0.01 to 10 25 percent, preferably 0.1 to 1.0 weight percent.

The branching agent preferably has a weight average molecular weight of about 50-5000, more preferably 92-3000, and a functionality of about 3-6. The branching agent may be a polyol having 3-6 hydroxyl groups, a polycarboxylic acid having 3 or 4 carboxyl groups or a hydroxy acid having a total of 3-6 hydroxyl and carboxyl groups.

Representative low molecular weight polyols that function as branching agents include glycerol, 35 trimethylolpropane, 1,2,4-butanetriol, pentaerythritol,

- 6 -

1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl)cyclohexane, tris(2-hydroxyethyl) isocyanurate, and dipentaerythritol. Particular branching agent examples of higher molecular weight 5 polyols (MW 400-3000) are triols derived by condensing alkylene oxides having 2-3 carbons, such as ethylene oxide and propylene oxide with polyol initiators.

Representative polycarboxylic acids that may be used as branching agents include hemimellitic acid, 10 trimellitic acid, trimesic acid, pyromellitic acid, benzene tetracarboxylic acid, benzophenone tetracarboxylic acid, 1,1,2,2-ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid, 1,3,5-pentane-tricarboxylic acid, and 1,2,3,4-cyclopentanetetra-carboxylic acid. Although the acids may be used as such, preferably they are used in the form of their lower alkyl esters or their cyclic anhydrides in those 15 instances where cyclic anhydrides can be formed.

Representative hydroxy acids as branching agents 20 include malic acid, citric acid, tartaric acid, 3-hydroxyglutaric acid, mucic acid, trihydroxyglutaric acid, and 4-(beta-hydroxyethyl)phthalic acid. Such hydroxy acids contain a combination of 3 or more hydroxyl and carboxyl groups.

Especially preferred branching agents include 25 trimellitic acid, trimesic acid, pentaerythritol, trimethylol propane and 1,2,4-butanetriol.

The preparation of polyesters and copolymers is well known in the art, such as disclosed in U.S. Patent 30 2,012,267. Such reactions are typically operated at temperatures from 150°C to 300°C in the presence of polycondensation catalysts such as titanium isopropoxide, manganese diacetate, antimony oxide, dibutyl tin diacetate, zinc chloride, or combinations 35 thereof. The catalysts are typically employed in

- 7 -

amounts between 10 to 1000 parts per million (ppm), based on total weight of the reactants.

A branched random aliphatic-aromatic copolyester of the present invention is poly(tetramethylene adipate-co-terephthalate) branched with 0.5 weight percent pentaerythritol and containing 43 mole percent terephthalate. This copolyester is produced when dimethyladipate, dimethyl terephthalate, pentaerythritol and 1,4-butanediol are heated at 190°C for 1 hour, 200°C for 2 hours, 210°C for 1 hour, then at 250°C for 1.5 hours under vacuum in the presence of 100 ppm of Ti present initially as $Ti(O^iPr)_4$. The copolyester is typically pelletized after formation for use in extrusion foaming.

Another branched random copolyester of the present invention is poly(tetramethylene adipate-co-terephthalate) branched with 0.3 weight percent pyromellitic dianhydride and containing 43 mole percent terephthalate. This copolyester is produced via reactive extrusion of linear poly(tetramethylene adipate-co-terephthalate) with pyromellitic dianhydride using an extruder. This copolyester may be foamed directly during the extrusion or pelletized for later use in foaming.

The branched aliphatic-aromatic copolyester pellets are dried in a conventional or vacuum oven and are extruded or molded by conventional techniques. These branched copolymers are useful in the manufacture of films, tubes, foams, blow molded objects, extrusion coated materials, food packaging containers, injection molded parts and the like. While these branched copolymers may be used in many molding or extrusion applications such as injection molding, injection blow molding, extrusion and extrusion blow molding to form non-foamed products, these branched copolymers are

- 8 -

preferably used to prepare foamed articles such as for use in the food packaging, construction, auto or graphic arts industries.

5 Foaming polymers is a process well known in the art. Conventional extrusion techniques may be used to foam the branched copolyester of the present invention, preferably to densities less than 1.1 g/cc, more preferably, densities of less than about 0.2 g/cc. A typical equipment configuration for foam extrusion 10 processes consists of a single extruder, a liquid or gas blowing agent injection system, a die to shape the foam, a cooling unit such as a mandrel and a take-up system to collect the extruded foamed product. The extruder preferably has a high length to diameter ratio with a typical L/D of 30:1. The blowing agent injection system 15 typically comprises a pump or gas cylinder with injector valves. In such a process a two-stage screw is typically used.

20 The branched copolyester and a cell nucleating agent are added to the extruder feed hopper (or hoppers) and fed to the feed section of the screw. The branched copolyester and the nucleating agent are melted and compounded in the transition section of the screw.

25 Any nucleating agent may be used as long as the nucleating agent is capable of providing a nucleation site. Suitable nucleating agents include, for example, titanium dioxide, talc, chopped fiber glass, alumina, clay, and fumed silica. A combination of nucleating agents may also be added.

30 The blowing agent is injected in the transition section of the screw. Blowing agents are used in amounts of about 0.01 to about 20 weight percent, based on the total weight of the branched copolyester and blowing agent, to obtain the desired high expansion

- 9 -

ratios. Concentrations of about 0.1 to about 5 weight percent are typical.

Suitable blowing agents include inert gases, such as nitrogen and carbon dioxide; hydrocarbons boiling at about -40°C to about 45°C, such as propane, butane, and pentane; hydrofluorocarbons, such as 1,1-difluoroethane and 1,1,1,2-tetrafluoroethane; hydrochlorofluorocarbons; and gas liberating chemical blowing agents, such as sodium bicarbonate, a combination of citric acid and sodium bicarbonate, a combination of citric acid and sodium carbonate, azodicarbonamide, and various endothermic blowing agents which release CO₂ and/or N₂. Mixtures of blowing agents may also be used.

The branched copolyester melt containing a specific mixed-in ratio of dissolved and dispersed blowing agent, the amount of which depends upon type of blowing agent, temperature, pressure and other specific extrusion conditions, is then extruded through the die whereupon the melt expands and is optionally shaped, cooled and collected. The temperature profile on the extruder is chosen such that the branched polyester is in a molten state prior to the injection of the blowing agent. The temperatures of the extruder zones beyond the gas-injection port, the optional static-mixer section and then the die are generally cooler to adequately cool the gas-laden melt allowing for expansion without cell-coalescence upon exiting the die.

A second more commonly used foam extrusion process employs two extruders operating in tandem. The branched copolyester and nucleating agent are melted and mixed in a primary extruder which is typically equipped with a high shear mixing screw. The gas or liquid blowing agent is normally injected near the end of the primary extruder. The melt/blowing agent composition is then transferred by means of a static heated tube, i.e. the

- 10 -

crossover section, to the feed section of the secondary extruder. The main purpose of the secondary extruder is to cool the gas-laden melt to an optimum melt temperature and pressure while transferring it to an annular die for foam formation without cell-coalescence upon exiting. For this reason, typically the secondary extruder is of a much larger diameter than the primary extruder. The tandem extruder configuration normally allows for excellent control of process variables.

Various screw configurations and designs can be used to prepare the foamed branched copolyesters. Mixers can be added to the screw or as independent components to disperse additives, nucleation agents, and blowing agents. Twin screw extruders or satellite extruders may also be used. Satellite extruders may be used for co-extrusion of a thin, solid, non-foamed, polymer layer on the foamed polyester sheet. Additionally, thin non-foamed layers of polymers may also be applied on the foamed sheet through a separate lamination process.

Biodegradable polymers are comprised of components which are reduced in film or fiber strength by microbial catalyzed degradation. The biodegradable polymers are reduced to monomers or short chains which are then assimilated by the microbes. In an aerobic environment, these monomers or short chains are ultimately oxidized to CO_2 , H_2O , and new cell biomass. In an anaerobic environment the monomers or short chains are ultimately oxidized to CO_2 , H_2 , acetate, methane, and cell biomass. Successful biodegradation requires direct physical contact between the biodegradable polymers and the active microbial population or the enzymes produced by the active microbial population. Moreover, certain minimal physical and chemical requirements such as

- 11 -

suitable pH, temperature, oxygen concentration, proper nutrients, and moisture level must be met.

Many of the branched copolymers described in the present invention degrade in a composting environment and hence are useful as environmentally nonpersistent foamed materials. Thin films (approximately two mil thickness) of poly(tetramethylene adipate-co-terephthalates) branched with 0.1 and 0.5 weight percent of pentaerythritol were evaluated for biodegradability as indicated by cracking or fragmentation. The films were placed in a petri dish on "lawns" of a white fungus, which had been isolated from grass and grown under pH control using proper nutrients. The petri dish provided an aerobic environment at room temperature with relatively high humidity and CO₂ concentration. As a control, two mil thin films of linear unbranched poly(tetramethylene (43:57) adipate-co-terephthalate) were placed along side on the same "lawn". The control films cracked and fragmented in 2.56 days normalized to per mil basis. The branched copolyester films containing 0.1 and 0.5 weight percent pentaerythritol degraded to the same extent in 2.69 and 3.68 days, respectively. The method of preparing these branched copolymers is given in the examples below.

Optionally, organic fillers such as starch, woodflour and organic fibers (for example, jute or hemp) may be added to these foamable branched copolymers during the foam processing step in order to (1) make a stiffer and easier to thermoform foam due to reduced sticking to the mold cavities and (2) enhance the biodegradability of the finished foam product or article. Use of such materials for this purpose is well known in the art.

This invention will be further illustrated by a consideration of the following examples, which are

- 12 -

intended to be exemplary of the invention. All parts and percentages in the examples are on a mol percent basis unless otherwise stated.

5

EXAMPLES

The materials and testing procedures used for the results shown herein in the examples were as follows.

1. Inherent viscosity (I.V.) was measured at 25°C using 0.50 grams of polymer per 100 mL of a solvent consisting of 60 percent by weight phenol and 40 percent by weight tetrachloroethane.
2. Melt Strength and Die Swell were determined according to ASTM D3835 measured at 280°C. The molten branched copolyester was extruded downward through a die 0.254 cm (0.1 inch) in diameter and 0.635 cm (0.25 inches) long at a shear rate of 20 second^{-1} using an Instron rheometer. The extrudate was allowed to fall freely. Die Swell was determined by measuring the diameter of the extrudate immediately outside the orifice and dividing the diameter measurement by the diameter of the orifice. Die Swell was reported as percent Die Swell. The diameter of the end of a 15.24 cm (six inch) length of extrudate, measured from the orifice of the die, was measured. The percent Melt Strength was determined from the formula:

$$\frac{D-0.254}{0.254} \times 100$$

30

35

wherein D is the diameter in centimeters of the extrudate supporting a 15.24 cm (six inch) length of extrudate. If D is less than 0.254 cm (0.1 inch), the Melt Strength is a negative number since there is no increase in the diameter of the extrudate. If D is greater than 0.254 cm (0.1 inch), the Melt Strength is a positive number.

- 13 -

3. Melt viscosity was measured according to ASTM D4440 at zero shear and 280°C.
4. The mol percentages of the diol and acid residues were determined by gas chromatography or NMR.
5. Weight Average Molecular weight was measured by gel permeation chromatography (GPC).
6. The melting points were measured by differential scanning colorimetry (DSC) under nitrogen and using a scan rate of 20°C/minute.

10

Example 1

This example illustrates the synthesis and physical properties of random poly(tetramethylene (40:60) glutarate-co-terephthalate) branched with 0.35 weight percent (wt %) pentaerythritol.

A polymer synthesis vessel was charged with 60 mol % dimethyl terephthalate, 40 mol % dimethyl glutarate, 100 mol % 1,4-butanediol, and 0.35 wt % of pentaerythritol branching agent. Added thereto was 100 ppm of titanium isopropoxide catalyst (solution in butanol). The mixture was purged with nitrogen under vigorous agitation and heated initially to 190°C. After one hour the temperature was raised to 200°C, and the ester exchange/esterification continued for another hour. After an additional two hours at 210°C, the ester exchange/esterification process was completed. The polycondensation was then conducted at 250°C under a vacuum of approximately 0.0133 kPa (0.1 mm of Hg). At the end of 1 hour of polycondensation, the polymer had an I.V. of 0.96 dL/g. The semi-crystalline white polymer had a DSC melting point of 148°C and a crystallization temperature of 82.6°C (from glass) and of 75.1°C (from melt). The polymer had a % melt strength of +23% and a % die swell of +116% at 170°C. For comparison, an unbranched sample of this same

- 14 -

polymer, poly(tetramethylene (40:60) glutarate-co-terephthalate) (I.V. 1.1 dL/g), had a % melt strength of -64% and a % die swell of -4% at 170°C.

5 **Example 2**

This example illustrates the synthesis and physical properties of random poly(tetramethylene (43:57) adipate-co-terephthalate) branched with 0.5 wt % pentaerythritol.

10 A polymer synthesis vessel was charged with 57 mol % dimethyl terephthalate, 43 mol % dimethyladipate, 100 mol % 1,4-butanediol and 0.5 weight % of pentaerythritol branching agent. Added thereto was 100 ppm of titanium isopropoxide catalyst (solution in Butanol). The
15 mixture was purged with nitrogen under vigorous agitation and heated initially to 190°C. After one hour the temperature was raised to 200°C, and the ester exchange/esterification continued for 2 more hours. After an additional hour at 210°C, the ester exchange/esterification process was completed. The poly-
20 condensation was then conducted at 250°C under a vacuum of approximately 0.0133 kPa (0.1 mm of Hg). At the end of 1.5 hours of polycondensation, the polymer had an I.V. of 0.98 dL/g. The semi-crystalline white polymer
25 had a DSC melting point of 109°C and a crystallization temperature of 45.6°C (from glass) and of 34.4°C (from melt). The polymer had a % melt strength of +40% and a % die swell of +149% at 130°C. This branched copolyester had a GPC weight average molecular weight of
30 84021, a polydispersity of 4.78, a Mz/Mn ratio of 17.75 and a zero shear melt viscosity of 3.27×10^5 poise at 130°C. For comparison, an unbranched sample of this same polymer, poly(tetramethylene (43:57) adipate-co-terephthalate) (IV 1.11 dL/g), had a % melt strength of

- 15 -

-25%, a % die swell of +34% at 130°C and a zero shear melt viscosity of 5.71×10^4 poise at 130°C.

Using the above described procedure, 100 lbs of the above branched copolyester was prepared in the form of 5 1/8" pellets for extrusion foaming experiments. The polymer was dried at 60°C in a dehumidifying dryer and then extruded in a single screw extruder at a melt temperature of 120°C. Powder talc (Polar Minerals Inc., Product #9102, median particle size 2-3 microns) was fed 10 into the feed throat of the extruder using a powder feeder attachment at a rate of 0.35 wt % based on the melt output. The diameter of the screw was 40 mm, L/D ratio was 30, and the nozzle die at the end of the 15 extruder had a bore of 5 mm. Nitrogen blowing agent at 1.5 wt % based on the melt output was injected into the mid-point of the extruder. A foamed rod was produced through the nozzle of the die. The foamed road had good smooth surface and a uniform cell structure with all 20 cells being closed. The density of the foamed rod was 0.75 g/cc.

For comparison, these foaming experiments were attempted using the unbranched poly(tetramethylene (43:57) adipate-co-terephthalate) (IV 1.11 dL/g). The 25 surface of the foamed rod was quite rough, and the foam cell structure quite irregular with numerous large open cells visible to the naked eye. These results were caused by the very low melt strength and melt viscosity of this unbranched copolyester.

30 **Example 3**

This example illustrates the synthesis and physical properties of random poly-(tetramethylene (43:57) adipate-co-terephthalate) branched with 0.1 wt % pentaerythritol.

- 16 -

A polymer synthesis vessel was charged with 57 mol % dimethyl terephthalate, 43 mol % dimethyl adipate, 100 mol % 1,4-butanediol and 0.1 weight % of pentaerythritol branching agent. Added thereto was 30 ppm of titanium 5 isopropoxide catalyst (solution in Butanol). The mixture was purged with nitrogen under vigorous agitation and heated initially to 190°C. After one hour the temperature was raised to 200°C, and the ester exchange/esterification continued for 2 more hours. 10 After an additional 2.5 hours at 210°C the ester exchange/esterification process was completed. The polycondensation was then conducted at 250°C under a vacuum of approximately 0.0133 kPa (0.1 mm of Hg). At the end of 1 hour of polycondensation, the polymer had 15 an I.V. of 0.85 dL/g. The semi-crystalline white polymer had a DSC melting point of 113.6°C and a crystallization temperature of 42.5°C (from glass) and of 47.6°C (from melt). The polymer had a % melt strength of -48% and a % die swell of +3% at 130°C. 20 This branched copolyester had a GPC weight average molecular weight of 48108, a polydispersity of 2.33 and a Mz/Mn ration of 4.47. For comparison, an unbranched sample of this same polymer, poly(tetramethylene (43:57) adipate-co-terephthalate) (IV 1.11 dL/g), had a % melt 25 strength of -25% and a % die swell of +34% at 130°C.

The present invention has provided a branched random aliphatic-aromatic copolyester that is suitable for foaming. A significant increase in melt viscosity 30 and melt strength is obtained in the branched copolyesters as compared to the same unbranched copolyesters.

The invention has been described in detail with particular reference to preferred embodiments thereof, 35 but it will be understood that variations and

- 17 -

modifications can be effected within the spirit and scope of the invention.

- 18 -

CLAIMS

I claim:

1. A branched random aliphatic-aromatic copolyester
suitable for foaming having increased melt viscosity and
5 melt strength during extrusion and comprising repeating
units of:

[$\{(\text{O}-\text{R}^1-\text{O})_a-(\text{CO}-\text{R}^2-\text{CO})_b\}-\{(\text{O}-\text{R}^3-\text{O})_c-(\text{CO}-\text{Ar}-\text{CO})_d\}\}-](\text{BA})_x$
wherein

10 (1) acid components are present in an amount of 100
mol percent comprising (a) $-\text{CO}-\text{R}^2-\text{CO}-$, an aliphatic acid
residue present in an amount b of 30 to 95 mol percent
and containing 3 to 40 carbon atoms and (b) $-\text{CO}-\text{Ar}-\text{CO}-$,
an aromatic acid residue present in an amount d of 5 to
70 mol percent and containing 8 to 40 carbon atoms; and

15 (2) diol components are present in an amount of 100
mol percent comprising (a) $-\text{O}-\text{R}^1-\text{O}-$ present in an amount
 a of 0 to 100 mol percent and (b) $-\text{O}-\text{R}^3-\text{O}-$ present in an
amount c of 100 to 0 mol percent, both (a) and (b)
containing 2 to 20 carbon atoms; and

20 (3) BA is a branching agent present in an amount x
of 0.01 to 10 weight percent based on the total weight
of (1), (2) and (3).

25 2. The branched random aliphatic-aromatic copolyester
of claim 1 wherein b is from 55 to 60 mol percent and d
is from 40 to 45 mole percent.

30 3. The branched random aliphatic-aromatic copolyester
of claim 1 wherein the acid components are dicarboxylic
acids selected from the group consisting of malonic,
succinic, glutaric, adipic, pimelic, azelaic, sebacic,
fumaric, 2,2-dimethyl glutaric, suberic, 1,3-
cyclopentane-dicarboxylic, 1,4-cyclohexanedicarboxylic,
1,3-cyclohexanedicarboxylic, diglycolic, itaconic,
35 maleic, 2,5-norbornanedicarboxylic, 1,4-terephthalic,

- 19 -

1,3-terephthalic, 2,6-napthoic, 1,5-naphthoic, ester forming derivatives thereof and combinations thereof.

4. The branched random aliphatic-aromatic copolyester of claim 1 wherein the acid components are hydroxy acids selected from the group consisting of 4-(hydroxymethyl)-cyclohexanecarboxylic acid, hydroxypivalic acid, 6-hydroxyhexanoic acid, glycolic acid, lactic acid, and ester forming derivatives thereof.

10 5. The branched random aliphatic-aromatic copolyester of claim 1 wherein the diol components are selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanediethanol, 1,4-cyclohexanediethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, tetraethylene glycol, and combinations thereof.

15 6. The branched random aliphatic-aromatic copolyester of claim 1 wherein the branching agent is present in an amount of 0.1 to 1.0 weight percent.

20 25 7. The branched random aliphatic-aromatic copolyester of claim 1 wherein the branching agent has a weight average molecular weight of 50-5000.

30 8. The branched random aliphatic-aromatic copolyester of claim 7 wherein the weight average molecular weight is 92-3000 and the branching agent has a functionality of 3-6.

- 20 -

9. The branched random aliphatic-aromatic copolyester of claim 1 wherein the branching agent is selected from the group consisting of a polyol having 3-6 hydroxyl groups, a polycarboxylic acid having 3 or 4 carboxyl groups, esters or anhydrides of the polycarboxylic acid, and a hydroxy acid having a total of 3-6 hydroxyl and carboxyl groups.

5

10. The branched random aliphatic-aromatic copolyester of claim 9 wherein the polyol is selected from the group consisting of glycerol, trimethylolpropane, 1,2,4-butanetriol, pentaerythritol, 1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl)cyclohexane, tris(2-hydroxyethyl) isocyanurate, and

15 dipentaerythritol.

11. The branched random aliphatic-aromatic copolyester of claim 9 wherein the polycarboxylic acid is selected from the group consisting of hemimellitic acid, trimellitic acid, trimesic acid, pyromellitic acid, benzene tetracarboxylic acid, benzophenone tetracarboxylic acid, 1,1,2,2-ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid, 1,3,5-pentanetricarboxylic acid, and 1,2,3,4-cyclopentanetetra-

20 carboxylic acid.

25

12. The branched random aliphatic-aromatic copolyester of claim 9 wherein the hydroxy acid is selected from the group consisting of malic acid, citric acid, tartaric acid, 3-hydroxyglutaric acid, mucic acid, trihydroxyglutaric acid, and 4-(beta-hydroxyethyl)phthalic acid.

30

- 21 -

13. The branched random aliphatic-aromatic copolyester of claim 9 wherein the branching agent is selected from the group consisting of trimellitic acid, trimesic acid, pentaerythritol, trimethylol propane and 1,2,4-
5 butanetriol.

14. A foamed article made from the branched random aliphatic-aromatic copolyester of claim 1.

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/US 97/08067

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C08G63/20 C08G63/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C08G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 569 148 A (SHOWA HIGHPOLYMER CO., LTD.) 10 November 1993 see page 4, column 6, line 37 - page 5, column 7, line 53; claims 1-21 ---	1-14
P,X	DE 44 40 858 A (BASF AG) 23 May 1996 see claims 1,2,19-25 ---	1-14
Y	WO 91 02015 A (THE PENNSYLVANIA RESEARCH CORPORATION) 21 February 1991 see claims 1-8,10,11 ---	1-14
Y	US T954005 H (DAVIS ET AL) 4 January 1977 see the whole document ---	1-14
A	EP 0 650 994 A (CHEIL SYNTHETICS INC) 3 May 1995 see page 2, line 41 - line 42; claims 1-3 -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

1

Date of the actual completion of the international search 13 August 1997	Date of mailing of the international search report 15.09.97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Authorized officer Decocker, L

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal Application No

PCT/US 97/08067

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 569148 A	10-11-93	JP 7090715 A		04-04-95
		JP 7011515 A		13-01-95
		JP 7011516 A		13-01-95
		JP 7011517 A		13-01-95
		JP 6248516 A		06-09-94
		JP 6248510 A		06-09-94
		JP 2589908 B		12-03-97
		JP 7048768 A		21-02-95
		EP 0569143 A		10-11-93
		EP 0569144 A		10-11-93
		EP 0569145 A		10-11-93
		EP 0569146 A		10-11-93
		EP 0569147 A		10-11-93
		EP 0569149 A		10-11-93
		EP 0581410 A		02-02-94
		EP 0569150 A		10-11-93
		EP 0569151 A		10-11-93
		EP 0569152 A		10-11-93
		EP 0569153 A		10-11-93
		EP 0569154 A		10-11-93
		JP 6246767 A		06-09-94
		US 5391644 A		21-02-95
		JP 6248061 A		06-09-94
		US 5324556 A		28-06-94
		JP 7047599 A		21-02-95
		US 5310872 A		10-05-94
		US 5349028 A		20-09-94
		JP 7047598 A		21-02-95
		US 5314969 A		24-05-94
		JP 6246810 A		06-09-94
		JP 6172578 A		21-06-94
		US 5321052 A		14-06-94
		US 5362765 A		08-11-94
		JP 6248509 A		06-09-94
		US 5348700 A		20-09-94
		US 5525409 A		11-06-96
		JP 6248104 A		06-09-94
		US 5314927 A		24-05-94
		JP 6248106 A		06-09-94
		JP 6171050 A		21-06-94

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat'l Application No

PCT/US 97/08067

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 569148 A		US 5360663 A JP 6172621 A US 5530058 A JP 6170941 A US 5324794 A	01-11-94 21-06-94 25-06-96 21-06-94 28-06-94
DE 4440858 A	23-05-96	AU 2925395 A WO 9615173 A NO 972226 A	06-06-96 23-05-96 14-07-97
WO 9102015 A	21-02-91	AU 6338590 A EP 0496737 A	11-03-91 05-08-92
US T954005 H	04-01-77	NONE	
EP 650994 A	03-05-95	JP 2545704 B JP 7252351 A US 5445778 A	23-10-96 03-10-95 29-08-95