(54) 发明名称

靛蓝染色纯棉牛仔布剥色剂及剥色方法

(57) 摘要

本发明公开了一种靛蓝染色纯棉牛仔布剥色剂及剥色方法。属于牛仔剥色技术领域。其特征在于，所述剥色剂包括按重量百分比的下述组成：渗透剂5-10%，分散剂20-25%，余量为水；所述的渗透剂为阴离子表面活性剂，所述分散剂选自聚乙二醇、聚醚型非离子表面活性剂、聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯酸类的任意一种。本发明的剥色剂及剥色工艺，剥色效果好，且具有非常好的环保性，适用于工业应用的大规模推广。
1. 一种靛蓝染色纯棉牛仔布的剥色方法，其特征在于，包括以下步骤：根据织物的重量，按照浴比 1:30 加入所需体积的水，升温至 90℃，依次投入烧碱 2g/L、剥色剂 4.5 g/L、平平加 0.5g/L、保险粉 4g/L，搅拌使药剂溶解，然后投入织物，进行搅拌、循环或超声波振动，保温 40min，排水，用清水洗涤 2-3 次；

所述剥色剂包括按重量百分比的下述组成：渗透剂 5-10%，分散剂 20-25%，余量为水；所述的渗透剂为烷基苯磺酸盐、脂肪烃磺酸盐、脂肪醇和脂肪醇醚硫酸盐、脂肪醇和脂肪醇聚氧乙烯醚磷酸酯的任意一种；所述分散剂选自聚醚型非离子表面活性剂、聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯酸类的任意一种。
靛蓝染色纯棉牛仔布剥色剂及剥色方法

[0001] 技术领域：

[0002] 本发明涉及牛仔布剥色技术领域，更具体的讲，是涉及一种靛蓝染色纯棉牛仔布剥色剂及剥色方法。

[0003] 背景技术：

[0004] 我国每年对棉、毛、丝、麻等天然纤维的消费相当巨大。据统计，我国纺织业每年消耗的棉、麻、化纤等各类纺织纤维原料达4500万吨；同时，根据专家测算，每年在生产环节产生的纺织边角料和家庭废弃的纺织品合计超过2200万吨。对废旧纺织品的综合利用，不仅可以节约用地，减少环境污染，还可以补充我国纺织行业的原料供给。

[0005] 随着生产量和消费量的与日俱增，大量的废旧纺织品已呈“几何式”增长，废旧纺织品回收利用不仅有利于减轻废弃物的处理难度，还能节约能源并减少二氧化碳和其他气体的排放。

[0006] 传统牛仔布料是指用棉纱靛蓝染色作经纱，本色纱作纬纱，采用三上一下右斜组织交织而成的粗号斜纹布。牛仔服装从产生到现在的100多年的时间里，已经从蓝领工人工作服演变为普通民众的休闲装。牛仔面料也随着牛仔服装风靡全球而走向世界的各个角落。随着我国加入世界贸易组织以及牛仔服装的全球化趋势，我国牛仔布生产发展迅速，已经成为世界最具发展潜力的市场，而纯棉牛仔布一直以来都是牛仔布家族的主力军。

[0007] 牛仔布边角料回收具有较大的商业价值与环保意义，对牛仔布进行剥色是牛仔布边角料回收利用的一个重要环节。目前，人们对牛仔布剥色通常采用氧化法，利用较强的氧化剂如次氯酸钠、高锰酸钾等对靛蓝分子进行氧化破坏而脱色，由此带来剥色液含污率高，废液排放存在严重的环境污染这一问题，同时对棉纤维的性能损伤严重，对进一步利用纤维开发后续产品具有一定的影响。

[0008] 单独采用保险粉和、烧碱对靛蓝进行还原剥色，纤维上的还原产物不易去净，由于靛蓝分子发色体系受保险粉的还原破坏是可逆的，还原产物在空气中氧作用下又能恢复成靛蓝本色导致剥色效果不佳。

[0009] 本发明针对上述情况，经过系统研究配制了一种与保险粉、烧碱联用的剥色剂，同时通过优化剥色工艺，获得较好的剥色效果，经沉淀过滤后靛蓝可以回收，一则降低了废水的含污率，二则靛蓝去除后剥色液又可以重复利用，从而降低了废水排放，不失为是一种绿色的剥色技术。

[0010] 发明内容：

[0011] 本发明的第一方面目的是提供一种靛蓝染色纯棉牛仔布剥色剂，其特征在于，包括按重量百分比的下述组成：渗透剂5-10%，分散剂20-25%，余量为水。

[0012] 所述的渗透剂为阴离子表面活性剂，优选为烷基苯磺酸盐，脂肪烃和烯烃磺酸盐、脂肪醇和脂肪醇醚硫酸盐、脂肪醇和脂肪醇聚氧乙烯醚磷酸酯的任意一种。其结构式如下：

[0013]
[0014] 上述结构式中：R 为饱和脂肪烃、不饱和脂肪烃或芳香烃；M 为金属离子，如 K⁺, Na⁺等。

[0015] 所述分散剂选自聚乙二醇、聚醚型非离子表面活性剂、聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯酸类的任意一种。其结构式如下：

\[HO(CH_2CH_2O)_nH \quad \text{和} \quad HO(C_2H_4O)_a(C_2H_6O)_b(C_2H_4O)_cH \]

[0017] 上述结构式中：n，a，b，c 分别为正整数。

[0018] 本发明的第二方面目的是提供一种靛蓝染色纯棉牛仔布的剥色方法，其特征在于，包括以下步骤：

[0019] 根据织物的重量，按浴比 1:20-30 加入所需体积的水，升温至 85-95℃，依次投入烧碱 2-3g/L、剥色剂 4-5g/L、平平加 0 3-5g/L、保险粉 4-5g/L，搅拌使药剂溶解，然后投入织物，进行搅拌、循环或超声波振动，保温 40-50min，排水，用清水洗涤 2-3 次。

[0020] 进一步的设置如下：保险粉 4g/L，烧碱 2g/L，平平加 0 为 5g/L，剥色剂 4.5g/L，浴比为 1:30，温度为 90℃，时间 40min。在上述工艺处方下，可以获得最佳的靛蓝染色纯棉牛仔布剥色效果。

[0021] 本发明采用的工作原理如下：

[0022] 传统牛仔布料是指用棉纱靛蓝染色作经纱，本色纱作纬纱，采用三上一下右斜组织交织而成的粗号斜纹布。靛蓝是蓝色粉末（可能偏深蓝），无臭，微溶于水、乙醇、甘油和丙二醇，不溶于油脂。靛蓝能被还原剂还原成可溶性的隐色体盐，又容易被空气氧化恢复成难溶性的靛蓝色盐。反应式如下：

[0023]
[0024] 骁蓝本身对棉纤维没有亲和力，染色时需要用还原剂将它还原成溶性的对棉纤维具有一定亲和力的隐形体盐，隐形体盐上染至纤维上后又被空气氧化成为骁蓝色淀而吸附在纤维上。

[0025] 本发明通过对骁蓝的剥色原理进行研究，确定最佳的剥色剂和剥色工艺，本发明在进行剥色处理时，主要是经过以下四个阶段：

[0026] 第一阶段：骁蓝还原成溶性的隐形体盐。在足量的保险粉、烧碱中，上染在纤维上的骁蓝均被还原变成黄色的溶性隐形体盐，在剥色剂的吸附、增溶作用下，导致很大一部分隐形体盐溶落到水溶液中，而少部分隐形体盐因对纤维存在亲和力而停留在织物上。

[0027] 第二阶段：隐形体盐被氧化恢复成骁蓝，并被乳化、分散至水溶液中。随着剥色时间延长，剥色液中少量剩余的保险粉不断被空气分解消耗，当保险粉浓度减至不足时，溶落到液体中的隐形体盐和吸附在纤维表面上的隐形体盐又逐渐被空气氧化恢复成溶性的骁蓝，并立即被剥色液中的剥色剂乳化、分散在水溶液中，不再沉积到织物上。

[0028] 第三阶段：纤维内部的隐形体盐不断由内向外迁移扩散，并被氧化、分散剥落至水溶液中。随着纤维表面上的隐形体盐不断被氧化、乳化、分散剥落至水溶液中，纤维表面的隐形体盐浓度降低，使纤维内外隐形体盐产生浓度差，促使纤维内部的隐形体盐逐渐向表面扩散迁移，并不断被氧化、乳化、分散至水溶液中，周而复始，直至内部的隐形体盐全部迁移。

[0029] 第四阶段：剥色洗除残留吸附在纤维表面上的骁蓝色淀。由于骁蓝色淀对织物没有亲和力，所以吸附在纤维表面的骁蓝色淀容易被水洗洗除，此时残留在织物上的平平加0和剥色剂能进一步帮助骁蓝色淀的去除。

[0030] 由于剥落的骁蓝在水中呈微溶性，经过静置一段时间后，骁蓝能发生沉降，经过过滤分离，骁蓝可以回收，而剥色液又会呈无色的溶液，溶液里仅含有一些无机盐（硫酸钠）、烧碱及一些剥色剂，只要追加适量的保险粉、烧碱和助剂，可以重复利用，降低废水的排放。

[0031] 综上，本发明的剥色剂及剥色工艺，剥色效果好，且具有非常好的环保性，适于工业应用的大规模推广。

[0032] 以下结合附图和具体实施方式对本发明作进一步说明。

[0033] 附图说明：

[0034] 图 1 为保险粉用量对剥色效果的影响；

[0035] 图 2 为平平加0对剥色效果的影响；

[0036] 图 3 为剥色剂与平平加0配合使用对剥色效果的影响；

[0037] 图 4 为正交分析效果图。

[0038] 具体实施方式：

[0039] 1. 实验对象和助剂
织物为靛蓝染色纯棉牛仔布。

剥色剂的组分说明（质量百分含量）：

- 漂白剂：5-10%
- 分散剂：20-25%
- 水：余量

100%。

渗透剂为烷基苯磺酸盐，也可以用脂肪烃和烯烃磺酸盐、脂肪醇和脂肪醇醚硫酸盐、脂肪醇和脂肪醚聚氧乙烯醚磷酸酯替代，亦可获相同效果。

分散剂为聚乙二醇，也可以用聚醚型非离子表面活性剂，聚乙烯吡咯烷酮，聚乙烯醇，聚丙烯酸类替代，亦可获相同效果。

1、剥色工艺

工艺处方如下：

- 保险粉：4-5g/L
- 烧碱（100%）：2-3g/L
- 平平加0：3-5g/L
- 剥色剂：4-5g/L
- 温度：85-95°C
- 时间：40-50min
- 浴比：20-30:1。

工艺流程：根据织物的重量及浴比，在剥色容器中注入相应量的水，升温至85-95°C，依次按处方投入烧碱、剥色剂、平平加0，最后投入保险粉，进行搅拌使药剂溶解，然后投入织物，进行搅拌、循环或超声波振动，使织物与剥色液具有较好的相对运动，保温40-50min，排水，用清水洗涤2-3次。

2、剥色效果检测。

根据上述剥色工艺，分别变化保险粉用量、平平加0用量、剥色剂用量等参数，并分别检测其对靛蓝染色纯棉牛仔布剥色效果的影响。

剥色效果评价方法：

- 用Datcolor SF-600测配色仪，在D65光源及10°视角下，在其最大吸收波长处，测定其反射率R，再通过计算获得K/S值。所得K/S值越小，其表观色深越浅，剥色效果越好。

3、保险粉用量的影响。

按照上述剥色工艺，变化保险粉用量，烧碱2g/L，浴比为1:20,95°C恒温振荡剥色30min，取出剥色试样用冷水冲洗干净后烘干，测定其K/S值，结果如图1所示。

4、从图1可以看出：

没有采用任何剥色剂的情况下，保险粉浓度以4g/L为最佳，其K/S值约为1。保险粉浓度太低，靛蓝不能被充分还原成可溶性色体盐，仍以色淀的形式吸附在纤维上，颜色不能很好的褪去。保险粉浓度太高，用量过剩，在有限时间内保险粉不能耗尽，色体盐不能被空气氧化恢复为靛蓝，可溶性色体盐对纤维具有一定的亲和力，所以对纤维具有上染倾向，而使织物剥色不净。
5. 平平加 0 的影响。

按上述剥色工艺，变化平平加 0 的用量范围为 5-15g/L，保险粉用量为 4g/L，
NaOH 为 2g/L, 洗比为 1:20,95℃恒温振荡剥色 30min, 取出剥色试样用冷水冲洗干净后烘干,
测定其 K/S 值，结果见图 2。

从图 2 数据可看出：

平平加 0 的单独加入并未对剥色起到积极作用，试样的 K/S 值普遍比没有加入平平加 0（见图 1，保险粉用量为 4g/L 时的 K/S 值 0.99）高，颜色深，平平加 0 的用量与剥色效果之间并没有较为明显的规律可寻，因为平平加 0 对靛蓝具有增溶作用，使难溶性靛蓝在 95℃水溶液中具有一定的溶解度，从而使织物产生一定的亲和力而沾色。

根据上述剥色工艺，将配制的剥色液与平平加 0 复合使用。其中：加入 5g/L 平平加 0，并改变剥色剂的用量，保险粉用量为 4g/L, NaOH 为 2g/L, 洗比为 1:20,95℃, 30min, 取出剥色试样用冷水冲洗干净后烘干，测定其 K/S 值，结果见图 3。

从图 3 数据可知：

剥色剂与平平加 0 配合使用后，对剥色效果具有较为明显的促进作用，当剥色剂 QS 用量为 4.0g/L 时，其 K/S 值达到最小为 0.50, 比未加任何助剂时的剥色效果要好。分析认为两种助剂起到较好的协同作用，将溶液中靛蓝较好地乳化分散在水中，降低对织物的沾污。

7. 工艺优化。

根据前述的实验结果，制定如下正交实验方案，如表 1 所示，确定最佳工艺组合。

表 1. 正交试验表。

<table>
<thead>
<tr>
<th>因素</th>
<th>平平加 0 (g/L)</th>
<th>剥色剂 (g/L)</th>
<th>时间 (min)</th>
<th>温度 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水平 1</td>
<td>5</td>
<td>3.5</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>水平 2</td>
<td>7</td>
<td>4.0</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>水平 3</td>
<td>9</td>
<td>4.5</td>
<td>40</td>
<td>95</td>
</tr>
</tbody>
</table>

注：保险粉用量为 4g/L, NaOH 为 2.0g/L, 洗比为 1:30。

根据表 1 的正交实验方案，分别测定其 K/S 值，统计结果如表 2、图 4 所示。

表 2. 正交实验结果表。

<table>
<thead>
<tr>
<th>因素</th>
<th>平平加 0</th>
<th>剥色剂</th>
<th>时间</th>
<th>温度</th>
<th>实验结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>实验 1</td>
<td>5</td>
<td>3.5</td>
<td>20</td>
<td>85</td>
<td>0.5920</td>
</tr>
<tr>
<td>实验 2</td>
<td>5</td>
<td>4.0</td>
<td>30</td>
<td>90</td>
<td>0.4594</td>
</tr>
<tr>
<td>实验 3</td>
<td>5</td>
<td>4.5</td>
<td>40</td>
<td>90</td>
<td>0.1292</td>
</tr>
<tr>
<td>实验 4</td>
<td>7</td>
<td>3.5</td>
<td>30</td>
<td>95</td>
<td>0.7356</td>
</tr>
<tr>
<td>实验 5</td>
<td>7</td>
<td>4.0</td>
<td>40</td>
<td>85</td>
<td>0.4288</td>
</tr>
<tr>
<td>实验 6</td>
<td>7</td>
<td>4.5</td>
<td>20</td>
<td>90</td>
<td>0.4165</td>
</tr>
<tr>
<td>实验 7</td>
<td>9</td>
<td>3.5</td>
<td>40</td>
<td>90</td>
<td>0.1972</td>
</tr>
<tr>
<td>实验 8</td>
<td>9</td>
<td>4.0</td>
<td>20</td>
<td>95</td>
<td>1.4140</td>
</tr>
<tr>
<td>实验 9</td>
<td>9</td>
<td>4.5</td>
<td>30</td>
<td>85</td>
<td>0.4582</td>
</tr>
</tbody>
</table>
由表2可以看出：

采用保险粉对牛仔布进行剥色时，剥色时间影响最大，其次是剥色剂的用量与剥色温度。

从图4中可以发现：

平平加0的用量增加，K/S值不断升高，剥色效果呈下降趋势，而当平平加0用量不足时，乳化效果不能很好的显现，用量太高，又会增加靛蓝的溶解度，从而造成对织物的沾色，平平加0为5g/L时为最佳，而与之配合的剥色剂用量以4.5g/L为佳。

剥色温度太低，不利于纤维的溶胀，从而不利于隐色体盐由内向外的迁移。剥色温度太高，会增加靛蓝在水中的溶解度，从而造成对纤维的沾色，综合而言，温度以90℃为最好。

剥色时间的控制显得很关键。时间太短，隐色体盐氧化恢复不完全，部分隐色体盐残留在纤维上，取出织物时会氧化恢复成靛蓝色，晾附在织物上呈现一定深度的色泽。时间太长，会造成能耗增加和劳动力成本的增加。剥色时间控制在40min即可获得较佳剥色效果。

综上分析，靛蓝染色纯棉牛仔布剥色的最优工艺为：保险粉4 g/L，烧碱2 g/L，平平加0为5g/L，剥色剂4.5g/L，浴比为3:1，温度为90℃，时间40min。
图 1
图 2

图 3
图 4