ORGANOTIN-CONTAINING COMPOSITION FOR THE STABILIZATION OF POLYMERS OF VINYL CHLORIDE

Inventor: Boyd Cooray, Oldham, England
Assignee: Akzo N.V., Arnhem, Netherlands

Filed: May 17, 1984

Foreign Application Priority Data
May 18, 1984 [NL] Netherlands 8301760

Int. Cl. C08K 5/58; C07F 7/22
U.S. Cl. 524/180, 556/105
Field of Search 524/180, 182; 260/429.7

An organotin-containing composition for the stabilization of polymers or copolymers of vinyl chloride in which there is incorporated a stabilizing amount of an organotin compound containing at least two tin atoms and which is a mercapto, hydroxy or alkoxy substituted ester of a mercapto acid substituted organotin mercapto acid diester.

13 Claims, No Drawings
ORGANOTIN-CONTAINING COMPOSITION FOR THE STABILIZATION OF POLYMERS OF VINYL CHLORIDE

The invention relates to an organotin-containing composition for the stabilization of polymers or copolymers of vinyl chloride in which there is incorporated a stabilizing amount of an organotin compound containing at least two tin atoms, to a process for the preparation of such a composition, to polymers or copolymers of vinyl chloride in which there is incorporated a stabilizing amount of said composition, and to shaped objects entirely or partly made from these stabilized polymers.

A composition of the type indicated above is disclosed in U.S. Pat. No. 4,111,903. The organotin compound, which contains at least two tin atoms, is prepared by reacting one mole of an alkylene glycol dimeracetate with two moles of an organotin oxide or an organotin dilhalide and two moles of an alkyl ester of a mercapto carboxylic acid, an alkyl mercaptan, and/or a monoalkyl maleate. It has been found that the stabilizing effect of such a composition can be considerably increased or the amount in which it is to be incorporated in order to obtain a particular stabilizing effect can be considerably reduced by the incorporation in said composition of an organotin compound which corresponds to the formula:

\[
R_6 \quad A \quad S \quad (\text{C}_n \text{H}_{2n+1}) \quad Y \quad OOC \quad (\text{C}_m \text{H}_{2m+1}) \quad S \quad Z,
\]

wherein A and Z represent tin-containing groups which may be the same or different and both correspond to the formula:

\[
R_3 \quad \left[\frac{R_4}{(\text{CH}_2)} \quad \frac{R_5}{\text{C}(\text{H})_O} \right] \quad \frac{O}{R_4} \quad \frac{R_5}{(\text{C}_m \text{H}_{2m+1}) \quad S \quad \frac{R_3}{(\text{C}_n \text{H}_{2n+1})}},
\]

wherein \(R_1 \) and \(R_2 \) may be the same or different and may represent an alkyl group having 1 to 18 carbon atoms, the group

\[
-\frac{S}{(\text{C}_n \text{H}_{2n+1}) \quad \text{COOY} \quad \text{OOC} \quad (\text{C}_m \text{H}_{2m+1}) \quad S \quad -\text{D},}
\]

wherein \(D \) corresponds to the same formula as A and Z, with the proviso that when in the group \(R_1 \) and \(R_2 \) both represent an alkyl group or the group

\[
R_4 \quad \left[\frac{R_5}{(\text{CH}_2)} \quad \frac{R_6}{\text{C}(\text{H})_O} \right] \quad \frac{O}{R_4} \quad \frac{R_5}{(\text{C}_m \text{H}_{2m+1}) \quad S \quad \frac{R_3}{(\text{C}_n \text{H}_{2n+1})}},
\]

or \(R_1 \) and/or \(R_2 \) in the group Z and/or D represent the group

\[
R_6 \quad \text{OCCH}_2 \text{CH}_2 \text{CH}_2 \quad -\text{R}_7,
\]

wherein \(R_6 \) represents an alkyl group having 1 to 18 carbon atoms which may be substituted or not with an alkoxy group having 1 to 18 carbon atoms, a polyoxyalkylene group consisting of oxyalkylene groups having 1 to 4 carbon atoms and of which the end group is an alkyl group or a hydrogen atom, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 4 carbon atoms or a phenyl group;

\(R_3 \), \(R_4 \), \(R_7 \) and \(R_8 \) may be the same or different and have the meaning of a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an aryl group;

\(R_5 \) represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms or a substituted or unsubstituted aryl group; \(R_6 \) has the meaning of a hydrogen atom or a methyl group;

\(X \) represents an \(O \) or \(S \) atom;

\(Y \) has the meaning of a divalent, substituted or unsubstituted aliphatic, cycloaliphatic or aromatic group having not more than 20 carbon atoms; and \(m \) and \(q \) have the meaning of a whole number from 1 to 6, \(n \) and \(r \) a whole number from 1 to 3, and \(p \) represents a whole number from 1 to 12.

For ease of preparation preference is given to a composition in which A, Z and D in the above formulae are identical.

It has been found that generally very favourable results are obtained when in the above formulae for the organotin compound the groups

\[
R_6 \quad \text{OCCH}_2 \text{CH}_2 \quad \text{group or}
\]

represent a branched or non-branched alkylene group having 1 to 6 carbon atoms, and \(Y \) is a branched or non-branched alkylene group or alkylene oxalkylene group having 2 to 10 carbon atoms. Preference is given to an organotin compound in which the groups
4,546,136

4	each represent a methylene group or ethylene group, Y is an ethylene group or butylene group, n = 1 and R3 represents an alkyl group having 1 to 8 carbon atoms. It has further been found that when in the first-mentioned formula R1 represents an alkyl group having 1 to 18 carbon atoms and R2 represents the group	5
5	an organotin composition having a remarkably high stabilizer performance is obtained when it contains a synergistic amount of a compound of the first-mentioned formula wherein R1 and R2 may be the same or different and represent an alkyl group having 1 to 18 carbon atoms. It has been found that this synergistic effect occurs when the weight ratio between the amount of monoalkyltin compound and dialkytin compound is at least 1:20. It has further been found that a synergistic effect is also obtained when the organotin-containing composition contains 5 to 90% by weight of an organotin compound of the first-mentioned formula and 10 to 95% by weight of a compound of the formula	10
10	wherein R represents an alkyl group having 8 to 18 carbon atoms, R' represents an alkyl group having 1 to 18 carbon atoms or an aryl group, r is an integer from 1 to 6 and s = 1 or 2. Examples of at least two tin atoms-containing organotin compounds according to the invention are: bis(di-2-n-butoxycarbonyl ethyl) tin 2-butoxyethylthioglycolate)ethylene glycol dithioglycolate, bis(di-2-n-butoxy carbonyl ethyl) tin 2-ethylthioethylthioglycolate)ethylene glycol dithioglycolate, bis(butylthioethylthioglycolate)propanediol-1,3 dithioglycolate, bis(di-2-n-butoxy carbonyl ethyl) tin 2-hexox-ethylthiopropionate)butanediol-1,4 dithiopropionate, bis(2-ethylhexyltin dipropoxyethylthioglycolate)hexanediol-1,6 dithioglycolate, bis(butylthi did-2-n-butoxyethylthioglycolate)propanediol-1,3 dithiopropionate. An important advantage to the organotin-containing compositions according to the invention is that even if they contain only a small percentage (say, 15% by weight) of an organotin compound of the first-mentioned formula, the same stabilizing efficiency as that of the known organotin-containing compositions may be obtained when the proportion of tin in the polymer is reduced by for instance 10% by weight, which means a considerable economy. The invention also relates to a process for the preparation of an organotin-containing composition as described in the afore-mentioned U.S. Pat. No. 4,111,903, where an organotin oxide or an organotin halide is reacted with the esterification products of a mercapto-	20
20	substituted carboxylic acid and a monofunctional and a bifunctional alcohol. The process according to the invention is characterized in that (A) the organotin compound is an alkyltin compound having a branched or non-branched alkyl group containing 1 to 18 carbon atoms, the monoalkyltin compound forming at least 5% by weight of the alkyltin compound, and/or an esterin compound of the formula	25
25	for the ester group, wherein R4 has the afore-mentioned meaning; (B) the mercapto-substituted carboxylic acid is a compound of the formula	30
30	wherein R3, R4 and m have the afore-mentioned meaning; (C) the monofunctional alcohol is a compound with corresponds to the formula	35
35	wherein R5, R6, X, r and n have the aforementioned meaning; (D) the divalent alcohol is a compound which corresponds to the formula HO—Y—OH, wherein Y has the afore-mentioned meaning, and (E) the molar ratio between the bifunctional alcohol and the monofunctional alcohol is in the range of 1:9 to 9:1. Examples of compounds which correspond to the formula	40
40	4-mercaptopbutyric acid 5-mercaptopentanoic acid 6-mercaptophexanoic acid 7-mercaptodecanoic acid 2-mercaptobutylpropionic acid orthomethyl mercaptobenzoic acid 2-mercapto-2,2-dimethylacetic acid 2-mercapto-2-butyralactic acid 2-mercapto-2-benzylactic acid 3-mercapto-2-methyl-propionic acid. Preference is given to 2-mercapto propionic acid and especially to mercapto acetic acid and 3-mercapto pro-	45
45	pionic acid. Examples of compounds which correspond to the formula	50
50	R4H5S(C)n=CCOOH are:	55
55	Examples of compounds which correspond to the formula	60
60	Examples of compounds which correspond to the formula	65
4,546,136

It has been found that very favourable results are obtained when the monoalkyltin compound forms 10 to 20 percent by weight of the alkyltin compound. Particularly for ease of preparation preference is given to a process in which the monofunctional alcohol used is a compound of the formula

\[
R\overset{X}{\rightarrow}R\overset{(CH_2)\cdot C(\cdot HO)}{\rightarrow}H.
\]

wherein the group

\[
R\overset{X}{\rightarrow}-(CH_2)\cdot C(\cdot HO)-
\]

has the meaning of a \(-CH_2CH_2O-\) or a \(-CH_3\) group.

The process according to the invention may be carried out as follows:

One mole of ethylene glycol dithioglycolate is reacted with two moles of an organotin oxide or organotin halide and two moles of an alkoxysilalyl ester of an alkylthioalkyl ester of, for instance, thioglycolic acid. The reaction is usually carried out by heating the reactants at 70°C to 100°C, preferably 90°C to 95°C under subatmospheric pressure until the theoretical amount of water has been evolved. The reaction mixture is preferably sparged with an inert gas, such as nitrogen, during the heating to assist in the removal of water. The products prepared in this way can be used without purification or further treatment to stabilize polymers or copolymers of vinyl chloride.

In addition to tin compounds there may be present other heat and light stabilizers, such as salts of barium cadmium, strontium, zinc and other polyvalent metals, organic phosphites, and polyhydric alcohols, lubricants, antioxidants, solvents, and the like.

The organotin compositions of the present invention need be incorporated in only a small amount in order that a sufficient stabilizing effect may be produced. The amount to be incorporated may be in the range of 0.2 to 5 percent by weight. As a rule, the proportion to be used will be in the range of 0.5 to 3% by weight, calculated on the vinyl chloride polymer. Optionally, other additives to be contained in the polymer may be incorporated into the stabilizer composition to be subsequently mixed with said polymer. On the other hand, the organotin-containing composition and further additives also may be incorporated separately into the polymer to be stabilized, for example during processing.

The stabilizer compositions of the present invention are particularly suitable for improving the thermal stability of any conceivable polystyrene or vinyl chloride resin, irrespective of its way of preparation, for example solution polymerization, emulsion polymerization and suspension polymerization.

The term vinyl chloride as used herein not only refers to any conceivable type of homopolymer of vinyl chloride, and post-chlorinated polystyrene, but also to copolymers having vinyl chloride as its major component.

are:

- 2-octyloxyethanol
- 2-decyloxyethanol
- 2-tetradecyloxyethanol
- 2-(2-n-octyloxyethoxy)ethanol
- 2-(2-octyloxyethoxy)ethanol
- 2-(butylthio)ethanol
- 2-(octylthio)ethanol
- 2-(octadecylthio)ethanol
- 2-(butylthio)-1-methylethanol
- 2-(dodecylthio)-1-methylethanol
- 2-(2-chloroethoxy)ethanol
- 4-ethoxy-3-methoxy benzyl alcohol
- Preference is given to a 1-ethylthio-2-propanol
- 2-(2-ethoxethoxy)ethanol
- 1-methoxy-2-propanol
- 2-(2-methoxethoxy)ethanol

tripropylene glycol monomethyl ether, whereas optimum results have been obtained with

- 2-butoxyethanol
- 2-ethoxyethanol
- 2-methoxyethanol
- 2-(2-n-butoxyethoxy)ethanol
- 2-(ethylthio)ethanol
- 1-ethoxy-2-propanol
- 2-(methoxymethoxy)ethanol
- 3-(3-ethoxy-n-propoxy)propanol

Examples of compounds which correspond to the formula HO—Y—OH are

- 3-cyclohexene-1,1-dimethanol
- cis-1,3-cyclooctane diol
- 1,3-cyclopentane diol
- 1,10-decane diol
- 1,4-butyne diol
- 1,5-bis(β-hydroxyethoxy)naphthalene
- 1,4-dihydroxy-1,2,3,4-tetrahydroxynaphthalene
- 3-chloro-2-propanol diol
- 2-ethyl-2-methyl-1,3-propane diol

Preferenence is given to

- 1,3-propanediol
- 1,5-pentanediol
- 1,6-hexanediol
- 1,3-cyclohexanediol
- 1,4-cyclohexanediol
- 1,4-dimethylolbenzene
- 2,2-diethyl-1,3-propanediol
- ethyl-1,3-hexanediol
- 2-methyl-2,4-pentanediol,

whereas optimum results have been obtained with

- 1,2-ethanediol
- 1,4-butanediol
- 1,4-cyclohexanediethanol
- 1,2-cyclohexanediol
- glycerol
- 2,2-dimethyl-1,3-propanediol
- thioglycerol
- bis(2-hydroxyethyl)ether
- bis(3-hydroxy-n-propyl)ether

Preference is given to a process in which the molar ratio between the bifunctional alcohol and the monofunctional alcohol is in the range of 5:9 and 9:1.
constituent, and a minor proportion of other copolymerizable monomers, such as copolymers of vinyl chloride and vinyl acetate, copolymers of vinyl chloride and vinylidene chloride, copolymers of vinyl chloride and acrylonitrile, copolymers of vinyl chloride and maleic or fumaric esters and copolymers of vinyl chloride and styrene, and also mixtures containing a high proportion of polyvinyl chloride resin and a low proportion of some other synthetic resin, such as chlorinated polyethylene, copolymers of acrylonitrile, butadiene and styrene.

The invention will be further described in, but not limited by, the following examples.

The stabilizer compositions according to the invention were tested at 185°C in a rigid PVC formulation under both dynamic and static conditions. They were compared with a standard stabilizer mixture consisting of 15% by weight of monobutyl tin tri 2-ethylhexyl thioglycolate and 85% by weight of dibutyltin di 2-ethylhexyl thioglycolate. Use was made of the following test methods:

1. MILL TEST FOR ASSESSING THE BEHAVIOUR DURING PROCESSING

After gelation for 4 minutes the various constituents of each specific formulation were intermixed on a two-roll laboratory mill, the rolls both having a speed of 4 rpm. Sticking of the polymer of the rolls (stick time) and change in colour were observed. The change in colour was taken as a measure of the rate of decomposition of the PVC. In the examples the results of the experiments are rated from 1 (colourless) to 10 (black).

2. STATIC OVEN TEST

After gelation for 4 minutes the various constituents of each specific formulation were mixed on a two-roll laboratory mill at 160°C. The samples required were cut out of the approximately 1.5 mm thick sheet emerging from the mill. The thermal stability tests were carried out at 185°C in a Heraeus oven, which was provided with rotating sample trays. The samples were removed from the oven at 10 minute intervals, after which they were visually inspected for change in colour. In the examples the test results are rated from 1 (colourless) to 10 (black), as in the mill test.

EXAMPLE I

Preparation of bis(di 2-n-butoxy carbonyl ethyl)tin 2-ethylthioethyl thioglycolate/ethylene glycol di thioglycolate

In a 3-necked flask fitted with a reflux condenser 300 g (3.26 moles) of thioglycolic acid were mixed with 81 g (1.30 moles) of ethylene glycol and 76.5 g (0.65 moles) of 2-butoxyethanol. After adding 450 ml of toluene and 2.5 g of p-toluene sulphonic acid the mixture was heated with refluxing for 3½ hours, during which time 58.6 ml (3.26 moles) of water were separated in the form of an azo trope. The thioglycolate mixture was isolated by evaporating toluene. Of this product mixture 60.8 g were reacted with 100 g of di 2-n-butoxy carbonyl ethyl tin dichloride. After adding 250 ml of toluene the mixture was stirred and heated to 35°-40°C and 40.8 g of sodium bicarbonate were slowly added. This was followed by the addition of 200 ml of distilled water. Stirring was continued for 2 hours at 35°-40°C. After running off the aqueous phase the product was isolated, as a light straw coloured mobile liquid, by solvent evaporation. The tin content was 18.2% by weight (theory = 17.7%).

EXAMPLE II

Preparation of bis(di 2-n-butoxy carbonyl ethyl)tin 2-ethylthioethyl thioglycolate/ethylene glycol di thioglycolate

Using the same procedure as given in Example I 300 g (3.26 moles) of thioglycolic acid were mixed with 81 g (1.30 moles) of ethylene glycol and 69.4 g (0.65 moles) of 2-ethylthioethanol. After adding 450 ml of toluene and 2.5 g of p-toluene sulphonic acid the mixture was heated with refluxing for 3 hours, during which time 58.6 ml (3.26 moles) of water were separated in the form of an azo trope. The thioglycolate mixture was isolated by evaporation of toluene.

Of that mixture 61.2 g were reacted with 100 g of di 2-n-butoxy carbonyl ethyl tin dichloride. After adding 250 ml of toluene the mixture was stirred and heated to 35°-40°C, followed by slowly adding 40.8 g of sodium bicarbonate. Subsequently, 200 ml of distilled water were added and the mixture was stirred until after 2 hours neutral pH was reached. After running off the aqueous phase the product was isolated, as a pale yellow mobile liquid, by solvent evaporation. The tin content was 18.4% by weight.

EXAMPLE III

A flask was charged with 100 g of a mixture of 15% by weight of mono- and 85% by weight of dibutyltin chloride to which there was added a mixture of 53.0 g (0.25 moles) of ethylene glycol bis thioglycolate and 41.34 g (0.215 moles) of 2-butoxyethyl thioglycolate. To the resulting mixture there were slowly added at 40°C, 63.6 g of sodium bicarbonate together with 500 ml of distilled water. Stirring for 1 hour at 40°C caused the pH of the aqueous layer to reach 7. After the aqueous layer had been run off, the stabilizer was isolated by removing any residual moisture through evaporation under reduced pressure (1.9 kPa).

EXAMPLE IV

104.5 (0.5 moles) of monobutyltin oxide were added gradually to a mixture of 120.5 g (0.57 moles) of ethylene glycol bis thioglycolate and 80 g (0.42 moles) of 2-butoxyethyl thioglycolate at a temperature of 80°C with stirring until a clear solution was obtained. Subsequently, the temperature was raised to 105°C over a period of 15 minutes. The resulting product was a clear, colourless, mobile liquid. The yield was practically quantitative.

EXAMPLE V

The following rigid PVC formulation was prepared and tested in the above-described manner:

<table>
<thead>
<tr>
<th>Parts by Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC (prepared by suspension polymerization: K-value 57)</td>
<td>100</td>
</tr>
<tr>
<td>Glycerol mono-oleate</td>
<td>0.9</td>
</tr>
<tr>
<td>Lignite wax marketed by Hoechst under</td>
<td>0.3</td>
</tr>
</tbody>
</table>
The trademark “was E” processing aids derived from acrylic acids stabilizer The organotin compounds used were:

- BuSn(EgDgTG)
- (BuAc)2Sn(SCH2COCH2CH2OH)
- (BuAc)2Sn(SCH2COCH2CH2OH)

The following table shows the results of a Mill test with the above compounds and the reaction product of Example I.

TABLE I

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BuAc)2Sn(EgDgTG)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>stuck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BuSn(EgDgTG)3/2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BuAc)2Sn(SCH2COCH2CH2OH)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>stuck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bu2Sn(EgDgTG)</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SCH2COCH2CH2OH)3/2</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>stuck</td>
</tr>
<tr>
<td>Product of ex. I</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>stuck</td>
<td></td>
</tr>
</tbody>
</table>

The color development during the oven test is given in Table II.

TABLE II

<table>
<thead>
<tr>
<th>Organotin compound</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BuAc)2Sn(EgDgTG)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>stuck</td>
<td></td>
</tr>
<tr>
<td>(BuAc)2Sn(SCH2COCH2CH2OH)3/2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Product of ex. I</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

The results in the above tables clearly show that at equal concentration the product of Example I displays a higher stabilizing efficiency than the product of Example I. (BuAc)2Sn(EgDgTG) and the product of Example II showed similar test results.

EXAMPLE VI

Tested in the same PVC formulation as used in Example V there were compared: a mixture of 15% by weight of BuSn(EgDgTG)3/2 and 85% by weight of Bu2Sn(EgDgTG) 15 wt.% BuSn(SCH2COCH2CH2OH)3 15% monobutyltin (EgDgTG)3/2 and 85 wt.% Bu2Sn(SCH2COCH2CH2OH)3 15% monobutyltin (SCH2COCH2CH2OH)3 the standard organotin composition and the reaction product of Example III according to the invention. The results of the Mill test are given in Table III. The results of the oven test are listed in Table IV.

TABLE III

<table>
<thead>
<tr>
<th>Organotin compound</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>15% monobutyltin (EgDgTG)3/2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>15% monobutyltin (SCH2COCH2CH2OH)3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Standard</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Product of ex. III</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>15% monobutyltin (EgDgTG)3/2</th>
<th>(SCH2COCH2CH2OH)3 standard</th>
<th>Ex-</th>
<th>ample III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
The results mentioned in the above tables clearly show that at equal concentration the product of Example III displays a far better stabilizing efficiency than similar products known from the art of polymer stabilization.

EXAMPLE VII

In the same PVC formulation as in Example V the following products were subjected to an oven test at 185° C.: BuSn(EGdTG)$_3$/2, BuSn(SCH$_2$COCH$_2$CH$_2$OC$_4$H$_9$)$_3$, and the product of Example IV. The results are given in the following table.

<table>
<thead>
<tr>
<th>Colour development during oven test at 185° C. (Time (min))</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>BuSn(EGdTG)$_3$/2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>BuSn(SCH$_2$COCH$_2$CH$_2$OC$_4$H$_9$)$_3$, Product of ex. IV</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

The above table clearly demonstrates that for the first fifty minutes the colour development of the PVC with the product of the invention was much slower than similar products that had not been prepared in accordance with the present invention.

EXAMPLE VIII

The effect was determined of a decrease in concentration of the product of Example I. The result is compared with the standard organotin composition known from the art of polymer stabilization.

The PVC formulation used was composed as follows:

<table>
<thead>
<tr>
<th>PVC (prepared by suspension polymerization)</th>
<th>parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC (prepared by suspension polymerization)</td>
<td>100</td>
</tr>
<tr>
<td>K-value 60</td>
<td>0.2</td>
</tr>
<tr>
<td>glycerol mono oleate</td>
<td>0.9</td>
</tr>
<tr>
<td>external lubricant</td>
<td>0.6</td>
</tr>
<tr>
<td>impact modifier</td>
<td>5.0</td>
</tr>
<tr>
<td>acrylate process aid</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The results of the Mill test are given in the table below.

<table>
<thead>
<tr>
<th>Colour development during Mill test at 185° C. (Time (min))</th>
<th>5</th>
<th>8</th>
<th>11</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>23</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard 1,2 phr product of ex. III, 1,08 phr product of ex.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>standard 1,2 phr</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>product of ex. III, 1,02 phr</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

The above table clearly demonstrates that reduction of the concentration of Example III by more than 30% leads to an even better stabilizing effect than obtained with the use of the generally employed standard organotin composition.

EXAMPLE IX

The effect of a reduced concentration of the product of Example VIII was determined on a similar PVC formulation as used in Example III.

The results of the Mill test are given in the table below.

<table>
<thead>
<tr>
<th>Colour development during Mill test at 185° C. (Time (min))</th>
<th>5</th>
<th>8</th>
<th>11</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>23</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard 1,2 phr product of ex. III, 1,08 phr product of ex.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>standard 1,2 phr</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>product of ex. III, 1,02 phr</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

The above table clearly demonstrates that reduction of the concentration of Example III by more than 30% leads to an even better stabilizing effect than obtained with the use of the generally employed standard organotin composition.

EXAMPLE X

The following PVC formulation was prepared and tested in the above-described way.

<table>
<thead>
<tr>
<th>PVC (prepared by suspension polymerization)</th>
<th>parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC (prepared by suspension polymerization)</td>
<td>100</td>
</tr>
<tr>
<td>K-value 60</td>
<td>0.2</td>
</tr>
<tr>
<td>glycerol mono oleate</td>
<td>0.9</td>
</tr>
<tr>
<td>external lubricant</td>
<td>0.6</td>
</tr>
<tr>
<td>impact modifier</td>
<td>5.0</td>
</tr>
<tr>
<td>acrylate process aid</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The above formulation was diluted with an amount of epoxidized soybean oil such that the amount in which it was added formed 10, 15 or 20% by weight of the composition. Even in the case of 20% dilution the stabilizing effect was found to be better than with the use of the standard formulation without addition of epoxidized
soya bean oil. The results of the Mill test are given in the table below.

TABLE IX

<table>
<thead>
<tr>
<th>Organotin compound</th>
<th>Colour development during Mill test at 185°C</th>
<th>wt. % 5 8 11 14 17 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td></td>
<td>0 2 3 4 6 7 9</td>
</tr>
<tr>
<td>product of ex. I</td>
<td></td>
<td>0 1 2 3 3 9</td>
</tr>
<tr>
<td>product of ex. I</td>
<td></td>
<td>10 2 2 3 4 5 9</td>
</tr>
<tr>
<td>product of ex. I</td>
<td></td>
<td>15 2 2 3 4 6 9</td>
</tr>
<tr>
<td>product of ex. I</td>
<td></td>
<td>20 3 3 4 5 6 9</td>
</tr>
</tbody>
</table>

I claim:

1. An organotin compound containing at least two tin atoms, characterized in that said compound corresponds to the formula

$$R_X \left[\begin{array}{l} \text{CH}_2 \text{O} \\ \text{CH} \end{array} \right] A - S - (C_O) - COO - Y - OOC - (C_O) - S - Z.$$

wherein A and Z represent tin-containing organic groups which may be the same or different and both correspond to the formula

$$R_X \left[\begin{array}{l} \text{CH}_2 \text{O} \\ \text{CH} \end{array} \right] O - R_4 - R_2$$

and the group

$$R_6 - O C H_2 C H_2 -$$

wherein R_6 represents an alkyl group having 1 to 18 carbon atoms which may be substituted or not with an alkoxy group having 1 to 18 carbon atoms, a polyoxyalkylene group consisting of oxyalkylene groups having 1 to 4 carbon atoms and of which the end group is an alkyl group or a hydrogen atom, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 4 carbon atoms or a phenyl group; R_3, R_4, R_5 and R_8 may be the same or different and have the meaning of a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an aryl group;

2. An organotin compound according to claim 1, characterized in that the groups A, Z and D are identical.

3. An organotin-containing composition according to claim 1, characterized in that the groups R_4 and R_5 represent a branched or non-branched alkenylene group having 1 to 6 carbon atoms, and Y is a branched or non-branched alkenylene group or alkenyl oxyalkylene group having 2 to 10 carbon atoms.

4. An organotin compound according to claim 1, characterized in that the groups

$$R_4$$

represent a methylene group or ethylene group, Y is an ethylene group or butylene group, $n = 1$ and R_5 an alkyl group having 1 to 8 carbon atoms.

5. An organotin-containing composition for the stabilization of polymers or copolymers of vinyl chloride,
comprising at least one organotin compound according to claim 1, wherein \(R_1 \) represents an alkyl group having 1 to 18 carbon atoms and \(R_2 \) represents the group

\[
\begin{array}{c}
R_2 X \left[\begin{array}{c}
R_9 \\
(\text{CH}_2)_n \text{C}(\text{H}_2)O
\end{array} \right] \xrightarrow{O} R_4 \quad \text{and} \quad \begin{array}{c}
R_9 \\
(\text{CH}_2)_n \text{C}(\text{H}_2)O
\end{array}
\end{array}
\]

said composition containing a compound of the formula given in claim 15 wherein \(R_1 \) and \(R_2 \) may be the same or different and represent an alkyl group having 1 to 18 carbon atoms.

6. An organotin-containing composition according to claim 5, comprising an admixture of said organotin compounds, at least one of said organotin compounds being a monoalkyltin compound and at least one other of said organotin compounds being a dialkyltin compound, said monoalkyltin compound and said dialkyltin compound being present in a weight ratio of at least 1:20.

7. A process according to claim 1, wherein the monofunctional alcohol used is a compound of the formula \(R_5 X H \), wherein the group

\[
\begin{array}{c}
R_5 \\
(\text{CH}_2)_n \text{C}(\text{H}_2)O
\end{array}
\]

represents a \(-\text{CH}_2\text{CH}_2\text{O} - \) or a\(-\text{CH}_2\text{C}(\text{H}_2)O - \) group.

8. A process for the preparation of an organotin compound according to claim 1, in which an organotin oxide or an organotin halide is reacted with the esterification products of a mercapto-substituted carboxylic acid and a monofunctional and a bifunctional alcohol, wherein

(A) the organotin compound is an alkyltin compound with a branched or non-branched alkyl group having 1 to 18 carbon atoms or an ester compound wherein \(R_1 \) and/or \(R_2 \) in the group \(Z \) and/or \(D \) represent the group

\[
\begin{array}{c}
\text{O} \\
R_6 \text{OCCH}_2\text{CH}_2 -
\end{array}
\]

for the ester group,

(B) the mercapto-substituted carboxylic acid is a compound of the formula

\[
\begin{array}{c}
R_4 \\
R_5^1 \text{HS} \quad (\text{CH}_2)_{n=1-5} \text{COOH}
\end{array}
\]

(C) the monofunctional alcohol is a compound which corresponds to the formula \(R_5 X H \),

(D) the bifunctional alcohol is a compound which corresponds to the formula \(\text{HO} - Y - \text{OH} \), and

(E) the molar ratio between the bifunctional alcohol and the monofunctional alcohol is in the range of 1:9 to 9:1.

9. A process according to claim 8, characterized in that the molar ratio between the bifunctional alcohol and the monofunctional alcohol is in the range of 5:9 to 9:1.

10. A process according to claim 8, characterized in that a monoalkyltin compound forms 10 to 20% by weight of the alkyltin compound.

11. Polymers or copolymers of vinyl chloride in which there is incorporated a stabilizing amount of an organotin compound according to claim 1.

12. Polymers or copolymers of vinyl chloride in which there is incorporated from about 0.05 to 3 parts by weight per 100 parts by weight of polymer of an organotin compound according to claim 1, 2, 3 or 4.

13. Shaped articles entirely or partly composed of a polymer or copolymer of vinyl chloride according to claim 11.
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,546,136
DATED : October 8, 1985
INVENTOR(S) : Boyd COORAY

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Column 7, line 4, change "chloride, copolymers" to --chloride, copolymers--.
Column 11, Table V, line 32, change "30" to --70--.
Column 14, line 41, delete "containing".
Column 15, line 12, change "15" to --1--.
Column 15, line 24, change "1" to --8--.
Column 15, line 26, change "R5XnH," to --R5X[(CH2)xC(H)O]nH,--.
Column 16, line 21, change "R5XnH," to --R5X[(CH2)xC(H)O]nH;--.

Signed and Sealed this
Eighteenth Day of February 1986

[SEAL]

Attest:

DONALD J. QUIGG

Attesting Officer
Commissioner of Patents and Trademarks