wo 2010/042386 A2 |1 0K 0 R O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/042386 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
al
(43) International Publication Date \'{_5___,/
15 April 2010 (15.04.2010) PCT
(51) International Patent Classification:
GO6F 7/06 (2006.01) GO6F 17/30 (2006.01)
(21) International Application Number:
PCT/US2009/059240
(22) International Filing Date:
1 October 2009 (01.10.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/245,507 3 October 2008 (03.10.2008) US
(71) Applicant (for all designated States except US): AB INI-
TIO SOFTWARE LLC [US/US]; 201 Spring Street,
Lexington, Massachusetts 02421 (US).
(72) Inventor; and
(75) Inventor/Applicant (for US only): FOURNIER, David
[US/US]; 318 Monroe Street, #3, Hoboken, New Jersey
07030 (US).
(74) Agents: HENNESSEY, Gilbert H. et al; Fish &

Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota
55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: DETECTION OF CONFIDENTIAL INFORMATION

/—100

180ﬂ

USER
INTERFACE

110 160

RUNTIME
ENVIRONMENT

L150

120 170

FIG. 1

(57) Abstract: Detecting confidential information in-
cludes reading stored data and identifying strings within
the stored data (210), where each string includes a se-
quence of consecutive bytes which all have values that are
in a predetermined subset of possible values. For each of
at least some of the strings, determining if the string in-
cludes bytes representing one or more format matches
(220 - 270), wherein a format match includes a set of val-
ues that match a predetermined format associated with
confidential information. For each format match, testing
the values that match the predetermined format with a set
of rules associated with the confidential information to de-
termine whether the format match is an invalid format
match that includes one or more invalid values and calcu-
lating a score for the stored data (280, 300), based at least
in part upon the ratio of a count of invalid format matches
to a count of other format matches.

10

15

20

25

WO 2010/042386 PCT/US2009/059240

DETECTION OF CONFIDENTIAL INFORMATION

TECHNICAL FIELD

The invention relates to detection of confidential information.

BACKGROUND

In some data processing environments it is possible for confidential information
to appear in electronic files stored in insufficiently secured data storage devices. The
existence of this confidential information in insecure files can endanger the security and
privacy of the individuals it is associated with and create liabilities for the entity
operating the insecure data storage system. Confidential information may include
sensitive financial data or any information that can be used to identify specific
individuals and relate them to the contents of a file. Some examples of confidential
information include names, addresses, telephone numbers, social security numbers, and

credit card numbers.

SUMMARY

In a general aspect, a method for reading stored data includes: identifying strings
within the stored data, where cach string includes a sequence of consecutive bytes which
all have values that are in a predetermined subset of possible values; for each of at least
some of the strings, determining if the string includes bytes representing one or more
format matches, wherein a format match includes a set of values that match a
predetermined format associated with confidential information; for each format match,
testing the values that match the predetermined format with a set of rules associated with
the confidential information to determine whether the format match is an invalid format
match that includes one or more invalid values; and calculating a score for the stored
data, based at least in part upon the ratio of a count of invalid format matches to a count
of other format matches.

In another general aspect, a system for detecting confidential information includes
a data storage device; and a runtime environment connected to the data storage device.

The runtime environment is configured to: read stored data from the data storage device;

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

identify strings within the stored data, where each string includes a sequence of
consecutive bytes which all have values that are in a predetermined subset of possible
values; for cach of at least some of the strings, determine if the string includes bytes
representing one or more format matches, wherein a format match includes a set of
values that match a predetermined format associated with confidential information; for
each format match, test the values that match the predetermined format with a set of rules
associated with the confidential information to determine whether the format match is an
mvalid format match that includes one or more invalid values; and calculate a score for
the stored data, based at least in part upon the ratio of a count of invalid format matches
to a count of other format matches.

In another general aspect, a computer-readable medium stores a computer
program for detecting confidential information. The computer program includes
instructions for causing a computer to: read stored data; identify strings within the stored
data, where each string includes a sequence of consecutive bytes which all have values
that are in a predetermined subset of possible values; for each of at least some of the
strings, determine if the string includes bytes representing one or more format matches,
wherein a format match includes a set of values that match a predetermined format
associated with confidential information; for each format match, test the values that
match the predetermined format with a set of rules associated with the confidential
information to determine whether the format match is an invalid format match that
includes one or more invalid values; and calculate a score for the stored data, based at
least in part upon the ratio of a count of invalid format matches to a count of other format
matches.

Aspects can include one or more of the following features:

The confidential information may be a credit card number. A format match may
be determined to occur when the number of bytes with values representing digits detected
in the string is equal to a number of digits in a standard format for credit card numbers.
The rules associated with credit card numbers may include specification of a list of valid
1ssuer identification numbers. The rules associated with credit card numbers may include

specification of a check sum algorithm.

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

The confidential information may be a social security number. A format match
may be determined to occur when the number of bytes with values representing digits
detected in the string is equal to nine. The rules associated with social security numbers
may include specification of a valid subset of values for the number represented by the
first five digits of the social security number.

The confidential information may be a telephone number. A format match may
be determined to occur when the number of bytes with values representing digits detected
in the string is equal to ten or the number of digits detected in the string is equal to eleven
digits with the first digit being “1”. The rules associated with telephone numbers may
include specification of a list of valid area codes. The rules associated with telephone
numbers may include specification that the first digit after the area code must not be a
One or a zero.

The confidential information may be a zip code. A format match may be
determined to occur when a sequence of bytes is detected consisting of either five bytes
with values representing digits or ten bytes with values representing nine digits with a
hyphen between the fifth and sixth digits. The rules associated with telephone numbers
may include specification of a list of valid five digit zip codes.

For each string, determining if the string includes one or more words that match a
name, wherein a word is sequence of consecutive bytes within a string that all have
values representing alpha-numeric characters, and a name is a sequence of characters
from a list of such sequences that are commonly used to refer to individual people; and
calculating a score for the stored data, based at least in part upon the a count of names
detected in the stored data. The list of names may be divided into two subsets: first
names and last names.

For each string, determining if the string includes one or more full names,
wherein full names are sequences of characters consisting of a name from the list of first
names followed by space and followed by a name from the list of last names; and
calculating a score for the stored data, based at least in part upon the a count of full
names detected.

The names in the list may each have frequency count associated with them and

the average frequency count for the names occurring in the stored data may be calculated

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

and the score for the stored data may be calculated based at least in part upon the average
frequency count. The average frequency count may be disregarded if the number of
names detected in the stored data is less than a threshold.

For each string, counting the number of words consisting of two letters, wherein a
word 18 sequence of consecutive bytes within a string that all have values representing
alpha-numeric characters. For each two letter word, determining if the two letter word 1s
a valid state abbreviation; and calculating a score for the stored data based at least in part
upon the count of valid state abbreviations and the count of two letter words.

For cach string, determining if the string includes one or more state/zip pairs,
wherein state/zip pairs are sequences of characters consisting of a state abbreviation
followed by a space which in turn is followed by a zip code; and calculating a score for
the stored data, based at least in part upon the a count of state/zip pairs detected.

Detecting which files in an electronically stored file system have been recently
updated; and searching each of the files that has been recently updated for confidential
information.

The subset of byte values that define strings may represent alphanumeric
characters, parentheses, hyphen, and space.

Comparing the score to a threshold; and if the score exceeds the threshold,
flagging the stored data as likely to contain confidential information.

Aspects can include one or more of the following advantages:

Allowing the search for confidential information to be automated. Efficiently detecting
confidential information to enable and enhance security and privacy protection measures.

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS
Fig 1 is a block diagram of a system for detecting confidential information in
stored data.
Fig. 2 is a block diagram of software used to detect confidential information in
stored data.
Fig. 3 is a flow chart of a process for calculating a score indicative of the

likelihood that a file contains confidential information.

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

DESCRIPTION

It is desirable to be able to detect occurrences of confidential data in large sets of
data, and particularly desirable to detect confidential information without requiring
human agents to review large portions of the data in the course of searching for the
confidential data. A system for detecting confidential information can automatically
detect potential confidential data, which can then be reviewed in whole or in part by
human agents. In some embodiments, human review of the confidential data might be
limited to cleared personnel with scarce time or avoided entirely, thus reducing or
eliminating the invasion of privacy caused by the mishandling of confidential
information.

Fig. 1 depicts an exemplary system for detecting confidential information in
clectronically stored data. The data of interest may be stored in one or more data storage
devices, such as a parallel “multifile” 110 implemented on multiple devices in a parallel
file system (e.g., as described in U.S. 5,897,638, incorporated herein by reference) or a
database server 120. The confidential information detection (CID) system 100 uses
software executed in a runtime environment 150 to analyze stored data in the data storage
device or devices. Results of the analysis, including scores for each unit of stored data,
such as a file, and possibly flags indicating which units of stored data are likely to contain
confidential information, may be written to the same 110, 120 or other data storage
devices 160, 170. In some cases, the user interface 180 may be used by an operator to
configure and control execution of the CID system as well as to review the results.

The runtime environment 150 may be hosted on one or more general-purpose
computers under the control of a suitable operating system, such as the UNIX operating
system. For example, the runtime environment 150 can include a multiple-node parallel
computing environment including a configuration of computer systems using multiple
central processing units (CPUs), either local (e.g., multiprocessor systems such as SMP
computers), or locally distributed (e.g., multiple processors coupled as clusters or MPPs),
or remotely, or remotely distributed (e.g., multiple processors coupled via LAN or WAN
networks), or any combination thereof. The input, output or intermediate data sets that

are accessed by the runtime environment 150 can be a parallel “multifile” stored in a

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

parallel file system (e.g., the data store 160, or in an external data storage 170 coupled to
the system 100 locally or remotely over a communication link).

Fig. 2 depicts a structure for software that may be executed in the runtime
environment to implement a system for detecting confidential information in
electronically stored files. The CID system 100 treats all file formats as unknown and
searches for strings of characters that contain confidential data. A file is read from a data
storage device 201. The string extraction module 210 treats the file as a sequence of
bytes of data. The approach for identifying strings is to remove all bytes except bytes
representing characters that are used in data representing confidential information, or the
common formatting of the data representing confidential information. Bytes are typically
eight bits long, but may be defined to be an arbitrary size suited to the character set
sought to be detected. For example, a byte might be defined to be sixteen or thirty-two
bits in length. The example system depicted uses a byte size of eight bits.

A subset of the possible byte values associated with the characters of interest is
used to identify the strings. Bytes with values outside of the subset are treated as string
delimiters. In this example, the byte values in the subset are the ASCII representations
of alphanumeric characters, parentheses, hyphen, and space. Parentheses, hyphen, and
space are included because these characters are commonly used to format things like
telephone numbers, SSN, credit cards, and between words in an address. Strings
identified by the string extraction module 210 are passed to the various confidential
information detection modules 220, 230, 240, 250, 260, and 270.

The credit card number detection module 220 searches each string for a number
and checks that number against a set of rules associated with credit card numbers. These
rules include the specification of one or more allowed credit card number lengths
measured in number of digits. The module starts by searching the string for bytes
representing digits. If the number of digits detected in the string is equal to the length in
digits of a standardized format for credit card numbers, a basic format match is declared.
Basic format matches may occur even when bytes representing other characters are
interspersed between the digits representing the number, such as spaces between groups
of the digits. For each basic format match, the number represented by digits in the string

is tested using the full set of rules associated with credit card numbers. Other rules in the

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

full set may include, for example, a specification of valid issuer identification numbers or
a valid check sum. If the number fails to satisfy any of the rules, it is identified as an
invalid, or look-a-like credit card number. As the file is processed the credit card number
detection module 220 counts the number of basic format matches and the number of these
that are determined to be invalid. The ratio of the count of invalid numbers to the count
of other basic format matches may be related to the likelihood that the other basic format
matches are in fact valid credit card numbers. In the example system, this ratio is used to
weight the count of complete format matches in calculating scores.

In an alternative embodiment, a basic format match for a credit card number may
be declared only when a string includes an uninterrupted sequence of bytes, ecach with
values representing a digit, that has a length equal to the length in digits of a standardized
format for credit card numbers.

Similarly, the social security number detection module 230 searches each string
for a number and checks that number against a set of rules associated with social security
numbers. These rules include the specification that social security numbers must be nine
digits in length. The module starts by searching the string for bytes representing digits.

If the number of digits detected in the string is equal to nine, a basic format match is
declared. Basic format matches may occur even when bytes representing other characters
are interspersed between the digits representing the number, such as hyphens between
groups of the digits. For each basic format match, the number represented by digits in the
string is tested using the full set of rules associated with social security numbers. Other
rules in the full set may include, for example, specification of a valid subset of values for
the number represented by the first five digits of the social security number. If the
number fails to satisfy any of the rules, it is identified as an invalid, or look-a-like social
security number. As the file is processed the social security number detection module
230 counts the number of basic format matches and the number of these that are
determined to be invalid. The ratio of the count of invalid numbers to the count of other
basic format matches may be related to the likelihood that the other basic format matches
are 1n fact valid social security numbers. In the example system, this ratio is used to

weight the count of complete format matches in calculating scores.

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

Similarly, the telephone number detection module 240 searches each string for a
number and checks that number against a set of rules associated with telephone numbers.
These rules include the specification that phone numbers be either ten digits in length or
eleven digits in length with the first digit equal to a one. The module starts by searching
the string for bytes representing digits. If the number of digits detected in the string is
equal to ten or it is eleven and the first digit is a one, a basic format match is declared.
Basic format matches may occur even when bytes representing other characters are
interspersed between the digits representing the number, such as parentheses around the
area code digits or hyphens between groups of digits. For each basic format match, the
number represented by digits in the string is tested using the full set of rules associated
with telephone numbers. Other rules in the full set may include, for example, a
specification of valid area codes or that the first digit after the area code must not be a
one or a zero. If the number fails to satisfy any of the rules, it is identified as an invalid,
or look-a-like telephone number. As the file is processed the telephone number detection
module 240 counts the number of basic format matches and the number of these that are
determined to be invalid. The ratio of the count of invalid numbers to the count of other
basic format matches may be related to the likelihood that the other basic format matches
are in fact valid telephone numbers. In the example system, this ratio is used to weight
the count of complete format matches in calculating scores.

In an alternative embodiment, a basic format match for a telephone number may
be declared only when a string includes an uninterrupted sequence of bytes with values

representing one of the following sequences:

ook sk sk sk ok ook
IEEEEEEEE L
®okok_kkok_skokokok
sk ok ko
(R otk

1(***)***_****
where * 1s wild card representing any of the digits 0,1,2,3,4,5,6,7,8, or 9.
The name detection module 250 searches each string for words that match names

from a list of common names. Here a word is a contiguous sequence of bytes that all

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

represent letters. Such a list of common names may be derived from a government
census. The list of names may be split into first names and last names. Certain names
that are known to alias as commonly used words maybe excluded to lower the chances of
false positives. For example the list of names might be customized to exclude the names
of the months and days of the week. Another method to compensate for false positives is
to monitor the average frequency of the names that occur in the file. For example, the
United States census provides a frequency count for each name. Since there are very
many more uncommon names than common names, most names have a frequency well
below the average. A list of names may be expected to have approximately average
frequency. A list of random characters that happen to hit a few names should have a
much lower frequency. If the number of names detected in the file exceeds a minimum
sample size, such as ten names, the average frequency of those names in the file may be
calculated to test the names. The average frequency may be compared to a threshold to
determine whether the names are more likely to be false positives or true names.

In the example, the name detection module 250 searches each string for first
names and last names from a list of common names with associated frequencies. It also
detects when a first name occurs immediately before a last name in the same string and
counts such an occurrence as a full name. The module 250 outputs a count of first
names, a count of last names, a count of full names, and an average frequency for all that
names occurring in a file.

The street address detection module 260 searches each string for sequences of
words that include a number followed by one or two words consisting of letters which in
turn is followed by a recognized street abbreviation. The number at the beginning of the
street address must start with a contiguous sequence of digits, with the first digit not
equal to zero. This number may have an optional letter at the end before the space
preceding the one or two words of the street name. The street address detection module
passes a count of the number of street address sequences detected in the file to the scoring
module.

The state and zip code detection module 270 searches each string for zip codes
and recognized two character state abbreviations. It also counts occurrences of two word

sequences consisting of a state abbreviation followed by a valid zip code. The module

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

counts all two letter words and checks whether each two letter word is a valid state name
abbreviation, as specified by the United States Post Office. The module 270 also
searches each string for numbers and checks that number against a set of rules associated
with zip codes. These rules include the specification that zip codes be either a sequence
of contiguous digits that is five digits in length or sequence that is nine digits in length
with a hyphen between the fifth and sixth digits. If a sequence of bytes matching either
of these patterns 1s detected, a basic format match is declared. For each basic format
match, the number represented by digits in the string is tested using the full set of rules
associated with zip codes. Other rules in the full set may include, for example, a
specification of valid five digit zip codes as a subset of all possible five digit numbers. If
the number fails to satisfy any of the rules, it is identified as an invalid, or look-a-like zip
code. As the file is processed the module 270 counts the number of basic format matches
and the number of these that are determined to be invalid. The ratio of the count of
invalid numbers to the count of other basic format matches may be related to the
likelihood that the other basic format matches are in fact valid zip codes. In the example
system, this ratio is used to weight the count of complete format matches in calculating
scores. The module 270 finally counts the number of state and zip sequences which
consist of a valid state abbreviation, followed by a space, which is followed by a valid zip
code. The module 270 then passes the count of two letter words, the count of valid state
abbreviations, the count of zip code format matches, the count of valid zip codes, and the
count of state and zip code sequences to the scoring module.

Each file processed by the CID system is assigned a score and, depending on that
score may be flagged as potentially containing confidential information. The scoring
module 280 calculates the score for the file based on the outputs of the confidential
information detection modules 220, 230, 240, 250, 260, and 270. The score may be
saved or output from the CID system 100. The score is also passed to the thresholding
module 290 which compares the score to a threshold and flags the file if its score exceeds
the threshold.

While the confidential information detection modules are depicted in Fig. 2 as
operating independently on the strings, it should be understood that greater efficiency

might be achieved in some cases by sharing intermediate processing results for strings

10

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

between some of the detection modules. For example, the results of a routine that counts
the bytes in a string that represent digits could be shared by the credit card number
detection module 220, the social security number detection module 230, and the
telephone number detection module 240. Also, many of the detection modules might be
optimized by ignoring strings with less than the minimum number of bytes required to
match the format for the confidential information it is searching for. The module
boundaries illustrated are intended to convey an understanding of the logic being
implemented and not to impose rigid constraints on the structure of code implementing
the disclosed methods in software.

An exemplary scoring method 300 that may be implemented in the scoring
module 280 for calculating the score is depicted in Fig. 3. After the scoring module
begins execution 301, it retrieves 310 the data regarding one of the Confidential
Information Types (CI Types) that has been output by one of confidential information
detection modules 220, 230, 240, 250, 260, or 270. The scoring module then extracts 320
a hit count and false positive indicator for the CI Type.

The hit count is the number of matches to a CI Type format in the file that have
not been determined to be invalid. For example, the hit count produced by the credit card
number detection module, 1s the number of basic format matches not determined to be
invalid. The hits are complete matches to the full set of rules associated with the CI
Type. Itis still possible that a hit is a false positive, as random data could include
complete matches even though it does not encode information of the CI Type. A false
positive indicator is a metric used by the scoring module to assess the reliability of the
associate hit count. For example, the false positive indicator produced by the credit card
number detection module is the count of basic format matches that are determined to be
invalid. These invalid basic format matches are in a sense ‘near misses’ or ‘look-a-like’
credit card numbers and their presence may indicate a higher chance of false positives.
For CI Types for which a basic format match, as distinguished from a complete match,
has not been defined, other metrics may be used as a false positive indicator. For
example, the average frequency count produced by the name detection module may be

used a false positive indicator for name counts.

11

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

The scoring modules calculates 330 a false positive weighting factor based in part
upon the false positive indicator. In this example, the weighting factor is a inversely
proportional to the false positive indicator. More precisely, the weighting factor takes the
form:

W=(H/(H +F))"
where H is the hit count, F is the false positive indicator, and » is an integer exponent,
usually between 1 and 5. Some false positive indicators may require other functional
forms to calculate the false positive weighting factor. For example, the false positive
weighting factor is directly proportional to the average frequency count for names. It
may also be advantageous to take additional steps to bound the values that a weighting
factor can take. For example, the weighting factor for names may be discontinuously
bounded to take values between 0.5 and 1.

There may be CI Types considered in the scoring for which no false positive
indicator is available. In the example system, the street address detection module
produces no false positive indicator. CI Types without a false positive indicator may be
factored into the scoring by skipping the false positive weighting factor calculation step
330, or equivalently by setting the weighting factor to unity or some other default value.

The scoring modules then calculates 340 a sub-score for each CI Type considered
in the scoring. In the example, the sub-score is calculated as a function of the hit count,
the false positive weighting factor, and a file size indicator. More precisely, the sub-
score takes the form:

S=WH*k*(H*c/N)”
where N is the file size indicator and k and » are constants tuned for each CI Type to
normalize the factors in the sub-score. In special cases, the form of the sub-score
calculation may be simplified. For example, the detection of full names, may trigger an
alternate calculation of a sub-score for names. Example code, implementing the a scoring
algorithm similar to the one described, is included in the Sample Code Listing section
below.

After calculating a sub-score 340, the scoring module checks 350 whether more
CI Type data remains to be considered. If sub-scores have not been calculated for all the

CI Types to be considered, the scoring module loops back to retrieve data from the

12

10

15

20

25

30

WO 2010/042386 PCT/US2009/059240

confidential information detection module for the next CI Type. If all sub-scores have
been calculated, it proceeds to calculate 360 a composite score for the file based on the
sub-scores. In the example depicted, the composite score is the sum of all the sub-scores.
The sub-scores may be bounded before they are added into the composite score,

The resulting composite score may then be saved 370 by, for example, writing it
to non-volatile memory on a data storage device such as database server 170 or parallel
“multifile” system 160. The composite score may also be passed to the threshold module
290 before termination 395 of the scoring module execution.

In some implementations the CID system 100 may be configured to process a list
of one or more files provided by a user of the system. In other implementations the CID
system may be configured to process all files in a file system. The CID system may be
configured to run periodically and in some implementations may be configured to check
timestamps associated with the files in a file system and process only those files that were
recently updated (e.g., last edited after a given time, such as the last time the CID system
was run).

The confidential information detection approach described above can be
implemented using software for execution on a computer. For instance, the software
forms procedures in one or more computer programs that execute on one or more
programmed or programmable computer systems (which may be of various architectures
such as distributed, client/server, or grid) each including at least one processor, at least
one data storage system (including volatile and non-volatile memory and/or storage
clements), at least one input device or port, and at least one output device or port. The
software may form one or more modules of a larger program, for example, that provides
other services related to the design and configuration of computation graphs. The nodes
and elements of the graph can be implemented as data structures stored in a computer
readable medium or other organized data conforming to a data model stored in a data
repository.

The software may be provided on a storage medium, such as a CD-ROM,
readable by a gencral or special purpose programmable computer or delivered (encoded
in a propagated signal) over a communication medium of a network to the computer

where it is executed. All of the functions may be performed on a special purpose

13

10

15

20

25

WO 2010/042386 PCT/US2009/059240

computer, or using special-purpose hardware, such as coprocessors. The software may
be implemented in a distributed manner in which different parts of the computation
specified by the software are performed by different computers. Each such computer
program is preferably stored on or downloaded to a storage media or device (e.g., solid
state memory or media, or magnetic or optical media) readable by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage media or device is read by the computer system to perform the procedures
described herein. The inventive system may also be considered to be implemented as a
computer-readable storage medium, configured with a computer program, where the
storage medium so configured causes a computer system to operate in a specific and
predefined manner to perform the functions described herein.

A number of embodiments of the invention have been described. Nevertheless, it
will be understood that various modifications may be made without departing from the
spirit and scope of the invention. For example, some of the steps described above may be

order independent, and thus can be performed in an order different from that described.

Sample Code Listing

out::reformat(in) =
begin
letreal(8) first_name_ratio = if(in.first_name_pct == 0 orin first_name_count <= 9) 0.5
elseif(in.first_name_pct > 0.04) 1.0 elsein first_name_pct / 0.04;
letreal(8) last_name_ratio = if(in.last_name_pct == 0 orin.last_name_count <= 9) 0.5
elseif(in.last_name_pct > 0.006) 1.0 elsein.last_name_pct / 0.006;
letreal(8) credit_card_ratio = if(in.credit_card_count > Q) (double) in.credit_card_count /
(in.credit_card_count + in.non_credit_card_count) else 1;
letreal(8) ssn_ratio = if(in.ssn_count > 0) (double) in.ssn_count / (in.ssn_count +
in.non_ssn_count) else 1;

letreal(8) phone_ratio = if(in.phone_count > 0) (double) in.phone_count / (in.phone_count +

14

10

15

20

25

WO 2010/042386 PCT/US2009/059240

in.non_phone_count) else 1;

letreal(8) zip_ratio = if(in.zip_count > 0) (double) in.zip_count / (in.zip_count + in.non_zip_count)
else 1;

letreal(8) state_ratio = if(in.state_count > 0) (double) in.state_count / (in.state_count +

in.total_two_char_string_length / 2) else 1;

first_name_ratio = first_name_ratio * first_name_ratio;

ssn_ratio = ssn_ratio * ssn_ratio * ssn_ratio * ssn_ratio * ssn_ratio;

phone_ratio = phone_ratio * phone_ratio * phone_ratio * phone_ratio * phone_ratio;
zip_ratio = zip_ratio * zip_ratio * zip_ratio * zip_ratio * zip_ratio;

state_ratio = state_ratio * state_ratio * state_ratio * state_ratio * state ratio;

out.” ::in.%;
out.name_score :: if(in.first_and_last_count > 0) math_sqrt(in.first_and_last_count) * 1000
else

75000.0 * (math_sqrt((double) in.first_name_count * 6 / in.total_string_length) +
math_sqrt(in.first_name_count * 6 / in.total_string_length)) * first_name_ratio * last_name_ratio;
out.credit_card_score :: if(in.credit_card_count == 0) 0
else if(in.non_credit_card_count == 0) math_sqrt(in.credit_card_count) * 1000
else
(75000.0 * math_sqrt((double) in.credit_card_count * 16 / in.total_string_length)) *
credit_card_ratio;
out.ssn_score :: if(in.ssn_count==0) 0
else if(in.non_ssn_count == Q) math_sgrt(in.ssn_count) * 1000

else

15

10

15

20

25

WO 2010/042386 PCT/US2009/059240

((75000.0 * math_sqgrt((double) in.ssn_count * 9 / in.total_string_length)) *
ssn_ratio);

out.phone_score :: if(in.phone_count == 0) 0

else if(in.non_phone_count == 0) math_sqrt(in.phone_count) * 1000

else

((750000.0 * math_sqrt((double) in.phone_count * 10 / in.total_string_length)) *
phone_ratio);

out.zip_score :: if(in.zip_count == 0) 0

else if(in.non_zip_count == 0) math_sqrt(in.zip_count) * 1000

else

((75000.0 * math_sqrt((double) in.zip_count * 5/ in.total_string_length)) *
Zip_ratio);

out.state_score :: if(in.state_count == 0) 0

else if(in.total_two_char_string_length / 2 <= in.state_count) math_sqri(in.state_count) * 1000
else

((5000000.0 * math_sqrt((double) in.state_count * 2 / in.total_string_length)) *
state_ratio);

end;

out::reformat(in) =

begin

out.overall_score :: (if(in.first_and_last_count > 0) 1000 else min(in.name_score, 2000) / 3) +
(if(in.credit_card_score >= 1000) 1000 else min(in.credit_card_score, 2000) / 3) +
(if(in.ssn_score >= 1000) 1000 else min(in.ssn_score, 2000) / 3) +

(if(in.phone_score >= 1000) 1000 else min(in.phone_score, 2000) / 3) +

16

10

WO 2010/042386 PCT/US2009/059240

(if(in.address_count > 0) 1000 else0) +

(if(in.state_and_zip_count > 0) 1000 else0) +

(if(in.zip_score >= 1000 andin.name_score >= 1000) 1000 else min(in.zip_score, 2000) / 3) +
(if(in.state_score >= 1000 andin.name_score >= 1000) 1000 else min(in.state_score, 2000) / 3);
out.username :: file_information(in.filename).username;

out.* ::in%;

end;

/***************** End Of Code Listing ******************/

Other embodiments are within the scope of the following claims.

17

WO 2010/042386 PCT/US2009/059240

What 1s ¢laimed is:

1. A method for detecting confidential information, the method including:
reading stored data;

identifying strings within the stored data, where each string includes a sequence
of consecutive bytes which all have values that are in a predetermined

subset of possible values;

for each of at least some of the strings, determining if the string includes bytes
representing one or more format matches, wherein a format match
includes a set of values that match a predetermined format associated with

confidential information;

for each format match, testing the values that match the predetermined format
with a set of rules associated with the confidential information to
determine whether the format match is an invalid format match that

mcludes one or more invalid values; and

calculating a score for the stored data, based at least in part upon the ratio of a

count of invalid format matches to a count of other format matches.

2. The method of claim 1, wherein the confidential information is a credit
card number.
3. The method of claim 2, wherein a format match is determined to occur

when the number of bytes with values representing digits detected in the string is equal to

a number of digits in a standard format for credit card numbers.

4. The method of claim 3, wherein the rules associated with credit card

numbers include specification of a list of valid issuer identification numbers.

18

WO 2010/042386 PCT/US2009/059240

3. The method of claim 3, wherein the rules associated with credit card

numbers include specification of a check sum algorithm.

6. The method of claim 1, wherein the confidential information is a social

security number.

7. The method of claim 6, wherein a format match is determined to occur
when the number of bytes with values representing digits detected in the string is equal to

nine.

8. The method of claim 7, wherein the rules associated with social security
numbers include specification of a valid subset of values for the number represented by

the first five digits of the social security number.

9. The method of claim 1, wherein the confidential information is a

telephone number.

10. The method of claim 9, wherein a format match is determined to occur
when the number of bytes with values representing digits detected in the string is equal to
ten or the number of digits detected in the string is equal to eleven digits with the first

digit being “1”.

11. The method of claim 10, wherein the rules associated with telephone

numbers include specification of a list of valid area codes.

12. The method of ¢claim 10, wherein the rules associated with telephone
numbers include specification that the first digit after the area code must not be a one or a

ZC10.

13. The method of claim 1, wherein the confidential information is a zip code.

19

WO 2010/042386 PCT/US2009/059240

14. The method of claim 13, wherein a format match is determined to occur
when a sequence of bytes is detected consisting of either five bytes with values
representing digits or ten bytes with values representing nine digits with a hyphen

between the fifth and sixth digits.

15. The method of claim 14, wherein the rules associated with telephone

numbers include specification of a list of valid five digit zip codes.

16. The method of claim 1, further including:

for each string, determining if the string includes one or more words that match a
name, wherein a word is sequence of consecutive bytes within a string that all have
values representing alpha-numeric characters, and a name is a sequence of characters

from a list of such sequences that are commonly used to refer to individual people; and

calculating a score for the stored data, based at least in part upon the a count of

names detected in the stored data.

17. The method of claim 16, wherein the list of names is divided into two

subsets: first names and last names.

18. The method of claim 17, further including;:

for each string, determining if the string includes one or more full names, wherein
full names are sequences of characters consisting of a name from the list of first names

followed by space and followed by a name from the list of last names; and

calculating a score for the stored data, based at least in part upon the a count of

full names detected.

20

WO 2010/042386 PCT/US2009/059240

19. The method of claim 16, wherein the names in the list each have
frequency count associated with them and the average frequency count for the names
occurring in the stored data is calculated and the score for the stored data is calculated

based at least in part upon the average frequency count,

20. The method of claim 19, wherein average frequency count is disregarded

if the number of names detected in the stored data is less than a threshold.

21. The method of claim 1, further including;

for each string counting the number of words consisting of two letters, wherein a
word is sequence of consecutive bytes within a string that all have values representing

alpha-numeric characters.

22, The method of claim 21, further including:

for each two letter word, determining if the two letter word 1s a valid state

abbreviation; and

calculating a score for the stored data based at least in part upon the count of valid

state abbreviations and the count of two letter words.

23. The method of claim 1, further including:

for each string, determining if the string includes one or more state/zip pairs,
wherein state/zip pairs are sequences of characters consisting of a state abbreviation

followed by a space which in turn is followed by a zip code; and

calculating a score for the stored data, based at least in part upon the a count of

state/zip pairs detected.

24, The method of claim 1, further including:

detecting which files in an electronically stored file system have been recently

updated; and

21

WO 2010/042386 PCT/US2009/059240

applying the method of claim 1 to cach of the files that has been recently updated.

25. The method of claim 1, wherein the subset of byte values that define

strings represent alphanumeric characters, parentheses, hyphen, and space.

26. The method of claim 1, further including:

comparing the score to a threshold; and
if the score exceeds the threshold, flagging the stored data as likely to contain

confidential information.

27. A system for detecting confidential information, the system including;

a data storage device; and

a runtime environment connected to the data storage device and configured to:
read stored data from the data storage device;

identify strings within the stored data, where each string includes a
sequence of consecutive bytes which all have values that are in a

predetermined subset of possible values;

for each of at least some of the strings, determine if the string includes
bytes representing one or more format matches, wherein a format
match includes a set of values that match a predetermined format

associated with confidential information;

for each format match, test the values that match the predetermined format
with a set of rules associated with the confidential information to
determine whether the format match is an invalid format match

that includes one or more invalid values; and

calculate a score for the stored data, based at least in part upon the ratio of
a count of invalid format matches to a count of other format

matches.

22

WO 2010/042386 PCT/US2009/059240

28. The system of claim 27, wherein the confidential information is a credit
card number, a format match is determined to occur when the number of bytes with
values representing digits detected in the string is equal to a number of digits in a
standard format for credit card numbers, and the rules associated with credit card
numbers include specification of a list of valid issuer identification numbers and

specification of a check sum algorithm.

29. The system of claim 27, wherein the confidential information is a social
security number, a format match is determined to occur when the number of bytes with
values representing digits detected in the string is equal to nine, and the rules associated
with social security numbers include specification of a valid subset of values for the

number represented by the first five digits of the social security number.

30. The system of claim 27, wherein the confidential information is a
telephone number, a format match is determined to occur when the number of bytes with
values representing digits detected in the string is equal to ten or the number of digits
detected in the string is equal to eleven digits with the first digit being “1”, and the rules
associated with telephone numbers include specification of a list of valid area codes and

specification that the first digit after the area code must not be a one or a zero.

31. The system of claim 27, wherein the confidential information is a zip
code, a match is determined to occur when a sequence of bytes is detected consisting of
either five bytes with values representing digits or ten bytes with values representing nine
digits with a hyphen between the fifth and sixth digits, and the rules associated with

telephone numbers include specification of a list of valid five digit zip codes.

32. The system of claim 27, wherein the runtime environment is further

configured to:

23

WO 2010/042386 PCT/US2009/059240

for each string, determine if the string includes one or more words that match a
name, wherein a word is sequence of consecutive bytes within a string that
all have values representing alpha-numeric characters, and a name is a
sequence of characters from a list of such sequences that are commonly
used to refer to individual people and the list is divided into two subsets:

first names and last names;

for each string, determine if the string includes one or more full names, wherein
full names are sequences of characters consisting of a name from the list
of first names followed by space and followed by a name from the list of

last names; and

calculate a score for the stored data, based at least in part upon the a count of
names detected in the stored data and based at least in part upon the a

count of full names detected.

33. The system of claim 27, wherein the runtime environment is further

configured to:

for each string, determine if the string includes one or more words that match a
name, wherein a word is sequence of consecutive bytes within a string that
all have values representing alpha-numeric characters, and a name is a
sequence of characters from a list of such sequences that are commonly
used to refer to individual people and the names in the list each have

frequency count associated with them;

calculate the average frequency count for the names occurring in the stored data;

and

calculate a score for the stored data, based at least in part upon the a count of
names detected in the stored data and based at least in part upon the

average frequency count.

24

WO 2010/042386 PCT/US2009/059240

34, The system of claim 27, wherein the runtime environment is further

configured to:

for each string, determine if the string includes one or more state/zip pairs,
wherein state/zip pairs are sequences of characters consisting of a state
abbreviation followed by a space which in turn is followed by a zip code;

and

calculate a score for the stored data, based at least in part upon the a count of

state/zip pairs detected.

35. The system of claim 27, wherein the subset of byte values that define

strings represent alphanumeric characters, parentheses, hyphen, and space

36. A acomputer-readable medium, storing a computer program for detecting
confidential information, the computer program including instructions for causing a

computer to:
read stored data;

identify strings within the stored data, where each string includes a sequence of
consecutive bytes which all have values that are in a predetermined subset

of possible values;

for each of at least some of the strings, determine if the string includes bytes
representing one or more format matches, wherein a format match
includes a set of values that match a predetermined format associated with

confidential information;

for each format match, test the values that match the predetermined format with a
set of rules associated with the confidential information to determine
whether the format match is an invalid format match that includes one or

more invalid values; and

calculate a score for the stored data, based at least in part upon the ratio of a count

of invalid format matches to a count of other format matches.

25

WO 2010/042386 PCT/US2009/059240

37. The computer-readable medium of claim 36, wherein the confidential

information is a credit card number.

38. The computer-readable medium of claim 37, wherein a format match is
determined to occur when the number of bytes with values representing digits detected in

the string is equal to a number of digits in a standard format for credit card numbers.

39. The computer-readable medium of claim 38, wherein the rules associated
with credit card numbers include specification of a list of valid issuer identification

numbers.

40. The computer-readable medium of claim 38, wherein the rules associated

with credit card numbers include specification of a check sum algorithm.

41. The computer-readable medium of claim 36, wherein the confidential

information is a social security number.

42. The computer-readable medium of claim 41, wherein a format match is
determined to occur when the number of bytes with values representing digits detected in

the string is equal to nine.

43. The computer-readable medium of claim 42, wherein the rules associated
with social security numbers include specification of a valid subset of values for the

number represented by the first five digits of the social security number.

44, The computer-readable medium of claim 36, wherein the confidential

information is a telephone number.

26

WO 2010/042386 PCT/US2009/059240

45. The computer-readable medium of claim 44, wherein a format match is
determined to occur when the number of bytes with values representing digits detected in
the string is equal to ten or the number of digits detected in the string is equal to eleven

digits with the first digit being “1”,

46. The computer-readable medium of claim 45, wherein the rules associated

with telephone numbers include specification of a list of valid area codes.

47. The computer-readable medium of claim 45, wherein the rules associated
with telephone numbers include specification that the first digit after the area code must

not be a one or a zero.

48. The computer-readable medium of claim 36, wherein the confidential

information is a zip code.

49. The computer-readable medium of claim 48, wherein a format match is
determined to occur when a sequence of bytes 1s detected consisting of either five bytes
with values representing digits or ten bytes with values representing nine digits with a

hyphen between the fifth and sixth digits.

50. The computer-readable medium of claim 49, wherein the rules associated

with telephone numbers include specification of a list of valid five digit zip codes.

51. The computer-readable medium of claim 36, further including instructions

for causing a computer to:

for each string, determine if the string includes one or more words that match a
name, wherein a word is sequence of consecutive bytes within a string that
all have values representing alpha-numeric characters, and a name is a
sequence of characters from a list of such sequences that are commonly

used to refer to individual people; and

27

WO 2010/042386 PCT/US2009/059240

calculate a score for the stored data, based at least in part upon the a count of

names detected in the stored data.

52. The computer-readable medium of claim 51, wherein the list of names is

divided into two subsets: first names and last names.

53. The computer-readable medium of claim 52, further including instructions

for causing a computer to:

for each string, determine if the string includes one or more full names, wherein
full names are sequences of characters consisting of a name from the list
of first names followed by space and followed by a name from the list of

last names; and

calculate a score for the stored data, based at least in part upon the a count of full

names detected.

54. The computer-readable medium of claim 51, wherein the names in the list
each have frequency count associated with them and the average frequency count for the
names occurring in the stored data is calculated and the score for the stored data is

calculated based at least in part upon the average frequency count.

55. The computer-readable medium of claim 54, wherein average frequency
count is disregarded if the number of names detected in the stored data is less than a

threshold.

56. The computer-readable medium of claim 36, further including instructions

for causing a computer to:

for each string count the number of words consisting of two letters, wherein a
word 1s sequence of consecutive bytes within a string that all have values

representing alpha-numeric characters.

28

WO 2010/042386 PCT/US2009/059240

57. The computer-readable medium of claim 56, further including instructions

for causing a computer to:

for each two letter word, determine if the two letter word is a valid state

abbreviation; and

calculate a score for the stored data based at least in part upon the count of valid

state abbreviations and the count of two letter words.

58. The computer-readable medium of claim 36, further including instructions
for causing a computer to:
for cach string, determing if the string includes one or more state/zip pairs,
wherein state/zip pairs are sequences of characters consisting of a state
abbreviation followed by a space which in turn is followed by a zip code;

and

calculate a score for the stored data, based at least in part upon the a count of

state/zip pairs detected.

59. The computer-readable medium of claim 36, further including instructions

for causing a computer to:

detect which files in an electronically stored file system have been

recently updated; and

apply the method of claim 1 to each of the files that has been recently

updated.

60. The computer-readable medium of claim 36, wherein the subset of byte
values that define strings represent alphanumeric characters, parentheses, hyphen, and

space.

61. The computer-readable medium of claim 36, further including instructions

for causing a computer to:

29

WO 2010/042386 PCT/US2009/059240

compare the score to a threshold; and

if the score exceeds the threshold, flag the stored data as likely to contain

confidential information.

30

WO 2010/042386

110

1/3

180ﬁ

USER
INTERFACE

PCT/US2009/059240

RUNTIME
ENVIRONMENT

L'150

FIG. 1

f'lOO
160
:]

e

PCT/US2009/059240

WO 2010/042386

06¢

9|NPOIN
ploysalyl

— 91003

SINPON
Buloog

0gz—’

saouanbas apoy) di7 ‘e1e)s JO JuUno)
<
sapo) diz 9___.M.v_oo_ J0JuUN0H
$0p0 diz PIeA J0 JunoD SINPOIAl UOKIRRQ
<+— opo) diz 3 sjels
SPJOM JBJ3] OM) JO JUNOY
< N
SSJEIS PlfeA J0 Juno)
< 042
$8ouanbas SSaIPpE 198418 JO JUNOH 9INPON
< UoposlaQ SsaIpPY 18915 [
SolWeN Jo \GCM:UQ 4 ‘bay 092
seousnbes Hmm._A.Hm__“_ 0 JUN0H
SeLeu v,AS 103UN0) 9|NPOJN uonRd8}d(SWeN
Sawieu Jsli4 JO June) 9INPON
SNL peiol o juneg BULIS
H SNL PlfeA J0junod H SINPO tiohosted <
< JaqunN auoyds|a|
S 9)l|-B-300]| JO JuUno O.VN.\ OPN
NSS 84!I-8-400] JO Junoy —0€¢C
< 9|NPOJA uonoLeQq
SNSS P> JaqunN Anoas [e100g
S# 00 9Y1|-e-400] JO JUN0D —~0¢c
< 8|NPOJA UoIYdI8(INJFANOHIANT
S# 0 c__ﬂ\, jojunog JBquINN pJeD 1pal) JNILINNY

10¢

WO 2010/042386

300

3/3

NO

PCT/US2009/059240

301
STARTEXECUTION |/
OF SCORING MODULE
1 310
RETRIEVE NEXT AVAILABLE OUTPUT |/
FROM A CI TYPE DETECTION MODULE
Y 320
READ HIT COUNT AND FALSE POSITIVE |
INDICATOR FOR CI TYPE
* 330
CALCULATE FALSE POSITIVE WEIGHTING | /
FACTOR
¢ 340
CALCULATE SUB-SCORE FOR CI TYPE
350
ALL SUB-SCORES CALCULATED?
360
CALCULATE COMPOSITE SCORE |/
* 370
SAVE COMPOSITE SCORE _/

¢ 395

END EXECUTION
OF SCORING MODULE —

FIG. 3

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

