No. 666,874 .
Patented Jan. 29, 1901.
P. RABBIDGE.
arrangement of switching appliances in connection with telephones.
(Application fled Feb. 26, 1900.)
(No Model.)
3 Sheets-Sheet 1 .

Witrzesses.

TuマurevzもOт.
Panne Mabbidge

No. 666,874.
Patented Jan. 29, 1901.

P. RABBIDGE.

ARRANGEMENT OF SWITCHING APPLIANCES IN CONNECTION WITH TELEPHONES.

No. 666,874. Patented Jan. 29, 1901.
P. RABBIDGE.

ARrangement of switching appliances in connection with telephones. (Application filed Feb. 28, 1900.)
(No Model.) 3 Sheets-Sheet 3.

United States Patent Office.

PARNELL RABBIDGE, OF SYDNEY, NEW SOUTH WALES.

arrangement of switching appliances in connection with telephones.

SP'ECIFICATION forming part of Letters Patent No. 666,874, dated January 29, 1901.

Application filed February 26, 1900. Serial No. 6;619, (No model.)

To all whom it may concern:
Be it known that I, Parnell Rabbidge, a subject of the Queen of Great Britain and Ireland, and a resident of Sydney, in the W Cumberland and Colony of New South Wales, have invented a certain new and Improved Arrangement of Switching Appliances for Use with Telephones, of which the following is a specification.
This invention has been devised for use in connection with private or domestic systems of telephonic intercommunication. Hitherto when conversation is being carried on between any two points of the system it has connected with each other conversation between such stations may be carried on with-
out being overheard at any of the other stations of the system. This switching appliance is also so constructed that when a conversation is finished and the telephonic instrument at the calling station is hung upon its hook the switch is automatically replaced in a position for receiving a call from any of the other stations.

I will describe the invention in relation to a form of instrument that is operated by means of a gravity-switch contained within inself.

In order that the invention may be thor- 65 oughly understood, reference is made to the accompanying sheet of drawings, in which-

Figure 1 is a diagrammatic view of the circuits and switches used in connection with a system that is operated from three stations. Fig. 2 is a back elevation of the special form of switching appliances used in connection with this invention. Fig. 3 is a transverse vertical section of the same. Fig. 4 is arside elevation, partly in section, of one form of telephonic instrument that may be used in connection with this invention. Fig. 5 is a part plan of the same with the top cover removed. Fig. 6 is a modified form of the appliance shown in Fig. 2. Fig. 7 is a dia- 8 grammatic view of the circuits of the switch ing appliances and geueral working circuits of two stations, the different circuits being shown in position for conversation between the two stations.

Referring now to Figs. 2 and 3, \mathbf{A} is a box or cover, in which are contained the switching appliances hereinbefore referred to. These switching appliances consist of four spring-metal connecting-pieces $\mathrm{B}^{\prime} \mathrm{B}^{2} \mathrm{~B}^{3}$, secured to the box. Behind these connectingpieces and impinging against them are two studs C C', which are connected to a sliding block c, which slides up and down in a groove c^{\prime} in the front of the box. To the front of the sliding block is attached a hook or knob c^{2}. By sliding the block up and down in its groove the studs $\mathrm{C} \mathrm{C}^{\prime}$ may be brought, respectively, into contact with either the con-necting-pieces B and B^{\prime}, B and B^{3}, or B^{2} and B^{3}. The stud C is connected through the wire \mathbf{D} with one pole of the battery J, used for working the telephones. The other stud C^{\prime} is connected through the wize D^{\prime} with the
telephonic instrument. The four connect-ing-pieces $\mathrm{B}^{\prime} \mathrm{B}^{2} \mathrm{~B}^{3}$ are connected by means of the wires $b b^{\prime} b^{2} b^{3}$, respectively, as follows: B is connected with the line-selector plag, 53^{\prime} with earth, B^{2} with earth, and B^{3} with the home-line wire, as shown in Fig. 7.

The telephonic instrument shown in Figs. 4 and 5 consists of the ordinary form of combined receiver and transmitter, but provided
ro with an automatic switeh in the handle, by which the call bell or instrument may be placed in or out of circuit. This switch consists of a long narrow piece of metal E , that is let into the back of the instrument and
${ }^{1} 5$ pers out beyond the receiver end. This end is provided with an eye w, which is made large enough to fit over the hook or knobs c^{2} of the switching appliance A. The other end of the metal piece E is secured by means of
20 a helical spring E^{\prime} to the frame of the instrument. Secured to and near this end of the metal rod E is a projecting piece e, which projects upward through a slot F in the handle of the instrument. At each end of the slot F is placed a spring contact-piece $f f^{\prime}$, with
which the projecting piece e of the metal rod E will form a metallic connection when the rod is pulled out or drawn in. When the instrument is hang by means of the eye at the the rod E will be drawn out, so that the projecting piece e will form contact with the spring contact-piece f^{\prime}. When the weight of the instrument is taken off the hook, the
the will draw back the metal rod E, so that the projecting piece e will form contact with the spring contact-piece f. Placed near one end of the slot F and on each side of the spring contact-piece f are metal knobs $G G^{\prime}$,
40 the purposes of which will be hereinafter explained. Placed above these two knobs is a spring-plate K, which may be pressed downward by means of the button k, so as to impinge ron both knobs and connect them to-
The telephonic instrument is connected with the switching appliances A in the following manner: The wire D^{\prime}, leading from the stud C^{\prime}, is connected to the helical spring
so E^{\prime} and through it to the metal rod E. The wire H^{\prime}, leading from the bell H , is connected to the contact-piece f^{\prime}. The metal knob G^{\prime} is connected by means of the wire J^{\prime} with the other pole of the battery J to that to tact-piece f a wire L is led and passes through both poles of the transmitter, then through the receiver, and back to the knob G'. A wire M also connects the spring contact-piece
$60 f$ with the knob G.
The manner of working the appliances is as follows: Referring to Fig. 1, in which No. 1 station is shown as calling up No. 3 station, the operator will remove his instrument from
65 the hook C^{2}, as shown in the diagram, when the spring-switch within it will be drawn down and make contact with the spring-piece
f, as shown in Figs. 4 and 5 . He will then place the plug connected to the wire b of the switching appliance A in the hole connected with No. 3 wire and push the knob c^{2} and sliding block c up to their highest position; when the studs C and C^{\prime} will form contact with the connecting-pieces B and B^{\prime}, respectively. He will then press down the springpush 7 and plate K in the instrument, Fig. 4 , and comnect the two knobs G and G^{\prime} together. This will have the effect of sending the current from the negative pole of the battery through the wire J^{\prime} to the knob G^{\prime}, from whence it will travel across the springplate K to the knob G, throngh the wire M, to the contact-piece f, from there to the projection e of the metal piece E , throngh the spring E^{\prime}, wire D^{\prime}, to the stud C^{\prime}, through the connecting-piece B^{\prime}, and wire b^{\prime} to the earth terminal N . The current from the positive pole of the battery will travel through the wire D to the stud C through the contactpiece B and wire b and its plug to the wire No.3, and will enter the corresponding switching appliance at No. 3 station through the wire b^{3} to the connecting-piece B^{3}, and from thence through the rod C^{\prime}, (the instrument of No. 3 being hung upon its hook and the metal piece E being drawn out, wire D^{\prime}, connected with it, to the spring E^{\prime} and metal piece E , to the spring contact-piece $f^{\prime \prime}$, through the wire H^{\prime} to the bell F , (causing it tosound, and then to the earth terminal N . When the operator at No. 3 station removes his instrument from the hook, (the book or knob c^{2} being left in its lowest position,) the metal piece E will be drawn into the position shown in Figs. 3 and 4 and the current passing in from the positive pole of No. 1 station will take the following course: through the wire b^{3}, connecting-piece B^{3}, rod C^{\prime}, wire D^{\prime}, spring E^{\prime}, metal piece E to the spring contact-piece. f, from thence through the transmilter and ro receiver by means of the wire L to the $\mathrm{knob} \mathrm{G}^{\prime}$ and through the wire. J^{\prime} to the negative pole of the battery, while thecurrent from the positive pole of his battery will pass through the wire D , connecting-piece B^{2}, and wire b^{2} to the earth terminal N. The operator at No. 1 station will remove the pressure from the spring-push 7 , and the current from his battery will then be divided and pass through his instrument in the same manner as the current passes throagh the instrument at No. 3 station. It will thus be noted that the batteries at Nos. 1 and 3 stations are placed in series with each other. Both instruments will now be in a position for conversation. When the conversation has been finished, the instruments will be hung upon their respective hooks and the metal piece Edrawn out. The weight of the instrument at No. 1 station will have the effect of drawing down the sliding block c, and with it the studs C and C^{\prime}, so that they may assume their normal position (shown in Figs. 2 and 3) and the instrument be placed so that a call may be received. It will thus bo
seen that the act of restoring the switches to positions such that a call may be received from any one of the stations in the system of connections is entirely automatic, being de5 pendent only on the instruments being placed back upon their hooks. Should it be desired to carry on a private conversation between stations 1 and $3-i$. e., to so arrange the circuits that a person at No. 2 station could not class of telephones. The different relative connections would, however, have to be made in the manner that has been herein set forth 5 should any other form of instrument be employed.
It is obvious that the contact-pieces $\mathrm{B} \mathrm{B}^{\prime}$ $B^{2} B^{3}$, instead of being made of the lengths shown in the drawings, Fig. 2, may be made of one length, as shown in Fig. 6, in which case the switch would not be applicable to secret communication, as there would be no intermediate position.

The form of switching appliance that has been shown in the drawings is of such construction as to be specially applicable to the class of work desired; but any other switching appliance that is constructed upon the
same principle for the purpose of doing similar work might be adopted, the actual form 60 of the appliance being of less moment than that it should fulfil the conditions described.

Having now described my invention, what I claim as new, and desire to secure by Letters Patent, is -

1. In combination in a telephone system, a line-selector plug, a connecting-piece B in connection with said plug, a connecting-piece B^{\prime} connected to earth, a connecting-piece B^{2} connected to earth, a connecting-piece B^{3}, a home-line wire to which said piece B^{3} is connected, a block carrying contacts C^{\prime}, a battery and the telephonic instrument and bell to which the said contacts $\mathrm{C}, \mathrm{C}^{\prime}$ are respectively connected, the connecting-pieces $\mathrm{B}, \mathrm{B}^{2}$ and the connecting-pieces $\mathrm{B}^{\prime} \mathrm{B}^{3}$ being arranged to be engaged by the contacts $\mathrm{C}, \mathrm{C}^{\prime}$, respectively as the block is moved, substantially as described.
2. In combination in a telephone system, a 80 line-selector plug, a connecting-piece B in connection with said plug, a connecting-piece B^{\prime} connected to earth, a connecting-piece B^{2} connected to earth, a connecting-piece B^{3}, a homeline wire to which said piece B^{3} is connected, a block carrying contacts $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, a battery and the telephonic instrument and bell to which the said contacts $\mathrm{C}, \mathrm{C}^{\prime}$ are respectively connected, the connecting-pieces $\mathrm{B}, \mathrm{B}^{2}$ and the connecting-pieces $B^{\prime} B^{3}$ being arranged to be engaged by the contacts $\mathrm{C}, \mathrm{C}^{\prime}$, respectively as the block is moved, said block being arranged to be lowered to normal position with its contacts engaging the connecting-pieces $\mathrm{B}^{2}, \mathrm{~B}^{3}$ when the telephonic instrument is hung up, substantially as described.
3. In combination in a telephonic system, the connecting-pieces B, B^{\prime} arranged side by side; the connecting-pieces $\mathrm{B}^{2}, \mathrm{~B}^{3}$, arranged side by side, said pieces B and B^{3} having por- no tions side by side, a sliding block having contacts $C C^{\prime}$ to engage either the pieces B, B^{\prime}, $B B^{3}$, or $\mathrm{B}^{2} \mathrm{~B}^{3}$, a selector-plug connected to the piece B, the piece B^{\prime} being connected to earth, the piece B^{2} being connected to earth, 105 the home-line wire connected to the piece B^{3}, the battery and the telephonic instrument and bell connected respectively to the contacts C C^{\prime}, substantially as described.

In witness whereof I have hereunto set my iro hand in presence of two witnesses.

PARNELL RABBIDGE.

Witnesses:

Jas. T. Hunter,
R. W. Ewers.

