
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0169305 A1

State et al.

US 2015O1693 05A1

(43) Pub. Date: Jun. 18, 2015

(54)

(71)

(72)

(21)

(22)

(63)

(60)

GENERAL PURPOSE SOFTWARE PARALLEL
TASK ENGINE

Applicant: Transgaming Inc., Toronto (CA)

Inventors: Gavriel State, Ottawa (CA); Nicolas
Capens, Sint-Niklaas (BE); Luther
Johnson, Cambridge, MA (US)

Appl. No.: 14/631,618

Filed: Feb. 25, 2015

Related U.S. Application Data
Continuation of application No. 13/597.403, filed on
Aug. 29, 2012, now Pat. No. 9,019,283, which is a
continuation of application No. 1 1/686,114, filed on
Mar. 14, 2007, now Pat. No. 8,284,206.

Provisional application No. 60/781,961, filed on Mar.
14, 2006.

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)
G06T 7/10 (2006.01)
G06F 9/48 (2006.01)

(52) U.S. Cl.
CPC G06F 8/452 (2013.01); G06F 9/4881

(2013.01); G06T 17/10 (2013.01); G06T
2219/20 (2013.01)

(57) ABSTRACT

A Software engine for decomposing work to be done into
tasks, and distributing the tasks to multiple, independent
CPUs for execution is described. The engine utilizes dynamic
code generation, with run-time specialization of variables, to
achieve high performance. Problems are decomposed accord
ing to methods that enhance parallel CPU operation, and
provide better opportunities for specialization and optimiza
tion of dynamically generated code. A specific application of
this engine, a software three dimensional (3D) graphical
image renderer, is described.

3D N. -z- --
. 302 W ill-2-d

Task . | > Task

u1 Poe
-a-2 i

Code Generator ---z-3'
Scheduler -

Cache ---Z-3s

3ole --- -- Job CPU/Loop O ---is

--- job CPU/Loop 1 -- 7-36
Primary Data 3. :--

-- Job CPU/Loop -- Z-38
: 3R)- “.

Patent Application Publication Jun. 18, 2015 Sheet 1 Of 17 US 2015/0169305 A1

ol

Primitives, vertices, attributes

loo
A Transform

tole 108 O -2- 1
B ASSemble H Project Rasterize

-i.--- I---z-
C Shade - Buffer

Figure 1 (Prior Art)

t

-2-' --> Pixels

-“
A B C

-12- 2O2 204 Ca
| Process -- Process Process Vertices Primitives | - Fragments

Figure 2 (Prior Art)

US 201S/O169305 A1 Jun. 18, 2015 Sheet 2 of 17 Patent Application Publication

olae

US 201S/O169305 A1 Jun. 18, 2015 Sheet 3 of 17 Patent Application Publication

. L- d??ÐUueued

uonerado

A aun 614

US 201S/O169305 A1

u?? ?ng ?pOO

Caet ----+

|d??u ?Od ?p03D ----`N,Ž
Jonaeo |

|Ielu od?pOJO

Patent Application Publication

º

Patent Application Publication Jun. 18, 2015 Sheet 5 of 17 US 201S/O169305 A1

O - G - ?o u - O C.

Patent Application Publication Jun. 18, 2015 Sheet 6 of 17 US 201S/O169305 A1

:

Patent Application Publication

; Perform 4x4 matrix by 4x1 vector multiply
; All matrix vector elements DP (64 bii) FP numbers
, Matrix rows and row and vector elements nurnered 0-3
; Wector elements 0,1,2,3 are denoted x,y,z,w

; Pointer to input vectors in ESI (ACS)
; Pointer to output vectois in EDi (AoS)
; Starting offset in EAX
; Offset mask in EDX
; Pointer to matrix (rows) in EBX
; Mumber of vectors to process in ECX

; Compute ore output vector per iteration

mwmgy:

mvloop:

Jun. 18, 2015 Sheet 7 of 17 US 201S/O169305 A1

; Compute output x, y elements, first two row-vector dot products

mowupc xinmaebX+0
imovupc xmm5, ebx+18
rowupc: xrames, ebx+32
mowupc. xmm7, ebX+48)

now upc xram0,esi+eax+0
Trowupd Ximesit-eax+16)
movupc xmm2,ximr10
mowupd Xmm3,ximr1

?ulp XII: TO, XHFT4
mulpci xman 1.xmm.5
mulpo xmm2,xmmé
mulpc. xmm3.xmm7

haddad xm:0.xmm1
haddad xmm2,xmm3
hadded XminO,xmm2

movipd edi-Heax+0.x:mm)

(), 1 elements of low 0
2, 3 elements of OW 0

; 0, 1 elements of OW
2, 3 elements of row 1

: copies

; (x, y)

; Compute outputz, w elements, Fast two row-vector dot products

mowupd Ximm4,ebX-64
mowupdximm5, ebX+80.
mowupd xinms, ebx+96
mowupd xinm7,sbx+112)

mulpd Xmm(,xnna
mulpd Xmmixtan:5
mulpd xmm2.xmm6
mulpd xmi;3,xmm7

haddpd Xmm0,xmm.
haddpd XImm2.xmm3
haddpd Xmm0,ximm2

movipd edit-eax+16),xirim)

; Jpdate pointers and count, loop of return

entients of row 2
ienents of row 2

;), i.e
2, 3e
(), 1 e
2, 3 e

erents of OW3
ements of row 3

y
W -

; Copies

(z, W)

add eax,32
al eax, eix
loop mwoop
:et

; 32 instructions, 12 memory reads, 2 memory writes, per vector per CPU
; 2 CPUs: 15 instructions, 6 memory reads, 1 memory write, per vector
; 4 CPUs; 8 instrictions, 3 femory reads, .5 memory wite per Wector

Figure 10. Full-daturi Matrix-vector Multiplication with SSE3 instructions

Patent Application Publication Jun. 18, 2015 Sheet 8 of 17 US 2015/0169305 A1

; Perform 4x4 matrix by 4x1 vector multiply
; All matrix}vector elements DP (64 bit) FP numbers
; Matrix rows and row and vector elements nurnbered 0-3
; Vector elements 0,1,2,3 are denoted x,y,z,w

; Pointer to input vectors in ESI (AoS)
; Pointer to output vectors in El (AoS)
; Starting offset in EAX
; Offset mask in EDX
; Pointer to matrix (rows) in EBX
; Number of vectors to process in ECX

; Compute x, y elements of one vector per iteration

rwmpy:

; Load requisite matrix rows ahead of loop

mowupd Xrnm4,(ex+0 ; 0, 1 elements of row 0
movupd xmm5, ebx+16) ; 2, 3 elements of row 0
movupd xmm6,ebx+32) ; 0, 1 elements of row 1
movupd xmm7, ebxt 48) ; 2, 3 elements of row 1

mvloop:

; Compute output x, y eiements, first two row-vector dot products

mowupd xmm0,esi+eax+C) X, y
movupd xmm1,iesii eax+16) Z, W
mowupd xmm2.xmm0
mowupd xmm3.xmm1 ; Copies

muipd Xmm0,xmm4 ; xrnm0: (a,b): row0(O)x, row01"y
muipd xmm1xmm5 ;xmm1: (c,d): row02'z, row0(3) "w
muipd xmm2,xmm6 ;xmm2: {e,f): row 10'x, row 11-y
muipd xmm3,xnnin7 ;xmm3: (g, h): row 1 (2)"z, row 13)"w

haddpd xmm0,xnam 1 ;xmm0: (a+b, C+d)
haddpd xmm2,xrnm3 ;xmm2: {elf, gth)
haddpd. xmmC,xrnm2 ;xmmO: (a+b+c+d, e+f+g+h)

movupd editeax+0),xmm0 ; (x, y)

; Update pointers and count, loop or return

add eax,32
and eax.edX
loop mwloop
ret

: 12 instructions, 2 ineraory reads, 1 memory write, per half-vector per CPU
; 2 CPUs; 12 instructions, 2 memory reads, 1 memory write per vector
; 4 CPJs: 6 instructions, it memory read, .5 memory write per vector

Figure 11. Half-datum Matrix-vector Multiplication with SSE3 instructions

Patent Application Publication Jun. 18, 2015 Sheet 9 of 17 US 201S/O169305 A1

; Perform 4x4 matrix by 4x1 wector multiply
, Al: matrix}vector elements P (64 bit) FP numbers
; Matrix rows and row and voctor elements numbeed G-3
; Wector elements 0,1,2,3 are denoted x,y,z,w

; Pointer to input vectors in ES: AoS)
; Pointer to output vectors in EDI (AoS)
; Starting offset in EAX
; Offset mask in EDX
; Pointer to fratrix (rows) in EBX
; Number of vectors to process in ECX

; CoImgute x, y eiements of one vector per iterator.

; Specialize with knowledge that only element 1 of row 0,
; and eiement 2 of row 1 are nonzero

mwmpy:

; Load requisite fratrix rows ahead of loop

mowupd xmm4, ebX+0 ; , ; elements of row 0

; These two hal-rows are all zero
rinoyupd Xmm5, ebX+16) ; 2, 3 elements of row 0
raoyupd xmmé, ebX+32) ; 0, 1 elements of row i

moyupd Ximm7, ebX+48) 2, 3 elements of row i

mwloop:

; Compute output x, y elements, first two row-vector dot products

mowupd Ximrao,esiteax+0) : X, y
mowupd xmr1esiheax+16) 2, W

. These copies are no longer necessary
mowupd xmr12,xmr:0
mowupd Xmm3,ximm1 copies

mulod xmm0,xmm4 xmm0: (a, b): rowOOX, rowC1'y

; These two products are all zero
mulpd xmm 1.xmm5 xt:11: (c,d): row02'z, row03'w
mulpd Xmm2.xmme xrm2; (e, f): row 10'x, row 11 "y

; This instruction can now usexmm1, it is no longer destroyed
mulpd Xrnm3.xmm7 ;xmr13; (g, h}: row 12jZ. row 3"w
mulpd xrami,xmm7 ;xmr1: (g, h: row 12"z, row (3'w

; hese three instructions can be simplified - only products 8 and g are nonzero

; Update pointers and count, loop of retu:n

add eax,32
and eax, ed:
loop mwloop
ret

; 7 instructions, 2 memory reads, memory write, per half-vector per CPU
; 2 CPUs: 6 instructions, 2 memory reads, 1 nenory write per vector
; 4 CPUs; 3 instructions, 1 memory read, .5 memory write per vector

Figure 12. Specialized Haif-catum Matrix-vector Multiplication with SSE3 instructions

Patent Application Publication Jun. 18, 2015 Sheet 10 of 17 US 2015/0169305 A1

; Perform 4x4 matrix by 4x1 vector multiply
: All matrixfwector elements DP (64 bit) FP numbers
; Matrix rows and row and vector elements rumiered 0-3
; Wector elements 0,1,2,3 are denoted x,y,z,w

; Pointer to input vectors in ESI (AoS)
; Pointer to output vectors in EDI (AoS)
; Starting offset in EAX
; Offset mask in EDX
; Pointer to matrix (rows) in E8X
; Number of vectors to process ir: ECX

; Compute x, y elements of one vector periteration

: Specialize with knowledge that only eiement 1 of row 0,
and element 2 of fow 1 are nonzero

mwrapy:

; Load requisite matrix rows ahead of loop

movupd xmmé.ebxtO) ; 0, 1 elements of fow 0
mowupd Xmm7, ebX+48 2, 3 elements of row 1
addpd xmm6.xmm7 ; row (2), row01
shuf-d xmm7,xanmö, , ow01), row 12

iwloop:

; Compute output x, y elements, first two row-vector dot products

mowupd Ximm0,esi+eax+8) W, Z
muipd xinm0,xmm7 ;xmm): row01"y, row 122
nowupd edit-eax+0,xntino , (x, y)

; Update pointers and Count, loop or return

add eax,32
and eax, e.dx
loop mwoop
ret

; 3 instructions, 1 memory reads, 1 memory write, per half-vector per CPJ
; 2 CPUs: 3 instructions, 1 memory reads, memory write per vector
4 CPUs: 1..5 instructions, .5 memory read, .5 memory Write per vector

Figure 13, Optimal Half-datum Specialized Matrix-vector Multiplication with SSE2 instructions

Patent Application Publication

; Perform 4x4 matrix by 4x1 vector multiply
; All matrixfvector elements DP (64 bit) FP numbers
; Matrix rows and row and vector elements numbe{ed 0-3
Wector elements 0,1,2,3 are denoted x,y,z,w

; Pointer to input vectors in ESI (AoS)
; Pointer to output vectors in El (AoS)
; Starting offset in EAX
Offset mask in EDX

; Pointer to matrix (rows) in EBX
, Mumber of vectors to process in ECX

; Compute x, y elements of four vectoFS per iteration

; Specialize with knowledge that only element 1 of row 0,
and eiernent 2 of row are nonzero

mwimpy:

, load requisite matrix rows ahead of loop

mowupd
Irowupd
aidpd
shufpd

mwloop:

Jun. 18, 2015 Sheet 11 of 17 US 201S/O169305 A1

; 0, 1 elements of row 0
; 2, 3 elements of row 1
; fow 12), row01)
; :ow0), row 12)

; Compute output x, y elements, from first two row-vector dot products

mowupd
mowupd
mowLipd
mowupd

xmm0,esi+eax+8)
xmm1esi+eax+40)
Xmm2,esideax+72)
ximm3,esi-heax+104)

mulpd
mulpd
mulpd
mulpd

mowupd
mowupd
?howupd
r:lowupd

Update pointers and count, loop or return

add eax,28
and eax,edX
loop mwloop
ret

, y3, 23

Xrnm0: row0.
xmm1: row01
Xrnm2: row01
xiii.3: row01

*y0, row 12:20
*y 1, row 1221
"y2, row 1222
y3, row 12z3

; 12 instructions, 4 internoy reads, 4 memory writes, per four half-vectors per CPU
; 2 CPJs: 3 instructions, 1 memory reads, 1 memory write per vector
; 4 CPJs: 5 instructions, .5 memory read, .5 memory write per vector

Figure 14. Pipelined Half-datum Optimal Specialized Matrix-vector Multiplication with SSE2 instructions

US 201S/O169305 A1 Jun. 18, 2015 Sheet 12 of 17 Patent Application Publication

90% !
(3) O O O O O O () 3

Patent Application Publication Jun. 18, 2015 Sheet 13 of 17 US 2015/0169305 A1

- CN c)

CO KO CC CO CO
w- v w- - two

Patent Application Publication Jun. 18, 2015 Sheet 14 of 17 US 2015/0169305 A1

s

Patent Application Publication Jun. 18, 2015 Sheet 15 of 17 US 2015/0169305 A1

US 201S/O169305 A1 Jun. 18, 2015 Sheet 16 of 17 Patent Application Publication

qof asõdugog)

US 201S/O169305 A1 Jun. 18, 2015 Sheet 17 of 17 Patent Application Publication

GOI, OC] (135) sdoo", qof que?š

Z?ZZ

90 || ?

US 2015/O 169305 A1

GENERAL PURPOSE SOFTWARE PARALLEL
TASKENGINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 13/597.403, filed on Aug. 29, 2012,
which is a continuation of U.S. Pat. No. 8,284,206, filed on
Mar. 14, 2007, which claims the benefit of provisional of U.S.
Patent Application No. 60/781,961, filed on Mar. 14, 2006,
the disclosures of which are hereby incorporated by refer
CCC.

FIELD

0002 The present description relates to the field of parallel
processing of tasks in computer system. The description also
relates to the field of software 3D image rendering.

BACKGROUND

0003 Parallel Processing. Using multiple computer CPUs
simultaneously or in parallel, to solve a single problem, or
execute a single program, and by doing so, reducing the time
required, is an old and well-studied idea. In fact parallel
processing is an entire Sub-discipline of computer Science.
Any system for accomplishing parallel solution of a problem
or execution of a program has two components: A problem
decomposition strategy or scheme or method, or combina
tion of methods, and an execution vehicle or machine or
system. In other words, the problem must be broken down
into multiple parts, and then these parts must be distributed to
and executed by the multiple CPUs. Problems can sometimes
be broken down into parts that are independent, which may be
pursued completely in parallel, with no interaction between,
or no specific ordering of Sub-programs to be executed on the
CPUs required. Sometimes problem decompositions have
inter-dependent parts, implicit in the problem, or created by
the decomposition.
0004 Problem decomposition methods can be sorted into
two large categories: decomposition by domain, where the
function to be performed remains the same, and the data to be
processed is distributed to multiple CPUs, and decomposition
by function, where the work to be done on each datum is
broken up into sub-functions, and each CPU is responsible for
performing its sub-function on all the data. Both types of
decomposition can be achieved through two major means—
implicit or problem-aware, specific, ad hoc means, built into
the system, or algorithmic decomposition. In algorithmic
decomposition, the original program, or a representation of
that program, which encapsulates the single-CPU, sequential
semantics of a solution to the problem, is decomposed into
multiple programs. Most interesting problem decompositions
are a combination of both types of decomposition, using
elements of both means of decomposition. The resulting CPU
Sub-programs may be completely independent, or perfectly
parallel, or they may be organized into Successive, overlap
ping, Sub-functional stages, as in an assembly line or pipe
line, or there may be any number of dependencies and inde
pendences, in any sort of dependency graph.
0005 Systems of parallel execution of the sub-programs
can be classified in terms of their similarity to two opposing
models—those that have a central, master unit directing the
flow of work, and those that are modeled as a de-centralized

Jun. 18, 2015

network of independent processors. Of course, many systems
lie on the line somewhere in between these polar extremes.
0006. As stated above, the field of parallel processing is
rich in research, and there is much prior art. However there is
as yet no general Solution for all problems, and every parallel
processing system is better at Some sorts of problems than
others. There are yet many problems with unexploited poten
tial for parallelism, and many improvements may be made to
parallel processing systems for different classes of problems.
0007 Dynamic Code Generation. Dynamic code genera
tion is a technique whereby code is compiled or prepared for
execution dynamically, by a program which will need to call
or invoke it. This code is often created at the last possible
moment, or just-in-time. If the code is created only when it
is about to be used, it will not be generated if it is never used,
and this can represent savings in compilation time and pro
gram space. After compilation, the new routine can be
retained, or cached, in case it is needed again. The required
routine may be called under a particular set of prevailing
conditions or with specific arguments that Suggest a simpler,
more efficient, custom compilation unique to that invocation
or set of conditions. In that case, the dynamic compiler might
create a special version of the code to be used only under those
conditions or with a similar invocation. Dynamic compilation
may also allow Superior general-purpose optimizations due to
facts unknown at the time the program in question was speci
fied, but known at the time of execution.
0008 Dynamic code generation has often been used in
environments where there is no obvious program to be com
piled, where a fixed function is replaced by a run-time gen
erated, run-time specialized and optimized routine, in order to
gain improved performance over statically compiled, neces
sarily general code. Because the program is often not rep
resented in formal semantic terms, or is represented only by
the previously compiled, machine code for the function to be
replaced, and because of the need to produce new code
quickly in a run-time environment, dynamic code generators
and optimizers are frequently simple affairs, exploiting high
leverage, problem-aware ad hoc methods or tricks to achieve
their ends. In this case, the more high-leverage, informal or
implicit, problem-specific information that can be imparted
to these code generators, the better they can potentially per
form.
0009. One application in which parallel processing and
dynamic code generation may be combined is a three-dimen
sional graphical image rendering system, or graphics pipe
line.
0010 Definition of Graphics Pipeline. Three dimensional
(3D) computer graphics display programs simulate, on a two
dimensional display, the effect that the display is a window
into a three dimensional scene. This scene can contain mul
tiple 3D objects, at different apparent distances from the
window, and the window has a viewpoint or camera angle
with respect to the scene and its objects. Objects can be
colored and textured, and the objects can seem to be illumi
nated by light sources of different types and color.
0011. A software program that models and displays 3D
objects can be divided into two parts: an application pro
gram which relies on a set of high-level functions to manipu
late and display graphical data, and a graphics Software
library that provides these functions
0012 3D objects consist of geometric shapes, at certain
positions in the 3D world, with certain properties or
attributes. These objects are defined and maintained by the

US 2015/O 169305 A1

application program, as a collection of geometric primitives,
and then these primitives are defined and described to the
graphics library, which draws, or renders them onto the two
dimensional (2D) display, with all necessary positioning, ori
entation, perspective scaling, coloring, texturing, lighting, or
shading effects performed on each primitive as it appears in
the window view. This represents a series of processing steps
on geometric primitives and their component data, as they
progress from spatial coordinate and attribute definition to
final 2D picture element (pixel) form on the screen. A soft
ware and hardware system that accomplishes this drawing of
geometric primitives is called an image renderer, or a render
ing engine, and the series of processing stages used is
termed the graphics pipeline.
0013 Definition of terms, description of pipeline process
ing stages. FIG. 1 shows a generic graphics pipeline 100 for a
rendering engine according to the prior art. Different render
erS Support different options and features, and use various
techniques to perform the required processing at each stage.
Operations and stages can also be, explicitly or implicitly,
performed in different orders in different implementations,
while preserving the same apparent rendering model. Stages
orportions of stages may be performed to varying degrees by
either software or hardware. There are also many different
groupings or organizations of the component operations into
pipeline stages for the purposes of exposition, and the termi
nology in the art is not uniform from one implementation to
another.

0014. The following definitions are used in the descrip
tions of the graphics pipelines below:
00.15 Primitive: a collection of points in 3D space forming
a point, a line, a triangle, or other polygon, with associated
properties.
0016 Vertex: one of the points defining a primitive.
0017 Object: a collection of primitives.
0018 Normal: for a point on the surface of a primitive, a
vector defined to be normal or perpendicular to the surface of
the primitive at that point.
0019 Model space: a 3D coordinate space in which an
individual object is defined, apart from a 3D scene in which it
may be placed.
0020 World space: the coordinate space of the 3D scene.
0021 Viewport or Camera: the window, with its associ
ated orientation, position and perspective relative to the
scene, through which the 3D scene is apparently being
viewed.

0022 View space: the coordinate space of the 3D scene, as
seen from the viewpoint of the camera.
0023 Face: a planar polygon in an object, either front
facing (toward the camera), or back-facing (away from the
camera).
0024 Model Transformation: scaling and placing an
object in the scene, transforming its vertex coordinates from
model space to world Space.
0.025 Viewing transformation: translating (moving, posi
tioning), and rotating (orienting) vertices to account for view
ing position and orientation with respect to the scene, trans
forming vertex coordinates from world space to view space.
0026
0027 Texture, or texture map: an image, which may be
designed to visually mimic the Surface properties of a physi
cal material.

Material: light reflectivity properties.

Jun. 18, 2015

0028 Lighting: the interaction of light sources of different
types and colors, with colors and materials and textures, at
vertices.
0029 Primitive assembly: determining primitives as
defined by the application, and gathering their component
vertex coordinates and attributes, in preparation for further
processing.
0030 Clipping: removing primitives or portions of primi
tives which are not visible, or fall outside the field and depth
of view of the viewport.
0031 Projection Transformation: creating the 2D projec
tion of points in view space, onto the plane of the viewport or
“film' of the camera, transforming spatial coordinates of
Vertices to 2D display locations and depths.
0032 Culling: removing (deciding not to render) a face of
a polygon.
0033. Vertex Processing: vertex coordinate transforma
tions, and lighting of Vertices.
0034) Frame buffer: a 2D memory array containing bit
patterns encoded in a form which directly represents the
colored dots or rectangles on the computers hardware dis
play Screen.
0035 Pixel: a single colored picture element (dot or rect
angle) in the frame buffer.
0036 Fragment or pre-pixel: a single colored picture ele
ment, located in a 2D image corresponding to the frame
buffer, before it is written to the display frame buffer.
0037 Rasterize: to choose the fragments in the 2D pro
jected image that correspond to the outline and/or interior of
a primitive.
0038 Shading, or Fragment Shading: determining the
color of a fragment, taking into account Vertex colors, light
ing, and textures.
0039 Buffer or Raster operations: raster (pixel) opera
tions done on fragments after shading, as they are written to
pixels in the frame buffer, or to determine whether or not they
should be written, according to a number of tests.
0040 Fragment processing: fragment shading and buffer
operations on starting with fragments, and yielding pixels.
0041. A detailed description of the stages in the pipeline of
FIG. 1 follows:

0042 Transform 102: All vertices are transformed from
model space to world space, and then transformed to view
space, i.e., translated and rotated correctly in order to account
for the viewpoint.
0043 Light 104: Vertices are lighted from different
Sources, and the resulting color is dependent on the source
color and intensity, incidence angle of a directional Source
with the vertex's normal, distance of the source, the reflec
tivity of an associated material, and the original vertex color.
If the primitive is a polygon, and a texture is to be applied to
the face, texture map coordinates are assigned to the Vertices.
0044 Assemble 106: Vertices are assembled into primi
tives, as they have been defined by the application program.
0045 Project 108: Primitives are clipped to conform to the
field and depth of view, the viewing volume’. They are then
projected, possibly with perspective, onto the plane of the
viewport, yielding a 2D image, with each vertex position now
represented as a 2D display location and a depth. Polygon
faces to be culled are discarded, and not processed further.
0046 Rasterize 110: Primitive fragments corresponding
to outlines and interiors are identified in the 2D image. Anti

US 2015/O 169305 A1

aliasing, or modification of fragment colors at outlines of
primitives in order to make the outline appear Smoother, is
done at this stage.
0047 Shade 112: Primitive fragments are shaded, or col
ored, according to one of several possible methods, by either
interpolating the colors at the vertices of the enclosing primi
tive or by interpolating from vertex normals and re-lighting
the fragments individually. If a texture is to be applied, texture
map coordinates are interpolated and assigned to each frag
ment, and the indicated texture color is mixed in to yield the
shaded fragment color.
0048 Buffer 114: As fragments are converted to pixels and
written to the frame buffer, several tests are performed in
order to determine whether or not they should be written, in
order to allow displaying the image inside a stencil, or win
dow, or rectangle. Hidden Surface removal may also be done
by recording the depth, or z value of a pixel in a Z-buffer,
as the pixel is written to the 2D frame buffer. As new pixels are
written to the frame buffer, their depth or Z value is compared
to the Z-buffer value of the pixel previously written at that 2D
location. If the new pixel is closer to the viewport, it is written,
if it is further away than (behind) the old pixel, it is not
written.
0049 Pixel colors may also be blended with the color of
pixels already in the frame buffer, depending on the opacity of
those colors, in order to simulate transparency of nearer Sur
faces. Pixel colors may be dithered or modified based on
their near neighbors as a way of Smoothing color transitions
or simulating shades. Finally, Source and destination pixels in
the frame buffer may be combined according to one of several
logical operations performed as part of the block transfer
(BLT) to the frame buffer.
0050. Another view of a graphics pipeline according to the
prior art is seen in FIG. 2. In this pipeline 200, there are just
three stages: Process Vertices' 202, Process Primitives 204,
and Process Fragments 206. FIG. 1 Transform (model and
view transformations) 102, and FIG. 1 Light 104 (lighting)
are collapsed into FIG. 2 Process Vertices 202, yielding
lighted, 3D position-transformed vertices. FIG. 2 Process
Primitives' 204 combines FIG. 1 Assemble 106 (primitive
assembly), FIG. 1 Project 108 (clipping, projection, and
culling), and FIG. 1 Rasterize 110 (rasterization) yielding
visible fragments within the 2D image corresponding to
primitive outlines and/or interiors. FIG. 2 Process Frag
ments 206 incorporates FIG. 1 Shade 112 (fragment shad
ing and texture application to color fragments), and FIG. 1
Buffer 114 (raster or buffer operations), finally yielding
pixels 116 in the frame buffer.
0051. In typical practice, aspects of the Project 108 com
putation may be split across vertex processing and primitive
processing. All vertex position transformations, including
those due to projection onto multiple depth 2D planes, can be
done in Process Vertices, while those aspects of projection
necessary for clipping and final mapping to the viewport are
done in Process Primitives. This may be done in order to
group all like position transformations, involving matrix
arithmetic on vertex vectors, into one phase. How parts of the
logical graphics computations are actually effected in which
stages is not of primary importance. More important is that
each of the three large stages is concerned with processing
associated with one major data type: either vertices, or primi
tives, or fragments.
0052 Existing practice in graphics pipelines.
0053 SIMD CPU instructions. Many computer CPUs
now incorporate SIMD (single-instruction-multiple-data)
types of instructions, which can perform certain single opera
tions on multiple data at once. These instructions have been

Jun. 18, 2015

geared toward common low-level operations in the graphics
pipeline, and Software graphics library implementations can
show dramatically improved performance through their use.
It is important however, that the library organizes its compu
tations so that data is available and staged accordingly, to take
best advantage of these SIMD capabilities.
0054 Multi-core CPUs. CPUs are now available with
multiple instruction-processing cores, which may run inde
pendently of each other. If tasks in the graphics pipeline can
be divided and scheduled so that many different operations
can be done in parallel, independent threads of execution, this
can provide a geometric speed increase over a single program
that must perform all the operations in sequence. Multi-core
techniques have heretofore seen limited application in Soft
ware graphics pipeline implementations.
0055 Hardware GPU functions. Many of the functions of
a graphics pipeline can be performed by the hardware graph
ics processing unit, or GPU. GPUs support many fixed-func
tionality operations, and many also have the capability of
running programs locally, independent of the computer CPU.
Hardware GPU functions or GPU programs may be consid
erably faster than their main CPU software counterparts.
0056 Shader Programs. Vertex shaders or “vertex pro
grams, can optionally be Supplied to the graphics library to
perform some or all of the functions of vertex processing.
Likewise, Fragment Shaders or Pixel Shaders can take
over much of the job of fragment processing. These programs
can be executed by the computer's CPU, or they may run in
part or entirely on the hardware GPU. Several standards and
languages exist for these vertex and fragment shader pro
grams, which are then compiled for execution on CPU and/or
GPU.
0057 Programmable vertex and fragment processing
allow flexibility and specialization in the performance of
these operations, allowing new functionality, or higher per
formance. Support for programmable shaders is a required
feature in several graphics library definitions, and many com
patible implementations exist. However, the compilation of
the shader program, the quality of the resulting code, and the
use of CPU and GPU resources and their effects on perfor
mance, differ considerably from one implementation to
another.
0.058 Dynamic code generation. Dynamic code genera
tion is used in various ways in many aspects of existing
fixed-function and programmable graphics pipelines, but
generation and caching policies, language translation tech
niques and optimizations, and effectiveness and scope of
utility vary with the implementation.
0059 For example, in some graphics libraries, dynamic
code generation is limited to the compilation of application
provided vertex and fragment programs. Or, if dynamic code
is also used to accelerate fixed graphics pipeline functions,
there may be some elements of the graphics pipeline imple
mentation which must be implemented in a static fashion, or
by separate dynamically created functions, to leave those
stages open for replacement by either application-provided
or GPU-supported functions. The ideal case is to have all
functions of the graphics pipeline Supported by dynamically
created code optimized for the specific CPU and GPU capa
bilities of the computer system.

SUMMARY

0060. The description relates to the general prosecution of
work on multiple, independent computer CPUs, and the

US 2015/O 169305 A1

design of systems, methods, and policies, to accomplish that
work efficiently, with respect to time and resources.
0061. One application of such systems is the task of ren
dering (drawing) to a computer display a three dimensional
image represented by an abstract collection of graphical data,
and the many processing steps required to appropriately
reduce this data to a two dimensional color picture. The
description addresses this application, as well as others.
0062. There is described a design for a software Parallel
Task Engine which combines dynamic code generation for
processing tasks with a scheme for distributing the tasks
across multiple CPU cores. Dynamic code generation pro
vides the best possible per-processor performance, and fully
parallel execution provides the best use of multiple CPUs.
However, when combined in the right way, the two techniques
can have a beneficial multiplicative effect as well—because
the processing routines are created for certain Sub-tasks of the
larger problem or operate only on particular Subsets of data,
they can be even more specifically or efficiently coded than
before, as they operate under more specific circumstances, or
are less constrained by processor resources. The result is
better performance than would be expected from the sum of
the benefits of these two practices, applied independently—
or in other words, a super-linear acceleration when multiple
CPUs are applied to the problem.
0063. Application to Graphics Processing. Methods of
dynamic code generation can be used to create all the Soft
ware routines necessary to execute the stages of a graphics
pipeline. These routines can be more efficient than code that
is statically compiled in advance, because they can take
advantage of facts that are not known until the time of execu
tion, and because they can be created specifically for the job
at hand, and need not satisfy the full range of requirements
that their interface and Surrounding state might demand of a
single, static routine.
0064 New computers have multiple, independent CPU
cores that can execute software routines in parallel. The work
load of a graphics processing task can be distributed across
multiple CPUs, achieving performance acceleration that is
linear with the number of CPU cores employed.
0065. When the parallel task engine is applied to the prob
lem of graphics processing, in other words, configured as a
graphics pipeline engine, it can provide dynamically gener
ated code for all stages of computation, and exploit specific
task decompositions that take best advantage of the strengths
of dynamic code generation and multiple CPU resources
applied to graphics processing, resulting in high speed image
rendering.
0066. According to an embodiment, there is provided, in a
computer system, a parallel task engine for performing tasks
on data. The parallel task engine comprising: an input for
receiving tasks; a scheduler for decomposing the tasks into
one or more new tasks, the decomposing being dependent on
at least one policy selected from a given set of policies; a
run-time dynamic code generator for generating or locating,
from the new tasks, operation routines; a set of job loops, at
least one of the job loops for performing the new tasks on at
least part of the data by executing the operation routines; the
scheduler for distributing and assigning the new tasks to theat
least one of the job loops; and the scheduler for making the
selection of the at least one policy as a function of character
istics of the operation routines generated or located by the
run-time dynamic code generator.

Jun. 18, 2015

0067. According to an embodiment, there is provided, in a
computer system, a method for performing tasks on data. The
method comprises: receiving tasks; decomposing the tasks
into one or more new tasks, the decomposing being depen
dent on at least one policy selected from a given set of poli
cies; generating or locating, from the new tasks, operation
routines; making the selection of the at least one policy as a
function of characteristics of the operation routines generated
or located by the run-time dynamic code generator, providing
a set of job loops; distributing and assigning the new tasks to
at least one of the job loops; and the at least one of the job
loops performing the new tasks on at least part of the data by
executing the operation routines.

BRIEF DESCRIPTION OF THE DRAWINGS

0068. Further features of the present application will
become apparent from the following detailed description,
taken in combination with the appended drawings, in which:
0069 FIG. 1 is flow diagram depicting a generic graphics
pipeline according to the prior art;
0070 FIG. 2 is a flow diagram depicting another, simpler
graphics pipeline organization according to the prior art;
0071 FIG. 3 is a block diagram depicting a parallel task
engine according to an embodiment;
0072 FIG. 4 is a block diagram showing the composition
of a job according to an embodiment;
0073 FIG. 5 is a block diagram showing the composition
of a task according to an embodiment;
0074 FIG. 6 is a block diagram showing the composition
of a command according to an embodiment;
0075 FIG. 7 is a block diagram showing the cache as a
collection of entries, and the composition of those entries
according to an embodiment
0076 FIG. 8 is a block diagram depicting the components
of code generation according to an embodiment;
0077 FIG. 9 is a block diagram depicting task (problem)
decomposition according to an embodiment;
(0078 FIG. 10 is the source code for a routine which per
forms a full-datum matrix-vector multiplication with SSE3
instructions according to an embodiment;
(0079 FIG. 11 is the source code for a routine which per
forms a half-datum matrix-vector multiplication with SSE3
instructions according to an embodiment
0080 FIG. 12 is the source code for a routine which per
forms a specialized half-datum matrix-vector multiplication
with SSE3 instructions according to an embodiment;
I0081 FIG. 13 is the source code for a routine which per
forms an optimal half-datum matrix-vector multiplication
with SSE2 instructions according to an embodiment;
I0082 FIG. 14 is the source code for a routine which per
forms a pipelined half-datum matrix-vector multiplication
with SSE2 instructions according to an embodiment.
I0083 FIG. 15 is a representation of a graphics pipeline
consisting of multiple tasks being done by multiple programs,
utilizing multiple stage units, according to an embodiment;
I0084 FIG. 16 depicts the sub-stages of the primitive setup
stage of the graphics processing pipeline according to an
embodiment;
I0085 FIG. 17 depicts the convex polygon outline raster
ization algorithm according to an embodiment
I0086 FIG. 18 depicts alternative approaches to construct
polygons covering the fragments of line primitives according
to an embodiment;

US 2015/O 169305 A1

I0087 FIG. 19 is a flow chart depicting the Parallel Task
Engine Main Program, according to an embodiment;
I0088 FIG. 20 is a flow chart depicting the Job Loop Pro
gram, according to an embodiment;
0089 FIG. 21 is a flow chart depicting an alternative Par

allel Task Engine Main Sub-program, according to an
embodiment; and
0090 FIG. 22 is a flow chart depicting an alternative Job
Loop Program, according to an embodiment.
0091. It will be noted that throughout description and the
appended drawings, like features are identified by like names,
e.g. “Command, “Task”. “Job', and reference numerals direct
the reader to the appropriate drawing to show the instance or
aspect of the feature in the frame of reference of the discus
sion. For example, in the discussions below, input Task 302
is a Task 500, the structure of which is detailed in FIG. 5, but
in this reference, attention is directed to this specific Task in
FIG. 3. Sometimes the same instance of an element will be
described with different reference numerals, in order to direct
the reader's attention to different aspects of it or operations
being performed on it. Numerals do not specify unique struc
tures, nor do they specify the instance of an element being
discussed. Elements with the same name have the same struc
ture, and particular instances of elements are specified in the
discussion explicitly.

DETAILED DESCRIPTION

0092 Referring to FIG.3, a Parallel Task Engine 300 is an
apparatus for performing Tasks 302 on arrays of Primary Data
306. Primary Data 306 is data external to the apparatus. A
Task 500 (see FIG. 5) is a Command 510 and a collection of
one or more Data Pointers 520, which are POINTERS refer
encing Primary Data 306. A POINTER is an address, index,
or token that can be used to locate a single datum or an array
of data, either directly or indirectly via one or more tables. A
Command 600 (see FIG. 6) is an Operation 610 and Zero, one
or more Parameters 620. An Operation 610 is a value that
indicates a specific function to be performed on the Primary
Data 306 referenced by the DataPointers 520, and Parameters
620 are values that further specify the Operation 610, for
example, a number of data items to be processed.
0093. Parallel Task Engine 300 is composed of:
0094) 1. The current CONTEXT, which is a set of vari
ables, or a POINTER to a set of variables, containing auxil
iary data, modes and details of computations to be performed
on the Primary Data 306 to be processed. The CONTEXT is
only read by the Parallel Task Engine, and not written by it.
CONTEXT variables are initialized and written by the exter
nal software entities that send Tasks 302 to the engine, the
“users” of this engine. If the CONTEXT is a POINTER to a
set of variables, it points to a set of variables maintained by,
and the value of this POINTER is set by, external software
entities.
0095 2. A Task input 303, to receive input Tasks 302.
0096 3. A Task Pool 310 of Tasks 500, awaiting dispen
sation.
0097. 4. One or more Job Loops 318. In a typical embodi
ment, one Job Loop 318 will be allocated per CPU available
for use by the Parallel Task Engine 300 in the dispensing of
work. It is also possible to run more than one Job Loop 318 on
a CPU, or to run a Job Loop 318 on a CPU also running other
programs. The multiple CPUs, and the computer hardware,
Software, and operating facilities which allow a software sys
tem to establish programs running on multiple CPUs, are

Jun. 18, 2015

those known to persons skilled in the art, and will vary from
computer system to computer system. The Parallel Task
Engine 300 assumes and utilizes these facilities in a particular
way, setting up programs on CPUs as necessary in order to
dispatch and accomplish Tasks 500. The Job Loop 318
receives a Job 320, from the Parallel Task Engine Main Pro
gram (not shown, but described in detail below). Now refer
ring to FIGS. 4, 5, and 6, a Job 400 is the combination of a
Task 420 and a Code Pointer 410 to a routine which can
execute an Operation 610. When the Main Program assigns
the Job 320 to the Job Loop 318, the Job Loop 318 calls the
Operation 610 routine, with Parameters 620, via the Code
Pointer 410, in order to process the Primary Data 306 speci
fied by the Task 420 via its Data Pointers 520 according to the
Command 510 specified by the Task 420. After the Operation
610 routine returns, the Job Loop 318 will wait to receive the
next Job 320 from the Main Program.
(0098 5. A Code Generator 314, which is responsible for
creating or finding Operation 610 routines, which perform
Operations 610 on Primary Data 306, under the current CON
TEXT.

0099. 6. A Cache 316, detailed on FIG. 7 as Cache 700,
which is a Directory 710 composed of Entries 720, and a
Code Buffer 750. The Entries 720 are composed of a Tag 730
to be matched, which consists of an Operation 732 and a
Context 734, and Data 740, which is a Code Pointer 742 to a
routine which performs the Operation 732. A CONTEXT, as
defined above, specifies the conditions under which Opera
tions 610 are to be performed, or augments or modifies the
meaning of Operations 610, and thereby influences the gen
eration of code to perform Operations 610, or influences the
execution of that code. The Context 734 accompanying the
Operation 732 and the Code Pointer 742 to the Operation 732
routine in an Entry 720 is the specific CONTEXT that was
current at the time the Operation 732 routine was created or
located by the Code Generator 314, and the Entry 720 was
created. To find a routine in a Cache 700 to perform an
Operation 610 under the current CONTEXT, it is necessary to
match the specified Operation 610 and the current CON
TEXT with the Tag 730 (Operation 732 and Context 734) of
an Entry 720. The Code Buffer 750 is the repository for
storage of Operation 610 routines created dynamically by the
Code Generator 314. How the Entries 720 in the Cache 316
Directory 710 are organized for lookup, via indexing, hash
ing, or sequential search is not essential to the present descrip
tion. Likewise, when new Entries 720 are created, given that
the Directory 710 is offixed size, this will necessitate at times
overwriting old Entries 720. The policies for Entry 720 evic
tion in Such cases are also considered to be implementation
specific details.
0100 7. A Scheduler 312, which when requested, surveys
the Task Pool 310 of Tasks 500, and determines the appropri
ate Task 500 to assign to a specified Job Loop 318. The
Scheduler 312 is responsible for decomposing Tasks 905 as
necessary, maintains the Task Pool 310, maintains a record of
Tasks 500 in progress on the Job Loops 318, and understands
the dependencies between Tasks 500.
0101 8. A Parallel Task Engine Main Program, which
directs the operation of the engine, and communicates with
the Job Loops 318. The Main Program dispenses Jobs 320 to
Job Loops 318. The Main Program gets the Task 420 for the
Job 320 from the Scheduler 312, and looks up the Code
Pointer 410 for the Job 320 by matching the Operation 610 in
the Command 510 in the Task 420, and the current CON

US 2015/O 169305 A1

TEXT, to the Tag 730 of an Entry 720 in the Directory 710 of
the Cache 316. If the proper Code Pointer 410 for the Opera
tion 610 cannot be found in the Cache 316 Directory 710, the
Main Program calls the Code Generator 314 to create or find
a suitable routine, and then creates a Directory 710 Entry 720
for future reference.

0102 Allelements of the Parallel Task Engine 300 operate
under, and may read from the current CONTEXT, including
the Operation 610 routines executed by the Job Loops 318.
Only Operation 610 routines actually access the Primary Data
306 for which the engine is configured to process. The rest of
the Parallel Task Engine 300 is concerned with dispensing
Jobs 320 to the Job Loops 318.
(0103 Also, the Job 400, Task 500, and Command 600 data
structures are nested structures—they could each be repre
sented by other structures that incorporate the same basic
information in a less hierarchical form—the exact form of
these data structures is not relevant to the essential operation
of the Parallel Task Engine 300, other representations of the
same information would serve as well—these forms were
chosen because they represent a unit of work or a key aspect
of that work at the level at which they are created or utilized.
0104. A detailed, step by step description of the operation
of the Parallel Task Engine programs follow. These descrip
tions employ single-threaded loops that may be represented
by a flow chart. No reference is made to processes or syn
chronization mechanisms or other features of computer oper
ating systems that may be used to improve the efficiency of an
implementation of this engine. An embodiment may imple
ment the following step-by-step methods directly, or it may
employ system-specific features or alternative formulations
that preserve the functional operation of the engine as
described here. This description is not the only representation
or embodiment possible, and others are easily imaginable.
However this description does suffice to demonstrate the
proper operation of the engine in a form that is transferable to
many computer systems, assuming some multiple, parallel
CPU facility, and a shared memory to which all CPUs have
aCCCSS,

0105 Parallel Task Engine Main Program (FIG. 19):
0106 Step 1901. Initialize the Cache 316 Directory 710
Entries 720, making all the Tags 730 un-matchable’, (per
haps by loading Context 734 with a value that will never
match any current CONTEXT).
0107 Step 1902. Set up multiple Job Loops 318, accord
ing to CPUs of different numbers and types available. For
each Job Loop 318, set REQUEST and DISPATCH counts to
Zero. These counts are integers, which may be of any width,
including 1 bit. Each Job Loop 318 also has an incoming Job
320 POINTER variable. Start the Job Loops 318 on the CPUs
(Job Loop 318 detailed below).
0108 Step 1903. Set L, an integer variable, to 0. Set N, an
integer variable, to the number of Job Loops 318. L. represents
the index of the Job Loop 318 under consideration in steps
1904 through 1910, below, and ranges from 0 to N—1.
0109 Step 1904. Inspect Job Loop 318 L’s REQUEST
count. If it is the same as the DISPATCH count, go to step
1910.

0110 Step 1905. Call the Scheduler 312 to picka Task 500
for Job Loop 318 L, and remove it from the Task Pool 310. If
necessary, the Scheduler 312 will decompose a Task 905 and
place the new Tasks 940 in the Task Pool 310, before picking

Jun. 18, 2015

a Task 500 for the Job Loop 318, which it returns to the Main
Program via a POINTER. If no Task 500 can be found, go to
step 1910.
0111 Step 1906. Look in the Cache 316 Directory 710 for
an Entry 720 with a Tag 730 that matches the Operation 610
specified by the Task 500 and the current CONTEXT. If a
matching Entry 720 is found, go to step 1908.
(O112 Step 1907. Call the Code Generator 314 to create or
find a routine for the Operation 610 under the current CON
TEXT. Create an Entry 720 in the Cache 316 Directory 710
containing the specified Operation 610 in Operation 732, the
current CONTEXT in Context 734, and a pointer to the
Operation 610 routine in Code Pointer 742. Go to Step 1906.
0113 Step 1908. Compose the Scheduler 312 in Task 420,
and the matching Entry 720 Code Pointer 742 in the Sched
uler 312 in Task 420, and the matching Entry 720 Code
Pointer 742 in CodePointer 410, and place a POINTER to Job
320 in Job Loop 318 L’s incoming Job 320 variable.
0114 Step 1909. Set Job Loop 318 L’s DISPATCH count
to the value of its REQUEST count.
0115 Step 1910. Increment L. If L is less than N, go to step
1904.
0116 Step 1911. Pull the next input Task 302 from the
Task input 303, if there is one, and place it in the Task Pool
310. Go to step 1903.
0117 Job Loop 318 (FIG. 20):
0118 Step 2001. Increment this Job Loop's 318
REQUEST count.
0119 Step 2002. Inspect this Job Loop's 318 DISPATCH
count. If it is not the same as the REQUEST count, go to step
2002 (repeat this step).
I0120 Step 2003. From the incoming Job 320 POINTER
variable, get the Job 320 to do. Call the Operation 610 routine,
via the Code Pointer 410 with Parameters 620, to process the
Primary Data 306 as specified by the Task 420 Data Pointers
520, according to the Command 510 of the Task 420. Go to
step 2001.
0121 The preceding two program descriptions character
ize the complete, high-level operation of the Parallel Task
Engine 300, in an embodiment without program or execution
thread synchronization or signaling. Both the Main Program
and the Job Loops 318 are polling loops. When there is no
work to do, both programs spin or are busy waiting. A first
improvement to this implementation, in a program environ
ment that Supports it, would be to cause the Main Program and
Job Loops 318 to block or sleep when there are no input Tasks
302 to decompose or dispatch, and no Jobs 320 to do, and to
resume operation when input Tasks 302 and Jobs 320 arrive.
This would make more efficient use of any CPU that is shared
by multiple programs. In the case of the Main Program and a
Job Loop 318 running on the same CPU, it would also be
desirable for the Main Program to run at a lower priority than
the Job Loop 318, or utilize some other mechanism to ensure
that the Main Program does not continue to spin or accept
input Tasks 302 when the Job Loop 318 on the same CPU is
executing a Job 320. The two program loops operate in a
producer/consumer relationship. The Main Program pro
duces Jobs 320, and the Job Loops 318 consume and do the
Jobs 320. Any sequence or coordination scheme that reliably
effects the same results, with the same components, is an
alternative embodiment of the Parallel Task Engine 300.
I0122. In another possible embodiment, the Job Loops 318
may incorporate and call a version of the Main Program
directly. In this case it is necessary to ensure that multiple Job

US 2015/O 169305 A1

Loops 318 have mutually exclusive access to the Main (sub)
Program. This can be done by using operating system soft
ware facilities, atomic read-modify-write CPU instructions,
or through any one of several Software mutual exclusion
algorithms, such as Dekker's algorithm, or Peterson's algo
rithm.
0123. In this case, the Main Program becomes a sub-pro
gram or Subroutine which executes according to the following
procedure:
0.124. Alternative, Parallel Task Engine Main (Sub) Pro
gram (FIG. 21):
012.5 L, an integer variable, is passed into the Main (sub)
Program by the calling Job Loop 318, and represents the
index of the Job Loop 318 under consideration in the follow
ing steps.
0126 Step 2101. Call the Scheduler 312 to picka Task 500
for Job Loop 318 L, and remove it from the Task Pool 310. If
necessary, the Scheduler 312 will decompose a Task 905 and
place the new Tasks 940 in the Task Pool 310, before picking
a Task 500 for the Job Loop 318, which it returns to the Main
Program via a POINTER. If a Task 500 is found, go to step
2103.
0127 Step 2102. Pull the next input Task 302 from the
Task input 303, if there is one, and place it in the Task Pool
310. If there was an input Task 302, go to step 2101. If there
was no input Task 302, go to step 2106.
0128 Step 2103. Look in the Cache 316 Directory 710 for
an Entry 720 with a Tag 730 that matches the Operation 610
specified by the Task 500 and the current CONTEXT. If a
matching Entry 720 is found, go to step 2105.
0129. Step 2104. Call the Code Generator 314 to create or
find a routine for the Operation 610 under the current CON
TEXT. Create an Entry 720 in the Cache 316 Directory 710
containing the specified Operation 610 in Operation 732, the
current CONTEXT in Context 734, and a pointer to the
Operation 610 routine in Code Pointer 742. Go to Step 2103.
0130 Step 2105. Compose the Job 320 as a Job 400 with
the Task 500 from the Scheduler 312 in Task 420, and the
matching Entry 720 Code Pointer 742 in Code Pointer 410,
and place a POINTER to Job 320 in Job Loop 318 L’s incom
ing Job 320 variable.
0131 2106. Return to the calling Job Loop 318, indicating
whether or not a Job 320 is ready. The Job Loop 318 which
calls the Main (sub) Program is detailed below.
(0132 Alternative Job Loop 318 which calls Main (Sub)
Program (FIG. 22):
0.133 Step 2201. If this is the first Job Loop 318, initialize
the Cache 316 Directory 710 Entries 720, making them “un
matchable.
0134) Step 2202. If this is the first Job Loop 318, set up
multiple other Job Loops 318, according to CPUs of different
numbers and types available. Each Job Loop 318 has an
incoming Job 320 POINTER variable. Start the other Job
Loops 318 on the CPUs.
0135 Step 2203. Obtain exclusive access to the Main
(sub) Program.
0.136 Step 2204. Call the Main (sub) Program.
0137 Step 2205. Yield exclusive access to the Main (sub)
Program.
0138 Step 2206. If there is no Job 320 to do, go to step
22O3.
0139 Step 2207. From the incoming Job 320 POINTER
variable, get the Job 320 to do. Call the Operation 610 routine,
via the Code Pointer 410 with Parameters 620, to process the

Jun. 18, 2015

Primary Data 306 as specified by the Task 420 Data Pointers
520, according to the Command 510 of the Task 420. Go to
step 2203.
0140. The two other sub-program components of the Par
allel Task Engine 300, the Code Generator 314 and the Sched
uler 312, are now detailed in turn.
0141 Code Generator (or Run-Time Code Generator):
The Code Generator 314 is an element of the Parallel Task
Engine 300. The design of any particular Code Generator
314, and the specific methods by which the Code Generator
314 accomplishes its work will vary according to the specifics
of the embodiment The way in which a Code Generator 314,
fulfilling the requirements detailed below, is used by the
Parallel Task Engine 300, as described above, and as will be
detailed further in the exposition of specific applications, is
part of an embodiment, and its application of techniques of
dynamic code generation.
0142. As shown in FIG. 8, the Code Generator 314 may
generate an Operation 810 routine in one of two ways:
0.143 1. It may Synthesize 820 code to perform the Opera
tion 810, from a higher level, meta-code description of Opera
tions 810, or from ad-hoc code emitting routines, one for each
Operation 810, or through other means.
0144. 2. It may have canned, statically compiled (Locate
Static Code 830) Operation 810 routines, or fragments of
Operation 810 routines, which may be used as-is, or concat
enated together, to form Operation 810 routines.
0145 Either method is acceptable, or code generators in
typical embodiments may use both methods. Method 2
extends the notion of Code Generator 314 to a function which
simply looks up a static Operation 810 routine in a table for
the purposes of the description, this style of code generation
is sufficient.
0146 The Code Generator 314 must also have the capa
bility of specializing the code generated, by the CONTEXT
outstanding at the time of generation, resulting in an Opera
tion 810 routine specifically generated for use in that CON
TEXT.
0147 For example, if a generic routine for an Operation
810 has execution conditional on CONTEXT variables, and
these variables are known to be of a certain value that will
remain constant over the execution of the routine, the Code
Generator 314 may generate custom code that assumes these
values. Again, this may be done as simply as modifying a
table look-up of the Operation 810 requested by adding ele
ments from the CONTEXT to the index into the table, return
ing the proper, more specific static routine.
0.148. The Code Generator 314 may also contain a general
Optimizer 840, which can accept as input, generated (Locate
Static Code 830 or Synthesized 820) Operation 810 routines,
or meta-code representations of those routines, and output
more efficient routines or meta-code representations. Optimi
Zation techniques well-known in the art include constant
folding, reductions in strength, dead store elimination, com
mon Sub-expression elimination, copy propagation,
instruction combination, branch chaining and elimination,
loop unrolling and loop-invariant code motion, and global
register allocation. These techniques and others may be used
by an Optimizer 840.
014.9 The Code Generator 314 may also use the Optimizer
840 in order to accomplish specialization of a Synthesized
820 or static routine. For example, ifa generic Operation 810
routine computes four values as output, but a more specific
sub-Operation 810 requires only one value as output, the

US 2015/O 169305 A1

Code Generator 314 may select the generic routine, and pass
it to the Optimizer 840, informing the Optimizer 840 that the
three unwanted values are to be considered dead stores. The
Optimizer 840 will then create the specialized, one-value
computing routine.
0150. The Code Generator 314, when generating new
Operation 610 routines, will store the code contents of these
routines to the Cache 316 Code Buffer 750. Because that
storage space is finite, it will eventually be exhausted, and
require some existing code to be overwritten, destroying
some Operation 610 routines that reside in the Code Buffer
750. How storage space is managed in this buffer is an imple
mentation detail. However it is required that the Code Gen
erator 314 invalidate, or make un-matchable, any Cache 316
Directory 710 Entries 720 with Code Pointers 742 that refer
ence code that has been overwritten, at the time that the
corresponding Operation 610 routines are destroyed.
0151 Scheduler: Alternate embodiments may pursue dif
ferent strategies or policies, as appropriate for the particular
application of the Parallel Task Engine 300, but there are basic
functions that all Scheduler 312 implementations must per
form, and there are certain constraints that must be observed.
0152 The Scheduler 312 maintains the Task Pool 310 of
outstanding Tasks 500, and keeps a record of the Task 500 in
progress on each Job Loop 318. With the Tasks 500 the
Scheduler 312 may, but is not required to, keep additional
information, such as: 1. The time, or a sequence counter,
indicating when the input Task 302 was received from the
Task input 303. 2. An estimate of the size of a Task 500, or
time to completion. 3. Any other statistics or auxiliary infor
mation that may assist the Scheduler 312 in its work.
0153. The Scheduler 312 has one function, as called from
the Main Program to remove a Task 500 from the Task Pool
310, and assign it to a Job Loop 318, returning that Task 500
to the Main Program, which will compose a Job 400 consist
ing of a Task 420 and an Operation 610 routine Code Pointer
410, and pass this Job 320 to the Job Loop 318. In the process
of doing so, it may decide to decompose a Task 905 into other
Tasks 940, adding the Tasks 940 to the Task Pool 310, before
choosing and assigning the Task 500 to the Job Loop 318.
0154 As shown in FIG.9, the Scheduler 312 from FIG. 3
may use one of three policies to decompose a Task 905:
(O155 1. By-Function 920 the Task 905 can be effected
by one or more Tasks 940 which each applies sub-FUNC
TIONS or sub-Operations 610, to the indicated Primary Data
306. If the sub-Operations 610 must be applied sequentially,
the original Task 905 becomes new Tasks 940 which form a
pipeline. If the Operations 610 are independent, they may be
dispatched in parallel. The new Operations 610 and Tasks 940
may have arbitrary dependencies, allowing some to be dis
patched in parallel or in arbitrary order, and requiring some to
be dispatched only after the completion of others. The new
Tasks 940 reference the same Primary Data 306, but have
different Commands 510 (Operations 610 and Parameters
620).
0156 2. By-Domain 925 the Command 510 can be
effected by independently applying the Operation 610 to
different sub-sets or domains of the Primary Data 306. One
Task 905 becomes one or more independent Tasks 940, which
may be executed in parallel The new Tasks 940 all contain the
original Operation 610, but the Parameters 620 and/or Data
Pointers 520 are modified to assign different Primary Data
306 domains to each new Task 940.

Jun. 18, 2015

(O157 3. By-Component 930. An Operation 610 is
defined to operate on arrays of data, in other words, one or
more data items, which are atomic from the point of view of
the Operation 610. By-Component 930 decomposition of
Tasks 905 divides the Primary Data 306 to be processed, or
the new Primary Data 306 to be computed, into domains
which are sub-atomic or sub-components of the data pro
cessed by the original Operation 610, effecting the original
Operation 610 by one or more component Operations 610.
These component Operations 610 and the resulting Tasks 940
may or may not have inter-dependencies. By-Component 930
decomposition is a combination of methods 1 and 2, it is
decomposition By-Domain 925, below the level of an Opera
tion 610's natural atomic datum, in order to get, or resulting
in, decomposition By-Function 920.
0158. As described above, the Scheduler 312 can achieve
ordinary decomposition of Tasks 905 By-Domain 925, by
simply modifying a Task’s 905 Data Pointers 520 or Param
eters 620. Likewise, in order effect decomposition of Tasks
905 By-Function 920, the Scheduler 312 can simply create
the requisite Tasks 940 with sub-Operations 610. These new
Operations 610 naturally suggest new Operation 610 rou
tines, with new code. However, as described above, the Code
Generator 314 may decide that the sub-Operation 810 routine
code is best generated by optimizing or specializing more
general Operation 810 code. In this case, the Parallel Task
Engine 300 can be said to use the Optimizer 840 to accom
plish functional Task 905 division by algorithmic decompo
sition.
0159 Given Tasks 905, which may be decomposed as the
Scheduler 312 sees fit, and a Job Loop 318 requesting a Job
400, containing a Task 500, the Scheduler 312 when called by
the Main Program must choose a Task 500 for the Job Loop
318. The Scheduler 312 may use any sort of ordering to
choose the next Task 500, e.g. first-come-first-served, starting
the largest jobs first, finishing related Tasks 500 before others,
etc., but certain rules must be followed:
0160 The Scheduler 312, at the time it decomposes Tasks
905, knows the dependencies that it creates between Tasks
940 as it creates new Tasks 940 from other Tasks 905. It
records and respects these dependencies, and will not choose
to start or assign a Task 500 whose dependencies have not
been fulfilled (Tasks 500 on which the Task500 depends must
have completed this means that no Tasks 500 on which it
depends still reside in the Task Pool 310 or are in progress on
one of the Job Loops 318). The Task 500 dependencies, for
any Task 500, are simply a list of other Tasks 500 that the Task
500 is dependent on. Dependency lists may be associated
with the Task 500, or may be kept in a table, indexed by a Task
500 number, or may be kept by the Scheduler 312 in some
other way.
(0161. A Task 500 is either in the Task Pool 310 unas
signed, or assigned to one (1) Job Loop 318. It cannot be
assigned to two or more Job Loops 318, and it cannot both be
assigned and waiting to be assigned. Once assigned, it will
stay with the Job Loop 318 until it is completed, at which time
it ceases to exist.

(0162. A Task 500 'A' is understood to be completed when
the Main Program asks the Scheduler 312 for a new Task 500
for the Job Loop 318 which was assigned the Task 500 A.
When a Task 500 is completed, the Scheduler 312 updates
(removes) dependencies (Task 500 indicators on a list of
Tasks 500 that a Task 500 is waiting on) from Tasks 500
dependent on the completed Task 500.

US 2015/O 169305 A1

0163 With these provisos, many implementations are
possible. The following step by step description details the
operation of one implementation of the Scheduler 312.
(0164 Scheduler Routine:
0.165 Step 1. The Main Program has asked the Scheduler
312 for a Task 500 for a specific Job Loop 318. If the Job Loop
318 was not previously assigned a Task 500, go to step 3.
0166 Step 2. Because the Job Loop 318 has now requested
a Job 320 from the Main Program, and the Main Program has
asked the Scheduler 312 for a Task 500 for the Job Loop 318,
this means that the Job Loop 318 has now completed any Task
500 previously assigned to it. Look through the Task Pool 310
and for each Task 500, update the lists of other Tasks 500 that
they are dependent on, by removing the Task 500 that this Job
Loop 318 has just completed, from those lists.
(0167 Step 3. Choose a Task 500. The choice of Task 500
can be according to any number of policies, but must be a Task
500 with no outstanding dependencies on other Tasks 500.
This Task 500 may be a Task 500 that the Scheduler 312 can
decompose, or it may not be. The Scheduler 312 understands
which Commands 510 and Operations 610 allow decompo
sition by different means. The Scheduler 312 may also make
decisions to decompose Tasks 500 or not based on available
CPU resources, or the number of Job Loops 318 currently
occupied with Tasks 500. If the chosen Task 500 is not to be
decomposed, go to step 5.
(0168 Step 4. Decompose the Task 905 by one of the three
means described above-By-Function 920, By-Domain 925,
or By-Component 930. Place all of the new Tasks 940 in the
Task Pool310. Go to step 3. Note that Tasks 905 should not be
infinitely decomposable, there should be a finite number of
data By-Domain 925 partitions possible, and a finite number
of Operations 610 and sub-Operations 610. Tasks 905 should
not be decomposed into the same Task 940, or into chains of
Task 905 decompositions that eventually lead back to the
original Task 905, or the Scheduler 312 may get stuck in this
loop—but this is an implementation detail, part of the policies
and strategies chosen, and definition of Commands 510 and
Operations 610, made by the implementor when applying the
Parallel Task Engine to a specific problem.
(0169 5. Assign the Task 500 to a Job Loop 318, and record
this fact. Return a POINTER to the Task 500 to the Main
Program.
0170 It is worth noting the extent to which the Scheduler
312 may decompose a particular problem with little knowl
edge of it, an almost blind or automatic decomposition. The
Scheduler 312 need only know which Operations 610 are
composed of which other Operations 610 in sequence, to
perform a By-Function 920 decomposition, with dependen
cies among the new Tasks 940 set so that the new Operations
610 are performed in order on the same Primary Data 306.
By-Domain 925 decomposition can be done on any Task 905
by adjusting Data Pointers 520 or the Parameters 620 for an
Operation 610. And By-Component 930, or interleaved By
Domain 925 decomposition can be done by knowing only
which specific partial-datum component or alternate datum
Operations 610 to substitute for the full-datum Operation
610. The Code Generator 314, as noted above, may or may
not have canned (Locate Static Code 830) specific Opera
tion 610 routines, and it may have to Synthesize 820 new
routines. Or it may Optimize 840 a more generic routine to get
the appropriate partial datum routine. This general process,
especially with code specialized and optimized under specific

Jun. 18, 2015

CONTEXTS, would seem to know more about a problem
than it does in reality it only need know Operation 610
rewriting rules.
0171 But given a multiplicity of possible decompositions,
applied blindly without knowledge of a problem, how could
Such a problem-agnostic Scheduler 312 choose a good
decomposition ? It is possible for the Scheduler 312 to have
general heuristics, along with a trial and error, run-time
experimental approach. Nothing prevents the Scheduler 312
from trying a decomposition, measuring the code in the
Operation 610 routines received from the Code Generator
314, and then deciding whether or not to try something dif
ferent. Or, these experiments can be done ahead of time, and
fed back into the heuristics or fixed strategies built-in to the
Scheduler. In short, it is possible to build both accumulated
experience and run-time decision-making into the Scheduler
312 so that it can make good decompositions, on the basis of
the code that will be executed in the scenario under consid
eration. Novel decomposition strategies, and the availability
of a CONTEXT-sensitive dynamic code generator, open up
possibilities for dynamic problem decomposition, and as well
as dynamic code generation, in order to get the most efficient
Tasks 500 under prevailing conditions.
0172 More specifically, the Scheduler 312 can make run
time decomposition choices based on the quality of code
generated by the Code Generator 314, in the Main Program
procedures as described above, with no change necessary to
those procedures. Generated code quality is simply another
input to the Scheduler's 312 decomposition strategy. When
presented with a Task 905 to be decomposed, the Scheduler
312 can try a number of Operation 610 re-writings in terms of
new Operations 610. It can request (independently of the
Main Programs call to the Code Generator 314) the Code
Generator 314 to generate code for the Operations 610 con
sidered. The Code Generator may return statistics to the
Scheduler 312, or the Scheduler 312 may analyze the code
itself. Operation 610 routines will be created differently by
the Code Generator 314 at different times, depending on the
CONTEXT, and the Scheduler 312 will make different
decomposition decisions accordingly. The Scheduler 312
uses the Code Generator 314 in order to effect dynamic
problem decomposition.
0173 Example Applications: The following applications
demonstrate the use of the Parallel Task Engine design and
scheme of computation to provide Solutions to specific com
putational problems, using dynamic code generation, in a
multi-CPU environment.
0.174 Application 1: Matrix-Vector Multiplication: A
matrix K, with Mrows and N columns, may be multiplied by
a column vector V, with N rows, to get a column vector P. with
N rows. Element “I” of P is the vector dot product of row I of
matrix K with the vector V. Or, assuming rows are numbered
0 to M-1 and columns 0 to N-1:

Pi-SUMKIII. VII
=0

0.175. Matrix-vector multiplication of this sort comprises a
linear transformation of the vector V by the function repre
sented by the matrix K, and has many applications in various
domains of computation.
(0176 FIG. 10 shows a routine, written in Intel x86 assem
bly language, using the SSE3 instruction set extensions,

US 2015/O 169305 A1

which loops through vector data, multiplying these vectors by
a constant matrix, and creating an output set of vectors. The
semantics of the individual Intel x86 instructions are defined
in the Intel Architecture Software Developer's Manual. This
routine computes the multiplication of a 4x4 matrix with a
4x1 (4 row, 1 column) vector. All matrix and vector elements
are double precision (64bit) IEEE 754 format floating point
numbers. The loop body computes two row-vector dot prod
ucts at a time, using the HADDPD (Horizontal ADD Packed
Double-precision) instruction and then does the next two. It is
limited in the amount of computation it can accomplish
before loading more data from memory, because the Intel x86
architecture only provides eight registers for vector data,
which may be operated on with the SSE3 instructions. This
routine is a reasonably efficient implementation, although
greater efficiencies may be achieved by unrolling the loop,
and reordering (Scheduling) the instruction sequence to allow
the processor to execute the instruction stream more quickly.
0177 A Parallel Task Engine software system can be con
structed to perform matrix-vector multiplication, starting
from the program in FIG. 10 as the template for a generic
Operation 610 routine.
(0178 Define the following Commands 510/Operations
610/Tasks 302: Operation 610 MATVEC4x4-Multiply a 4x4
matrix by a 4x1 vector, for all the vectors in an input array,
computing product vectors, which are stored in an output
array (as in the routine in FIG. 10). A Command 510 speci
fying this Operation 610 is Parameterized 620 by the number
of vectors to process, the offset in bytes from the beginning of
the array of the first input vector and first output vector to
process, and an offset mask, which is the (number of vectors
to process multiplied by the vector size in bytes)-1). Data
Pointers 520 are provided in the enclosing Task 500 to specify
the base addresses of the input and output vector arrays.
(0179. Operation 610 XY MATVEC4x4, and Operation
610YZ MATVEC4x4 These Operations 610 are sub-Opera
tions 610 of MATVEC4x4, and Tasks 905 with
MATVEC4Jv4 Operations 610 may be decomposed into one
Task 940 each with XY MATVEC4x4 and
YZ MATVEC4x4 Operations 610. These Operations 610
compute (only) either the X and y (O and 1), ory and Z (2 and
3) elements of the four element product vector, in the matrix
vector multiply of the MATVEC4x4 Operation 610. A Com
mand 510 specifying either of these Operations 610 is Param
eterized 620 by the number of vectors to process in this Task
500, the starting offset of vectors input and output in this Task
500, and the offset mask from the full-datum Task 500 from
which it was decomposed. The Data Pointers 520 are copied
from the full-datum Task 500 into these half-datum Sub-Tasks
SOO.

0180. The machine receives MATVEC4x4 Tasks 302
(Tasks 302 with Commands 510 with Operation 610 of
MATVEC4x4) from the outside world, and processes them;
that is its sole function. It decomposes and dispatches these
Tasks 302 or sub-Tasks 500 as it deems necessary in a one,
two, or four CPU environment. The matrix used for the
matrix-vector multiplication is part of the CONTEXT.
0181. The Scheduler 312 for this matrix-vector multiply
ing machine has the following policies:
0182 First-in, First-out (FIFO), or “first come, first
served. As Tasks 302 are received at the Task input 303, they
are placed in the Task Pool 310 in a linked list, such that new
Tasks 500 are placed at the end of the list. Tasks 500 are

Jun. 18, 2015

assigned to Job Loops 318 (after being decomposed, if the
Scheduler 312 chooses to do so) from the front of the list.
0183 If there is only one CPU present, the Scheduler 312
will not decompose MATVEC4x4 Tasks 500. If there are two
CPUs present, the Scheduler 312 will decompose
MATVEC4x4 Tasks 905 By-Component 930 to get
XY MATVEC4x4 and YZ MATVEC4x4 Tasks 94.0 (Tasks
940 with Commands 510 with Operations 610 which are
XY MATVEC4x4 and YZ MATVEC4x4). These two sub
Tasks 94.0 each process all the vectors, but start at different
points in the arrays—the XY sub-Task 500 will start at the
beginning and the YZ sub-Task 500 will start at the middle of
the input and output arrays. If there are four CPUs present,
XY MATVEC4x4 andYZ MATVEC4x4 Tasks 905 are fur
ther decomposed By-Domain 925, splitting the XY Task 905
into two XY Sub-Tasks 940, and the YZ Task 905 into two YZ
sub-Tasks 940, each responsible for half of the vectors cov
ered by the larger Task 500 from which it was decomposed. A
MATVEC4x4 Task302 becomes 1, 2, or 4 Tasks 500, for 1, 2,
or 4 CPUS.

0.184 Decomposed Tasks 940 replace the original Task
905 in the same position on the linked list of Tasks 500 in the
Task Pool 310 in other words, one MATVEC4x4 Task 500
in the second position from the head of the linked list can
become XY MATVEC4x4 and YZ MATVEC4x4 Tasks
500 in positions 2 and 3, in front of the Task 500 that was
previously at position 3.
0185. There are no dependencies between any Tasks 500
or sub-Tasks 500 in this MATVEC4x4 engine.
0186 These policies applied to the step-by-step descrip
tion of the general Scheduler 312 procedure given above
characterize the specific Scheduler 312 for the MATVEC4x4
engine.
0187. The Code Generator 314 for this MATVEC4x4
engine operates as follows:
0188 The MATVEC4x4 Operation 810 routine is as
shown in FIG. 10. It can be used unchanged for a
MATVEC4x4 operation.
(0189 The XY MATVEC4x4 Operation 810 routine is
shown in FIG. 11. It can be used directly, or it could also be
derived from the MATVEC4x4 routine by applying the Opti
mizer 840—note that when the Z and w components are
considered dead, all of the instructions that contribute to the
computation of these values (the last 12 instructions in the
second half of the loop body) can be eliminated. Once these
instructions are eliminated, the four matrix-row registerloads
in the second half of the loop body become redundant, and the
first four loads of these values to registers, which are now
constant over the loop, can be moved outside the loop. The
YZ MATVEC4x4 Operation 810 routine is symmetrical to
the XY routine, and is of the same length.
(0190. The XY MATVEC4x4 and YZ MATVEC4x4
Operation 810 routines can be specialized by knowledge of
the constant matrix, in the CONTEXT, that is used over the
routine. Of course, when the CONTEXT changes, Operation
610 routine look-ups in the Cache 326 Directory 710 will fail,
and new Operation 610 routines must be generated, and new
Entries 720 created. In this example engine, the Code Gen
erator 314 will take note of which matrix elements are zero
and nonzero. FIG. 12 shows a routine that has been special
ized with such knowledge of matrix Zero elements. It can be
derived from XY and YZ routines as shown in FIG. 11, by

US 2015/O 169305 A1

using the Optimizer 840 to systematically apply simple sub
stitutions and rules, as noted in the comments accompanying
the code.
0191 FIG. 13 shows an extremely optimized version of
the XY MATVEC4x4 Operation 810 routine, specialized
with the same matrix knowledge as in FIG. 12. Achieving this
code is challenging, but possible for an Optimizer 840. It
represents a dramatic example of the possible performance
advantage of specialized, optimized, decomposed Operation
810 routines.
(0192. The MATVEC4x4 engine will basically operate as
follows:
(0193 MATVEC4x4 Tasks 302 will arrive at the Taskinput
3O3.
(0194 The engine will dispatch the Tasks 500 to the Job
Loops 318 in order.
(0195 1, 2, or 4 Job Loops 318 will execute either:
(0196. 1 CPU/Job Loop 318: 1 MATVEC4x4 Operation
610 routine per incoming MATVEC4x4 Task 302.
0.197 2 CPUs/Job Loops 318: 1 XY MATVEC4x4
Operation 610 and 1 YZ MATVEC4x4 Operation 610 per
incoming MATVEC4x4 Task 302.
(0198 4 CPUs/Job Loops 318: 2XY MATVEC4x4 Tasks
500, and 2YZ MATVEC4x4 Tasks 500, each XYorYZ Task
500 operating on half of the vectors, for each MATVEC4x4
Task 302.
(0199 Performance of the MATVEC4x4 Parallel Task
Engine: In the case of CPU/Job Loop 318, the performance of
a Parallel Task Engine implementation of MATVEC4x4
Operations 610 on arrays of vector data is substantially the
same as simply calling the Operation 610 routine directly—
there is a very small amount of overhead for SCHEDULING
and communication, but the processing of the Primary Data
306 is unchanged.
0200 Looking at FIG. 10 more closely, we see that this
processing consists of 32 instructions, 12 memory reads, and
2 memory writes, in the body of the loop, in order to compute
one complete product vector. The instructions ahead of the
loop and at the very end of the loop, which update offsets and
loop count, are not counted. The instructions ahead of the
loop are not counted because they are executed once per
routine, and with a large number of vectors to be processed,
the time spent in the loop will represent almost all the time
spent in the routine. The reason the instructions at the end of
the loop should not be counted is that this loop may easily be
unrolled that is, the body of the loop may be duplicated some
number of times, and the offset and loop count updates may
be amortized over the entire resulting loop body. For clarity
and brevity, none of the code examples are unrolled, but they
all may be, and so the metrics for comparison include the
length in instructions of the core loop body, and the quantity
of results achieved by that code. It is also possible, for any
particular CPU and computer system, to estimate or measure
the actual time in CPU clock cycles for a small kernel
computation Such as this, but the cycle counts for instructions
on different models of CPU vary. For any one CPU, however,
given a base routine using particular instruction set features,
routines with shorter core sequences will in general be faster.
As long as these shorter routines do not use extra CPU
features that would have also been useful in the base routine,
these are fair comparisons. Lastly, the code in these Operation
610 routines can be re-ordered, or scheduled, in particular
ways for particular CPU models, and this can improve the
performance of this code on a particular CPU. Instructions

Jun. 18, 2015

can have various latencies (time to creation of results), but
another instruction may start execution before a previous
instruction has completed, as long as the later instruction does
not require the results of the previous instruction. So instruc
tion execution may be overlapped, and instructions can be
re-ordered to take advantage of this overlap. Instructions may
only be re-ordered insofar as long as they preserve the seman
tics of the original sequence—in other words, data dependen
cies and the essential computations must remain the same in
the re-scheduled code. The fewer data dependencies, and the
more independent computations, or the more computations
that may remain independent because there are free registers
to hold their intermediate results, the more freedom a sched
uler has in re-ordering instructions. None of the examples
have been optimally scheduled for any particular CPU, but
arguments will be made that some of the examples are more
amenable to scheduling than others.
0201 In the case of two or four CPUs. XY MATVEC4x4
andYZ MATVEC4x4 Operations 610, as in FIG. 11, will be
used. The core of the loop is 12 instructions, with two
memory reads, and 1 memory write. Because it is only com
puting the X and y components of the output vector, only the
first two rows of the matrix are required, and the four registers
containing the first two rows may be loaded ahead of, and
remain constant throughout, the loop. In 12 instructions two
of the four components of the output vector are computed.
The YZ Operation 610 routine is symmetrical, and performs
the same intrinsic computations. This scheme of computing
two components at a time results in a more efficient loop
body. However, in most cases, it would not be a good problem
organization on a single CPU, because this would mean tra
versing the input and output arrays twice for the same com
putation, doubling the total number of memory reads and
writes, and this would likely overwhelm the 25% (12 for
XY-12 forYZ=24, compared to 32) reduction in the length of
the loop body. With a large array of vectors, the required reads
and writes to input and output vector arrays will outstrip the
single CPU's data cache capacity, and some number of cache
misses will occur. Double the cache misses will occur if XY
and YZ routines are executed in sequence on a single CPU,
unless the original MATVEC4x4 Task 302 was first decom
posed By-Domain 925 into a series of small vector batches
(which could be done without the Parallel Task Engine, by
simply nesting an XY loop and a YZ loop in an outer loop, or
could also use a Parallel Task Engine configured for this
application, to do the decomposition, even with one CPU).
However, even in this case, any single CPU has a limited size
data cache, and two CPUs of the same model will have twice
the data cache, and this can be exploited. An XY and a YZ
Task 500 can be dispatched to different CPUs, and in this
case, each CPU will see roughly the same number of cache
misses as a single CPU running the full-datum routine of FIG.
10 (or less, because the matrix rows are not reloaded), but
enjoy the 25% reduction in loop body length, and the factor of
three reduction in memory reads. Each XY or YZ loop does
half as much work, but it is more than twice as fast, and so
using two CPUs in this fashion is faster than using two CPUs
and decomposing a MATVEC4x4 Task 905 simply By-Do
main 925, giving half the full-datum computations to each
processor (which, of course, can be done with the Parallel
Task Engine). An advantage of this two-processor XYYZ
decomposition, over one in which (a series of smaller) XY
and YZ routines are performed in sequence on a single CPU,
which would then be decomposed By-Domain 925 to two sets

US 2015/O 169305 A1

of Tasks 940 for 2 CPUs, is that there are fewer Tasks 940 (the
same number of Tasks 940 for all models of CPU, no matter
what the data cache capacity), and the Scheduler 312 does not
have to estimate the appropriate working set to avoid data
cache thrashing on any single CPU the two CPU data
caches are used to advantage transparently and in a way that
works on any model of CPU. It is true that in total, under a
By-Component 930 decomposition, the number of input data
reads done by the CPUs in combination, may be more than the
number of reads done by full-datum routines on the same
number of CPUs (although this is not the case in the current
example, due to the dearth of registers, and the requirement to
reload the input vectors, in the full-datum routine), and this
may be how we “pay for the extra registers available in
partial-datum routines—but those reads are covered by the
individual data caches on the CPUs, and the fact that the total
load on memory is higher will not be important, unless the
two CPUs contend for access to memory.
0202) To keep the two CPUs from contending for access to
the same memory at the same time, the XYTask 500 starts at
the beginning of the input and output arrays, andYZ Task 500
starts in the middle. As the input and output offsets are
advanced through the arrays in each routine, they are masked
(logical “and” operation) with the offset mask as defined
above, which has the effect of “wrapping the offset around at
the end of the vector arrays—the XYTask 500 starts at vector
0 and ends at vector N-1, and the YZ Task 500 starts at N/2.
wraps past the end to 0, and ends at vector N/2-1. Thus, if the
two Operations 610 proceed at roughly the same rate, they
will rarely contend for read access to the same memory. They
will of course, not ever write the exact same memory, as one
Task 500 will write only Xandy, and the other will write only
y and Z., but they could possibly at times contend for write
access to the same local area of memory, as they can when
reading logically, if both are started at the same time, and
are running at the same speed, they will not contend, but
because they are independent, unsynchronized CPUs, with
independent asynchronous events and independent resource
management, they may drift forward and backward with
respect to each other, and very occasionally need access to the
same memory. Since their starting and ending locations are
N/2 vectors apart, minor variations in moment to moment
progress should make instances of access to the same vector,
or even the same large group of vectors, very rare. (This same
multi-CPU, multi-cache, non-contending access scheme can
be used in any scenario of decomposition By-Domain 925 in
which the two domains are interleaved, and would require
multiple passes through the data on a single CPU, deriving the
same benefit of allowing separate computation on interleaved
sets of data with no memory access penalty.)
0203 With two or more CPUs, the XY and YZ problem
breakdown takes advantage of having two sets of registers
and two data caches to apply to the problem.
0204. In the case of four CPUs, the XY and YZ Tasks 905
can be decomposed by Domain 925, each Task 905 splitting
into two of the same sorts of Tasks 940, with each responsible
for one half the vectors. This will cut the time per vector in
half. Each Task 940 will now be starting on a separate quarter
of the vector arrays, with each task reading and writing half of
them, as follows: CPU 0; XY Task 500, vectors 0 to N/2-1,
CPU 1:YZ Task 500, vectors N/4 to 3N/4-5 CPU2: XYTask
500, vectors N/2 to N-1, CPU 3:YZ Task 500, vectors 3N/4
to N/4-1.

Jun. 18, 2015

(0205 When the XYorYZ routines of FIG. 11 are special
ized to account for the knowledge of the matrix, they can be
even more efficient. FIG. 12 shows that in a case where only
one element in each of the two matrix rows being used are
nonzero, and the two elements are diagonally adjacent (not
that uncommon a case in many matrix applications), a routine
specialized through simple optimization can be almost twice
as fast as the un-specialized routine, needing only seven
instructions in the loop body to complete its work. (Larger,
full-datum routines can also be specialized, of course—but
the Smaller the generic routine, the Smaller the resulting spe
cialized routine).
0206 FIG. 13 shows an optimally specialized routine,
under the same conditions as in FIG. 12. This result is achiev
able by a Code Generator 314 and an Optimizer 840, but not
as easily as the routine in FIG. 12. This routine requires just
three instructions in the core of the loop. Such a short loop
Suggests a pipelined stream of instructions, one that could be
scheduled to achieve maximum overlap of long-latency
instructions, as in FIG. 14. The total number of instructions
per half-vector output does not change from FIG. 13, but as
four half-vectors are “in flight at the same time (which is
possible because of the freeing of registers due to the By
Component 930 decomposition and the constant matrix spe
cialization), this code will probably schedule better on many
CPUS.

0207. To summarize the performance of a MATVEC4x4
Parallel Task Engine, we can see from this example, that given
what we take as an efficient routine for computing a 4x4
matrix-vector product, i.e. FIG. 10, using By-Component 930
decomposition, with two or four CPUs, we can generate
vector products roughly 4/3 as fast (loop body length ratio of
12/16) as any ordinary By-Domain 925 decomposition to
multiple CPUs, with no extraordinary effort. When routines
are dynamically generated with specialized knowledge of
matrix contents, they can be faster (16/7 as fast, loop body
length ratio of 7/16, in this example), again without extraor
dinary effort. With a very advanced Optimizer 840 the per
formance of specialized code can be even better (16/3 faster,
in this example).
(0208. By-Component 930 or other By-Function 920
decompositions are useful when the full-datum or full-func
tion routine is “too big to fit in the register set of the CPU.
By-Domain 925 decompositions are generally productive,
and in a multi-CPU environment, domains may also be inter
leaved. As shown by this example, several aspects of the
Parallel Task Engine 300 can leverage each other to provide
greater than linear speed-up when applying multiple CPUs to
the data processing problem:
(0209. The availability of multiple CPUs with multiple data
caches makes certain problem decompositions practical,
which would not be practical in a single-CPU environment.
This is true for By-Component 930 and any other interleaved
By-Domain 925 decompositions.
0210 By-Domain 925 interleaved decompositions may
contain address arithmetic or other expressions which can be
simplified in more specific variants of Operation 810 rou
tines, because of knowledge of evenness, oddness, or other
implicit numeric properties of data indices under the inter
leaved decomposition.
0211. The appropriate By-Component 930 or By-Func
tion 920 problem decomposition can yield Operation 610
routines that are simpler and faster, splitting the computation
of results over multiple CPU register sets. These routines can

US 2015/O 169305 A1

then make better use of individual CPU resources, which may
allow more data to be computed periteration, and which may
schedule better, leading to better overall efficiency per CPU.
They are also easier for a static or dynamic Optimizer 840 to
improve.
0212. By-Component 930 and other By-Function 920
decomposed routines can be created dynamically (algorith
mically decomposed) by the Code Generator 314, deriving
them from generic routines by applying the Optimizer 840 to
the generic code.
0213 Specialization of Operation 810 routines with
knowledge of run-time constants can lead to great improve
ments in processing speed. The presence of a dynamic Code
Generator 314 and an Optimizer 840 that can derive special
ized routines from generic routines is a general Solution to the
specialization problem. Small, simple routines, obtained
from better decompositions, are also easier to specialize.
0214 Decompositions are chosen, either at run-time, or by
experimentation, the results of which are then fed back into
the configuration of the Scheduler 312, so that the decompo
sitions produce the best Sum total performance, based on an
examination of the operation routines generated. The
example just given is a methodical exercise in this decompo
sition process. When the Scheduler 312 makes these deci
sions at run-time, it must perform a similar analysis of code,
weighing the benefits of different decompositions, optimiza
tions, and specializations. Decomposing to get the same
amount of work done across all CPUs, with best per-CPU
code in dynamically generated Operation 810 routines, is a
novel decomposition strategy, and a means for pursuit of this
strategy as presented here, is a feature of the invention.
0215 Application 2: 3D Graphic Image Renderer. A 3D
graphics image renderer, like the pipeline 200 represented in
FIG. 2, can be implemented with the Parallel Task Engine
300. It consists of Vertex processing (position transforma
tions and lighting); Primitive assembly or "setup, clipping,
culling, and rasterization; and Fragment or pixel 'shading
(coloring, texturing, buffer operations).
0216 Each of these stages of computation can be per
formed by a dynamically generated Operation 810 routine
that is specialized according to run-time values of graphics
CONTEXT variables. The processing involved in the graphic
pipeline is ripe for parallel decomposition—many primitives,
defined by many vertices, enclosing many pixels, all of these
stages have many processing steps, and all of these basic data
types have many independent properties.
0217. This graphics pipeline can also support application
provided vertex programs and pixel shaders. These programs
are simply part of the graphics CONTEXT, and the Code
Generator 314 now creates vertex, setup, and pixel Operation
810 routines using these programs as a source of semantics,
instead of the usual fixed function definitions. The result is the
same, Operation 610 routines for the three stages specific to
the CONTEXT.
0218. These computations at the three stages require large
amounts of temporary state, such as buffers and data struc
tures that represent the initial conditions or intermediate
results of the computation as it progresses. For example,
Vertex processing may keep a cache of already-processed
Vertices, as vertices may be shared by contiguous primitives.
For this reason, it is convenient to have stages perform their
computations at, or conjunction with stage Units 1510.
Units 1510 are static data structures enclosing temporary
data, utilized by the stage computations, and specific to a

Jun. 18, 2015

particular kind of stage (vertex, setup, or pixel) computation.
Stage computations must be attached to an available (no other
computation in progress) Unit 1510 of the right kind in order
tO COmmence.

0219 FIG. 15 shows the data flow and stages of compu
tation in the graphics pipeline. The horizontal rows show
vertex, setup, and pixel Units 1510, with all Units 1510 of the
same kind in their own column. There is no specific relation
ship between the rows and Job Loops 318, or any partition of
Primary Data 306. The diagram depicts an array of Units
1510, and the paths that the data may follow, as it is trans
formed. Any Task 500, for any stage of processing, may be
attached to any available Unit 1510 of the right kind, and then
the Task 500 may be assigned to any Job Loop 318. The
system is set up with as many Units 1510 of a certain kind as
required to support concurrent stage computations of that
kind.
0220. In the Parallel Task Engine implementation of the
graphics pipeline, input Tasks 302 specify lists of graphics
primitives to be rendered. The input Primary Data 306 is a
collection of vertices and primitive definitions. The output
Primary Data 306 is the display frame buffer. Auxiliary data
Such as transformation and projection matrices, texture and
light source definitions reside in the graphics CONTEXT.
0221) The Scheduler 312 for this graphics pipeline has
these policies:
0222 Primitives are drawn in first-in, first-out order. All
pixels of a primitive may not be displayed at once, but for any
pixel in the frame buffer, pixels from primitives are written in
the same order as the primitives themselves are (requested to
be) drawn, e.g. the pixel resulting from the first primitive
drawn will be written first, and the pixel from the last primi
tive drawn will be written last. This will preserve the effect of
primitives that are drawn over portions of other primitives.
0223 Pixel Tasks 500 are dependent on setup Tasks 500
that process the outlines, compute gradients for interpolation,
and perform the rasterization of the primitives that enclose or
bound them. Primitive setup Tasks 500 are dependent on the
vertex Tasks 500 that process the vertices that define the
primitive.
0224 Pixels are written to the frame buffer as soon as
possible, while preserving drawing order as described above.
Pixel sub-Tasks 500 are done before their enclosing primitive
setup Tasks 500, which are done before their defining vertex
Tasks 500, in other words, as soon as the Tasks 500 on which
they are dependent have completed. For any set of pixels
covered by a pixelTask 500, the pixelTasks 500 for primitives
drawn earlier are done before the pixel Tasks 500 for that
same set of pixels resulting from primitives drawn later. The
same ordering with respect to their source primitives is true
for setup and vertex Tasks 500.
0225. Tasks 500 must be assigned to a Unit 1510 of the
right kind to do their work. If the right kind of Unit 1510 is not
available (free) for use, the Task 500 cannot be scheduled.
When a Task 500 is assigned a Unit 1510, the Unit 1510 is
unavailable until the Task 500 is complete.
0226
0227. The input Task 302 is a list of primitives to render.
This input Task 905 is first split into Tasks 940 for two passes.
These two passes are a decomposition By-Component 930 of
the final frame buffer pixels—the first pass computes only the
Z-buffer value of the rendered pixels. The second pass com
putes everything but the Z-buffer value, and uses the first pass

Tasks 500 are decomposed in several ways:

US 2015/O 169305 A1

Z-buffer value in the traditional way, in order to determine
whether the pixel should be drawn or not.
0228 A (pass 1 or pass 2) primitive-list rendering Task
905 can be decomposed By-Domain 925 into Tasks 940 with
shorter lists, or batches of one or more primitives to render.
0229 Aprimitive-list rendering Task 905 is decomposed
by FUNCTION into a vertex Task 940, a primitive assembly
or setup Task 940, and a pixel Task 940, modeling the pipe
lines 200 of FIGS. 2 and 1500 of FIG. 15. These Tasks 940 are
successive stages, the pixel Task 940 is dependent on the
setup Task 940, and the setup Task 940 is dependent on the
vertex Task 940.
0230. The vertex Task 500 has a Data Pointer 520 from the
input Task302 to a vertex buffer containing all of the vertices
for all of the primitives, to be processed en masse, regardless
of their primitive associations. This vertex Task 905 can be
decomposed By-Domain 925 into multiple independent ver
tex Tasks 940. This decomposition may be blind, or it could
be sorted according to association with groups of primitives.
0231 Vertex processing includes many cases of matrix
vector multiplication, which may be decomposed By-Com
ponent 930 and By-Domain 925, as in the matrix-vector
example described above.
0232. The primitive setup Task 905 has a Data Pointer 520
to a list of primitives to render, from the input Task302. It can
be subdivided By-Domain 925 into multiple independent
Tasks 940 with shorter lists of primitives. Depending on how
the original vertex Task 905 was decomposed, some setup
sub-Tasks 94.0 may not be dependent on all of the vertex
Sub-Tasks 940.
0233. The pixel Task 905 can be decomposed By-Domain
925 into pixel groups of various kinds. One alternative is
multiple sections of the display screen. Another is interlaced,
or alternating horizontal bands on the display, one or more
pixels tall. Or the pixel Tasks 940 can be sorted according to
primitive groups, or types. The pixel Tasks 905 may also
amenable to By-Component 930 decompositions, e.g. color
values, the components of which can be computed indepen
dently, in certain lighting and shading operations.
0234. In order to effect its Task 500 ordering policy, the
scheduler must look for the earliest pixel Task 500 (from the
earliest primitive), check its dependencies, and if none are
ready, look for the earliest setup Task 500, and if none are
ready, choose the earliest vertex task. This can be done in a
number of ways. One convenient way is to keep the Tasks 500
on a linked list, as in the matrix-vector example above. When
decomposing primitive-list rendering Tasks 905 into vertex,
setup, and pixel Tasks 940, they are added to the list in reverse
order: pixel, setup, and vertex. Now the scheduler can start
from the head of the list, and simply choose the first Task 500
with no outstanding dependencies, and for which a Unit 1510
of the right kind is available.
0235. The Code Generator 314 for the graphics pipeline
can take advantage of the following opportunities for special
ization and optimization:
0236. The first pass and second pass are By-Component
930 final pixel decompositions of the pixel’s depth, Z, and the
complementary components to Z. The first pass Operation
610 routines can be dramatically reduced, as most of the
results which will be computed in pass 2 Tasks 500 are not
needed in pass 1.
0237 Because the Z-buffer is filled early (before pass 2
starts), as soon as rasterization is complete, it is known for any
pixel whether or not the pixel will eventually be written to the
frame buffer. No additional processing will be done for pixels
that are not displayed. This is a kind of depth-sorting that
occurs naturally with this decomposition and this engine.

Jun. 18, 2015

0238 All of the graphics processing stages depend on
many variables, options, and auxiliary data in the graphics
CONTEXT. There are hundreds of opportunities to specialize
Operation 610 routines by knowledge of variables that are
constant at run-time, and therefore many conditional tests and
branches in generic Operations 810 will be removed by the
Synthesizer 820, Optimizer 840, or by substituting canned
routines (Locate Static Code 830) for specific variants of
Operations 810. For example, multiplying or dividing by a
constant of one means that the multiplication or division can
be eliminated.

0239 Vertex processing includes many cases of matrix
vector multiplication, and the optimizations presented in the
matrix-vector multiplication example above may be used in
Vertex processing.
0240 Logical primitive setup stages. Primitive setup can
be broken into several stages, as depicted in FIG. 16. Stage
1601 assembles the vertices of the primitive, in the illustration
a triangle. Stage 1602 performs back-face culling by deter
mining the winding order of the triangle's vertices. This stage
is skipped for line and point primitives. Stage 1603 constructs
a polygon covering the primitive's fragments and clips it
against the visible region. Stage 1604 projects the clipped
polygon into Screen space and scan-converts its edges. Stage
1605 computes Z and vertex attribute gradients. A detailed
description of the operations performed in stages 1603 and
1604 related to rasterization, together called the rasterization
stage, follows in the next section.
0241 Primitive setup rasterization stage. The first step in
rasterizing primitives is to construct a polygon covering their
fragments. Triangle primitives can use their vertex positions
directly as such a polygon. Line primitives require the con
struction of a thick line shaped polygon Surrounding the line
in screen space. One way to achieve this is to construct a
1-pixel wide rectangle as depicted in FIGS. 18(a) and (b). The
white-filled circles connected by the dotted line represent the
Vertex positions in Screen space. The black dots represent the
screen space positions of the newly constructed polygon. In
FIG. 18(b) every polygon edge is located at 0.5 pixel distance
from the polygon, to avoid underdraw (missing pixels) in
between connecting lines. To comply with the industry-stan
dard grid-intersect quantization (or GIO, described in
“The m-Dimensional Grid Point Space', Reinhard Klette,
Computer Vision Graphics Image Processing. Vol. 30, pp.
1-12, 1985) rasterization rule using diamonds, two 1-pixel
sized diamonds have to be constructed in screen space, cen
tered around the line's vertices, as depicted in FIG. 18(c). The
six points forming the convex hull of the diamonds are used as
the polygon for rasterization. Point primitives require the
construction of an axis-aligned square polygon in Screen
space, centered on the points position. The second step in
rasterization consists of clipping the constructed polygon
using the Sutherland-Hodgman clipping algorithm, against
viewing frustum planes and optional application-controlled
clipping planes. The viewing frustum and viewport Scaling
can be adjusted to provide viewport and Scissor clipping
functionality. Only positions are clipped; the constructed
polygon does not include vertex attribute data. The next step
is to rasterize the outline of the (clipped) polygon, and is
illustrated in FIG. 17. For every edge of the polygon (a pair of
points), it is determined whether it is on the left or right side
of the polygon. For every scanline 1703 intersecting the edge,
the X-coordinate of the intersection is computed, and stored in
the left outline array 1701 or right outline array 1702 depend
ing on which side the edge is located, at an index correspond
ing to the Scanline's y-coordinate. For anti-aliasing purposes
intersections can be computed at higher resolution. The inter

US 2015/O 169305 A1

sections can be computed efficiently using a variant of
Bresenham's line drawing algorithm, the digital differential
analyzer (DDA) algorithm or a fixed-point or floating-point
edge stepping method. Together with the outline arrays the
top and bottom index where the polygon is located in the
outline arrays 1701 and 1702 is stored. The (clipped) polygon
can now be discarded. Gradient setup calculations use the
original vertices of the primitive. The outline arrays and top
and bottom indices can now be used by the interpolators to
determine coverage masks for pixels or groups of pixels: For
every fragment the coverage can be determined by comparing
its x-coordinate to the left and right outline arrays at the
index corresponding to the fragment's y-coordinate. This
process can be done in parallel for a group of fragments.
Advantages of the whole rasterization algorithm compared to
prior art are the ability to clip every type of primitive to
viewport and Scissor edges at an early stage, computing frag
ment coverage at a lower per-fragment cost than using half
space functions (as described in "Triangle Scan Conversion
using 2D Homogeneous Coordinates’, Marc Olano and Trey
Greer, Proceedings of the 1997 SIGGRAPH/Eurographics
Workshop on Graphics Hardware), and computing coverage
of groups of fragments in parallel on the same processor and
in parallel for multiple groups of fragments on multiple pro
CSSOS.

0242 Performance of the Graphics Pipeline. A graphics
pipeline implemented via the Parallel Task Engine 300 as
described above can keep multiple CPUs busy throughout
every stage of image rendering, from the original list of primi
tives to display, to the final pixel frame buffer operations.
This, in concert with the previously described beneficial
problem decomposition, and dynamically generated context
specific optimized code, as well as specific, novel graphics
processing algorithms detailed above, can give a Super-linear
acceleration of the rendering process when applied via this
engine to multiple CPUs.
0243 While illustrated in the block diagrams as groups of
discrete components communicating with each other via dis
tinct data signal connections, it will be understood by those
skilled in the art that an embodiments are provided by a
combination of hardware and software components, with
Some components being implemented by a given function or
operation of a hardware or software system, and many of the
data paths illustrated being implemented by data communi
cation within a computer application or operating system.
The structure illustrated is thus provided for efficiency of
teaching the present embodiment.
0244. It should be noted that the present description is
meant to encompass embodiments including a method, a
system, a computer readable medium or an electrical or elec
tro-magnetic signal.
0245. The embodiments described above are intended to
be exemplary only. The scope of the description is therefore
intended to be limited solely by the scope of the appended
claims.

1. In a computer system, a parallel task engine for perform
ing tasks on data, the parallel task engine comprising:

an input for receiving tasks, each task for performing an
operation;

a scheduler for decomposing the tasks into one or more
new tasks, the decomposing being dependent on at least
one policy selected from a given set of policies;

a run-time dynamic code generator for generating, for the
new tasks, operation routines, the run-time dynamic
code generator comprising a dynamic compiler, the
dynamic compiler being adapted to output the operation
routines for execution;

Jun. 18, 2015

a set of job loops, at least one of the job loops for perform
ing the new tasks on at least part of the data by executing
the operation routines, the job loops running in parallel
on two or more CPUs;

the scheduler for distributing and assigning the new tasks
to the at least one of the job loops; and

the scheduler for making the selection of the at least one
policy based on general heuristics.

2. The parallel task engine of claim 1, wherein the given set
of policies include one or more of by-domain policies, and
by-component policies.

3. The parallel task engine of claim 2, wherein the sched
uler performs by-domain decomposition on a given task by
modifying data pointers or parameters of the given task.

4. The parallel task engine of claim 2, wherein the sched
uler performs by-component decomposition on a given task
having a full datum operation, by dividing the full datum
operation into a plurality of component operations, and deter
mines whether the component operations must be applied
sequentially, in parallel or in an arbitrary order.

5. The parallel task engine of claim 1, wherein the sched
uler decomposes the tasks into new independent tasks to be
performed in parallel on two or more CPUs.

6. The parallel task engine of claim 5, wherein the new
independent tasks associated with a given task have different
parameters and data pointers than the given task and perform
the same operation associated with the given task.

7. The parallel task engine of claim 1, further comprising a
cache for retaining and retrieving the operation routines,
wherein the cache comprises a directory of cache entries,
each entry comprising:

an operation routine pointer, and
a tag to be matched when searching the cache for operation

routines, the tag consisting of an operation routine iden
tifier and a context, the context having a collection of
variables, or a pointer to a collection of variables.

8. The parallel task engine of claim 7, wherein the run-time
dynamic code generator further comprises an optimizer, the
optimizer taking as input an operation routine from the opera
tion routines, or a pointer to an operation routine from the
operation routines, the optimizer producing as output an out
put operation routine, or a pointer to the output operation
routine, which is semantically equivalent to the operation
routine at the input.

9. The parallel task engine of claim 1, wherein the tasks
comprise graphics processing tasks for 3D objects defined as
a collection of geometric primitives, and further wherein the
scheduler is for decomposing the graphics processing tasks
into one or more new graphics processing tasks.

10. The parallel task engine of claim 9, further comprising
a rasterization module for identifying pixel fragments cov
ered by the primitives, the rasterization module being config
ured for:

assembling vertices of each of the primitives;
constructing a polygon covering the pixel fragments;
scan converting the polygon to obtain coordinates of the

Scan converted polygon; and
storing the coordinates in an outline buffer;

the coordinates being used in the identifying of the pixel
fragments covered by the primitives.

11. The parallel task engine of claim 10, wherein the ras
terization module is further configured for clipping the poly
gon against a visible region prior to the scan converting.

US 2015/O 169305 A1

12. In a computer system, a method for performing tasks on
data, the method comprising:

receiving tasks:
decomposing the tasks into one or more new tasks, the

decomposing being dependent on at least one policy
Selected from a given set of policies;

generating for the new tasks, operation routines, the gen
erating comprising outputting the operation routines for
execution using a dynamic compiler,

making the selection of the at least one policy based on
general heuristics;

providing a set of job loops;
distributing and assigning the new tasks to at least one of

the job loops;
running the job loops in parallel on two or more CPUs; and
the at least one of the job loops performing the new tasks on

at least part of the data by executing the operation rou
tines.

13. The method of claim 12, wherein the generating of
operation routines uses a context having a collection of vari
ables, or a pointer to a collection of variables, specifying at
least one of options, parameters, conditions, constant data,
and other data apart from the data on which tasks are per
formed, the context for influencing the tasks performed on the
data.

14. The method of claim 12, wherein the tasks comprise a
matrix multiplication of a vector by a matrix, the matrix
comprised in the context.

15. The method of claim 12, wherein tasks and new tasks
comprise:

a command, comprising:
a name having a numeric or symbolic identifier, or a

pointer to such an identifier, the name defining an
abstract operation to be performed on data;

Zero, one, or more parameters; and
one or more pointers or parameters, identifying the data on
which the command is to be performed.

16. The method of claim 12, wherein the run-time dynamic
code generator further comprises an optimizer, producing,
from an input operation routine from the operation routines,
or a pointer to an operation routine from the operation rou
tines, an output operation routine, or a pointer to the output
operation routine, which is semantically equivalent to the
input operation routine.

17. The method of claim 16, wherein the generating of
operation routines uses a context and wherein the production
of an output operation routine, or a pointer to the output
operation routine, results in an output operation routine which
is equivalent to the input operation routine under limitations
or conditions described by the context.

18. The method of claim 12, wherein the decomposing the
tasks is performed according to at least one of the following
policies:

decomposing a task into one or more new tasks by parti
tioning the data on which the task is to be performed into

16
Jun. 18, 2015

one or more Subsets of that data, each new task being
responsible for performing the same operation as the
original task on a corresponding data Subset;

decomposing a task into one or more new tasks, each of
which performs a different operation than the original
task, but which performs this operation on the same data
set as the original task; and

decomposing a task into one or more new tasks, by parti
tioning an individual datum of the data on which the task
is to be performed, into Sub-components, each new task
creating one Sub-component of each resulting datum for
all the data.

19. The method of claim 12, further comprising estimating,
for an operation routine from the operation routines, a per
formance, the operation routine comprising instruction code,
the estimating comprising at least one of analyzing, inspect
ing and measuring characteristics of the operation routine
instruction code.

20. The method of claim 19, further comprising selecting
the policy for decomposition which yields the highest esti
mated performance, based on the estimated performance of
operation routines.

21. The method of claim 12, wherein the tasks comprise
graphics processing tasks for 3D objects defined as a collec
tion of geometric primitives, and wherein the decomposing
comprises decomposing the graphics processing tasks into
one or more new graphics processing tasks.

22. The method of claim 21, wherein the decomposing
comprises decomposing the graphics processing tasks into at
least one of one or more vertex processing tasks, one or more
primitive processing tasks, and one or more pixel processing
tasks.

23. The method of claim 21, further comprising pixel pro
cessing tasks which draw the 3D objects to a rendered image,
wherein the decomposing comprises decomposing the pixel
processing tasks into one or more new pixel processing tasks
whereby at least two of the new pixel processing tasks contain
fragments of non-overlapping regions in the rendered image,
and the new pixel processing tasks are assigned to at least two
job loops.

24. The method of claim 23, wherein the new pixel pro
cessing tasks are assigned to a job loop when no other new
pixel processing tasks containing overlapping fragments is
executing in any of the job loops.

25. The method of claim 21, wherein the new graphics
processing tasks are assigned to a job loop which previously
executed a new graphics processing task which shares part of
the data of the new graphics processing task.

26. The method of claim 12, further comprising:
decomposing the tasks into new independent tasks; and
performing the new independent tasks in parallel on two or

more CPUs.

