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(57) ABSTRACT 

A Software engine for decomposing work to be done into 
tasks, and distributing the tasks to multiple, independent 
CPUs for execution is described. The engine utilizes dynamic 
code generation, with run-time specialization of variables, to 
achieve high performance. Problems are decomposed accord 
ing to methods that enhance parallel CPU operation, and 
provide better opportunities for specialization and optimiza 
tion of dynamically generated code. A specific application of 
this engine, a software three dimensional (3D) graphical 
image renderer, is described. 
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; Perform 4x4 matrix by 4x1 vector multiply 
; All matrix vector elements DP (64 bii) FP numbers 
, Matrix rows and row and vector elements nurnered 0-3 
; Wector elements 0,1,2,3 are denoted x,y,z,w 

; Pointer to input vectors in ESI (ACS) 
; Pointer to output vectois in EDi (AoS) 
; Starting offset in EAX 
; Offset mask in EDX 
; Pointer to matrix (rows) in EBX 
; Mumber of vectors to process in ECX 

; Compute ore output vector per iteration 

mwmgy: 

mvloop: 
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; Compute output x, y elements, first two row-vector dot products 

mowupc xinmaebX+0 
imovupc xmm5, ebx+18 
rowupc: xrames, ebx+32 
mowupc. xmm7, ebX+48) 

now upc xram0,esi+eax+0 
Trowupd Ximesit-eax+16) 
movupc xmm2,ximr10 
mowupd Xmm3,ximr1 

?ulp XII: TO, XHFT4 
mulpci xman 1.xmm.5 
mulpo xmm2,xmmé 
mulpc. xmm3.xmm7 

haddad xm:0.xmm1 
haddad xmm2,xmm3 
hadded XminO,xmm2 

movipd edi-Heax+0.x:mm) 

(), 1 elements of low 0 
2, 3 elements of OW 0 

; 0, 1 elements of OW 
2, 3 elements of row 1 

: copies 

; (x, y) 

; Compute outputz, w elements, Fast two row-vector dot products 

mowupd Ximm4,ebX-64 
mowupdximm5, ebX+80. 
mowupd xinms, ebx+96 
mowupd xinm7,sbx+112) 

mulpd Xmm(,xnna 
mulpd Xmmixtan:5 
mulpd xmm2.xmm6 
mulpd xmi;3,xmm7 

haddpd Xmm0,xmm. 
haddpd XImm2.xmm3 
haddpd Xmm0,ximm2 

movipd edit-eax+16),xirim) 

; Jpdate pointers and count, loop of return 

entients of row 2 
ienents of row 2 

; ), i.e 
2, 3e 
(), 1 e 
2, 3 e 

erents of OW3 
ements of row 3 

y 
W - 

; Copies 

(z, W) 

add eax,32 
al eax, eix 
loop mwoop 
:et 

; 32 instructions, 12 memory reads, 2 memory writes, per vector per CPU 
; 2 CPUs: 15 instructions, 6 memory reads, 1 memory write, per vector 
; 4 CPUs; 8 instrictions, 3 femory reads, .5 memory wite per Wector 

Figure 10. Full-daturi Matrix-vector Multiplication with SSE3 instructions 
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; Perform 4x4 matrix by 4x1 vector multiply 
; All matrix}vector elements DP (64 bit) FP numbers 
; Matrix rows and row and vector elements nurnbered 0-3 
; Vector elements 0,1,2,3 are denoted x,y,z,w 

; Pointer to input vectors in ESI (AoS) 
; Pointer to output vectors in El (AoS) 
; Starting offset in EAX 
; Offset mask in EDX 
; Pointer to matrix (rows) in EBX 
; Number of vectors to process in ECX 

; Compute x, y elements of one vector per iteration 

rwmpy: 

; Load requisite matrix rows ahead of loop 

mowupd Xrnm4,(ex+0 ; 0, 1 elements of row 0 
movupd xmm5, ebx+16) ; 2, 3 elements of row 0 
movupd xmm6,ebx+32) ; 0, 1 elements of row 1 
movupd xmm7, ebxt 48) ; 2, 3 elements of row 1 

mvloop: 

; Compute output x, y eiements, first two row-vector dot products 

mowupd xmm0,esi+eax+C) X, y 
movupd xmm1,iesii eax+16) Z, W 
mowupd xmm2.xmm0 
mowupd xmm3.xmm1 ; Copies 

muipd Xmm0,xmm4 ; xrnm0: (a,b): row0(O)x, row01"y 
muipd xmm1xmm5 ;xmm1: (c,d): row02'z, row0(3) "w 
muipd xmm2,xmm6 ;xmm2: {e,f): row 10'x, row 11-y 
muipd xmm3,xnnin7 ;xmm3: (g, h): row 1 (2)"z, row 13)"w 

haddpd xmm0,xnam 1 ;xmm0: (a+b, C+d) 
haddpd xmm2,xrnm3 ;xmm2: {elf, gth) 
haddpd. xmmC,xrnm2 ;xmmO: (a+b+c+d, e+f+g+h) 

movupd editeax+0),xmm0 ; (x, y) 

; Update pointers and count, loop or return 

add eax,32 
and eax.edX 
loop mwloop 
ret 

: 12 instructions, 2 ineraory reads, 1 memory write, per half-vector per CPU 
; 2 CPUs; 12 instructions, 2 memory reads, 1 memory write per vector 
; 4 CPJs: 6 instructions, it memory read, .5 memory write per vector 

Figure 11. Half-datum Matrix-vector Multiplication with SSE3 instructions 
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; Perform 4x4 matrix by 4x1 wector multiply 
, Al: matrix}vector elements P (64 bit) FP numbers 
; Matrix rows and row and voctor elements numbeed G-3 
; Wector elements 0,1,2,3 are denoted x,y,z,w 

; Pointer to input vectors in ES: AoS) 
; Pointer to output vectors in EDI (AoS) 
; Starting offset in EAX 
; Offset mask in EDX 
; Pointer to fratrix (rows) in EBX 
; Number of vectors to process in ECX 

; CoImgute x, y eiements of one vector per iterator. 

; Specialize with knowledge that only element 1 of row 0, 
; and eiement 2 of row 1 are nonzero 

mwmpy: 

; Load requisite fratrix rows ahead of loop 

mowupd xmm4, ebX+0 ; , ; elements of row 0 

; These two hal-rows are all zero 
rinoyupd Xmm5, ebX+16) ; 2, 3 elements of row 0 
raoyupd xmmé, ebX+32) ; 0, 1 elements of row i 

moyupd Ximm7, ebX+48) 2, 3 elements of row i 

mwloop: 

; Compute output x, y elements, first two row-vector dot products 

mowupd Ximrao,esiteax+0) : X, y 
mowupd xmr1esiheax+16) 2, W 

. These copies are no longer necessary 
mowupd xmr12,xmr:0 
mowupd Xmm3,ximm1 copies 

mulod xmm0,xmm4 xmm0: (a, b): rowOOX, rowC1'y 

; These two products are all zero 
mulpd xmm 1.xmm5 xt:11: (c,d): row02'z, row03'w 
mulpd Xmm2.xmme xrm2; (e, f): row 10'x, row 11 "y 

; This instruction can now usexmm1, it is no longer destroyed 
mulpd Xrnm3.xmm7 ;xmr13; (g, h}: row 12jZ. row 3"w 
mulpd xrami,xmm7 ;xmr1: (g, h: row 12"z, row (3'w 

; hese three instructions can be simplified - only products 8 and g are nonzero 

; Update pointers and count, loop of retu:n 

add eax,32 
and eax, ed: 
loop mwloop 
ret 

; 7 instructions, 2 memory reads, memory write, per half-vector per CPU 
; 2 CPUs: 6 instructions, 2 memory reads, 1 nenory write per vector 
; 4 CPUs; 3 instructions, 1 memory read, .5 memory write per vector 

Figure 12. Specialized Haif-catum Matrix-vector Multiplication with SSE3 instructions 
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; Perform 4x4 matrix by 4x1 vector multiply 
: All matrixfwector elements DP (64 bit) FP numbers 
; Matrix rows and row and vector elements rumiered 0-3 
; Wector elements 0,1,2,3 are denoted x,y,z,w 

; Pointer to input vectors in ESI (AoS) 
; Pointer to output vectors in EDI (AoS) 
; Starting offset in EAX 
; Offset mask in EDX 
; Pointer to matrix (rows) in E8X 
; Number of vectors to process ir: ECX 

; Compute x, y elements of one vector periteration 

: Specialize with knowledge that only eiement 1 of row 0, 
and element 2 of fow 1 are nonzero 

mwrapy: 

; Load requisite matrix rows ahead of loop 

movupd xmmé.ebxtO) ; 0, 1 elements of fow 0 
mowupd Xmm7, ebX+48 2, 3 elements of row 1 
addpd xmm6.xmm7 ; row (2), row01 
shuf-d xmm7,xanmö, , ow01), row 12 

iwloop: 

; Compute output x, y elements, first two row-vector dot products 

mowupd Ximm0,esi+eax+8) W, Z 
muipd xinm0,xmm7 ;xmm): row01"y, row 122 
nowupd edit-eax+0,xntino , (x, y) 

; Update pointers and Count, loop or return 

add eax,32 
and eax, e.dx 
loop mwoop 
ret 

; 3 instructions, 1 memory reads, 1 memory write, per half-vector per CPJ 
; 2 CPUs: 3 instructions, 1 memory reads, memory write per vector 
4 CPUs: 1..5 instructions, .5 memory read, .5 memory Write per vector 

Figure 13, Optimal Half-datum Specialized Matrix-vector Multiplication with SSE2 instructions 
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; Perform 4x4 matrix by 4x1 vector multiply 
; All matrixfvector elements DP (64 bit) FP numbers 
; Matrix rows and row and vector elements numbe{ed 0-3 
Wector elements 0,1,2,3 are denoted x,y,z,w 

; Pointer to input vectors in ESI (AoS) 
; Pointer to output vectors in El (AoS) 
; Starting offset in EAX 
Offset mask in EDX 

; Pointer to matrix (rows) in EBX 
, Mumber of vectors to process in ECX 

; Compute x, y elements of four vectoFS per iteration 

; Specialize with knowledge that only element 1 of row 0, 
and eiernent 2 of row are nonzero 

mwimpy: 

, load requisite matrix rows ahead of loop 

mowupd 
Irowupd 
aidpd 
shufpd 

mwloop: 
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; 0, 1 elements of row 0 
; 2, 3 elements of row 1 
; fow 12), row01) 
; :ow0), row 12) 

; Compute output x, y elements, from first two row-vector dot products 

mowupd 
mowupd 
mowLipd 
mowupd 

xmm0,esi+eax+8) 
xmm1esi+eax+40) 
Xmm2,esideax+72) 
ximm3,esi-heax+104) 

mulpd 
mulpd 
mulpd 
mulpd 

mowupd 
mowupd 
?howupd 
r:lowupd 

Update pointers and count, loop or return 

add eax,28 
and eax,edX 
loop mwloop 
ret 

, y3, 23 

Xrnm0: row0. 
xmm1: row01 
Xrnm2: row01 
xiii.3: row01 

*y0, row 12:20 
*y 1, row 1221 
"y2, row 1222 
y3, row 12z3 

; 12 instructions, 4 internoy reads, 4 memory writes, per four half-vectors per CPU 
; 2 CPJs: 3 instructions, 1 memory reads, 1 memory write per vector 
; 4 CPJs: 5 instructions, .5 memory read, .5 memory write per vector 

Figure 14. Pipelined Half-datum Optimal Specialized Matrix-vector Multiplication with SSE2 instructions 
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GENERAL PURPOSE SOFTWARE PARALLEL 
TASKENGINE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 13/597.403, filed on Aug. 29, 2012, 
which is a continuation of U.S. Pat. No. 8,284,206, filed on 
Mar. 14, 2007, which claims the benefit of provisional of U.S. 
Patent Application No. 60/781,961, filed on Mar. 14, 2006, 
the disclosures of which are hereby incorporated by refer 
CCC. 

FIELD 

0002 The present description relates to the field of parallel 
processing of tasks in computer system. The description also 
relates to the field of software 3D image rendering. 

BACKGROUND 

0003 Parallel Processing. Using multiple computer CPUs 
simultaneously or in parallel, to solve a single problem, or 
execute a single program, and by doing so, reducing the time 
required, is an old and well-studied idea. In fact parallel 
processing is an entire Sub-discipline of computer Science. 
Any system for accomplishing parallel solution of a problem 
or execution of a program has two components: A problem 
decomposition strategy or scheme or method, or combina 
tion of methods, and an execution vehicle or machine or 
system. In other words, the problem must be broken down 
into multiple parts, and then these parts must be distributed to 
and executed by the multiple CPUs. Problems can sometimes 
be broken down into parts that are independent, which may be 
pursued completely in parallel, with no interaction between, 
or no specific ordering of Sub-programs to be executed on the 
CPUs required. Sometimes problem decompositions have 
inter-dependent parts, implicit in the problem, or created by 
the decomposition. 
0004 Problem decomposition methods can be sorted into 
two large categories: decomposition by domain, where the 
function to be performed remains the same, and the data to be 
processed is distributed to multiple CPUs, and decomposition 
by function, where the work to be done on each datum is 
broken up into sub-functions, and each CPU is responsible for 
performing its sub-function on all the data. Both types of 
decomposition can be achieved through two major means— 
implicit or problem-aware, specific, ad hoc means, built into 
the system, or algorithmic decomposition. In algorithmic 
decomposition, the original program, or a representation of 
that program, which encapsulates the single-CPU, sequential 
semantics of a solution to the problem, is decomposed into 
multiple programs. Most interesting problem decompositions 
are a combination of both types of decomposition, using 
elements of both means of decomposition. The resulting CPU 
Sub-programs may be completely independent, or perfectly 
parallel, or they may be organized into Successive, overlap 
ping, Sub-functional stages, as in an assembly line or pipe 
line, or there may be any number of dependencies and inde 
pendences, in any sort of dependency graph. 
0005 Systems of parallel execution of the sub-programs 
can be classified in terms of their similarity to two opposing 
models—those that have a central, master unit directing the 
flow of work, and those that are modeled as a de-centralized 
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network of independent processors. Of course, many systems 
lie on the line somewhere in between these polar extremes. 
0006. As stated above, the field of parallel processing is 
rich in research, and there is much prior art. However there is 
as yet no general Solution for all problems, and every parallel 
processing system is better at Some sorts of problems than 
others. There are yet many problems with unexploited poten 
tial for parallelism, and many improvements may be made to 
parallel processing systems for different classes of problems. 
0007 Dynamic Code Generation. Dynamic code genera 
tion is a technique whereby code is compiled or prepared for 
execution dynamically, by a program which will need to call 
or invoke it. This code is often created at the last possible 
moment, or just-in-time. If the code is created only when it 
is about to be used, it will not be generated if it is never used, 
and this can represent savings in compilation time and pro 
gram space. After compilation, the new routine can be 
retained, or cached, in case it is needed again. The required 
routine may be called under a particular set of prevailing 
conditions or with specific arguments that Suggest a simpler, 
more efficient, custom compilation unique to that invocation 
or set of conditions. In that case, the dynamic compiler might 
create a special version of the code to be used only under those 
conditions or with a similar invocation. Dynamic compilation 
may also allow Superior general-purpose optimizations due to 
facts unknown at the time the program in question was speci 
fied, but known at the time of execution. 
0008 Dynamic code generation has often been used in 
environments where there is no obvious program to be com 
piled, where a fixed function is replaced by a run-time gen 
erated, run-time specialized and optimized routine, in order to 
gain improved performance over statically compiled, neces 
sarily general code. Because the program is often not rep 
resented in formal semantic terms, or is represented only by 
the previously compiled, machine code for the function to be 
replaced, and because of the need to produce new code 
quickly in a run-time environment, dynamic code generators 
and optimizers are frequently simple affairs, exploiting high 
leverage, problem-aware ad hoc methods or tricks to achieve 
their ends. In this case, the more high-leverage, informal or 
implicit, problem-specific information that can be imparted 
to these code generators, the better they can potentially per 
form. 
0009. One application in which parallel processing and 
dynamic code generation may be combined is a three-dimen 
sional graphical image rendering system, or graphics pipe 
line. 
0010 Definition of Graphics Pipeline. Three dimensional 
(3D) computer graphics display programs simulate, on a two 
dimensional display, the effect that the display is a window 
into a three dimensional scene. This scene can contain mul 
tiple 3D objects, at different apparent distances from the 
window, and the window has a viewpoint or camera angle 
with respect to the scene and its objects. Objects can be 
colored and textured, and the objects can seem to be illumi 
nated by light sources of different types and color. 
0011. A software program that models and displays 3D 
objects can be divided into two parts: an application pro 
gram which relies on a set of high-level functions to manipu 
late and display graphical data, and a graphics Software 
library that provides these functions 
0012 3D objects consist of geometric shapes, at certain 
positions in the 3D world, with certain properties or 
attributes. These objects are defined and maintained by the 
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application program, as a collection of geometric primitives, 
and then these primitives are defined and described to the 
graphics library, which draws, or renders them onto the two 
dimensional (2D) display, with all necessary positioning, ori 
entation, perspective scaling, coloring, texturing, lighting, or 
shading effects performed on each primitive as it appears in 
the window view. This represents a series of processing steps 
on geometric primitives and their component data, as they 
progress from spatial coordinate and attribute definition to 
final 2D picture element (pixel) form on the screen. A soft 
ware and hardware system that accomplishes this drawing of 
geometric primitives is called an image renderer, or a render 
ing engine, and the series of processing stages used is 
termed the graphics pipeline. 
0013 Definition of terms, description of pipeline process 
ing stages. FIG. 1 shows a generic graphics pipeline 100 for a 
rendering engine according to the prior art. Different render 
erS Support different options and features, and use various 
techniques to perform the required processing at each stage. 
Operations and stages can also be, explicitly or implicitly, 
performed in different orders in different implementations, 
while preserving the same apparent rendering model. Stages 
orportions of stages may be performed to varying degrees by 
either software or hardware. There are also many different 
groupings or organizations of the component operations into 
pipeline stages for the purposes of exposition, and the termi 
nology in the art is not uniform from one implementation to 
another. 

0014. The following definitions are used in the descrip 
tions of the graphics pipelines below: 
00.15 Primitive: a collection of points in 3D space forming 
a point, a line, a triangle, or other polygon, with associated 
properties. 
0016 Vertex: one of the points defining a primitive. 
0017 Object: a collection of primitives. 
0018 Normal: for a point on the surface of a primitive, a 
vector defined to be normal or perpendicular to the surface of 
the primitive at that point. 
0019 Model space: a 3D coordinate space in which an 
individual object is defined, apart from a 3D scene in which it 
may be placed. 
0020 World space: the coordinate space of the 3D scene. 
0021 Viewport or Camera: the window, with its associ 
ated orientation, position and perspective relative to the 
scene, through which the 3D scene is apparently being 
viewed. 

0022 View space: the coordinate space of the 3D scene, as 
seen from the viewpoint of the camera. 
0023 Face: a planar polygon in an object, either front 
facing (toward the camera), or back-facing (away from the 
camera). 
0024 Model Transformation: scaling and placing an 
object in the scene, transforming its vertex coordinates from 
model space to world Space. 
0.025 Viewing transformation: translating (moving, posi 
tioning), and rotating (orienting) vertices to account for view 
ing position and orientation with respect to the scene, trans 
forming vertex coordinates from world space to view space. 
0026 
0027 Texture, or texture map: an image, which may be 
designed to visually mimic the Surface properties of a physi 
cal material. 

Material: light reflectivity properties. 
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0028 Lighting: the interaction of light sources of different 
types and colors, with colors and materials and textures, at 
vertices. 
0029 Primitive assembly: determining primitives as 
defined by the application, and gathering their component 
vertex coordinates and attributes, in preparation for further 
processing. 
0030 Clipping: removing primitives or portions of primi 
tives which are not visible, or fall outside the field and depth 
of view of the viewport. 
0031 Projection Transformation: creating the 2D projec 
tion of points in view space, onto the plane of the viewport or 
“film' of the camera, transforming spatial coordinates of 
Vertices to 2D display locations and depths. 
0032 Culling: removing (deciding not to render) a face of 
a polygon. 
0033. Vertex Processing: vertex coordinate transforma 
tions, and lighting of Vertices. 
0034) Frame buffer: a 2D memory array containing bit 
patterns encoded in a form which directly represents the 
colored dots or rectangles on the computers hardware dis 
play Screen. 
0035 Pixel: a single colored picture element (dot or rect 
angle) in the frame buffer. 
0036 Fragment or pre-pixel: a single colored picture ele 
ment, located in a 2D image corresponding to the frame 
buffer, before it is written to the display frame buffer. 
0037 Rasterize: to choose the fragments in the 2D pro 
jected image that correspond to the outline and/or interior of 
a primitive. 
0038 Shading, or Fragment Shading: determining the 
color of a fragment, taking into account Vertex colors, light 
ing, and textures. 
0039 Buffer or Raster operations: raster (pixel) opera 
tions done on fragments after shading, as they are written to 
pixels in the frame buffer, or to determine whether or not they 
should be written, according to a number of tests. 
0040 Fragment processing: fragment shading and buffer 
operations on starting with fragments, and yielding pixels. 
0041. A detailed description of the stages in the pipeline of 
FIG. 1 follows: 

0042 Transform 102: All vertices are transformed from 
model space to world space, and then transformed to view 
space, i.e., translated and rotated correctly in order to account 
for the viewpoint. 
0043 Light 104: Vertices are lighted from different 
Sources, and the resulting color is dependent on the source 
color and intensity, incidence angle of a directional Source 
with the vertex's normal, distance of the source, the reflec 
tivity of an associated material, and the original vertex color. 
If the primitive is a polygon, and a texture is to be applied to 
the face, texture map coordinates are assigned to the Vertices. 
0044 Assemble 106: Vertices are assembled into primi 
tives, as they have been defined by the application program. 
0045 Project 108: Primitives are clipped to conform to the 
field and depth of view, the viewing volume’. They are then 
projected, possibly with perspective, onto the plane of the 
viewport, yielding a 2D image, with each vertex position now 
represented as a 2D display location and a depth. Polygon 
faces to be culled are discarded, and not processed further. 
0046 Rasterize 110: Primitive fragments corresponding 
to outlines and interiors are identified in the 2D image. Anti 
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aliasing, or modification of fragment colors at outlines of 
primitives in order to make the outline appear Smoother, is 
done at this stage. 
0047 Shade 112: Primitive fragments are shaded, or col 
ored, according to one of several possible methods, by either 
interpolating the colors at the vertices of the enclosing primi 
tive or by interpolating from vertex normals and re-lighting 
the fragments individually. If a texture is to be applied, texture 
map coordinates are interpolated and assigned to each frag 
ment, and the indicated texture color is mixed in to yield the 
shaded fragment color. 
0048 Buffer 114: As fragments are converted to pixels and 
written to the frame buffer, several tests are performed in 
order to determine whether or not they should be written, in 
order to allow displaying the image inside a stencil, or win 
dow, or rectangle. Hidden Surface removal may also be done 
by recording the depth, or z value of a pixel in a Z-buffer, 
as the pixel is written to the 2D frame buffer. As new pixels are 
written to the frame buffer, their depth or Z value is compared 
to the Z-buffer value of the pixel previously written at that 2D 
location. If the new pixel is closer to the viewport, it is written, 
if it is further away than (behind) the old pixel, it is not 
written. 
0049 Pixel colors may also be blended with the color of 
pixels already in the frame buffer, depending on the opacity of 
those colors, in order to simulate transparency of nearer Sur 
faces. Pixel colors may be dithered or modified based on 
their near neighbors as a way of Smoothing color transitions 
or simulating shades. Finally, Source and destination pixels in 
the frame buffer may be combined according to one of several 
logical operations performed as part of the block transfer 
(BLT) to the frame buffer. 
0050. Another view of a graphics pipeline according to the 
prior art is seen in FIG. 2. In this pipeline 200, there are just 
three stages: Process Vertices' 202, Process Primitives 204, 
and Process Fragments 206. FIG. 1 Transform (model and 
view transformations) 102, and FIG. 1 Light 104 (lighting) 
are collapsed into FIG. 2 Process Vertices 202, yielding 
lighted, 3D position-transformed vertices. FIG. 2 Process 
Primitives' 204 combines FIG. 1 Assemble 106 (primitive 
assembly), FIG. 1 Project 108 (clipping, projection, and 
culling), and FIG. 1 Rasterize 110 (rasterization) yielding 
visible fragments within the 2D image corresponding to 
primitive outlines and/or interiors. FIG. 2 Process Frag 
ments 206 incorporates FIG. 1 Shade 112 (fragment shad 
ing and texture application to color fragments), and FIG. 1 
Buffer 114 (raster or buffer operations), finally yielding 
pixels 116 in the frame buffer. 
0051. In typical practice, aspects of the Project 108 com 
putation may be split across vertex processing and primitive 
processing. All vertex position transformations, including 
those due to projection onto multiple depth 2D planes, can be 
done in Process Vertices, while those aspects of projection 
necessary for clipping and final mapping to the viewport are 
done in Process Primitives. This may be done in order to 
group all like position transformations, involving matrix 
arithmetic on vertex vectors, into one phase. How parts of the 
logical graphics computations are actually effected in which 
stages is not of primary importance. More important is that 
each of the three large stages is concerned with processing 
associated with one major data type: either vertices, or primi 
tives, or fragments. 
0052 Existing practice in graphics pipelines. 
0053 SIMD CPU instructions. Many computer CPUs 
now incorporate SIMD (single-instruction-multiple-data) 
types of instructions, which can perform certain single opera 
tions on multiple data at once. These instructions have been 
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geared toward common low-level operations in the graphics 
pipeline, and Software graphics library implementations can 
show dramatically improved performance through their use. 
It is important however, that the library organizes its compu 
tations so that data is available and staged accordingly, to take 
best advantage of these SIMD capabilities. 
0054 Multi-core CPUs. CPUs are now available with 
multiple instruction-processing cores, which may run inde 
pendently of each other. If tasks in the graphics pipeline can 
be divided and scheduled so that many different operations 
can be done in parallel, independent threads of execution, this 
can provide a geometric speed increase over a single program 
that must perform all the operations in sequence. Multi-core 
techniques have heretofore seen limited application in Soft 
ware graphics pipeline implementations. 
0055 Hardware GPU functions. Many of the functions of 
a graphics pipeline can be performed by the hardware graph 
ics processing unit, or GPU. GPUs support many fixed-func 
tionality operations, and many also have the capability of 
running programs locally, independent of the computer CPU. 
Hardware GPU functions or GPU programs may be consid 
erably faster than their main CPU software counterparts. 
0056 Shader Programs. Vertex shaders or “vertex pro 
grams, can optionally be Supplied to the graphics library to 
perform some or all of the functions of vertex processing. 
Likewise, Fragment Shaders or Pixel Shaders can take 
over much of the job of fragment processing. These programs 
can be executed by the computer's CPU, or they may run in 
part or entirely on the hardware GPU. Several standards and 
languages exist for these vertex and fragment shader pro 
grams, which are then compiled for execution on CPU and/or 
GPU. 
0057 Programmable vertex and fragment processing 
allow flexibility and specialization in the performance of 
these operations, allowing new functionality, or higher per 
formance. Support for programmable shaders is a required 
feature in several graphics library definitions, and many com 
patible implementations exist. However, the compilation of 
the shader program, the quality of the resulting code, and the 
use of CPU and GPU resources and their effects on perfor 
mance, differ considerably from one implementation to 
another. 
0.058 Dynamic code generation. Dynamic code genera 
tion is used in various ways in many aspects of existing 
fixed-function and programmable graphics pipelines, but 
generation and caching policies, language translation tech 
niques and optimizations, and effectiveness and scope of 
utility vary with the implementation. 
0059 For example, in some graphics libraries, dynamic 
code generation is limited to the compilation of application 
provided vertex and fragment programs. Or, if dynamic code 
is also used to accelerate fixed graphics pipeline functions, 
there may be some elements of the graphics pipeline imple 
mentation which must be implemented in a static fashion, or 
by separate dynamically created functions, to leave those 
stages open for replacement by either application-provided 
or GPU-supported functions. The ideal case is to have all 
functions of the graphics pipeline Supported by dynamically 
created code optimized for the specific CPU and GPU capa 
bilities of the computer system. 

SUMMARY 

0060. The description relates to the general prosecution of 
work on multiple, independent computer CPUs, and the 
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design of systems, methods, and policies, to accomplish that 
work efficiently, with respect to time and resources. 
0061. One application of such systems is the task of ren 
dering (drawing) to a computer display a three dimensional 
image represented by an abstract collection of graphical data, 
and the many processing steps required to appropriately 
reduce this data to a two dimensional color picture. The 
description addresses this application, as well as others. 
0062. There is described a design for a software Parallel 
Task Engine which combines dynamic code generation for 
processing tasks with a scheme for distributing the tasks 
across multiple CPU cores. Dynamic code generation pro 
vides the best possible per-processor performance, and fully 
parallel execution provides the best use of multiple CPUs. 
However, when combined in the right way, the two techniques 
can have a beneficial multiplicative effect as well—because 
the processing routines are created for certain Sub-tasks of the 
larger problem or operate only on particular Subsets of data, 
they can be even more specifically or efficiently coded than 
before, as they operate under more specific circumstances, or 
are less constrained by processor resources. The result is 
better performance than would be expected from the sum of 
the benefits of these two practices, applied independently— 
or in other words, a super-linear acceleration when multiple 
CPUs are applied to the problem. 
0063. Application to Graphics Processing. Methods of 
dynamic code generation can be used to create all the Soft 
ware routines necessary to execute the stages of a graphics 
pipeline. These routines can be more efficient than code that 
is statically compiled in advance, because they can take 
advantage of facts that are not known until the time of execu 
tion, and because they can be created specifically for the job 
at hand, and need not satisfy the full range of requirements 
that their interface and Surrounding state might demand of a 
single, static routine. 
0064 New computers have multiple, independent CPU 
cores that can execute software routines in parallel. The work 
load of a graphics processing task can be distributed across 
multiple CPUs, achieving performance acceleration that is 
linear with the number of CPU cores employed. 
0065. When the parallel task engine is applied to the prob 
lem of graphics processing, in other words, configured as a 
graphics pipeline engine, it can provide dynamically gener 
ated code for all stages of computation, and exploit specific 
task decompositions that take best advantage of the strengths 
of dynamic code generation and multiple CPU resources 
applied to graphics processing, resulting in high speed image 
rendering. 
0066. According to an embodiment, there is provided, in a 
computer system, a parallel task engine for performing tasks 
on data. The parallel task engine comprising: an input for 
receiving tasks; a scheduler for decomposing the tasks into 
one or more new tasks, the decomposing being dependent on 
at least one policy selected from a given set of policies; a 
run-time dynamic code generator for generating or locating, 
from the new tasks, operation routines; a set of job loops, at 
least one of the job loops for performing the new tasks on at 
least part of the data by executing the operation routines; the 
scheduler for distributing and assigning the new tasks to theat 
least one of the job loops; and the scheduler for making the 
selection of the at least one policy as a function of character 
istics of the operation routines generated or located by the 
run-time dynamic code generator. 
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0067. According to an embodiment, there is provided, in a 
computer system, a method for performing tasks on data. The 
method comprises: receiving tasks; decomposing the tasks 
into one or more new tasks, the decomposing being depen 
dent on at least one policy selected from a given set of poli 
cies; generating or locating, from the new tasks, operation 
routines; making the selection of the at least one policy as a 
function of characteristics of the operation routines generated 
or located by the run-time dynamic code generator, providing 
a set of job loops; distributing and assigning the new tasks to 
at least one of the job loops; and the at least one of the job 
loops performing the new tasks on at least part of the data by 
executing the operation routines. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0068. Further features of the present application will 
become apparent from the following detailed description, 
taken in combination with the appended drawings, in which: 
0069 FIG. 1 is flow diagram depicting a generic graphics 
pipeline according to the prior art; 
0070 FIG. 2 is a flow diagram depicting another, simpler 
graphics pipeline organization according to the prior art; 
0071 FIG. 3 is a block diagram depicting a parallel task 
engine according to an embodiment; 
0072 FIG. 4 is a block diagram showing the composition 
of a job according to an embodiment; 
0073 FIG. 5 is a block diagram showing the composition 
of a task according to an embodiment; 
0074 FIG. 6 is a block diagram showing the composition 
of a command according to an embodiment; 
0075 FIG. 7 is a block diagram showing the cache as a 
collection of entries, and the composition of those entries 
according to an embodiment 
0076 FIG. 8 is a block diagram depicting the components 
of code generation according to an embodiment; 
0077 FIG. 9 is a block diagram depicting task (problem) 
decomposition according to an embodiment; 
(0078 FIG. 10 is the source code for a routine which per 
forms a full-datum matrix-vector multiplication with SSE3 
instructions according to an embodiment; 
(0079 FIG. 11 is the source code for a routine which per 
forms a half-datum matrix-vector multiplication with SSE3 
instructions according to an embodiment 
0080 FIG. 12 is the source code for a routine which per 
forms a specialized half-datum matrix-vector multiplication 
with SSE3 instructions according to an embodiment; 
I0081 FIG. 13 is the source code for a routine which per 
forms an optimal half-datum matrix-vector multiplication 
with SSE2 instructions according to an embodiment; 
I0082 FIG. 14 is the source code for a routine which per 
forms a pipelined half-datum matrix-vector multiplication 
with SSE2 instructions according to an embodiment. 
I0083 FIG. 15 is a representation of a graphics pipeline 
consisting of multiple tasks being done by multiple programs, 
utilizing multiple stage units, according to an embodiment; 
I0084 FIG. 16 depicts the sub-stages of the primitive setup 
stage of the graphics processing pipeline according to an 
embodiment; 
I0085 FIG. 17 depicts the convex polygon outline raster 
ization algorithm according to an embodiment 
I0086 FIG. 18 depicts alternative approaches to construct 
polygons covering the fragments of line primitives according 
to an embodiment; 
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I0087 FIG. 19 is a flow chart depicting the Parallel Task 
Engine Main Program, according to an embodiment; 
I0088 FIG. 20 is a flow chart depicting the Job Loop Pro 
gram, according to an embodiment; 
0089 FIG. 21 is a flow chart depicting an alternative Par 

allel Task Engine Main Sub-program, according to an 
embodiment; and 
0090 FIG. 22 is a flow chart depicting an alternative Job 
Loop Program, according to an embodiment. 
0091. It will be noted that throughout description and the 
appended drawings, like features are identified by like names, 
e.g. “Command, “Task”. “Job', and reference numerals direct 
the reader to the appropriate drawing to show the instance or 
aspect of the feature in the frame of reference of the discus 
sion. For example, in the discussions below, input Task 302 
is a Task 500, the structure of which is detailed in FIG. 5, but 
in this reference, attention is directed to this specific Task in 
FIG. 3. Sometimes the same instance of an element will be 
described with different reference numerals, in order to direct 
the reader's attention to different aspects of it or operations 
being performed on it. Numerals do not specify unique struc 
tures, nor do they specify the instance of an element being 
discussed. Elements with the same name have the same struc 
ture, and particular instances of elements are specified in the 
discussion explicitly. 

DETAILED DESCRIPTION 

0092 Referring to FIG.3, a Parallel Task Engine 300 is an 
apparatus for performing Tasks 302 on arrays of Primary Data 
306. Primary Data 306 is data external to the apparatus. A 
Task 500 (see FIG. 5) is a Command 510 and a collection of 
one or more Data Pointers 520, which are POINTERS refer 
encing Primary Data 306. A POINTER is an address, index, 
or token that can be used to locate a single datum or an array 
of data, either directly or indirectly via one or more tables. A 
Command 600 (see FIG. 6) is an Operation 610 and Zero, one 
or more Parameters 620. An Operation 610 is a value that 
indicates a specific function to be performed on the Primary 
Data 306 referenced by the DataPointers 520, and Parameters 
620 are values that further specify the Operation 610, for 
example, a number of data items to be processed. 
0093. Parallel Task Engine 300 is composed of: 
0094) 1. The current CONTEXT, which is a set of vari 
ables, or a POINTER to a set of variables, containing auxil 
iary data, modes and details of computations to be performed 
on the Primary Data 306 to be processed. The CONTEXT is 
only read by the Parallel Task Engine, and not written by it. 
CONTEXT variables are initialized and written by the exter 
nal software entities that send Tasks 302 to the engine, the 
“users” of this engine. If the CONTEXT is a POINTER to a 
set of variables, it points to a set of variables maintained by, 
and the value of this POINTER is set by, external software 
entities. 
0095 2. A Task input 303, to receive input Tasks 302. 
0096 3. A Task Pool 310 of Tasks 500, awaiting dispen 
sation. 
0097. 4. One or more Job Loops 318. In a typical embodi 
ment, one Job Loop 318 will be allocated per CPU available 
for use by the Parallel Task Engine 300 in the dispensing of 
work. It is also possible to run more than one Job Loop 318 on 
a CPU, or to run a Job Loop 318 on a CPU also running other 
programs. The multiple CPUs, and the computer hardware, 
Software, and operating facilities which allow a software sys 
tem to establish programs running on multiple CPUs, are 
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those known to persons skilled in the art, and will vary from 
computer system to computer system. The Parallel Task 
Engine 300 assumes and utilizes these facilities in a particular 
way, setting up programs on CPUs as necessary in order to 
dispatch and accomplish Tasks 500. The Job Loop 318 
receives a Job 320, from the Parallel Task Engine Main Pro 
gram (not shown, but described in detail below). Now refer 
ring to FIGS. 4, 5, and 6, a Job 400 is the combination of a 
Task 420 and a Code Pointer 410 to a routine which can 
execute an Operation 610. When the Main Program assigns 
the Job 320 to the Job Loop 318, the Job Loop 318 calls the 
Operation 610 routine, with Parameters 620, via the Code 
Pointer 410, in order to process the Primary Data 306 speci 
fied by the Task 420 via its Data Pointers 520 according to the 
Command 510 specified by the Task 420. After the Operation 
610 routine returns, the Job Loop 318 will wait to receive the 
next Job 320 from the Main Program. 
(0098 5. A Code Generator 314, which is responsible for 
creating or finding Operation 610 routines, which perform 
Operations 610 on Primary Data 306, under the current CON 
TEXT. 

0099. 6. A Cache 316, detailed on FIG. 7 as Cache 700, 
which is a Directory 710 composed of Entries 720, and a 
Code Buffer 750. The Entries 720 are composed of a Tag 730 
to be matched, which consists of an Operation 732 and a 
Context 734, and Data 740, which is a Code Pointer 742 to a 
routine which performs the Operation 732. A CONTEXT, as 
defined above, specifies the conditions under which Opera 
tions 610 are to be performed, or augments or modifies the 
meaning of Operations 610, and thereby influences the gen 
eration of code to perform Operations 610, or influences the 
execution of that code. The Context 734 accompanying the 
Operation 732 and the Code Pointer 742 to the Operation 732 
routine in an Entry 720 is the specific CONTEXT that was 
current at the time the Operation 732 routine was created or 
located by the Code Generator 314, and the Entry 720 was 
created. To find a routine in a Cache 700 to perform an 
Operation 610 under the current CONTEXT, it is necessary to 
match the specified Operation 610 and the current CON 
TEXT with the Tag 730 (Operation 732 and Context 734) of 
an Entry 720. The Code Buffer 750 is the repository for 
storage of Operation 610 routines created dynamically by the 
Code Generator 314. How the Entries 720 in the Cache 316 
Directory 710 are organized for lookup, via indexing, hash 
ing, or sequential search is not essential to the present descrip 
tion. Likewise, when new Entries 720 are created, given that 
the Directory 710 is offixed size, this will necessitate at times 
overwriting old Entries 720. The policies for Entry 720 evic 
tion in Such cases are also considered to be implementation 
specific details. 
0100 7. A Scheduler 312, which when requested, surveys 
the Task Pool 310 of Tasks 500, and determines the appropri 
ate Task 500 to assign to a specified Job Loop 318. The 
Scheduler 312 is responsible for decomposing Tasks 905 as 
necessary, maintains the Task Pool 310, maintains a record of 
Tasks 500 in progress on the Job Loops 318, and understands 
the dependencies between Tasks 500. 
0101 8. A Parallel Task Engine Main Program, which 
directs the operation of the engine, and communicates with 
the Job Loops 318. The Main Program dispenses Jobs 320 to 
Job Loops 318. The Main Program gets the Task 420 for the 
Job 320 from the Scheduler 312, and looks up the Code 
Pointer 410 for the Job 320 by matching the Operation 610 in 
the Command 510 in the Task 420, and the current CON 
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TEXT, to the Tag 730 of an Entry 720 in the Directory 710 of 
the Cache 316. If the proper Code Pointer 410 for the Opera 
tion 610 cannot be found in the Cache 316 Directory 710, the 
Main Program calls the Code Generator 314 to create or find 
a suitable routine, and then creates a Directory 710 Entry 720 
for future reference. 

0102 Allelements of the Parallel Task Engine 300 operate 
under, and may read from the current CONTEXT, including 
the Operation 610 routines executed by the Job Loops 318. 
Only Operation 610 routines actually access the Primary Data 
306 for which the engine is configured to process. The rest of 
the Parallel Task Engine 300 is concerned with dispensing 
Jobs 320 to the Job Loops 318. 
(0103 Also, the Job 400, Task 500, and Command 600 data 
structures are nested structures—they could each be repre 
sented by other structures that incorporate the same basic 
information in a less hierarchical form—the exact form of 
these data structures is not relevant to the essential operation 
of the Parallel Task Engine 300, other representations of the 
same information would serve as well—these forms were 
chosen because they represent a unit of work or a key aspect 
of that work at the level at which they are created or utilized. 
0104. A detailed, step by step description of the operation 
of the Parallel Task Engine programs follow. These descrip 
tions employ single-threaded loops that may be represented 
by a flow chart. No reference is made to processes or syn 
chronization mechanisms or other features of computer oper 
ating systems that may be used to improve the efficiency of an 
implementation of this engine. An embodiment may imple 
ment the following step-by-step methods directly, or it may 
employ system-specific features or alternative formulations 
that preserve the functional operation of the engine as 
described here. This description is not the only representation 
or embodiment possible, and others are easily imaginable. 
However this description does suffice to demonstrate the 
proper operation of the engine in a form that is transferable to 
many computer systems, assuming some multiple, parallel 
CPU facility, and a shared memory to which all CPUs have 
aCCCSS, 

0105 Parallel Task Engine Main Program (FIG. 19): 
0106 Step 1901. Initialize the Cache 316 Directory 710 
Entries 720, making all the Tags 730 un-matchable’, (per 
haps by loading Context 734 with a value that will never 
match any current CONTEXT). 
0107 Step 1902. Set up multiple Job Loops 318, accord 
ing to CPUs of different numbers and types available. For 
each Job Loop 318, set REQUEST and DISPATCH counts to 
Zero. These counts are integers, which may be of any width, 
including 1 bit. Each Job Loop 318 also has an incoming Job 
320 POINTER variable. Start the Job Loops 318 on the CPUs 
(Job Loop 318 detailed below). 
0108 Step 1903. Set L, an integer variable, to 0. Set N, an 
integer variable, to the number of Job Loops 318. L. represents 
the index of the Job Loop 318 under consideration in steps 
1904 through 1910, below, and ranges from 0 to N—1. 
0109 Step 1904. Inspect Job Loop 318 L’s REQUEST 
count. If it is the same as the DISPATCH count, go to step 
1910. 

0110 Step 1905. Call the Scheduler 312 to picka Task 500 
for Job Loop 318 L, and remove it from the Task Pool 310. If 
necessary, the Scheduler 312 will decompose a Task 905 and 
place the new Tasks 940 in the Task Pool 310, before picking 
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a Task 500 for the Job Loop 318, which it returns to the Main 
Program via a POINTER. If no Task 500 can be found, go to 
step 1910. 
0111 Step 1906. Look in the Cache 316 Directory 710 for 
an Entry 720 with a Tag 730 that matches the Operation 610 
specified by the Task 500 and the current CONTEXT. If a 
matching Entry 720 is found, go to step 1908. 
(O112 Step 1907. Call the Code Generator 314 to create or 
find a routine for the Operation 610 under the current CON 
TEXT. Create an Entry 720 in the Cache 316 Directory 710 
containing the specified Operation 610 in Operation 732, the 
current CONTEXT in Context 734, and a pointer to the 
Operation 610 routine in Code Pointer 742. Go to Step 1906. 
0113 Step 1908. Compose the Scheduler 312 in Task 420, 
and the matching Entry 720 Code Pointer 742 in the Sched 
uler 312 in Task 420, and the matching Entry 720 Code 
Pointer 742 in CodePointer 410, and place a POINTER to Job 
320 in Job Loop 318 L’s incoming Job 320 variable. 
0114 Step 1909. Set Job Loop 318 L’s DISPATCH count 
to the value of its REQUEST count. 
0115 Step 1910. Increment L. If L is less than N, go to step 
1904. 
0116 Step 1911. Pull the next input Task 302 from the 
Task input 303, if there is one, and place it in the Task Pool 
310. Go to step 1903. 
0117 Job Loop 318 (FIG. 20): 
0118 Step 2001. Increment this Job Loop's 318 
REQUEST count. 
0119 Step 2002. Inspect this Job Loop's 318 DISPATCH 
count. If it is not the same as the REQUEST count, go to step 
2002 (repeat this step). 
I0120 Step 2003. From the incoming Job 320 POINTER 
variable, get the Job 320 to do. Call the Operation 610 routine, 
via the Code Pointer 410 with Parameters 620, to process the 
Primary Data 306 as specified by the Task 420 Data Pointers 
520, according to the Command 510 of the Task 420. Go to 
step 2001. 
0121 The preceding two program descriptions character 
ize the complete, high-level operation of the Parallel Task 
Engine 300, in an embodiment without program or execution 
thread synchronization or signaling. Both the Main Program 
and the Job Loops 318 are polling loops. When there is no 
work to do, both programs spin or are busy waiting. A first 
improvement to this implementation, in a program environ 
ment that Supports it, would be to cause the Main Program and 
Job Loops 318 to block or sleep when there are no input Tasks 
302 to decompose or dispatch, and no Jobs 320 to do, and to 
resume operation when input Tasks 302 and Jobs 320 arrive. 
This would make more efficient use of any CPU that is shared 
by multiple programs. In the case of the Main Program and a 
Job Loop 318 running on the same CPU, it would also be 
desirable for the Main Program to run at a lower priority than 
the Job Loop 318, or utilize some other mechanism to ensure 
that the Main Program does not continue to spin or accept 
input Tasks 302 when the Job Loop 318 on the same CPU is 
executing a Job 320. The two program loops operate in a 
producer/consumer relationship. The Main Program pro 
duces Jobs 320, and the Job Loops 318 consume and do the 
Jobs 320. Any sequence or coordination scheme that reliably 
effects the same results, with the same components, is an 
alternative embodiment of the Parallel Task Engine 300. 
I0122. In another possible embodiment, the Job Loops 318 
may incorporate and call a version of the Main Program 
directly. In this case it is necessary to ensure that multiple Job 



US 2015/O 169305 A1 

Loops 318 have mutually exclusive access to the Main (sub) 
Program. This can be done by using operating system soft 
ware facilities, atomic read-modify-write CPU instructions, 
or through any one of several Software mutual exclusion 
algorithms, such as Dekker's algorithm, or Peterson's algo 
rithm. 
0123. In this case, the Main Program becomes a sub-pro 
gram or Subroutine which executes according to the following 
procedure: 
0.124. Alternative, Parallel Task Engine Main (Sub) Pro 
gram (FIG. 21): 
012.5 L, an integer variable, is passed into the Main (sub) 
Program by the calling Job Loop 318, and represents the 
index of the Job Loop 318 under consideration in the follow 
ing steps. 
0126 Step 2101. Call the Scheduler 312 to picka Task 500 
for Job Loop 318 L, and remove it from the Task Pool 310. If 
necessary, the Scheduler 312 will decompose a Task 905 and 
place the new Tasks 940 in the Task Pool 310, before picking 
a Task 500 for the Job Loop 318, which it returns to the Main 
Program via a POINTER. If a Task 500 is found, go to step 
2103. 
0127 Step 2102. Pull the next input Task 302 from the 
Task input 303, if there is one, and place it in the Task Pool 
310. If there was an input Task 302, go to step 2101. If there 
was no input Task 302, go to step 2106. 
0128 Step 2103. Look in the Cache 316 Directory 710 for 
an Entry 720 with a Tag 730 that matches the Operation 610 
specified by the Task 500 and the current CONTEXT. If a 
matching Entry 720 is found, go to step 2105. 
0129. Step 2104. Call the Code Generator 314 to create or 
find a routine for the Operation 610 under the current CON 
TEXT. Create an Entry 720 in the Cache 316 Directory 710 
containing the specified Operation 610 in Operation 732, the 
current CONTEXT in Context 734, and a pointer to the 
Operation 610 routine in Code Pointer 742. Go to Step 2103. 
0130 Step 2105. Compose the Job 320 as a Job 400 with 
the Task 500 from the Scheduler 312 in Task 420, and the 
matching Entry 720 Code Pointer 742 in Code Pointer 410, 
and place a POINTER to Job 320 in Job Loop 318 L’s incom 
ing Job 320 variable. 
0131 2106. Return to the calling Job Loop 318, indicating 
whether or not a Job 320 is ready. The Job Loop 318 which 
calls the Main (sub) Program is detailed below. 
(0132 Alternative Job Loop 318 which calls Main (Sub) 
Program (FIG. 22): 
0.133 Step 2201. If this is the first Job Loop 318, initialize 
the Cache 316 Directory 710 Entries 720, making them “un 
matchable. 
0134) Step 2202. If this is the first Job Loop 318, set up 
multiple other Job Loops 318, according to CPUs of different 
numbers and types available. Each Job Loop 318 has an 
incoming Job 320 POINTER variable. Start the other Job 
Loops 318 on the CPUs. 
0135 Step 2203. Obtain exclusive access to the Main 
(sub) Program. 
0.136 Step 2204. Call the Main (sub) Program. 
0137 Step 2205. Yield exclusive access to the Main (sub) 
Program. 
0138 Step 2206. If there is no Job 320 to do, go to step 
22O3. 
0139 Step 2207. From the incoming Job 320 POINTER 
variable, get the Job 320 to do. Call the Operation 610 routine, 
via the Code Pointer 410 with Parameters 620, to process the 
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Primary Data 306 as specified by the Task 420 Data Pointers 
520, according to the Command 510 of the Task 420. Go to 
step 2203. 
0140. The two other sub-program components of the Par 
allel Task Engine 300, the Code Generator 314 and the Sched 
uler 312, are now detailed in turn. 
0141 Code Generator (or Run-Time Code Generator): 
The Code Generator 314 is an element of the Parallel Task 
Engine 300. The design of any particular Code Generator 
314, and the specific methods by which the Code Generator 
314 accomplishes its work will vary according to the specifics 
of the embodiment The way in which a Code Generator 314, 
fulfilling the requirements detailed below, is used by the 
Parallel Task Engine 300, as described above, and as will be 
detailed further in the exposition of specific applications, is 
part of an embodiment, and its application of techniques of 
dynamic code generation. 
0142. As shown in FIG. 8, the Code Generator 314 may 
generate an Operation 810 routine in one of two ways: 
0.143 1. It may Synthesize 820 code to perform the Opera 
tion 810, from a higher level, meta-code description of Opera 
tions 810, or from ad-hoc code emitting routines, one for each 
Operation 810, or through other means. 
0144. 2. It may have canned, statically compiled (Locate 
Static Code 830) Operation 810 routines, or fragments of 
Operation 810 routines, which may be used as-is, or concat 
enated together, to form Operation 810 routines. 
0145 Either method is acceptable, or code generators in 
typical embodiments may use both methods. Method 2 
extends the notion of Code Generator 314 to a function which 
simply looks up a static Operation 810 routine in a table for 
the purposes of the description, this style of code generation 
is sufficient. 
0146 The Code Generator 314 must also have the capa 
bility of specializing the code generated, by the CONTEXT 
outstanding at the time of generation, resulting in an Opera 
tion 810 routine specifically generated for use in that CON 
TEXT. 
0147 For example, if a generic routine for an Operation 
810 has execution conditional on CONTEXT variables, and 
these variables are known to be of a certain value that will 
remain constant over the execution of the routine, the Code 
Generator 314 may generate custom code that assumes these 
values. Again, this may be done as simply as modifying a 
table look-up of the Operation 810 requested by adding ele 
ments from the CONTEXT to the index into the table, return 
ing the proper, more specific static routine. 
0.148. The Code Generator 314 may also contain a general 
Optimizer 840, which can accept as input, generated (Locate 
Static Code 830 or Synthesized 820) Operation 810 routines, 
or meta-code representations of those routines, and output 
more efficient routines or meta-code representations. Optimi 
Zation techniques well-known in the art include constant 
folding, reductions in strength, dead store elimination, com 
mon Sub-expression elimination, copy propagation, 
instruction combination, branch chaining and elimination, 
loop unrolling and loop-invariant code motion, and global 
register allocation. These techniques and others may be used 
by an Optimizer 840. 
014.9 The Code Generator 314 may also use the Optimizer 
840 in order to accomplish specialization of a Synthesized 
820 or static routine. For example, ifa generic Operation 810 
routine computes four values as output, but a more specific 
sub-Operation 810 requires only one value as output, the 



US 2015/O 169305 A1 

Code Generator 314 may select the generic routine, and pass 
it to the Optimizer 840, informing the Optimizer 840 that the 
three unwanted values are to be considered dead stores. The 
Optimizer 840 will then create the specialized, one-value 
computing routine. 
0150. The Code Generator 314, when generating new 
Operation 610 routines, will store the code contents of these 
routines to the Cache 316 Code Buffer 750. Because that 
storage space is finite, it will eventually be exhausted, and 
require some existing code to be overwritten, destroying 
some Operation 610 routines that reside in the Code Buffer 
750. How storage space is managed in this buffer is an imple 
mentation detail. However it is required that the Code Gen 
erator 314 invalidate, or make un-matchable, any Cache 316 
Directory 710 Entries 720 with Code Pointers 742 that refer 
ence code that has been overwritten, at the time that the 
corresponding Operation 610 routines are destroyed. 
0151 Scheduler: Alternate embodiments may pursue dif 
ferent strategies or policies, as appropriate for the particular 
application of the Parallel Task Engine 300, but there are basic 
functions that all Scheduler 312 implementations must per 
form, and there are certain constraints that must be observed. 
0152 The Scheduler 312 maintains the Task Pool 310 of 
outstanding Tasks 500, and keeps a record of the Task 500 in 
progress on each Job Loop 318. With the Tasks 500 the 
Scheduler 312 may, but is not required to, keep additional 
information, such as: 1. The time, or a sequence counter, 
indicating when the input Task 302 was received from the 
Task input 303. 2. An estimate of the size of a Task 500, or 
time to completion. 3. Any other statistics or auxiliary infor 
mation that may assist the Scheduler 312 in its work. 
0153. The Scheduler 312 has one function, as called from 
the Main Program to remove a Task 500 from the Task Pool 
310, and assign it to a Job Loop 318, returning that Task 500 
to the Main Program, which will compose a Job 400 consist 
ing of a Task 420 and an Operation 610 routine Code Pointer 
410, and pass this Job 320 to the Job Loop 318. In the process 
of doing so, it may decide to decompose a Task 905 into other 
Tasks 940, adding the Tasks 940 to the Task Pool 310, before 
choosing and assigning the Task 500 to the Job Loop 318. 
0154 As shown in FIG.9, the Scheduler 312 from FIG. 3 
may use one of three policies to decompose a Task 905: 
(O155 1. By-Function 920 the Task 905 can be effected 
by one or more Tasks 940 which each applies sub-FUNC 
TIONS or sub-Operations 610, to the indicated Primary Data 
306. If the sub-Operations 610 must be applied sequentially, 
the original Task 905 becomes new Tasks 940 which form a 
pipeline. If the Operations 610 are independent, they may be 
dispatched in parallel. The new Operations 610 and Tasks 940 
may have arbitrary dependencies, allowing some to be dis 
patched in parallel or in arbitrary order, and requiring some to 
be dispatched only after the completion of others. The new 
Tasks 940 reference the same Primary Data 306, but have 
different Commands 510 (Operations 610 and Parameters 
620). 
0156 2. By-Domain 925 the Command 510 can be 
effected by independently applying the Operation 610 to 
different sub-sets or domains of the Primary Data 306. One 
Task 905 becomes one or more independent Tasks 940, which 
may be executed in parallel The new Tasks 940 all contain the 
original Operation 610, but the Parameters 620 and/or Data 
Pointers 520 are modified to assign different Primary Data 
306 domains to each new Task 940. 
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(O157 3. By-Component 930. An Operation 610 is 
defined to operate on arrays of data, in other words, one or 
more data items, which are atomic from the point of view of 
the Operation 610. By-Component 930 decomposition of 
Tasks 905 divides the Primary Data 306 to be processed, or 
the new Primary Data 306 to be computed, into domains 
which are sub-atomic or sub-components of the data pro 
cessed by the original Operation 610, effecting the original 
Operation 610 by one or more component Operations 610. 
These component Operations 610 and the resulting Tasks 940 
may or may not have inter-dependencies. By-Component 930 
decomposition is a combination of methods 1 and 2, it is 
decomposition By-Domain 925, below the level of an Opera 
tion 610's natural atomic datum, in order to get, or resulting 
in, decomposition By-Function 920. 
0158. As described above, the Scheduler 312 can achieve 
ordinary decomposition of Tasks 905 By-Domain 925, by 
simply modifying a Task’s 905 Data Pointers 520 or Param 
eters 620. Likewise, in order effect decomposition of Tasks 
905 By-Function 920, the Scheduler 312 can simply create 
the requisite Tasks 940 with sub-Operations 610. These new 
Operations 610 naturally suggest new Operation 610 rou 
tines, with new code. However, as described above, the Code 
Generator 314 may decide that the sub-Operation 810 routine 
code is best generated by optimizing or specializing more 
general Operation 810 code. In this case, the Parallel Task 
Engine 300 can be said to use the Optimizer 840 to accom 
plish functional Task 905 division by algorithmic decompo 
sition. 
0159 Given Tasks 905, which may be decomposed as the 
Scheduler 312 sees fit, and a Job Loop 318 requesting a Job 
400, containing a Task 500, the Scheduler 312 when called by 
the Main Program must choose a Task 500 for the Job Loop 
318. The Scheduler 312 may use any sort of ordering to 
choose the next Task 500, e.g. first-come-first-served, starting 
the largest jobs first, finishing related Tasks 500 before others, 
etc., but certain rules must be followed: 
0160 The Scheduler 312, at the time it decomposes Tasks 
905, knows the dependencies that it creates between Tasks 
940 as it creates new Tasks 940 from other Tasks 905. It 
records and respects these dependencies, and will not choose 
to start or assign a Task 500 whose dependencies have not 
been fulfilled (Tasks 500 on which the Task500 depends must 
have completed this means that no Tasks 500 on which it 
depends still reside in the Task Pool 310 or are in progress on 
one of the Job Loops 318). The Task 500 dependencies, for 
any Task 500, are simply a list of other Tasks 500 that the Task 
500 is dependent on. Dependency lists may be associated 
with the Task 500, or may be kept in a table, indexed by a Task 
500 number, or may be kept by the Scheduler 312 in some 
other way. 
(0161. A Task 500 is either in the Task Pool 310 unas 
signed, or assigned to one (1) Job Loop 318. It cannot be 
assigned to two or more Job Loops 318, and it cannot both be 
assigned and waiting to be assigned. Once assigned, it will 
stay with the Job Loop 318 until it is completed, at which time 
it ceases to exist. 

(0162. A Task 500 'A' is understood to be completed when 
the Main Program asks the Scheduler 312 for a new Task 500 
for the Job Loop 318 which was assigned the Task 500 A. 
When a Task 500 is completed, the Scheduler 312 updates 
(removes) dependencies (Task 500 indicators on a list of 
Tasks 500 that a Task 500 is waiting on) from Tasks 500 
dependent on the completed Task 500. 
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0163 With these provisos, many implementations are 
possible. The following step by step description details the 
operation of one implementation of the Scheduler 312. 
(0164 Scheduler Routine: 
0.165 Step 1. The Main Program has asked the Scheduler 
312 for a Task 500 for a specific Job Loop 318. If the Job Loop 
318 was not previously assigned a Task 500, go to step 3. 
0166 Step 2. Because the Job Loop 318 has now requested 
a Job 320 from the Main Program, and the Main Program has 
asked the Scheduler 312 for a Task 500 for the Job Loop 318, 
this means that the Job Loop 318 has now completed any Task 
500 previously assigned to it. Look through the Task Pool 310 
and for each Task 500, update the lists of other Tasks 500 that 
they are dependent on, by removing the Task 500 that this Job 
Loop 318 has just completed, from those lists. 
(0167 Step 3. Choose a Task 500. The choice of Task 500 
can be according to any number of policies, but must be a Task 
500 with no outstanding dependencies on other Tasks 500. 
This Task 500 may be a Task 500 that the Scheduler 312 can 
decompose, or it may not be. The Scheduler 312 understands 
which Commands 510 and Operations 610 allow decompo 
sition by different means. The Scheduler 312 may also make 
decisions to decompose Tasks 500 or not based on available 
CPU resources, or the number of Job Loops 318 currently 
occupied with Tasks 500. If the chosen Task 500 is not to be 
decomposed, go to step 5. 
(0168 Step 4. Decompose the Task 905 by one of the three 
means described above-By-Function 920, By-Domain 925, 
or By-Component 930. Place all of the new Tasks 940 in the 
Task Pool310. Go to step 3. Note that Tasks 905 should not be 
infinitely decomposable, there should be a finite number of 
data By-Domain 925 partitions possible, and a finite number 
of Operations 610 and sub-Operations 610. Tasks 905 should 
not be decomposed into the same Task 940, or into chains of 
Task 905 decompositions that eventually lead back to the 
original Task 905, or the Scheduler 312 may get stuck in this 
loop—but this is an implementation detail, part of the policies 
and strategies chosen, and definition of Commands 510 and 
Operations 610, made by the implementor when applying the 
Parallel Task Engine to a specific problem. 
(0169 5. Assign the Task 500 to a Job Loop 318, and record 
this fact. Return a POINTER to the Task 500 to the Main 
Program. 
0170 It is worth noting the extent to which the Scheduler 
312 may decompose a particular problem with little knowl 
edge of it, an almost blind or automatic decomposition. The 
Scheduler 312 need only know which Operations 610 are 
composed of which other Operations 610 in sequence, to 
perform a By-Function 920 decomposition, with dependen 
cies among the new Tasks 940 set so that the new Operations 
610 are performed in order on the same Primary Data 306. 
By-Domain 925 decomposition can be done on any Task 905 
by adjusting Data Pointers 520 or the Parameters 620 for an 
Operation 610. And By-Component 930, or interleaved By 
Domain 925 decomposition can be done by knowing only 
which specific partial-datum component or alternate datum 
Operations 610 to substitute for the full-datum Operation 
610. The Code Generator 314, as noted above, may or may 
not have canned (Locate Static Code 830) specific Opera 
tion 610 routines, and it may have to Synthesize 820 new 
routines. Or it may Optimize 840 a more generic routine to get 
the appropriate partial datum routine. This general process, 
especially with code specialized and optimized under specific 
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CONTEXTS, would seem to know more about a problem 
than it does in reality it only need know Operation 610 
rewriting rules. 
0171 But given a multiplicity of possible decompositions, 
applied blindly without knowledge of a problem, how could 
Such a problem-agnostic Scheduler 312 choose a good 
decomposition ? It is possible for the Scheduler 312 to have 
general heuristics, along with a trial and error, run-time 
experimental approach. Nothing prevents the Scheduler 312 
from trying a decomposition, measuring the code in the 
Operation 610 routines received from the Code Generator 
314, and then deciding whether or not to try something dif 
ferent. Or, these experiments can be done ahead of time, and 
fed back into the heuristics or fixed strategies built-in to the 
Scheduler. In short, it is possible to build both accumulated 
experience and run-time decision-making into the Scheduler 
312 so that it can make good decompositions, on the basis of 
the code that will be executed in the scenario under consid 
eration. Novel decomposition strategies, and the availability 
of a CONTEXT-sensitive dynamic code generator, open up 
possibilities for dynamic problem decomposition, and as well 
as dynamic code generation, in order to get the most efficient 
Tasks 500 under prevailing conditions. 
0172 More specifically, the Scheduler 312 can make run 
time decomposition choices based on the quality of code 
generated by the Code Generator 314, in the Main Program 
procedures as described above, with no change necessary to 
those procedures. Generated code quality is simply another 
input to the Scheduler's 312 decomposition strategy. When 
presented with a Task 905 to be decomposed, the Scheduler 
312 can try a number of Operation 610 re-writings in terms of 
new Operations 610. It can request (independently of the 
Main Programs call to the Code Generator 314) the Code 
Generator 314 to generate code for the Operations 610 con 
sidered. The Code Generator may return statistics to the 
Scheduler 312, or the Scheduler 312 may analyze the code 
itself. Operation 610 routines will be created differently by 
the Code Generator 314 at different times, depending on the 
CONTEXT, and the Scheduler 312 will make different 
decomposition decisions accordingly. The Scheduler 312 
uses the Code Generator 314 in order to effect dynamic 
problem decomposition. 
0173 Example Applications: The following applications 
demonstrate the use of the Parallel Task Engine design and 
scheme of computation to provide Solutions to specific com 
putational problems, using dynamic code generation, in a 
multi-CPU environment. 
0.174 Application 1: Matrix-Vector Multiplication: A 
matrix K, with Mrows and N columns, may be multiplied by 
a column vector V, with N rows, to get a column vector P. with 
N rows. Element “I” of P is the vector dot product of row I of 
matrix K with the vector V. Or, assuming rows are numbered 
0 to M-1 and columns 0 to N-1: 

Pi-SUMKIII. VII 
=0 

0.175. Matrix-vector multiplication of this sort comprises a 
linear transformation of the vector V by the function repre 
sented by the matrix K, and has many applications in various 
domains of computation. 
(0176 FIG. 10 shows a routine, written in Intel x86 assem 
bly language, using the SSE3 instruction set extensions, 
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which loops through vector data, multiplying these vectors by 
a constant matrix, and creating an output set of vectors. The 
semantics of the individual Intel x86 instructions are defined 
in the Intel Architecture Software Developer's Manual. This 
routine computes the multiplication of a 4x4 matrix with a 
4x1 (4 row, 1 column) vector. All matrix and vector elements 
are double precision (64bit) IEEE 754 format floating point 
numbers. The loop body computes two row-vector dot prod 
ucts at a time, using the HADDPD (Horizontal ADD Packed 
Double-precision) instruction and then does the next two. It is 
limited in the amount of computation it can accomplish 
before loading more data from memory, because the Intel x86 
architecture only provides eight registers for vector data, 
which may be operated on with the SSE3 instructions. This 
routine is a reasonably efficient implementation, although 
greater efficiencies may be achieved by unrolling the loop, 
and reordering (Scheduling) the instruction sequence to allow 
the processor to execute the instruction stream more quickly. 
0177 A Parallel Task Engine software system can be con 
structed to perform matrix-vector multiplication, starting 
from the program in FIG. 10 as the template for a generic 
Operation 610 routine. 
(0178 Define the following Commands 510/Operations 
610/Tasks 302: Operation 610 MATVEC4x4-Multiply a 4x4 
matrix by a 4x1 vector, for all the vectors in an input array, 
computing product vectors, which are stored in an output 
array (as in the routine in FIG. 10). A Command 510 speci 
fying this Operation 610 is Parameterized 620 by the number 
of vectors to process, the offset in bytes from the beginning of 
the array of the first input vector and first output vector to 
process, and an offset mask, which is the (number of vectors 
to process multiplied by the vector size in bytes)-1). Data 
Pointers 520 are provided in the enclosing Task 500 to specify 
the base addresses of the input and output vector arrays. 
(0179. Operation 610 XY MATVEC4x4, and Operation 
610YZ MATVEC4x4 These Operations 610 are sub-Opera 
tions 610 of MATVEC4x4, and Tasks 905 with 
MATVEC4Jv4 Operations 610 may be decomposed into one 
Task 940 each with XY MATVEC4x4 and 
YZ MATVEC4x4 Operations 610. These Operations 610 
compute (only) either the X and y (O and 1), ory and Z (2 and 
3) elements of the four element product vector, in the matrix 
vector multiply of the MATVEC4x4 Operation 610. A Com 
mand 510 specifying either of these Operations 610 is Param 
eterized 620 by the number of vectors to process in this Task 
500, the starting offset of vectors input and output in this Task 
500, and the offset mask from the full-datum Task 500 from 
which it was decomposed. The Data Pointers 520 are copied 
from the full-datum Task 500 into these half-datum Sub-Tasks 
SOO. 

0180. The machine receives MATVEC4x4 Tasks 302 
(Tasks 302 with Commands 510 with Operation 610 of 
MATVEC4x4) from the outside world, and processes them; 
that is its sole function. It decomposes and dispatches these 
Tasks 302 or sub-Tasks 500 as it deems necessary in a one, 
two, or four CPU environment. The matrix used for the 
matrix-vector multiplication is part of the CONTEXT. 
0181. The Scheduler 312 for this matrix-vector multiply 
ing machine has the following policies: 
0182 First-in, First-out (FIFO), or “first come, first 
served. As Tasks 302 are received at the Task input 303, they 
are placed in the Task Pool 310 in a linked list, such that new 
Tasks 500 are placed at the end of the list. Tasks 500 are 
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assigned to Job Loops 318 (after being decomposed, if the 
Scheduler 312 chooses to do so) from the front of the list. 
0183 If there is only one CPU present, the Scheduler 312 
will not decompose MATVEC4x4 Tasks 500. If there are two 
CPUs present, the Scheduler 312 will decompose 
MATVEC4x4 Tasks 905 By-Component 930 to get 
XY MATVEC4x4 and YZ MATVEC4x4 Tasks 94.0 (Tasks 
940 with Commands 510 with Operations 610 which are 
XY MATVEC4x4 and YZ MATVEC4x4). These two sub 
Tasks 94.0 each process all the vectors, but start at different 
points in the arrays—the XY sub-Task 500 will start at the 
beginning and the YZ sub-Task 500 will start at the middle of 
the input and output arrays. If there are four CPUs present, 
XY MATVEC4x4 andYZ MATVEC4x4 Tasks 905 are fur 
ther decomposed By-Domain 925, splitting the XY Task 905 
into two XY Sub-Tasks 940, and the YZ Task 905 into two YZ 
sub-Tasks 940, each responsible for half of the vectors cov 
ered by the larger Task 500 from which it was decomposed. A 
MATVEC4x4 Task302 becomes 1, 2, or 4 Tasks 500, for 1, 2, 
or 4 CPUS. 

0.184 Decomposed Tasks 940 replace the original Task 
905 in the same position on the linked list of Tasks 500 in the 
Task Pool 310 in other words, one MATVEC4x4 Task 500 
in the second position from the head of the linked list can 
become XY MATVEC4x4 and YZ MATVEC4x4 Tasks 
500 in positions 2 and 3, in front of the Task 500 that was 
previously at position 3. 
0185. There are no dependencies between any Tasks 500 
or sub-Tasks 500 in this MATVEC4x4 engine. 
0186 These policies applied to the step-by-step descrip 
tion of the general Scheduler 312 procedure given above 
characterize the specific Scheduler 312 for the MATVEC4x4 
engine. 
0187. The Code Generator 314 for this MATVEC4x4 
engine operates as follows: 
0188 The MATVEC4x4 Operation 810 routine is as 
shown in FIG. 10. It can be used unchanged for a 
MATVEC4x4 operation. 
(0189 The XY MATVEC4x4 Operation 810 routine is 
shown in FIG. 11. It can be used directly, or it could also be 
derived from the MATVEC4x4 routine by applying the Opti 
mizer 840—note that when the Z and w components are 
considered dead, all of the instructions that contribute to the 
computation of these values (the last 12 instructions in the 
second half of the loop body) can be eliminated. Once these 
instructions are eliminated, the four matrix-row registerloads 
in the second half of the loop body become redundant, and the 
first four loads of these values to registers, which are now 
constant over the loop, can be moved outside the loop. The 
YZ MATVEC4x4 Operation 810 routine is symmetrical to 
the XY routine, and is of the same length. 
(0190. The XY MATVEC4x4 and YZ MATVEC4x4 
Operation 810 routines can be specialized by knowledge of 
the constant matrix, in the CONTEXT, that is used over the 
routine. Of course, when the CONTEXT changes, Operation 
610 routine look-ups in the Cache 326 Directory 710 will fail, 
and new Operation 610 routines must be generated, and new 
Entries 720 created. In this example engine, the Code Gen 
erator 314 will take note of which matrix elements are zero 
and nonzero. FIG. 12 shows a routine that has been special 
ized with such knowledge of matrix Zero elements. It can be 
derived from XY and YZ routines as shown in FIG. 11, by 
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using the Optimizer 840 to systematically apply simple sub 
stitutions and rules, as noted in the comments accompanying 
the code. 
0191 FIG. 13 shows an extremely optimized version of 
the XY MATVEC4x4 Operation 810 routine, specialized 
with the same matrix knowledge as in FIG. 12. Achieving this 
code is challenging, but possible for an Optimizer 840. It 
represents a dramatic example of the possible performance 
advantage of specialized, optimized, decomposed Operation 
810 routines. 
(0192. The MATVEC4x4 engine will basically operate as 
follows: 
(0193 MATVEC4x4 Tasks 302 will arrive at the Taskinput 
3O3. 
(0194 The engine will dispatch the Tasks 500 to the Job 
Loops 318 in order. 
(0195 1, 2, or 4 Job Loops 318 will execute either: 
(0196. 1 CPU/Job Loop 318: 1 MATVEC4x4 Operation 
610 routine per incoming MATVEC4x4 Task 302. 
0.197 2 CPUs/Job Loops 318: 1 XY MATVEC4x4 
Operation 610 and 1 YZ MATVEC4x4 Operation 610 per 
incoming MATVEC4x4 Task 302. 
(0198 4 CPUs/Job Loops 318: 2XY MATVEC4x4 Tasks 
500, and 2YZ MATVEC4x4 Tasks 500, each XYorYZ Task 
500 operating on half of the vectors, for each MATVEC4x4 
Task 302. 
(0199 Performance of the MATVEC4x4 Parallel Task 
Engine: In the case of CPU/Job Loop 318, the performance of 
a Parallel Task Engine implementation of MATVEC4x4 
Operations 610 on arrays of vector data is substantially the 
same as simply calling the Operation 610 routine directly— 
there is a very small amount of overhead for SCHEDULING 
and communication, but the processing of the Primary Data 
306 is unchanged. 
0200 Looking at FIG. 10 more closely, we see that this 
processing consists of 32 instructions, 12 memory reads, and 
2 memory writes, in the body of the loop, in order to compute 
one complete product vector. The instructions ahead of the 
loop and at the very end of the loop, which update offsets and 
loop count, are not counted. The instructions ahead of the 
loop are not counted because they are executed once per 
routine, and with a large number of vectors to be processed, 
the time spent in the loop will represent almost all the time 
spent in the routine. The reason the instructions at the end of 
the loop should not be counted is that this loop may easily be 
unrolled that is, the body of the loop may be duplicated some 
number of times, and the offset and loop count updates may 
be amortized over the entire resulting loop body. For clarity 
and brevity, none of the code examples are unrolled, but they 
all may be, and so the metrics for comparison include the 
length in instructions of the core loop body, and the quantity 
of results achieved by that code. It is also possible, for any 
particular CPU and computer system, to estimate or measure 
the actual time in CPU clock cycles for a small kernel 
computation Such as this, but the cycle counts for instructions 
on different models of CPU vary. For any one CPU, however, 
given a base routine using particular instruction set features, 
routines with shorter core sequences will in general be faster. 
As long as these shorter routines do not use extra CPU 
features that would have also been useful in the base routine, 
these are fair comparisons. Lastly, the code in these Operation 
610 routines can be re-ordered, or scheduled, in particular 
ways for particular CPU models, and this can improve the 
performance of this code on a particular CPU. Instructions 

Jun. 18, 2015 

can have various latencies (time to creation of results), but 
another instruction may start execution before a previous 
instruction has completed, as long as the later instruction does 
not require the results of the previous instruction. So instruc 
tion execution may be overlapped, and instructions can be 
re-ordered to take advantage of this overlap. Instructions may 
only be re-ordered insofar as long as they preserve the seman 
tics of the original sequence—in other words, data dependen 
cies and the essential computations must remain the same in 
the re-scheduled code. The fewer data dependencies, and the 
more independent computations, or the more computations 
that may remain independent because there are free registers 
to hold their intermediate results, the more freedom a sched 
uler has in re-ordering instructions. None of the examples 
have been optimally scheduled for any particular CPU, but 
arguments will be made that some of the examples are more 
amenable to scheduling than others. 
0201 In the case of two or four CPUs. XY MATVEC4x4 
andYZ MATVEC4x4 Operations 610, as in FIG. 11, will be 
used. The core of the loop is 12 instructions, with two 
memory reads, and 1 memory write. Because it is only com 
puting the X and y components of the output vector, only the 
first two rows of the matrix are required, and the four registers 
containing the first two rows may be loaded ahead of, and 
remain constant throughout, the loop. In 12 instructions two 
of the four components of the output vector are computed. 
The YZ Operation 610 routine is symmetrical, and performs 
the same intrinsic computations. This scheme of computing 
two components at a time results in a more efficient loop 
body. However, in most cases, it would not be a good problem 
organization on a single CPU, because this would mean tra 
versing the input and output arrays twice for the same com 
putation, doubling the total number of memory reads and 
writes, and this would likely overwhelm the 25% (12 for 
XY-12 forYZ=24, compared to 32) reduction in the length of 
the loop body. With a large array of vectors, the required reads 
and writes to input and output vector arrays will outstrip the 
single CPU's data cache capacity, and some number of cache 
misses will occur. Double the cache misses will occur if XY 
and YZ routines are executed in sequence on a single CPU, 
unless the original MATVEC4x4 Task 302 was first decom 
posed By-Domain 925 into a series of small vector batches 
(which could be done without the Parallel Task Engine, by 
simply nesting an XY loop and a YZ loop in an outer loop, or 
could also use a Parallel Task Engine configured for this 
application, to do the decomposition, even with one CPU). 
However, even in this case, any single CPU has a limited size 
data cache, and two CPUs of the same model will have twice 
the data cache, and this can be exploited. An XY and a YZ 
Task 500 can be dispatched to different CPUs, and in this 
case, each CPU will see roughly the same number of cache 
misses as a single CPU running the full-datum routine of FIG. 
10 (or less, because the matrix rows are not reloaded), but 
enjoy the 25% reduction in loop body length, and the factor of 
three reduction in memory reads. Each XY or YZ loop does 
half as much work, but it is more than twice as fast, and so 
using two CPUs in this fashion is faster than using two CPUs 
and decomposing a MATVEC4x4 Task 905 simply By-Do 
main 925, giving half the full-datum computations to each 
processor (which, of course, can be done with the Parallel 
Task Engine). An advantage of this two-processor XYYZ 
decomposition, over one in which (a series of smaller) XY 
and YZ routines are performed in sequence on a single CPU, 
which would then be decomposed By-Domain 925 to two sets 
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of Tasks 940 for 2 CPUs, is that there are fewer Tasks 940 (the 
same number of Tasks 940 for all models of CPU, no matter 
what the data cache capacity), and the Scheduler 312 does not 
have to estimate the appropriate working set to avoid data 
cache thrashing on any single CPU the two CPU data 
caches are used to advantage transparently and in a way that 
works on any model of CPU. It is true that in total, under a 
By-Component 930 decomposition, the number of input data 
reads done by the CPUs in combination, may be more than the 
number of reads done by full-datum routines on the same 
number of CPUs (although this is not the case in the current 
example, due to the dearth of registers, and the requirement to 
reload the input vectors, in the full-datum routine), and this 
may be how we “pay for the extra registers available in 
partial-datum routines—but those reads are covered by the 
individual data caches on the CPUs, and the fact that the total 
load on memory is higher will not be important, unless the 
two CPUs contend for access to memory. 
0202) To keep the two CPUs from contending for access to 
the same memory at the same time, the XYTask 500 starts at 
the beginning of the input and output arrays, andYZ Task 500 
starts in the middle. As the input and output offsets are 
advanced through the arrays in each routine, they are masked 
(logical “and” operation) with the offset mask as defined 
above, which has the effect of “wrapping the offset around at 
the end of the vector arrays—the XYTask 500 starts at vector 
0 and ends at vector N-1, and the YZ Task 500 starts at N/2. 
wraps past the end to 0, and ends at vector N/2-1. Thus, if the 
two Operations 610 proceed at roughly the same rate, they 
will rarely contend for read access to the same memory. They 
will of course, not ever write the exact same memory, as one 
Task 500 will write only Xandy, and the other will write only 
y and Z., but they could possibly at times contend for write 
access to the same local area of memory, as they can when 
reading logically, if both are started at the same time, and 
are running at the same speed, they will not contend, but 
because they are independent, unsynchronized CPUs, with 
independent asynchronous events and independent resource 
management, they may drift forward and backward with 
respect to each other, and very occasionally need access to the 
same memory. Since their starting and ending locations are 
N/2 vectors apart, minor variations in moment to moment 
progress should make instances of access to the same vector, 
or even the same large group of vectors, very rare. (This same 
multi-CPU, multi-cache, non-contending access scheme can 
be used in any scenario of decomposition By-Domain 925 in 
which the two domains are interleaved, and would require 
multiple passes through the data on a single CPU, deriving the 
same benefit of allowing separate computation on interleaved 
sets of data with no memory access penalty.) 
0203 With two or more CPUs, the XY and YZ problem 
breakdown takes advantage of having two sets of registers 
and two data caches to apply to the problem. 
0204. In the case of four CPUs, the XY and YZ Tasks 905 
can be decomposed by Domain 925, each Task 905 splitting 
into two of the same sorts of Tasks 940, with each responsible 
for one half the vectors. This will cut the time per vector in 
half. Each Task 940 will now be starting on a separate quarter 
of the vector arrays, with each task reading and writing half of 
them, as follows: CPU 0; XY Task 500, vectors 0 to N/2-1, 
CPU 1:YZ Task 500, vectors N/4 to 3N/4-5 CPU2: XYTask 
500, vectors N/2 to N-1, CPU 3:YZ Task 500, vectors 3N/4 
to N/4-1. 
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(0205 When the XYorYZ routines of FIG. 11 are special 
ized to account for the knowledge of the matrix, they can be 
even more efficient. FIG. 12 shows that in a case where only 
one element in each of the two matrix rows being used are 
nonzero, and the two elements are diagonally adjacent (not 
that uncommon a case in many matrix applications), a routine 
specialized through simple optimization can be almost twice 
as fast as the un-specialized routine, needing only seven 
instructions in the loop body to complete its work. (Larger, 
full-datum routines can also be specialized, of course—but 
the Smaller the generic routine, the Smaller the resulting spe 
cialized routine). 
0206 FIG. 13 shows an optimally specialized routine, 
under the same conditions as in FIG. 12. This result is achiev 
able by a Code Generator 314 and an Optimizer 840, but not 
as easily as the routine in FIG. 12. This routine requires just 
three instructions in the core of the loop. Such a short loop 
Suggests a pipelined stream of instructions, one that could be 
scheduled to achieve maximum overlap of long-latency 
instructions, as in FIG. 14. The total number of instructions 
per half-vector output does not change from FIG. 13, but as 
four half-vectors are “in flight at the same time (which is 
possible because of the freeing of registers due to the By 
Component 930 decomposition and the constant matrix spe 
cialization), this code will probably schedule better on many 
CPUS. 

0207. To summarize the performance of a MATVEC4x4 
Parallel Task Engine, we can see from this example, that given 
what we take as an efficient routine for computing a 4x4 
matrix-vector product, i.e. FIG. 10, using By-Component 930 
decomposition, with two or four CPUs, we can generate 
vector products roughly 4/3 as fast (loop body length ratio of 
12/16) as any ordinary By-Domain 925 decomposition to 
multiple CPUs, with no extraordinary effort. When routines 
are dynamically generated with specialized knowledge of 
matrix contents, they can be faster (16/7 as fast, loop body 
length ratio of 7/16, in this example), again without extraor 
dinary effort. With a very advanced Optimizer 840 the per 
formance of specialized code can be even better (16/3 faster, 
in this example). 
(0208. By-Component 930 or other By-Function 920 
decompositions are useful when the full-datum or full-func 
tion routine is “too big to fit in the register set of the CPU. 
By-Domain 925 decompositions are generally productive, 
and in a multi-CPU environment, domains may also be inter 
leaved. As shown by this example, several aspects of the 
Parallel Task Engine 300 can leverage each other to provide 
greater than linear speed-up when applying multiple CPUs to 
the data processing problem: 
(0209. The availability of multiple CPUs with multiple data 
caches makes certain problem decompositions practical, 
which would not be practical in a single-CPU environment. 
This is true for By-Component 930 and any other interleaved 
By-Domain 925 decompositions. 
0210 By-Domain 925 interleaved decompositions may 
contain address arithmetic or other expressions which can be 
simplified in more specific variants of Operation 810 rou 
tines, because of knowledge of evenness, oddness, or other 
implicit numeric properties of data indices under the inter 
leaved decomposition. 
0211. The appropriate By-Component 930 or By-Func 
tion 920 problem decomposition can yield Operation 610 
routines that are simpler and faster, splitting the computation 
of results over multiple CPU register sets. These routines can 
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then make better use of individual CPU resources, which may 
allow more data to be computed periteration, and which may 
schedule better, leading to better overall efficiency per CPU. 
They are also easier for a static or dynamic Optimizer 840 to 
improve. 
0212. By-Component 930 and other By-Function 920 
decomposed routines can be created dynamically (algorith 
mically decomposed) by the Code Generator 314, deriving 
them from generic routines by applying the Optimizer 840 to 
the generic code. 
0213 Specialization of Operation 810 routines with 
knowledge of run-time constants can lead to great improve 
ments in processing speed. The presence of a dynamic Code 
Generator 314 and an Optimizer 840 that can derive special 
ized routines from generic routines is a general Solution to the 
specialization problem. Small, simple routines, obtained 
from better decompositions, are also easier to specialize. 
0214 Decompositions are chosen, either at run-time, or by 
experimentation, the results of which are then fed back into 
the configuration of the Scheduler 312, so that the decompo 
sitions produce the best Sum total performance, based on an 
examination of the operation routines generated. The 
example just given is a methodical exercise in this decompo 
sition process. When the Scheduler 312 makes these deci 
sions at run-time, it must perform a similar analysis of code, 
weighing the benefits of different decompositions, optimiza 
tions, and specializations. Decomposing to get the same 
amount of work done across all CPUs, with best per-CPU 
code in dynamically generated Operation 810 routines, is a 
novel decomposition strategy, and a means for pursuit of this 
strategy as presented here, is a feature of the invention. 
0215 Application 2: 3D Graphic Image Renderer. A 3D 
graphics image renderer, like the pipeline 200 represented in 
FIG. 2, can be implemented with the Parallel Task Engine 
300. It consists of Vertex processing (position transforma 
tions and lighting); Primitive assembly or "setup, clipping, 
culling, and rasterization; and Fragment or pixel 'shading 
(coloring, texturing, buffer operations). 
0216 Each of these stages of computation can be per 
formed by a dynamically generated Operation 810 routine 
that is specialized according to run-time values of graphics 
CONTEXT variables. The processing involved in the graphic 
pipeline is ripe for parallel decomposition—many primitives, 
defined by many vertices, enclosing many pixels, all of these 
stages have many processing steps, and all of these basic data 
types have many independent properties. 
0217. This graphics pipeline can also support application 
provided vertex programs and pixel shaders. These programs 
are simply part of the graphics CONTEXT, and the Code 
Generator 314 now creates vertex, setup, and pixel Operation 
810 routines using these programs as a source of semantics, 
instead of the usual fixed function definitions. The result is the 
same, Operation 610 routines for the three stages specific to 
the CONTEXT. 
0218. These computations at the three stages require large 
amounts of temporary state, such as buffers and data struc 
tures that represent the initial conditions or intermediate 
results of the computation as it progresses. For example, 
Vertex processing may keep a cache of already-processed 
Vertices, as vertices may be shared by contiguous primitives. 
For this reason, it is convenient to have stages perform their 
computations at, or conjunction with stage Units 1510. 
Units 1510 are static data structures enclosing temporary 
data, utilized by the stage computations, and specific to a 
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particular kind of stage (vertex, setup, or pixel) computation. 
Stage computations must be attached to an available (no other 
computation in progress) Unit 1510 of the right kind in order 
tO COmmence. 

0219 FIG. 15 shows the data flow and stages of compu 
tation in the graphics pipeline. The horizontal rows show 
vertex, setup, and pixel Units 1510, with all Units 1510 of the 
same kind in their own column. There is no specific relation 
ship between the rows and Job Loops 318, or any partition of 
Primary Data 306. The diagram depicts an array of Units 
1510, and the paths that the data may follow, as it is trans 
formed. Any Task 500, for any stage of processing, may be 
attached to any available Unit 1510 of the right kind, and then 
the Task 500 may be assigned to any Job Loop 318. The 
system is set up with as many Units 1510 of a certain kind as 
required to support concurrent stage computations of that 
kind. 
0220. In the Parallel Task Engine implementation of the 
graphics pipeline, input Tasks 302 specify lists of graphics 
primitives to be rendered. The input Primary Data 306 is a 
collection of vertices and primitive definitions. The output 
Primary Data 306 is the display frame buffer. Auxiliary data 
Such as transformation and projection matrices, texture and 
light source definitions reside in the graphics CONTEXT. 
0221) The Scheduler 312 for this graphics pipeline has 
these policies: 
0222 Primitives are drawn in first-in, first-out order. All 
pixels of a primitive may not be displayed at once, but for any 
pixel in the frame buffer, pixels from primitives are written in 
the same order as the primitives themselves are (requested to 
be) drawn, e.g. the pixel resulting from the first primitive 
drawn will be written first, and the pixel from the last primi 
tive drawn will be written last. This will preserve the effect of 
primitives that are drawn over portions of other primitives. 
0223 Pixel Tasks 500 are dependent on setup Tasks 500 
that process the outlines, compute gradients for interpolation, 
and perform the rasterization of the primitives that enclose or 
bound them. Primitive setup Tasks 500 are dependent on the 
vertex Tasks 500 that process the vertices that define the 
primitive. 
0224 Pixels are written to the frame buffer as soon as 
possible, while preserving drawing order as described above. 
Pixel sub-Tasks 500 are done before their enclosing primitive 
setup Tasks 500, which are done before their defining vertex 
Tasks 500, in other words, as soon as the Tasks 500 on which 
they are dependent have completed. For any set of pixels 
covered by a pixelTask 500, the pixelTasks 500 for primitives 
drawn earlier are done before the pixel Tasks 500 for that 
same set of pixels resulting from primitives drawn later. The 
same ordering with respect to their source primitives is true 
for setup and vertex Tasks 500. 
0225. Tasks 500 must be assigned to a Unit 1510 of the 
right kind to do their work. If the right kind of Unit 1510 is not 
available (free) for use, the Task 500 cannot be scheduled. 
When a Task 500 is assigned a Unit 1510, the Unit 1510 is 
unavailable until the Task 500 is complete. 
0226 
0227. The input Task 302 is a list of primitives to render. 
This input Task 905 is first split into Tasks 940 for two passes. 
These two passes are a decomposition By-Component 930 of 
the final frame buffer pixels—the first pass computes only the 
Z-buffer value of the rendered pixels. The second pass com 
putes everything but the Z-buffer value, and uses the first pass 

Tasks 500 are decomposed in several ways: 
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Z-buffer value in the traditional way, in order to determine 
whether the pixel should be drawn or not. 
0228 A (pass 1 or pass 2) primitive-list rendering Task 
905 can be decomposed By-Domain 925 into Tasks 940 with 
shorter lists, or batches of one or more primitives to render. 
0229 Aprimitive-list rendering Task 905 is decomposed 
by FUNCTION into a vertex Task 940, a primitive assembly 
or setup Task 940, and a pixel Task 940, modeling the pipe 
lines 200 of FIGS. 2 and 1500 of FIG. 15. These Tasks 940 are 
successive stages, the pixel Task 940 is dependent on the 
setup Task 940, and the setup Task 940 is dependent on the 
vertex Task 940. 
0230. The vertex Task 500 has a Data Pointer 520 from the 
input Task302 to a vertex buffer containing all of the vertices 
for all of the primitives, to be processed en masse, regardless 
of their primitive associations. This vertex Task 905 can be 
decomposed By-Domain 925 into multiple independent ver 
tex Tasks 940. This decomposition may be blind, or it could 
be sorted according to association with groups of primitives. 
0231 Vertex processing includes many cases of matrix 
vector multiplication, which may be decomposed By-Com 
ponent 930 and By-Domain 925, as in the matrix-vector 
example described above. 
0232. The primitive setup Task 905 has a Data Pointer 520 
to a list of primitives to render, from the input Task302. It can 
be subdivided By-Domain 925 into multiple independent 
Tasks 940 with shorter lists of primitives. Depending on how 
the original vertex Task 905 was decomposed, some setup 
sub-Tasks 94.0 may not be dependent on all of the vertex 
Sub-Tasks 940. 
0233. The pixel Task 905 can be decomposed By-Domain 
925 into pixel groups of various kinds. One alternative is 
multiple sections of the display screen. Another is interlaced, 
or alternating horizontal bands on the display, one or more 
pixels tall. Or the pixel Tasks 940 can be sorted according to 
primitive groups, or types. The pixel Tasks 905 may also 
amenable to By-Component 930 decompositions, e.g. color 
values, the components of which can be computed indepen 
dently, in certain lighting and shading operations. 
0234. In order to effect its Task 500 ordering policy, the 
scheduler must look for the earliest pixel Task 500 (from the 
earliest primitive), check its dependencies, and if none are 
ready, look for the earliest setup Task 500, and if none are 
ready, choose the earliest vertex task. This can be done in a 
number of ways. One convenient way is to keep the Tasks 500 
on a linked list, as in the matrix-vector example above. When 
decomposing primitive-list rendering Tasks 905 into vertex, 
setup, and pixel Tasks 940, they are added to the list in reverse 
order: pixel, setup, and vertex. Now the scheduler can start 
from the head of the list, and simply choose the first Task 500 
with no outstanding dependencies, and for which a Unit 1510 
of the right kind is available. 
0235. The Code Generator 314 for the graphics pipeline 
can take advantage of the following opportunities for special 
ization and optimization: 
0236. The first pass and second pass are By-Component 
930 final pixel decompositions of the pixel’s depth, Z, and the 
complementary components to Z. The first pass Operation 
610 routines can be dramatically reduced, as most of the 
results which will be computed in pass 2 Tasks 500 are not 
needed in pass 1. 
0237 Because the Z-buffer is filled early (before pass 2 
starts), as soon as rasterization is complete, it is known for any 
pixel whether or not the pixel will eventually be written to the 
frame buffer. No additional processing will be done for pixels 
that are not displayed. This is a kind of depth-sorting that 
occurs naturally with this decomposition and this engine. 
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0238 All of the graphics processing stages depend on 
many variables, options, and auxiliary data in the graphics 
CONTEXT. There are hundreds of opportunities to specialize 
Operation 610 routines by knowledge of variables that are 
constant at run-time, and therefore many conditional tests and 
branches in generic Operations 810 will be removed by the 
Synthesizer 820, Optimizer 840, or by substituting canned 
routines (Locate Static Code 830) for specific variants of 
Operations 810. For example, multiplying or dividing by a 
constant of one means that the multiplication or division can 
be eliminated. 

0239 Vertex processing includes many cases of matrix 
vector multiplication, and the optimizations presented in the 
matrix-vector multiplication example above may be used in 
Vertex processing. 
0240 Logical primitive setup stages. Primitive setup can 
be broken into several stages, as depicted in FIG. 16. Stage 
1601 assembles the vertices of the primitive, in the illustration 
a triangle. Stage 1602 performs back-face culling by deter 
mining the winding order of the triangle's vertices. This stage 
is skipped for line and point primitives. Stage 1603 constructs 
a polygon covering the primitive's fragments and clips it 
against the visible region. Stage 1604 projects the clipped 
polygon into Screen space and scan-converts its edges. Stage 
1605 computes Z and vertex attribute gradients. A detailed 
description of the operations performed in stages 1603 and 
1604 related to rasterization, together called the rasterization 
stage, follows in the next section. 
0241 Primitive setup rasterization stage. The first step in 
rasterizing primitives is to construct a polygon covering their 
fragments. Triangle primitives can use their vertex positions 
directly as such a polygon. Line primitives require the con 
struction of a thick line shaped polygon Surrounding the line 
in screen space. One way to achieve this is to construct a 
1-pixel wide rectangle as depicted in FIGS. 18(a) and (b). The 
white-filled circles connected by the dotted line represent the 
Vertex positions in Screen space. The black dots represent the 
screen space positions of the newly constructed polygon. In 
FIG. 18(b) every polygon edge is located at 0.5 pixel distance 
from the polygon, to avoid underdraw (missing pixels) in 
between connecting lines. To comply with the industry-stan 
dard grid-intersect quantization (or GIO, described in 
“The m-Dimensional Grid Point Space', Reinhard Klette, 
Computer Vision Graphics Image Processing. Vol. 30, pp. 
1-12, 1985) rasterization rule using diamonds, two 1-pixel 
sized diamonds have to be constructed in screen space, cen 
tered around the line's vertices, as depicted in FIG. 18(c). The 
six points forming the convex hull of the diamonds are used as 
the polygon for rasterization. Point primitives require the 
construction of an axis-aligned square polygon in Screen 
space, centered on the points position. The second step in 
rasterization consists of clipping the constructed polygon 
using the Sutherland-Hodgman clipping algorithm, against 
viewing frustum planes and optional application-controlled 
clipping planes. The viewing frustum and viewport Scaling 
can be adjusted to provide viewport and Scissor clipping 
functionality. Only positions are clipped; the constructed 
polygon does not include vertex attribute data. The next step 
is to rasterize the outline of the (clipped) polygon, and is 
illustrated in FIG. 17. For every edge of the polygon (a pair of 
points), it is determined whether it is on the left or right side 
of the polygon. For every scanline 1703 intersecting the edge, 
the X-coordinate of the intersection is computed, and stored in 
the left outline array 1701 or right outline array 1702 depend 
ing on which side the edge is located, at an index correspond 
ing to the Scanline's y-coordinate. For anti-aliasing purposes 
intersections can be computed at higher resolution. The inter 
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sections can be computed efficiently using a variant of 
Bresenham's line drawing algorithm, the digital differential 
analyzer (DDA) algorithm or a fixed-point or floating-point 
edge stepping method. Together with the outline arrays the 
top and bottom index where the polygon is located in the 
outline arrays 1701 and 1702 is stored. The (clipped) polygon 
can now be discarded. Gradient setup calculations use the 
original vertices of the primitive. The outline arrays and top 
and bottom indices can now be used by the interpolators to 
determine coverage masks for pixels or groups of pixels: For 
every fragment the coverage can be determined by comparing 
its x-coordinate to the left and right outline arrays at the 
index corresponding to the fragment's y-coordinate. This 
process can be done in parallel for a group of fragments. 
Advantages of the whole rasterization algorithm compared to 
prior art are the ability to clip every type of primitive to 
viewport and Scissor edges at an early stage, computing frag 
ment coverage at a lower per-fragment cost than using half 
space functions (as described in "Triangle Scan Conversion 
using 2D Homogeneous Coordinates’, Marc Olano and Trey 
Greer, Proceedings of the 1997 SIGGRAPH/Eurographics 
Workshop on Graphics Hardware), and computing coverage 
of groups of fragments in parallel on the same processor and 
in parallel for multiple groups of fragments on multiple pro 
CSSOS. 

0242 Performance of the Graphics Pipeline. A graphics 
pipeline implemented via the Parallel Task Engine 300 as 
described above can keep multiple CPUs busy throughout 
every stage of image rendering, from the original list of primi 
tives to display, to the final pixel frame buffer operations. 
This, in concert with the previously described beneficial 
problem decomposition, and dynamically generated context 
specific optimized code, as well as specific, novel graphics 
processing algorithms detailed above, can give a Super-linear 
acceleration of the rendering process when applied via this 
engine to multiple CPUs. 
0243 While illustrated in the block diagrams as groups of 
discrete components communicating with each other via dis 
tinct data signal connections, it will be understood by those 
skilled in the art that an embodiments are provided by a 
combination of hardware and software components, with 
Some components being implemented by a given function or 
operation of a hardware or software system, and many of the 
data paths illustrated being implemented by data communi 
cation within a computer application or operating system. 
The structure illustrated is thus provided for efficiency of 
teaching the present embodiment. 
0244. It should be noted that the present description is 
meant to encompass embodiments including a method, a 
system, a computer readable medium or an electrical or elec 
tro-magnetic signal. 
0245. The embodiments described above are intended to 
be exemplary only. The scope of the description is therefore 
intended to be limited solely by the scope of the appended 
claims. 

1. In a computer system, a parallel task engine for perform 
ing tasks on data, the parallel task engine comprising: 

an input for receiving tasks, each task for performing an 
operation; 

a scheduler for decomposing the tasks into one or more 
new tasks, the decomposing being dependent on at least 
one policy selected from a given set of policies; 

a run-time dynamic code generator for generating, for the 
new tasks, operation routines, the run-time dynamic 
code generator comprising a dynamic compiler, the 
dynamic compiler being adapted to output the operation 
routines for execution; 
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a set of job loops, at least one of the job loops for perform 
ing the new tasks on at least part of the data by executing 
the operation routines, the job loops running in parallel 
on two or more CPUs; 

the scheduler for distributing and assigning the new tasks 
to the at least one of the job loops; and 

the scheduler for making the selection of the at least one 
policy based on general heuristics. 

2. The parallel task engine of claim 1, wherein the given set 
of policies include one or more of by-domain policies, and 
by-component policies. 

3. The parallel task engine of claim 2, wherein the sched 
uler performs by-domain decomposition on a given task by 
modifying data pointers or parameters of the given task. 

4. The parallel task engine of claim 2, wherein the sched 
uler performs by-component decomposition on a given task 
having a full datum operation, by dividing the full datum 
operation into a plurality of component operations, and deter 
mines whether the component operations must be applied 
sequentially, in parallel or in an arbitrary order. 

5. The parallel task engine of claim 1, wherein the sched 
uler decomposes the tasks into new independent tasks to be 
performed in parallel on two or more CPUs. 

6. The parallel task engine of claim 5, wherein the new 
independent tasks associated with a given task have different 
parameters and data pointers than the given task and perform 
the same operation associated with the given task. 

7. The parallel task engine of claim 1, further comprising a 
cache for retaining and retrieving the operation routines, 
wherein the cache comprises a directory of cache entries, 
each entry comprising: 

an operation routine pointer, and 
a tag to be matched when searching the cache for operation 

routines, the tag consisting of an operation routine iden 
tifier and a context, the context having a collection of 
variables, or a pointer to a collection of variables. 

8. The parallel task engine of claim 7, wherein the run-time 
dynamic code generator further comprises an optimizer, the 
optimizer taking as input an operation routine from the opera 
tion routines, or a pointer to an operation routine from the 
operation routines, the optimizer producing as output an out 
put operation routine, or a pointer to the output operation 
routine, which is semantically equivalent to the operation 
routine at the input. 

9. The parallel task engine of claim 1, wherein the tasks 
comprise graphics processing tasks for 3D objects defined as 
a collection of geometric primitives, and further wherein the 
scheduler is for decomposing the graphics processing tasks 
into one or more new graphics processing tasks. 

10. The parallel task engine of claim 9, further comprising 
a rasterization module for identifying pixel fragments cov 
ered by the primitives, the rasterization module being config 
ured for: 

assembling vertices of each of the primitives; 
constructing a polygon covering the pixel fragments; 
scan converting the polygon to obtain coordinates of the 

Scan converted polygon; and 
storing the coordinates in an outline buffer; 

the coordinates being used in the identifying of the pixel 
fragments covered by the primitives. 

11. The parallel task engine of claim 10, wherein the ras 
terization module is further configured for clipping the poly 
gon against a visible region prior to the scan converting. 
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12. In a computer system, a method for performing tasks on 
data, the method comprising: 

receiving tasks: 
decomposing the tasks into one or more new tasks, the 

decomposing being dependent on at least one policy 
Selected from a given set of policies; 

generating for the new tasks, operation routines, the gen 
erating comprising outputting the operation routines for 
execution using a dynamic compiler, 

making the selection of the at least one policy based on 
general heuristics; 

providing a set of job loops; 
distributing and assigning the new tasks to at least one of 

the job loops; 
running the job loops in parallel on two or more CPUs; and 
the at least one of the job loops performing the new tasks on 

at least part of the data by executing the operation rou 
tines. 

13. The method of claim 12, wherein the generating of 
operation routines uses a context having a collection of vari 
ables, or a pointer to a collection of variables, specifying at 
least one of options, parameters, conditions, constant data, 
and other data apart from the data on which tasks are per 
formed, the context for influencing the tasks performed on the 
data. 

14. The method of claim 12, wherein the tasks comprise a 
matrix multiplication of a vector by a matrix, the matrix 
comprised in the context. 

15. The method of claim 12, wherein tasks and new tasks 
comprise: 

a command, comprising: 
a name having a numeric or symbolic identifier, or a 

pointer to such an identifier, the name defining an 
abstract operation to be performed on data; 

Zero, one, or more parameters; and 
one or more pointers or parameters, identifying the data on 
which the command is to be performed. 

16. The method of claim 12, wherein the run-time dynamic 
code generator further comprises an optimizer, producing, 
from an input operation routine from the operation routines, 
or a pointer to an operation routine from the operation rou 
tines, an output operation routine, or a pointer to the output 
operation routine, which is semantically equivalent to the 
input operation routine. 

17. The method of claim 16, wherein the generating of 
operation routines uses a context and wherein the production 
of an output operation routine, or a pointer to the output 
operation routine, results in an output operation routine which 
is equivalent to the input operation routine under limitations 
or conditions described by the context. 

18. The method of claim 12, wherein the decomposing the 
tasks is performed according to at least one of the following 
policies: 

decomposing a task into one or more new tasks by parti 
tioning the data on which the task is to be performed into 
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one or more Subsets of that data, each new task being 
responsible for performing the same operation as the 
original task on a corresponding data Subset; 

decomposing a task into one or more new tasks, each of 
which performs a different operation than the original 
task, but which performs this operation on the same data 
set as the original task; and 

decomposing a task into one or more new tasks, by parti 
tioning an individual datum of the data on which the task 
is to be performed, into Sub-components, each new task 
creating one Sub-component of each resulting datum for 
all the data. 

19. The method of claim 12, further comprising estimating, 
for an operation routine from the operation routines, a per 
formance, the operation routine comprising instruction code, 
the estimating comprising at least one of analyzing, inspect 
ing and measuring characteristics of the operation routine 
instruction code. 

20. The method of claim 19, further comprising selecting 
the policy for decomposition which yields the highest esti 
mated performance, based on the estimated performance of 
operation routines. 

21. The method of claim 12, wherein the tasks comprise 
graphics processing tasks for 3D objects defined as a collec 
tion of geometric primitives, and wherein the decomposing 
comprises decomposing the graphics processing tasks into 
one or more new graphics processing tasks. 

22. The method of claim 21, wherein the decomposing 
comprises decomposing the graphics processing tasks into at 
least one of one or more vertex processing tasks, one or more 
primitive processing tasks, and one or more pixel processing 
tasks. 

23. The method of claim 21, further comprising pixel pro 
cessing tasks which draw the 3D objects to a rendered image, 
wherein the decomposing comprises decomposing the pixel 
processing tasks into one or more new pixel processing tasks 
whereby at least two of the new pixel processing tasks contain 
fragments of non-overlapping regions in the rendered image, 
and the new pixel processing tasks are assigned to at least two 
job loops. 

24. The method of claim 23, wherein the new pixel pro 
cessing tasks are assigned to a job loop when no other new 
pixel processing tasks containing overlapping fragments is 
executing in any of the job loops. 

25. The method of claim 21, wherein the new graphics 
processing tasks are assigned to a job loop which previously 
executed a new graphics processing task which shares part of 
the data of the new graphics processing task. 

26. The method of claim 12, further comprising: 
decomposing the tasks into new independent tasks; and 
performing the new independent tasks in parallel on two or 

more CPUs. 


