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TITLE: MICROTLB AND MICRO TAG FOR REDUCING POWER IN A PROCESSOR

I. Technical Field
This invention is related to the field of processors and, more particularly, to caching structures in

processors.

2. Background Art

Processors typically implement virtual addressing, and also typically implement caches for storing recently
accessed data and/or instructions. Typically, the processor generates a virtual address of a location to be accessed
(i.e. read or written), and the virtual address is translated to a physical address to determine if the access hits in the
cache. More particularly, the cache access is typically started in parallel with the translation, and the translation is
used to detect if the cache access is a hit.

The cache access is typically one of the critical timing paths in the processor, and cache latency is also
typically critical to the performance level achievable by the processor. Accordingly, processor designers often
attempt to optimize their cache/translation designs to reduce cache latency and to meet timing requirements.
However, many of the optimization techniques may increase the power consumption of the cache/translation
circuitry. In many processors, the cache/translation circuitry may be one of the largest contributors to the overall
power consumption of the processor.

As power consumption in processors has increased over time, the importance of controlling processor
power consumption (and designing processors for reduced power consumption) has increased. Since the
cache/translation circuitry is often a major contributor to power consumption of a processor, techniques for reducing
power consumption in the cache/translation circuitry have become even more desirable.

To improve performance, set associative caches are often implemented in processors. In a set associative
cache, a given address indexing into the cache selects a set of two or more cache line storage locations which may
be used to store the cache line indicated by that address. The cache line storage locations in the set are referred to as
the ways of the set, and a cache having W ways is referred to as W-way set associative (where W is an integer
greater than one). Set associative caches typically have higher hit rates than direct-mapped caches of the same size,
and thus may provide higher performance than direct-mapped caches. However, conventional set associative caches
may also typically consume more power than direct-mapped caches of the same size. Generally, the cache includes
a data memory storing the cached data and a tag memory storing a tag identifying the address of the cached data.

In a conventional set associative cache, each way of the data memory and the tag memory is accessed in
response to an input address. The tags corresponding to each way in the set may be compared to determine which
way is hit by the address (if any), and the data from the corresponding way is selected for output by the cache. Thus,
each way of the data memory and the tag memory may be accessed, consuming power. Furthermore, since the cache
access is often a critical timing path, the tag memory and data memory access may be optimized for timing and
latency, which further increase power consumption. Still further, the caches are typically tagged with the physical
address, and thus the translation circuitry is also typically in the critical path and thus optimized for timing and

latency, which may increase power consumption in the translation circuitry.
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SUMMARY OF THE INVENTION

In one embodiment, a processor comprises a cache, a first translation lookaside buffer (TLB), and a tag
circuit coupled to the first TLB. The cache comprises a data memory configured to store a plurality of cache lines
and a tag memory configured to store a plurality of tags. Each of the plurality of tags corresponds to a respective
one of the plurality of cache lines. The first TLB is configured to store a plurality of page portions of virtual
addresses identifying a plurality of virtual pages for which physical address translations are stored in the first TLB.
The tag circuit is configured to identify one or more of the plurality of cache lines that are stored in the cache and
are within the plurality of virtual pages. In response to a hit by a first virtual address in the first TLB and a hit by
the first virtual address in the tag circuit, the tag circuit is configured to prevent a read of the tag memory in the
cache.

In another embodiment, a method is contemplated. A first TLB is accessed with a first virtual address.
The first TLB is configured to store a plurality of page portions of virtual addresses identifying a plurality of virtual
pages for which physical address translations are stored in the first TLB. In response to a hit by the first virtual
address in the first TLB, a tag circuit'is accessed. The tag circuit is configured to identify a plurality of cache lines
that are stored in a cache and are within the plurality of virtual pages. A hit is detected by the first virtual address in
the first TLB and the tag circuit. In response to the hit by the first virtual address in the first TLB and the tag circuit,
a read of a tag memory in the cache is prevented.

In yet another embodiment, a processor comprises a cache and a tag circuit. The cache comprises a data
memory configured to store a plurality of cache lines and a tag memory configured to store a plurality of tags. Each
of the plurality of tags corresponds to a respective one of the plurality of cache lines. The tag circuit is configured
to detect a hit in the cache by a first virtual address for a subset of the plurality of cache lines. In response to a hit
by the first virtual address in the tag circuit, the tag circuit is configured to prevent a read of the tag memory, and
wherein the data memory is configured to output at least a portion of a first cache line corresponding to the first

virtual address.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description makes reference to the accompanying drawings, which are now briefly
described.

Fig. | is a block diagram of a portion of one embodiment of a processor.

Fig. 2 is a block diagram of one embodiment of a translation and filter block shown in Fig. 1.

Fig. 3 is a timing diagram illustrating one embodiment of a pipeline that may be implemented by one
embodiment of the processor.

Fig. 4 is a block diagram of one embodiment of a microTLB tag circuit.

Fig. 5 is a block diagram of one embodiment of a truth table corresponding to a control circuit shown in
Fig. 4.

Fig. 6 is a block diagram of one embodiment of a microTLB data circuit.

Fig. 7 is a block diagram of one embodiment of a micro tag circuit.

Fig. 8 is a flowchart illustrating operation of one embodiment of the blocks shown in Fig. 2.

Fig. 9 is a block diagram of one embodiment of a way predictor shown in Fig. 1.
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Fig. 10 is a flowchart illustrating one embodiment of selecting a replacement way in response to a cache

miss.

Fig. 11 is a block diagram of one embodiment of a portion of the data cache data memory shown in Fig. 1.

Fig. 12 is a block diagram of a second embodiment of a portion of the data cache data memory shown in
Fig. 1.

Fig. 13 is a block diagram of a third embodiment of a portion of the data cache data memory shown in Fig.
1.

Fig. 14 is a flowchart illustrating one embodiment of generating a way prediction.

Fig. 15 is a block diagram of one embodiment of a computer system including the processor shown in Fig.
L.

Fig. 16 is a block diagram of a second embodiment of a computer system including the processor shown in
Fig. 1.

While the invention is susceptible to various modifications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and will herein be described in detail. It should be
understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the
particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives

falling within the spirit and scope of the present invention as defined by the appended claims.

DISCLOSURE OF INVENTION

Turning now to Fig. 1, a block diagram of a portion of one embodiment of a processor 10 is shown. In the
illustrated embodiment, the processor 10 includes an address generation unit (AGU) 12, a way predictor 14, a data
cache 16, and a translation/filter circuit 18. The data cache 16 comprises a data cache data memory 20 and a data
cache tag memory 22. The AGU 12 and the way predictor 14 are coupled to receive address operands. The AGU
12 is configured to generate a virtual address (VA), and is coupled to provide the virtual address to the way
predictor 14, the data cache 16 (and more particularly to the data cache data memory 20 and the data cache tag
memory 22), and the translation/filter circuit 18. The way predictor 14 is coupled to provide a way prediction to the
data cache data memory 20, which is configured to forward data in response to the way prediction and the virtual
address. The way predictor 14 is also coupled to provide an early miss indication. The translation/filter circuit 18 is
coupled to the data cache 16, and is coupled to provide a translation lookaside buffer (TLB) miss indication. The
data cache 16 is configured to generate a cache miss indication.

The AGU 12 is coupled to receive the address operands for a memory operation, and is configured to
generate a virtual address responsive to the address operands. For example, the AGU 12 may comprise adder
circuitry configured to add the address operands to produce the virtual address. As used herein, memory operations
may include load operations (which read a memory location) and store operations (which write a memory location).
Memory operations may be an implicit part of an instruction which specifies a memory operand, in some
embodiments, or may be an explicit operation performed in response to a load or store instruction (also sometimes
referred to as a move instruction). Address operands may be operands of the instruction corresponding to the
memory operation that are defined to be used for generating the address of the memory operand. Address operands

may include one or more of: register values from registers implemented by the processor 10, displacement data
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encoded into the instruction, and, in some embodiments, a segment base address from a segmentation mechanism
implemented by the processor 10. A virtual address may comprise an address generated from the address operands
of an instruction that has not yet been translated through the paging translation mechanism to a physical address
(used to address memory in a computer system that includes the processor 10). For example, in one embodiment the
processor 10 may implement the x86 instruction set architecture (also known as [A-32). In such an embodiment, the
linear address may be an example of a virtual address. If paging translation is not enabled, the virtual address may
be equal to the physical address.

The paging mechanism implemented by the processor 10 translates virtual addresses to physical addresses
on a page granularity. That is, there may be one translation entry that is used for each virtual address in the page to
identify the corresponding physical address. The page may be of any size. For example, 4 kilobytes is a typical
size. The x86 instruction set also specifies a 2 Megabyte page size and a 4 Megabyte page size in some modes. The
least significant bits of virtual addresses define an offset within the page, and are not translated by the paging
mechanism. For example, with a 4 kilobyte page size, the least significant 12 bits of the virtual addresses form the
page offset. The remaining bits of a virtual address, excluding the page offset, may form the page portion of the
virtual address. The page portion may be used in the paging mechanism to select a physical address translation for
the virtual address. Viewed in another way, the page portion of the virtual address may define a virtual page that is
translated to a physical page by the physical address translation.

The processor 10 may employ one or more techniques to reduce power consumption. For example, the
translation/filter circuit 18 may include a relatively small TLB (referred to as a microTLB herein) and a tag circuit
(referred to herein as a micro tag circuit). The micro tag circuit may be configured to store a relatively small
number of tags of cache lines which are: (i) in the virtual pages for which the microTLB is storing translations; and
(ii) stored in the data cache 16.

The microTLB may be accessed in response to a virtual address and, if a hit in the microTLB is detected,
then an access to a larger main TLB (or TLBs) in the translation/filter circuit 18 may be avoided. The power that
would be consumed in accessing the main TLB may be conserved in such a case. Additionally, if a microTLB hit is
detected, the micro tag may be accessed. If a hit in the micro tag is detected, a read of the data cache tag memory 22
to determine a cache hit/miss may be avoided as well (and thus the power that would be consumed in accessing the
data cache tag memory 22 may be conserved as well). In either case (a hit in the micro tag or a hit in the data cache
tag memory 22), the data from the hitting cache line may be forwarded from the data cache data memory 20. Thus,
the microTLB may serve as a filter for accesses to the main TLB, and the microTLB and micro tag may serve as a
filter for accesses to the data cache tag memory 22.

Another power conservation technique that may be implemented in the processor 10 uses the way predictor
14 for embodiments in which the data cache 16 is set associative. The way predictor 14 generates a way prediction
for the data cache data memory 20 for a memory operation accessing the data cache 16. In response to the way
prediction and the virtual address, the data cache data memory 20 may forward data (Data Forward in Fig. 1) to
various processor circuitry that may use the data (not shown in Fig. 1). The data read from the data cache data
memory 20 and forwarded may comprise a cache line or a portion of a cache line. Since data is forwarded in
response to the way prediction, the translation circuitry and the cache tag circuitry may no longer be part of the

critical path in the processor 10. In some embodiments, the translation circuitry and cache tag circuitry may be
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implemented using circuitry that has lower power consumption, even at the expense of some latency in the circuitry.
Optionally, the filter structures such as the microTLB and the micro tag may be permitted to increase the latency of
the translation circuitry and cache tag comparisons (and may further reduce overall power consumption by reducing
access to the larger TLB structures and the data cache tag memory 22). Furthermore, the way predictor 14 may be
used to reduce the power consumption of the processor 10 by permitting reduced power consumption in the data
cache data memory 20. Various designs for the data cache data memory 20 are described in more detail below with
regard to Fig. 9.

The way prediction may be validated using the microTLB/micro tag of the translation/filter circuit 18
and/or a tag comparison with a tag or tags from the data cache tag memory 22. If the way prediction is correct,
operation may continue with the data forwarded by the data cache data memory 20 in response to the way
prediction. On the other hand, if the way prediction is incorrect, the memory operation may be reattempted.
Alternatively, in some embodiments, the data cache 16 may control replacement such that, if the way prediction is
incorrect, the address is a miss in the data cache 16. In some embodiments, the correct way prediction may be
determined during the validation of the way prediction, and the correct way may be accessed during the reattempt.
In other embodiments, during the reattempt the unpredicted ways may be searched for a hit (e.g., a conventional set
associative lookup in the data cache 16 may be performed). The reattempt may be accomplished in a variety of
ways. For example, in some embodiments, a buffer may store instructions that have been issued for execution (e.g.
a scheduler or reservation station). The memory operation may be reissued from the buffer. In other embodiments,
the instruction corresponding to the memory operation and subsequent instructions may be refetched (e.g. from an
instruction cache or from memory).

In some embodiments, the use of the way predictor 14 may reduce power consumption in the data cache tag
memory 22. To validate the way prediction, only the tag in the predicted way need be accessed and compared.
Some embodiments may thus access only the predicted way in the data cache tag memory 22 (if a miss in the micro
tag is detected, and thus an access in the data cache tag memory 22 is performed to detect whether or not a cache
miss occurs). If a miss is detected in the predicted way, the memory operation may be reattempted as described
above. In such embodiments, the data cache tag memory 22 may receive the way prediction as illustrated by the
dotted arrow in Fig. 1.

The way predictor 14 may also provide an early miss indication if no way prediction may be generated for
a given memory operation. The way predictor may include a memory that stores an indication of the address stored
in each way of the cache, and may compare the indication to a corresponding indication of the virtual address of the
memory operation to generate the way prediction of the memory operation. If the corresponding indication does not
match any of the indications in the way predictor, then no way prediction may be made (and a miss may be
detected). The early miss indication may be used as a hint to an L2 cache (with the data cache 16 serving as the L1
cache) that a miss in the data cache 16 is occurring and thus permitting the L2 cache to begin an access earlier in
time than waiting for the cache miss from the translation/filter circuit 18.

The data cache 16 may indicate cache miss and the translation/filter circuit 18 may indicate TLB miss to
other circuitry in the processor 10 for corrective action (e.g. table walking to locate a translation to be stored in the
TLBs, a cache fill to fill the missing cache line into the data cache 16, etc.). Circuitry for table walking and for

accessing the memory to retrieve a missing cache line is not shown in Fig. 1.
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In the illustrated embodiment, the data cache 16 may be set associative. Other embodiments may be fully
associative, and the way predictor 14 may be used to predict a hit in any entry in the data cache 16. Embodiments
which do not implement the way predictor 14 may have other configurations (e.g. direct-mapped). As used herein, a
cache line may be a number of contiguous bytes that is the unit of allocation/deallocation in a cache (e.g. a data
cache or instruction cache). For example, a cache line may be 32 contiguous bytes or 64 contiguous bytes, although
any size cache line may be implemented. The data cache data memory 20 may comprise a plurality of entries, each
entry configured to store a cache line. The entries may be arranged into sets of W cache lines, for set associative
embodiments. The data cache tag memory 22 also comprises a plurality of entries, each entry configured to store a
tag for a corresponding entry in the data cache data memory 20. The data cache tag memory 22 entries may be
arranged into sets of W, corresponding to the arrangement of the data cache data memory 20.

In some embodiments, the data cache 16 may be physically tagged (i.e. the tags in the data cache tag
memory 22 may be physical addresses). Generally, a hit may be detected in the data cache 16 if the data
corresponding to a given physical address is stored in the data cache 16. If the data corresponding to the given
physical address is not stored in the data cache 16, a miss is detected. However, in some cases it may be convenient
to discuss a virtual address hitting in the data cache 16 even if the data cache 16 is physically tagged. A virtual
address may be a hit in the data cache 16 if the corresponding physical address (to which the virtual address
translates) is a hit. In some cases, the virtual address may be detected as a hit without actually using the
corresponding physical address (e.g. in the micro tag discussed in more detail below).

Generally, the processor 10 may include any other circuitry according to the desired design. In various
embodiments, the processor 10 may be superscalar or scalar, may implement in order instruction execution or out of
order instruction execution, etc. and may include circuitry to implement the above features. In some embodiments,
for example, more than one AGU 12 may be provided and may generate virtual addresses in parallel. The way
predictor 14, the data cache 16, and the translation/filter circuit 18 may include circuitry to handle multiple virtual
addresses in parallel for such embodiments, or may include circuitry for otherwise handling the multiple virtual
addresses.

It is noted that, while the way predictor 14 and the microTLB/micro tag features of the translation/filter
circuit 18 are described as being used together to provide reduced power consumption, embodiments are
contemplated which implement the way predictor 14 without implementing the microTLB/micro tag. Additionally,
embodiments are contemplated in which the microTLB/micro tag are implemented without the way predictor 14
(e.g. by delaying the data forwarding from the data cache 16 until a way selection is determined). For example, the
micro tag may output a way selection, in some embodiments, for a hit detected therein.

It is noted that, while the microTLB/micro tag circuitry and the way predictor 14 are illustrated as used
with a data cache, any of the microTLB, micro tag, and/or way predictor 14 may be used with an instruction cache in
the processor, as desired.

Turning next to Fig. 2, a block diagram of one embodiment of the translation/filter circuit 18 is shown. In
the illustrated embodiment, the translation/filter circuit 18 includes a microTLB 30 (including a microTLB tag
circuit 32 and a microTLB data circuit 34), a micro tag circuit 36, a main TLB 38 (including a main TLB tag circuit
40 and a main TLB data circuit 42), a mux 44 and inverters 46 and 48. Also shown in Fig. 2 is a portion of the data

cache 16 including the data cache tag memory 22, a cache hit/miss circuit 50, and a comparator 52. The microTLB
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30 (and more particularly the microTLB tag circuit 32), the micro tag circuit 36, the data cache tag memory 22, and
the main TLB 38 (and more particularly the main TLB tag circuit 40) are coupled to receive the virtual address from
the AGU 12. The microTLB tag circuit 32 is configured to output a hit signal to the microTLB data circuit 34, the
micro tag circuit 36, the mux 44, and the inverter 46 (which is further coupled to the main TLB tag circuit 40). The
microTLB tag circuit 32 is further configured to output an entry indication to the microTLB data circuit 34 and the
micro tag circuit 36. The micro TLB data circuit 34 is configured to output a physical address (PA) to the mux 44,
as is the main TLB data circuit 42. The output of the mux 44 is coupled to the comparator 52. The main TLB tag
circuit 40 is coupled to the main TLB data circuit 42, and to provide a TLB miss indication. The micro tag circuit
36 is configured to output a hit signal to the inverter 48 (which is further coupled to the data cache tag memory 22)
and to the cache hit/miss circuit 50. The cache hit/miss circuit 50 is further coupled to the comparator 42, and to
provide a cache miss indication.

The microTLB 30 receives the virtual address from the AGU 12, and compares the page portion of the
virtual address to the page portions of virtual addresses corresponding to translations that are stored in the
microTLB 30. More particularly, the microTLB tag circuit 32 may comprise a plurality of entries storing the page
portions of the virtual addresses. The corresponding physical addresses and other information from the page tables
that provided the translation may be stored in the microTLB data circuit 34. The microTLB tag circuit 32 performs
the comparison, and outputs the hit signal indicating whether or not the virtual address hits in the microTLB and, if a
hit is indicated, the entry indication indicating which entry is hit. The microTLB data circuit 34 may receive the
entry indication, and may output the corresponding physical address to the mux 44. The hit signal may cause the
mux 44 to select the physical address from the microTLB 30 as the output to the comparator 52. While a fully
associative embodiment is described in more detail herein, other embodiments may employ other configurations. In
various embodiments, the microTLB 30 may have a fully associative, set associative, or direct-mapped
configuration, for example.

Additionally, the hit signal from the microTLB 30 may serve as an enable to the micro tag circuit 36. The
micro tag circuit 36 may store tags for a plurality of cache lines within the virtual pages for which the microTLB 30
stores translations. Thus, if there is a miss in the microTLB, the micro tag circuit 36 also misses. If there is a hit in
the microTLB, then it is possible that the micro tag circuit 36 will hit. Additionally, the micro tag circuit 36 receives
the entry indication. The micro tag circuit 36 determines whether or not there is a hit in the micro tags circuit 36 for
the virtual address, and generates a hit signal. If there is a hit in the micro tag circuit 36, then the virtual address hits
in the data cache 16 and the tag access in the data cache tag memory 22 may be prevented. Thus, the hit signal from
the micro tag circuit 36 serves as a disable for the data cache tag memory 22, preventing the data cache tag memory
22 from reading any tags in response to the virtual address. The inverter 48 may thus invert the hit signal from the
micro tag circuit 36 and provide the output to the data cache tag memory 22 as an enable. The cache hit/miss circuit
50 also receives the hit signal from the micro tag circuit 36, and may not indicate a cache miss for the virtual address
if the hit signal indicates a hit in the micro tag circuit 36. The hit/miss from the comparator 52 may be ignored in
this case.

If there is a miss in the micro tag circuit 36 (or if the micro tag circuit 36 is not enabled due to a miss in the
microTLB circuit 30), the data cache tag memory 22 is enabled and outputs a tag or tags to the comparator 52. In

some embodiments that implement the way predictor 14, only the tag from the predicted way may be output. The
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data cache tag memory 22 may be coupled to receive the way prediction (WP) for such an embodiment. Other
embodiments may output each tag in the indexed set for comparison. In such embodiments, the cache miss
indication may indicate miss, or miss in the predicted way but hit in an unpredicted way, so that a cache fill does not
occur if a hit in an unpredicted way occurs. In some embodiments, the selection of a replacement way when a cache
miss occurs may be controlled so that a hit in an unpredicted way does not occur. An example of such replacement
is discussed below with regard to Figs. 9 and 10. The comparator 52 provides the comparison results to the cache
hit/miss circuit 50, which generates the cache miss indication accordingly. If there is a hit in the data cache tag
memory 22 and there was a hit in the microTLB 30, the micro tag circuit 36 may be loaded with the tag from the
data cache tag memory 22.

Since the micro tag circuit 36 stores tags that are also in the data cache tag memory 22, the micro tag circuit
36 may be maintained coherent with the data cache tag memory 22. A cache line may be invalidated in the data
cache 16 due to replacement via a cache fill of a missing cache line, or may be invalidated due to a snoop hit
generated from an access by another processor or agent on an interconnect to which the processor 10 is coupled. In
one embodiment, the entire contents of the micro tag circuit 36 may be invalidated in response to an update in the
data cache tag memory 22. Alternatively, only entries in the micro tag circuit 36 having the same cache index as the
index at which the update is occurring may be invalidated. In yet another alternative, only entries in the micro tag
circuit 36 having: (i) the same cache index as the index at which the update is occurring; and (ii) the same virtual
address (in the corresponding the microTLB entry) as the cache line being invalidated in the data cache 16 may be
invalidated.

The micro tag circuit 36 stores tags within virtual pages that are translated by entries in the microTLB 30.
Thus, when the microTLB 30 is updated, the micro tag may be updated as well. In one embodiment, if the
microTLB 30 is updated, the entire contents of the micro tag circuit 36 may be invalidated. Alternatively, selective
invalidation of tags in the micro tag circuit 36 that correspond to microTLB entries that are being changed may be
implemented.

The microTLB 30 also serves as a filter for the main TLB 38. That is, if there is a hit in the microTLB 30,
an access to the main TLB 38 is prevented. Thus, the hit signal output by the microTLB 30 may be inverted by the
inverter 46 and input to an enable input on the main TLB tag circuit 40. The main TLB tag circuit 40 may prevent
access to the main TLB tags if the enable input is not asserted.

If there is a miss in the microTLB 30, the main TLB tag circuit 40 may determine if the virtual address is a
hit in the main TLB 38. If there is a hit, the main TLB data circuit 42 may be accessed to output the corresponding
physical address to the mux 44. Additionally, the microTLB 30 may be loaded with the translation from the main
TLB 38. Since there is a miss in the microTLB 30, the mux 44 selects the physical address output by the main TLB
data circuit 42 as the output to the comparator 52. If the main TLB 38 is enabled and a miss in the main TLB 38 is
detected, the main TLB 38 generates the TLB miss indication to cause a table walk of the page tables to locate the
desired translation. During the table walk, the processor 10 may, in some embodiments, pause operation to reduce
power consumption. In one embodiment, the microTLB 30 may not be loaded when the main TLB 38 is loaded. A
subsequent miss for the page in the microTLB 30 may be detected and a hit in the main TLB 38 may be detected, at
which time the microTLB 30 may be loaded. Alternatively, the microTLB 30 may be loaded at the same time as the
main TLB 38 is loaded.
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Since the microTLB 30 stores translations that are also stored in the main TLB 38, the microTLB 30 may
be maintained coherent with the main TLB 38. When an entry is overwritten in the main TLB 38 (in response to a
main TLB 38 miss and successful table walk), the corresponding entry (if any) is invalidated in the microTLB 30.
In one embodiment, the entire contents of the microTLB 30 may be invalidated when the main TLB 38 is loaded
with a new entry.

In one embodiment, the main TLB 38 may comprise two TLBs: one storing 4 kilobyte page-size
translations and another storing 2 Megabyte or 4 Megabyte page-sized translations. The 4 kilobyte TLB may
comprise any configuration, but in one implementation may be a 4-way 512 entry TLB. The 2 Megabyte/4
Megabyte TLB may comprise any configuration, but in one example by be an 8 entry, fully associative TLB. In one
embodiment implementing the x86 instruction set architecture, the CR3 configuration register stores the base
address of the page tables in memory. The entries in the main TLB 38 may be tagged with the CR3 address from
which the transiation was read, so that the main TLB 38 need not be invalidated in response to changes in the CR3
address. The entries in the microTLB 30 may be similarly tagged, in some embodiments, or may not be tagged and
instead may be invalidated in response to a change in the CR3 address.

It is noted that, while hit signals are described as being provided by the microTLB 30 and the micro tag
circuit 36, generally a hit indication may be provided, comprising any number of signals indicating whether or not a
hit is detected. Furthermore, while the microTLB 30 is shown as outputting a hit indication and an entry indication
identifying the entry that is hit, any indication of hit and entry may be provided. For example, in one embodiment,
the hit and entry indications may be merged into a one-hot encoding corresponding to the entries in the microTLB
30. The one-hot encoding may indicate (with any bit asserted) that there is a hit, and may indicate the entry that is
hit via which bit is asserted.

It is noted that, in some embodiments, the translation/filter circuit 18 may be operable across several
pipeline stages. Pipeline storage devices (e.g. flops, registers, etc.) are not illustrated in Fig. 2. Any division into
pipeline stages may be used. For example, Fig. 3 illustrates one example of a pipeline that may be implemented by
one embodiment of the processor 10. Vertical dashed lines delimit clock cycles in Fig. 3. The clock cycles are
labeled AG (address generation), DC1 (data cache 1), DC2 (data cache 2), and DC3 (data cache 3).

During the AG stage, the AGU 12 generates the virtual address from the address operations (reference
numeral 60). Additionally, in this embodiment, the way predictor 14 generates a way prediction (reference numeral
62). The way predictor 14 may receive the address operands, and may perform sum address indexing (described in
more detail below) to address a memory storing way prediction values. Alternatively, the virtual address from the
AGU 12 may be used to index the way prediction memory. In other embodiments, the way predictor 14 may
operate in the DCI stage.

During the DC1 stage, the microTLB tag circuit 32 is accessed and a hit/miss in the microTLB 30 is
determined (reference numeral 64). If there is a hit in the microTLB 30, the micro tag circuit 36 is accessed in the
DC2 stage (reference numeral 66) and the microTLB data circuit 34 is accessed during the DC3 stage (reference
numeral 68). If there is a hit in the micro tag circuit 36, the data cache tag access may be avoided and a hit in the
data cache 16 is detected via a hit in the micro tag circuit 36. If there is a miss in the micro tag circuit 36, the data
cache tag memory 22 is accessed in the DC3 stage (reference numeral 70), and compared to the output of the

microTLB data circuit 34.
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If there is a miss in the microTLB 30, the main TLB tag circuit 40 is accessed during the DC2 stage
(reference numeral 72) and, if there is a hit in the main TLB tag circuit 40, the TLB data circuit 42 is accessed in the
DC3 stage (reference numeral 74). The output of the TLB data circuit 42 is compared to the output of the data
cache tag memory 22 in the DC3 stage.

Additionally during the DC1 stage, the data cache data memory 20 is accessed and the data from the
predicted way is output (reference numeral 76). The data is forwarded in the DC2 stage (reference numeral 78).

Turning next to Fig. 4, a block diagram of one embodiment of the microTLB tag circuit 32 is shown. In the
embodiment of Fig. 4, the microTLB tag circuit 32 includes a set of entries including entries 80A and 80B,
corresponding compare circuits 82A and 82B coupled to the entries 80A and 80B, respectively, and a control circuit
84 coupled to the entries 80A-80B and the compare circuits 82A-82B. The compare circuits 80A and 80B are
coupled to receive the virtual address from the AGU 12. The control circuit 84 includes a least recently used (LRU)
storage 86, and is configured to generate the hit signal and entry indication outputs of the microTLB tag circuit 32.

The microTLB tag circuit 32 may include any number of entries 80A-80B. For example, 4 entries may be
implemented in one embodiment. Other embodiments may implement more or fewer entries. Each entry 80A-80B
may include a valid bit (V), a virtual address field storing a page portion of the virtual address (VA[N-1:12]) that is
translated by the entry (and the corresponding entry in the microTLB data circuit 34, which together form an entry
of the microTLB 30), and a 2M bit indicating whether or not the translation is derived from a 2 Megabyte page
translation. Thus, an N-bit virtual address is used in the present embodiment, where N is an integer. For example,
N may be 32 in some embodiments. In other embodiments, N may be 48. In other embodiments, N may any integer
between 32 and 64, inclusive. Generally, the entries may comprise any type of storage. For example, registers, flip-
flops, or other types of clocked storage devices may be used in one embodiment.

The compare circuits 82A-82B receive at least the page portion of the virtual address from the AGU 12 and
compare the page portion of the virtual address to the page portion stored in the corresponding entry 80A-80B. The
illustrated embodiment implements a minimum page size of 4 kilobytes (and thus bits 11:0 are not included in the
page portion of the virtual address) and also implements a 2 Megabyte page size for compatibility with the x86
instruction set architecture. Other page sizes may be implemented. In the illustrated embodiment, the compare
circuits 82A-82B generate two match signals: match_lower and match_upper. Match_upper may be asserted if the
valid bit is set in the entry and the portion of the virtual addresses that is included in the 2M page range match (that
is, VA[N-1:21]). Match_lower may be asserted if the remainder of the virtual addresses match (that is, VA[20:12)).

The control circuit 84 is coupled to receive the outputs of the compare circuits 82A-82B and is configured
to generate the hit signal and entry indication responsive thereto. If a hit is indicated in one of the entries, the
control circuit 84 may assert the hit signal and provide the entry indication. If a hit is not indicated, then the control
circuit 84 may not assert the hit signal.

Fig. 5 is one embodiment of a truth table 90 that may be implemented by the control circuit 84 for
determining if an entry is hit by a virtual address. Illustrated in the table 90 is the 2M bit from the entry (set to
indicate a 2M translation in this embodiment), the match_upper and match_lower signals (with a one in the table 90
indicating asserted and a zero indicating not asserted), and a result column stating what each combination of the 2M
bit, the match_upper signal, and the match_lower signal indicates.

If the match_upper signal is deasserted, the control circuit 84 detects a microTLB miss for the virtual
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address. The microTLB misses independent of the setting of the 2M bit and the state of the match_lower signal.
Accordingly, the micro tag circuit 36 also misses.

If the 2M bit is set, then the corresponding translation is for a 2 Megabyte page. Thus, VA[20:12] would
not generally be included in the comparison. However, to provide bits for the micro tag circuit 36, these bits may be
defined to be the last 4 kilobyte page accessed by the processor 10 within the 2 Megabyte page. If the match_upper
signal is asserted, and the 2M bit is set, then the microTLB hits. However, if the match_lower signal is deasserted,
the micro tag circuit 36 misses for this page. If the match_lower signal is asserted, the micro tag circuit 36 may hit
and thus a micro tag lookup is performed.

If the 2M bit is clear, then the corresponding translation is for a 4 kilobyte page. Thus, both match_upper
and match_lower are asserted to indicate a microTLB hit (and a possible micro tag hit, thus a micro tag lookup is
performed). If the match_lower is not asserted, then a microTLB and a micro tag miss are detected.

For the control circuit 84 implementing the embodiment of Fig. 5, the hit indication provided to the micro
tag circuit 36 may differ from the hit indication provided to the main TLB 38. The hit indication to the main TLB
38 may indicate a hit in the microTLB 30 as long as the translation is a hit (entries in the table 90 that state
microTLB hit), even if the micro tag circuit 36 is a miss. The hit indication to the micro tag circuit 36 may indicate
hit if a micro tag lookup is indicated (entries in the table 90 that state micro tag lookup).

The embodiment of Figs. 4 and 5 supports two different page sizes. Other embodiments may support a
single page size, and thus a single match signal from each of the compare circuits 82A-82B may be provided and the
2M bit may be eliminated from the entries 80A-80B. Other embodiments may support more than two page sizes by
further dividing the page portion of the virtual address according to the supported page sizes. It is noted that the x86
instruction set architecture also supports a 4 Megabyte page size. The embodiment of Figs. 4 and 5 may support the
4 Megabyte page size using two 2 Megabyte entries in the microTLLB 30. Other embodiments may support the 4
Megabyte page size directly (e.g. using a 4M bit in each entry similar to the 2M bit).

While the above embodiment supports the 2 Megabyte page size using an entry for the 2 Megabyte page
and identifying the most recently accessed 4 kilobyte page within the 2 Megabyte page using VA[20:12], other
embodiments may allow for multiple microTLB entries for a given 2 Megabyte page. Each of the entries may have
a different encoding in VA[20:12] for different 4 kilobyte pages that have been accessed. In yet another alternative,
VA[20:12] may be included in the micro tag circuit 36 for 2 Megabyte pages, and a hit on a 2 Megabyte page may
be used to access the micro tag to detect a hit for a cache line within the 2 Megabyte page.

In the case of a miss in the microTLB 30 and a hit in the main TLB 38, the control circuit 84 may select an
entry 80A-80B to be replaced with the hitting translation from the main TLB 38. In the illustrated embodiment, the
control circuit 84 may maintain an LRU of the entries 80A-80B and may select the least recently used entry for
replacement. Any other replacement algorithm may be implemented (e.g. pseudo-LRU, random, etc.). The entries
80A-80B may be coupled to receive an input page portion of a virtual address (VA[N-1:12]) and 2M bit to be stored
in one of the entries under the control of the control circuit 84 (input address and 2M bit not shown in Fig. 4). The
source of the input virtual address and 2M bit may be the main TLB 38, or the table walk circuitry, in various
embodiments).

Fig. 6 is a block diagram of one embodiment of the microTLB data circuit 34. In the embodiment of Fig.

6, the microTLB data circuit 34 includes a set of entries including entries 92A-92B. Each of the entries 92A-92B
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corresponds to a respective one of the entries 80A-80B in Fig. 4. Additionally, a mux 94 is illustrated, coupled to
the entries 92A-92B and receiving the entry indication from the microTLB tag circuit 32. The mux 84 may select
the contents of the entry indicated by the entry indication for output. In one implementation, if no entry is indicated
(i.e. a miss), then no entry 92A-92B is selected by the mux 94 (which may reduce power consumption). Similar to
the entries 80A-80B in Fig. 4, the entries 92A-92B may be implemented in any type of storage (e.g. various clocked
storage devices, in one embodiment).

In the illustrated embodiment, the contents of each entry 92A-92B include a dirty bit (D), a user/supervisor
(U/S) bit, a read/write (R/W) bit, a memory type field (MemType[4:0]), and a physical address field (PA[M-1:12]).
The bits may be compatible, in one embodiment, with the paging mechanism defined in the x86 instruction set
architecture. The dirty bit may indicate whether or not the physical page has been modified (e.g. whether or not the
processor has executed a store instruction to the page). The user/supervisor bit may indicate user (unprivileged)
pages versus supervisor (privileged pages). The read/write bit may indicate whether the page is read-only or
read/write. The memory type field may identify which memory type is used for the page.

An M bit physical address is supported in the illustrated embodiment. M may be any integer. Particularly,
M may differ from N. In one implementation, M may be any integer between 32 and 64, inclusive. In another
implementation, M may be any integer between 32 and 52, inclusive. For example, M may be 40 in one particular
implementation.

Turning now to Fig. 7, a block diagram of one embodiment of the micro tag circuit 36 is shown. In the
illustrated embodiment, a plurality of entries in the micro tag circuit 36 are divided into groups of entries. Each
group of entries is assigned to a different entry of the microTLB. For example, in the illustrated embodiment,
groups 100A-100D are shown corresponding to four entries in the microTLB 30. Other embodiments may include
any number of groups to correspond to any number of entries. The groups 100A-100D are coupled to a control
- circuit 102, which is coupled to receive the enable input (En) (the hit signal from the microTLB tag circuit 32), the
entry indication from the microTLB tag circuit 32, and the virtual address from the AGU 12. The control circuit
102 is configured to generate the hit indication output by the micro tag circuit 36.

The entries in the selected group 100A-100D are assigned to one of the entries in the microTLB tag circuit
32 and identify cache lines in the virtual page indicated by that entry which are also stored in the data cache 16.
Any number of entries may be included in a group. For example, in one embodiment, four entries may be included
in each group. Since the micro tag circuit 36 is accessed if a microTLB hit is detected, it is known that VA[N-1:12]
matches for the virtual address from the AGU 12 and the virtual address of the cache lines represented in the
selected group 100A-100D. Accordingly, to complete a virtual tag compare, the entries in the selected group 100A-
100D may store the page offset portion of the virtual address (excluding the address bits which form the cache line
offset). For the illustrated embodiment, a cache line size of 64 bytes is assumed and thus address bits 5:0 are
excluded. Other cache line sizes may be selected in other embodiments. The remaining virtual address bits to
complete the virtual tag comparison are thus VA[11:6] for this embodiment, and each micro tag entry stores the
VA[11:6] as shown in Fig. 7.

If the enable input is asserted, control circuit 102 may compare the address bits VA{11:6] from each entry
to the corresponding bits of the virtual address from the AGU 12. Thus, the control circuit 102 may be coupled to

receive at least the page offset portion of the virtual address from the AGU 12 (excluding the cache line offset bits).
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If a match is detected in an entry within the selected group 100A-100D and the valid bit (V) in that entry is set, then
the virtual address is a hit in the micro tag circuit 36 and thus is a hit in the data cache 16. The data cache tag
memory 22 need not be accessed to determine hit/miss. On the other hand, if a match is not detected in an entry
within the selected group 100A-100D, then the data cache tag memory 22 may be accessed to determine if the
address is a hit or miss in the data cache 16. The control circuit 102 generates the hit signal according to the
comparison results.

It is noted that, if the data cache 16 is physically tagged (i.e. the data cache tag memory 22 stores physical
tags rather than virtual tags) and at least one translated address bit is used in the index to the data cache 16 (e.g. at
least bit 12 is used, in a 4 kilobyte page embodiment), then it is possible that aliasing of multiple virtual addresses to
the same physical address may affect the operation of the micro tag circuit 36 (since the index may differ from the
virtual address bits used in the comparison). In one such embodiment, the data cache 16 may be physically tagged
but the processor 10 may ensure that at most one virtual address aliased to the same physical address is stored in the
data cache 16 at any given time. That is, if a second alias is being loaded into the data cache 16 while the first alias
is still residing in the cache, the first alias is invalidated in the data cache 16.

It is noted that, in some embodiments in which the cache index includes at least one translated address bit,
the micro tag circuit 36 may store each address bit that is included in the cache index, and the translated address bits
may be physical bits. Storing such bits may permit targeted invalidation of micro tag circuit 36 entries, if
invalidation of all entries is not desired (e.g. in response to changes in the data cache 16 content or the microTLB 30
content).

In the event of a hit in the microTLB 30, a miss in the micro tag circuit 36, and a hit in the data cache tag
memory 22, one of the entries in the corresponding group 100A-100D may be replaced with the hitting tag. The
control circuit 102 may maintain LRU information within each group 100A-100D (shown as an LRU field in each
entry) which may be used to select the LRU entry within the selected group 100A-100D for replacement. Other
embodiments may employ other replacement schemes (e.g. random, pseudo-LRU, etc.). The groups 100A-100D
may be coupled to receive VA[11:6] from the data cache 16 for storing a missing index in the micro tag circuit 36,
in some embodiments (not shown in Fig. 7).

It is noted that, while the entries of the micro tag circuit 36 are statically assigned to microTLB entries in
the illustrated embodiment, in other embodiments the entries may be dynamically assigned as needed to each
microTLB entry. In such an embodiment, a microTLB entry field may be included in each micro tag entry, storing
an indication of the microTLB entry to which that micro tag entry is currently assigned. The control circuit 102 may
compare the entry indication to the indication received from the microTLB 30 during an access, and may detect a hit
if the entry indication matches and the VA[11:6] field matches the corresponding portion of the virtual address from
the AGU 12.

It is noted that, while the micro tag circuit 36 is used with the microTLB in this embodiment, other
embodiments may implement the micro tag circuit 36 without the microTLB. Such embodiments may implement
full tags in each entry of the micro tag circuit 36 and may detect a cache hit and prevent a read in the data cache tag
memory 22 by comparing the full tag. Whether the hit is detected in the micro tag circuit 36 or the data cache tag
memory 22, the data may be forwarded from the data cache data memory 20.

In an alternative embodiment, the micro tag circuit 36 may comprise a single entry per microTLB entry.

13



WO 2005/024635 PCT/US2004/018042

The micro tag entry may store a bit per cache line within the page identified by the microTLB entry, indicating
whether or not that cache line is a hit in the data cache 16. Thus, for example, if cache lines are 64 bytes and a 4
kilobyte page is used, the micro tag entry may comprise 64 bits. The bit corresponding to a given cache line may
indicate hit if the bit is set and miss if the bit is clear (or the opposite encoding may be used). A control circuit may
use the in-page portion of the VA excluding the cache line offset portion (e.g. bits 11:6 in an 64 byte cache line
embodiment) to select the appropriate bit for determining cache hit/miss. In such an embodiment, the micro tag
circuit may be incorporated into the microTLB circuit. The term "tag circuit” or "micro tag circuit” is intended to
include such embodiments in which the micro tag circuitry is incorporated into the microTLB.

Turning now to Fig. 8, a flowchart is shown illustrating exemplary operation of one embodiment of the
blocks shown in Fig. 2 in response to a virtual address from an AGU 12. While the blocks in Fig. 8 are shown in a
particular order for ease of understanding, any order may be used. Blocks may be performed in parallel via
combinatorial logic circuitry, or may be performed over two or more clock cycles in a pipelined fashion, as desired.

In response to the virtual address, the MicroTLB tag circuit 32 is accessed (block 110). If a MicroTLB hit
is detected (decision block 112, "yes" leg), the micro tag circuit 36 is accessed (block 114). If a hit in the micro tag
is detected (decision block 116, "yes" leg), the cache hit/miss circuit S0 may indicate a cache hit (e.g. the cache miss
indication may not indicate miss) and the data cache tag memory 22 may not be accessed in response to the virtual
address (block 118). If a hit in the micro tag is not detected (decision block 116, "no" leg), the microTLB data
circuit 34 may be accessed (block 120). In some embodiments, the microTLB data circuit 34 may be accessed in
response to a microTLB tag hit, independent of whether or not the micro tag is a hit. The data cache tag memory 22
is also accessed (block 122). If a hit is detected between a tag from the data cache tag memory 22 and the physical
address from the microTLB data circuit 34 (decision block 124, "yes" leg), the cache hit/miss circuit 50 may
indicate a cache hit (block 126). Additionally, since a micro tag miss was detected in this case, the micro tag may be
loaded with the hitting tag. If a miss is detected between a tag from the data cache tag memory 22 and the physical
address from the microTLB data circuit 34 (decision block 124, "no" leg), the cache hit/miss circuit 50 may indicate
a cache miss (block 128) and the missing cache line may be loaded into the data cache 16 (and optionally the micro
tag circuit 36 may be updated with the tag of the missing cache line as well).

If a MicroTLB miss is detected (decision block 112, "no" leg), the main TLB tag circuit 40 may be
accessed (block 130). If a hit in the main TLB is detected (decision block 132, "yes" leg), the microTLB is loaded
from the main TLB (block 134) and the micro tag entries corresponding to the microTLB entry that is loaded may
be invalidated. Additionally,.blocks 122, 124, 126, and 128 are repeated for the tag comparison with the physical
address from the main TLB. However, at block 126, the micro tag may optionally not be loaded if desired. On the
other hand, if a miss in the main TLB is detected (decision block 132, "no" leg), the main TLB 38 may generate a
TLB miss, and the main TLB may be loaded with the missing translation (or an exception may occur if no
translation is found) (block 136). Optionally, the microTLB may be loaded in the event of a main TLB miss as well,
and the micro tag may be updated to invalidate micro tag entries corresponding to the microTLB entry that is
loaded.

It is noted that, while the above description refers to comparing the physical address from the microTLB 30
or the main TLB 38 to the tag from the data cache tag memory 22, the TLBs may generally output the page portion

of the physical address. The remainder of the cache tag for comparison may be formed by concatenating the page
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portion of the physical address with the page offset portion of the virtual address.

Turning next to Fig. 9, a block diagram of one embodiment of the way predictor 14 is shown. In the
illustrated embodiment, the way predictor 14 includes a sum address (SA) decoder 140 coupled to receive one or
more address operands corresponding to the virtual address for which a way prediction is to be made, and further
coupled to a memory 142. The SA decoder 140 may implement sum-address indexing, described in more detail
below. The memory 142 may be W-way set associative (the same as the data cache 16) and thus may have a
plurality of entries arranged as ways O through way W-1. Each entry of the memory 142 stores way prediction value
comprising P bits (WP[P-1:0]). A plurality of comparators including comparators 146A-146B are coupled to the
memory 142. A comparator 146A-146B may be included for each way of the way predictor 14. The comparators
146A-146B are coupled to receive either a portion of the virtual address (VA) from the AGU 12 or the output of an
optional way prediction generation circuit 148 (or, in another option, a portion of the address operands). The
outputs of the comparators 146A-146B may form the way prediction output of the way predictor 14. Additionally,
if none of the comparators 146A-146B detect a match, the way predictor 14 may output the early miss signal
(illustrated as a NOR gate 150 receiving the outputs of the comparators 146A-146B in Fig. 9).

The decoder 140 is configured to decode the address operands (using sum-address decoding in this
embodiment) to select a set 144 of the memory 142, and the memory 142 is configured to output the contents of the
set 144 to the comparators 146A-146B. Each of the comparators 146A-146B compares the way prediction value
from the respective way of the memory 142 to a way prediction value corresponding to the input virtual address. If
a match is detected, the way predictor 14 predicts that the corresponding way is a hit in the data cache 16. In the
illustrated embodiment, the way prediction may comprise a one-hot encoding for the ways, with a bit asserted for the
predicted way. If none of the way prediction bits match the input way prediction bits, then no way prediction is
generated (and the early miss signal may be asserted). Other embodiments may encode the way prediction in other
ways, and the way predictor 14 may include circuitry coupled to receive the output of the comparators 146A-146B
and configured to generate the way prediction encoding.

The way prediction value may be generated in any fashion, as desired, and may include any number of bits
(e.g. P may be any integer greater than one). The way prediction values stored in the way predictor 14 are generated
according to the corresponding cache lines in the data cache 16. For example, in one embodiment, the way
prediction value may be a partial tag of the virtual address corresponding to the cache line stored at the same index
and way in the data cache 16. That is, the way prediction value may comprise a concatenation of selected virtual
address bits (excluding at least one address bit that is part of the cache tag). It may be desirable, for such an
embodiment, to select virtual address bits that vary the most frequently (or, viewed in another way, show the most
randomness among consecutive accesses). For example, the least significant address bits that are still part of the
cache tag (not part of the cache line offset) may be selected. For such an embodiment, the way prediction
generation circuit 148 may not be used and the selected virtual address bits from the input virtual address may be
coupled as inputs to the comparators 146A-146B. In another embodiment, one or more of the way prediction value
bits may be generated as a logical combination of two or more virtual address bits. In such an embodiment,
frequently changing virtual address bits may be combined with less frequently changing virtual address bits, for
example. In one embodiment, the logical combination may comprise exclusive OR. For such an embodiment, the

logical combination may be performed on the virtual address bits by the way predictor generation circuit 148, the

15



WO 2005/024635 PCT/US2004/018042

output of which may be coupled to the comparators 146A-146B. In yet another embodiment, bits may be selected
from the address operands prior to the addition to generate the virtual address. The bits may be logically combined
using the way predictor generation circuit 148, or may be concatenated, similar to the virtual address examples given
above.

To avoid the situation in which two or more entries have the same way prediction value (and thus a match
on more than one way would occur in the way predictor 14), the replacement of cache lines in the data cache 16 may
be controlled to ensure that the way prediction values in a given set of the way predictor 14 remain unique. An
example of such a procedure is shown in the flow chart of Fig. 10. It may be desirable to include enough bits in the
way prediction values that the above replacement strategy does not frequently cause premature replacement of cache
lines to maintain the uniqueness of the way prediction values. For example, if concatenation of virtual address bits
is used to generate the way prediction values, about 7 bits of way prediction value may be selected.

In some embodiments, due to the relatively small size of the way predictor 14 as compared to the data
cache tag memory 22, the way predictor 14 may be included in the data path of the AGU (which may reduce the
distance that the virtual address travels to reach the desired circuitry).

As mentioned above, the decoder 140 may use sum-address decoding to decode the address operands and
select a set 144 that corresponds to the virtual address. Other embodiments may use a conventional decoder that is
coupled to receive the virtual address. Thus, in general, the decoder 140 may receive an indication of the address
that is to access the cache. The indication may include the address operands used to form the virtual address, in
some embodiments, or may include the virtual address itself, in other embodiments.

Sum-address decoding receives the address operands used to generate an address, and correctly selects the
same set of a memory as would be selected if the address itself were decoded. Generally, sum-address decoding
relies on the principle that the test A+B=K may be evaluated more quickly for a constant K than adding A and B and
comparing the sum to K. In the context of decoding, the constant K is the value of A+B that would select a given
set. The circuitry that generates the word line for the set assumes the constant K for that set. An overview of sum-
address decoding is provided next.

If A is represented as a bit vector a, 1a,.;...ag, B is represented as a bit vector by by.;...bg, and K is
represented as a bit vector k. jkp.». ..Kg, it can be shown that, if A+B=K, then the carry out of a given bit position i-1
of the addition A+B (Cout;.;) and the carry in to the subsequent bit position i (Cin;) may be given by equations 1 and
2 below (where "!" represents inversion, "XOR" represents exclusive OR, "&" represents AND, and "|" represents
OR):

Cout;., = ((a;.1 XOR by.() & 'kip) | (ai.1 & biy) O

Cin; = k; XOR a; XOR b; 2)

If A+B = K, Cout;., equals Cin; for all i (ranging from O to n-1). That is, the term e; as set forth in equation 3 below
is I for all i if A+B=K.

;= Cin; XOR !Cout; 3)

To generate equations of e; that may be used in the decoder 140, it is desirable to generate terms that are not
dependent on K (which each of equations 1 and 2, and therefore equation 3, are dependent). Particularly, equation 3
depends on k; (through Cin;) and k;.; (through Cout; ). Thus, four e; terms may be generated for each bit position i.

Each e; term may assume one set of values for k; and k;.;. These terms are noted as eik"d", where k; and k;.; are
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substituted in the notation with the assumed value for each bit (e.g. "' corresponds to assuming ki=0 and k;,,=1).
Equations 4-7 illustrate the 4 ¢; terms for each bit position. Each of equations 4-7 are formed by substituting

equations 1 and 2 into equation 3, providing the assumed value for k; and k;.;, and reducing the terms using Boolean

algebra.
& = a; XOR b; XOR !(a;.; | bi1) 4)
e = a; XOR b; XOR !(ai.; & bi.y) (5)
&' = !(a; XOR b;) XOR !(a;.; | bi.1) (6)
e = !(a; XOR b;) XOR !(a;,; & b;.1) (7

Additionally, for the bit position 0 of the index, the carry in term (c_;) replaces the i-1 terms to form equations 8 and
9:

e = a; XOR b; XOR !¢ (8)

€0'° = !(a; XOR b)) XOR !c, )
The above equations may be implemented in logic for each bit position of the index into the way prediction memory
142, with the carry in c; equal to the carry in from the cache line offset addition. This carry in may be provided,
e.g. by the AGU 12 from the virtual address addition. The carry in may arrive late, and may select between banks
that have even and odd indexes in them, for example.

To generate the word line for a given set, one of e, e &' and ¢ for each bit position is selected
(based on the value of the index corresponding to the word line being generated) and the selected values are
logically ANDed to generate the word line. For example, the word line for index zero may be the logical AND of
&% for each bit position and 0. The word line for index 1 (ko = 1, all other k;=0) may be the logical AND of ¢,
for each i between 2 and n-1, e,”! and e,'°. The word line for index 2 (k, = 1, all other k; = 0) may be the logical
AND of ¢ for each i between 3 and n-1, &,”', &,', and e;*. The word line for index 3 (k; and ko = 1, all other k;
=0) may be the logical AND of e for each i between 3 and n-1, &,”", ¢,'', and eo'®. Additional word lines for other
indexes may similarly be selected.

Additional details regarding one embodiment of sum address decoding may be found in the article by
William L. Lynch, Gary Lauterbach, and Joseph I. Chamdani "Low Load Latency through Sum-Addressed Memory
(SAM)", Proceedings of the 25" Annual International Symposium on Computer Architecture, 1998, pages 369-379.

The way predictor 14 may be used to reduce the power consumption of the processor 10 by permitting
reduced consumption in the data cache data memory 20. For example, in some embodiments, the data cache data
memory 20 may comprise a random access memory (RAM). Locations in the RAM may be enabled by activating a
word line. The enabled locations may discharge certain bit lines attached to the location, providing a differential on
pairs of bit lines that represents each bit in the location. The pairs of bit lines may be input to sense amplifiers
(sense amps) which may convert the differentials to output bits. In some implementations, the data cache data
memory 20 RAM may provide separate word line signals to each way in the data cache data memory 20. The
virtual address may be decoded to provide a set selection, and the set selection may be qualified with the way
prediction to generate the word line for each way. Thus, the predicted way may be enabled and other ways may not
be enabled, reducing the power consumed in the bit line discharge that would otherwise have occurred in the non-
enabled ways. Bit line power consumption may often be one of the most significant factors (and may be the most

significant factor) in the power consumption of such a memory. An example of a portion of such an embodiment of
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the data cache data memory 20 is shown in Fig. 11, in which the virtual address (VA) is received by a decoder,
which generates a set selection (e.g. Set O in Fig. 11 and other sets, not shown in Fig. 11). AND gates receive an
indication that way 0 is predicted (WPO) or way 1 is predicted (WP1), and corresponding way word lines are
generated for way 0 and way 1. Bit O of each way is shown in Fig. 11, receiving the corresponding way word line.
Bit O from each way is column-muxed by a mux controlled by the way predictions as well (to select the bit O from
the predicted way), and a sense amp (SAO) sense bit O from the predicted way and drives bit O out of the data cache
data memory 20. Other bits may be treated similarly, and additional ways may be provided by providing additional
AND gates and way predictions.

In other embodiments, the way prediction may not be available early enough to provide selective word line
generation. For such embodiments, the word lines to each way may be driven based on decoding the address, and
the bit line discharge may occur in each way. In some implementations, the bits from each way may be physically
interleaved and column-muxed into the sense amps. That is, bit 0 of each way may physically be located adjacent to
each other, and the mux may select bit O from the selected way into the input of the sense amp for bit O of the output.
Other output bits may be similarly selected. The way prediction may be used to provide selection control to the
column mux, and thus the number of sense amps may be the number of bits output from a way (rather than the
number of bits output from a way multiplied by the number of ways). Power consumed in the sense amps and
driving data out of the sense amps may be reduced as compared to having separate sense amps for each way. Sense
amp drive out power may often be one of the most significant factors (and may be the most significant factor other
than bit line power consumption) in the power consumption of such a memory. An example of a portion of such an
embodiment is shown in Fig. 12. The decoder (similar to the decoder in Fig. 11) decodes the input virtual address
(VA) to generate word lines (e.g. word line O in Fig. 12 an other word lines for other sets, not shown in Fig. 12). Bit
0 from ways 0 and 1 are shown, and each bit discharges its bit lines responsive to the word line assertion. The mux
in Fig. 12 is controlled by the way predictions to select bit O from the predicted way into the sense amp for bit 0
(SAO in Fig. 12). Other bits read from the predicted way may be treated similarly, and additional ways may be
handled in a similar manner.

In other implementations, separate sense amps may be provided for each way, but the sense amps may have
an enable input to enable operation. The way prediction may be used to enable only the sense amps in the predicted
way for such implementations, and power consumed in the sense amps and driving data out of the sense amps may
be reduced similar to using the column-muxing technique. Fig. 13 is an example of such an embodiment of the data
cache data memory 20. Again, the decoder may decode the input virtual address (VA) and generate word lines,
which are provided to the way 0 and way 1 storage. Each way outputs a number of bit lines to a set of sense amps
for the way. Each set of sense amps receives an enable controlled by the way prediction for that way (WPO and
WP1 for ways 0 and 1, respectively). The data cache data memory 20 in this embodiment may also include a mux
to select the predicted way from the outputs of the sense amps.

In yet other embodiments, it may be possible to only drive the input virtual address to the way that is
predicted, reducing power by not driving the address to the unpredicted ways.

Turning now to Fig. 10, a flowchart is shown illustrating a replacement mechanism that may be employed
by the data cache 16 in response to a cache miss. While the blocks in Fig. 10 are shown in a particular order for

ease of understanding, any order may be used. Blocks may be performed in parallel via combinatorial logic
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circuitry, or may be performed over two or more clock cycles in a pipelined fashion, as desired.

If the way predictor 14 made a way prediction for the virtual address that resulted in the cache miss
(decision block 160), then the predicted way is selected for replacement (block 162). Otherwise, the way to replace
is selected according to'the replacement scheme implemented by the cache (block 164). Any replacement algorithm
may be used (e.g. LRU, pseudo-LRU, random, etc.).

The above algorithm forces a cache block that misses in the cache but which matches a current way
prediction value in the way predictor 14 to replace the cache line corresponding to that way prediction value. Thus,
the same way prediction value may not be stored in more than one location in a set.

Fig. 14 is a flowchart illustrating forming a way prediction according to one embodiment of the way
predictor 14. While the blocks in Fig. 14 are shown in a particular order for ease of understanding, any order may
be used. Blocks may be performed in parallel via combinatorial logic circuitry, or may be performed over two or
more clock cycles in a pipelined fashion, as desired.

The way predictor 14 may decode the indication of the address (e.g. address operands, or the address itself,
in some embodiments) (block 170). The way predictor 14 may output a plurality of way prediction values from the
set indicated by the decoding (block 172). The output way prediction values may be compared to a value
corresponding to the input address decoded at block 170 (block 174). If the comparison results in a may (decision
block 176, "yes" leg), the way prediction may be generated equal to the way for which the match is detected (block
178). Otherwise (decision block 176, "no" leg), no way prediction may be generated and the way predictor 14 may
generate the early miss indication (block 180). Together, blocks 176, 178, and 180 may comprise one embodiment

of generating a way prediction.

Computer Systems

Turning now to Fig. 15, a block diagram of one embodiment of a computer system 200 including processor
10 coupled to a variety of system components through a bus bridge 202 is shown. In the depicted system, a main
memory 204 is coupled to bus bridge 202 through a memory bus 206, and a graphics controller 208 is coupled to
bus bridge 202 through an AGP bus 210. Finally, a plurality of PCI devices 212A-212B are coupled to bus bridge
202 through a PCI bus 214. A secondary bus bridge 216 may further be provided to accommodate an electrical
interface to one or more EISA or ISA devices 218 through an EISA/ISA bus 220. Processor 10 is coupled to bus
bridge 202 through a CPU bus 224 and to an optional L2 cache 228. Together, CPU bus 224 and the interface to L2
cache 228 may comprise an external interface to which external interface unit 18 may couple. The processor 10
may be the processor 10 shown in Fig. 1, and may include the structural and operational details shown in Figs. 2-14.

Bus bridge 202 provides an interface between processor 10, main memory 204, graphics controller 208,
and devices attached to PCI bus 214. When an operation is received from one of the devices connected to bus
bridge 202, bus bridge 202 identifies the target of the operation (e.g. a particular device or, in the case of PCI bus
214, that the target is on PCI bus 214). Bus bridge 202 routes the operation to the targeted device. Bus bridge 202
generally translates an operation from the protocol used by the source device or bus to the protocol used by the
target device or bus.

In addition to providing an interface to an ISA/EISA bus for PCI bus 214, secondary bus bridge 216 may

further incorporate additional functionality, as desired. An input/output controller (not shown), either external from
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or integrated with secondary bus bridge 216, may also be included within computer system 200 to provide
operational support for a keyboard and mouse 222 and for various serial and parallel ports, as desired. An external
cache unit (not shown) may further be coupled to CPU bus 224 between processor 10 and bus bridge 202 in other
embodiments. Alternatively, the external cache may be coupled to bus bridge 202 and cache control logic for the
external cache may be integrated into bus bridge 202. L2 cache 228 is further shown in a backside configuration to
processor 10. It is noted that L2 cache 228 may be separate from processor 10, integrated into a cartridge (e.g. slot
1 or slot A) with processor 10, or even integrated onto a semiconductor substrate with processor 10.

Main memory 204 is a memory in which application programs are stored and from which processor 10
primarily executes. A suitable main memory 204 comprises DRAM (Dynamic Random Access Memory). For
example, a plurality of banks of SDRAM (Synchronous DRAM), double data rate (DDR) SDRAM, or Rambus
DRAM (RDRAM) may be suitable. Main memory 204 may include the system memory 42 shown in Fig. 1.

PCI devices 212A-212B are illustrative of a variety of peripheral devices. The peripheral devices may
include devices for communicating with another computer system to which the devices may be coupled (e.g.
network interface cards, modems, etc.). Additionally, peripheral devices may include other devices, such as, for
example, video accelerators, audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer
Systems Interface) adapters and telephony cards. Similarly, ISA device 218 is illustrative of various types of
peripheral devices, such as a modem, a sound card, and a variety of data acquisition cards such as GPIB or field bus
interface cards.

Graphics controller 208 is provided to control the rendering of text and images on a display 226. Graphics
controller 208 may embody a typical graphics accelerator generally known in the art to render three-dimensional
data structures which can be effectively shifted into and from main memory 204. Graphics controller 208 may
therefore be a master of AGP bus 210 in that it can request and receive access to a target interface within bus bridge
202 to thereby obtain access to main memory 204. A dedicated graphics bus accommodates rapid retrieval of data
from main memory 204. For certain operations, graphics controller 208 may further be configured to generate PCI
protocol transactions on AGP bus 210. The AGP interface of bus bridge 202 may thus include functionality to
support both AGP protocol transactions as well as PCI protocol target and initiator transactions. Display 226 is any
electronic display upon which an image or text can be presented. A suitable display 226 includes a cathode ray tube
("CRT"), a liquid crystal display ("LCD"), etc.

It is noted that, while the AGP, PCI, and ISA or EISA buses have been used as examples in the above
description, any bus architectures may be substituted as desired. It is further noted that computer system 200 may be
a multiprocessing computer system including additional processors (e.g. processor 10a shown as an optional
component of computer system 200). Processor 10a may be similar to processor 10. More particularly, processor
10a may be an identical copy of processor 10. Processor 10a may be connected to bus bridge 202 via an
independent bus (as shown in Fig. 15) or may share CPU bus 224 with processor 10. Furthermore, processor 10a
may be coupled to an optional L2 cache 228a similar to L2 cache 228.

Turning now to Fig. 16, another embodiment of a computer system 300 is shown. In the embodiment of
Fig. 16, computer system 300 includes several processing nodes 312A, 312B, 312C, and 312D. Each processing
node is coupled to a respective memory 314A-314D via a memory controller 316A-316D included within each

respective processing node 312A-312D. Additionally, processing nodes 312A-312D include interface logic used to
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communicate between the processing nodes 312A-312D. For example, processing node 312A includes interface
logic 318A for communicating with processing node 312B, interface logic 318B for communicating with processing
node 312C, and a third interface logic 318C for communicating with yet another processing node (not shown).
Similarly, processing node 312B includes interface logic 318D, 318E, and 3 18F; processing node 312C includes
interface logic 318G, 318H, and 318I; and processing node 312D includes interface logic 318J, 318K, and 318L.
Processing node 312D is coupled to communicate with a plurality of input/output devices (e.g. devices 320A-320B
in a daisy chain configuration) via interface logic 318L. Other processing nodes may communicate with other I/O
devices in a similar fashion.

Processing nodes 312A-312D implement a packet-based link for inter-processing node communication. In
the present embodiment, the link is implemented as sets of unidirectional lines (e.g. lines 324A are used to transmit
packets from processing node 312A to processing node 312B and lines 324B are used to transmit packets from
processing node 312B to processing node 312A). Other sets of lines 324C-324H are used to transmit packets
between other processing nodes as illustrated in Fig. 16. Generally, each set of lines 324 may include one or more
data lines, one or more clock lines corresponding to the data lines, and one or more control lines indicating the type
of packet being conveyed. The link may be operated in a cache coherent fashion for communication between
processing nodes or in a noncoherent fashion for communication between a processing node and an I/O device (or a
bus bridge to an I/O bus of conventional construction such as the PCI bus or ISA bus). Furthermore, the link may be
operated in a non-coherent fashion using a daisy-chain structure between I/O devices as shown. It is noted that a
packet to be transmitted from one processing node to another may pass through one or more intermediate nodes.
For example, a packet transmitted by processing node 312A to processing node 312D may pass through either
processing node 312B or processing node 312C as shown in Fig. 16. Any suitable routing algorithm may be used.
Other embodiments of computer system 300 may include more or fewer processing nodes then the embodiment
shown in Fig. 16.

Generally, the packets may be transmitted as one or more bit times on the lines 324 between nodes. A bit
time may be the rising or falling edge of the clock signal on the corresponding clock lines. The packets may include
command packets for initiating transactions, probe packets for maintaining cache coherency, and response packets
from responding to probes and commands.

Processing nodes 312A-312D, in addition to a memory controller and interface logic, may include one or
more processors. Broadly speaking, a processing node comprises at least one processor and may optionally include
a memory controller for communicating with a memory and other logic as desired. More particularly, each
processing node 312A-312D may comprise one or more copies of processor 10 as shown in Fig. 1 (e.g. including
various structural and operational details shown in Figs. 2-14). External interface unit 18 may includes the interface
logic 318 within the node, as well as the memory controller 316.

Memories 314A-314D may comprise any suitable memory devices. For example, a memory 314A-314D
may comprise one or more RAMBUS DRAMs (RDRAMs), synchronous DRAMs (SDRAMs), DDR SDRAM,
static RAM, etc. The address space of computer system 300 is divided among memories 314A-314D. Each
processing node 312A-312D may include a memory map used to determine which addresses are mapped to which
memories 314A-314D, and hence to which processing node 312A-312D a memory request for a particular address

should be routed. In one embodiment, the coherency point for an address within computer system 300 is the
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memory controller 316A-316D coupled to the memory storing bytes corresponding to the address. In other words,
the memory controller 316A-316D is responsible for ensuring that each memory access to the corresponding
memory 314A-314D occurs in a cache coherent fashion. Memory controllers 316A-316D may comprise control
circuitry for interfacing to memories 314A-314D. Additionally, memory controllers 316A-316D may include
request queues for queuing memory requests.

Generally, interface logic 318A-318L may comprise a variety of buffers for receiving packets from the link
and for buffering packets to be transmitted upon the link. Computer system 300 may employ any suitable flow
control mechanism for transmitting packets. For example, in one embodiment, each interface logic 318 stores a
count of the number of each type of buffer within the receiver at the other end of the link to which that interface
logic is connected. The interface logic does not transmit a packet unless the receiving interface logic has a free
buffer to store the packet. As a receiving buffer is freed by routing a packet onward, the receiving interface logic
transmits a message to the sending interface logic to indicate that the buffer has been freed. Such a mechanism may
be referred to as a "coupon-based" system.

I/O devices 320A-320B may be any suitable I/O devices. For example, I/O devices 320A-320B may
include devices for communicating with another computer system to which the devices may be coupled (e.g.
network interface cards or modems). Furthermore, I/O devices 320A-320B may include video accelerators, audio
cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and
telephony cards, sound cards, and a variety of data acquisition cards such as GPIB or field bus interface cards. It is
noted that the term "I/O device" and the term "peripheral device" are intended to be synonymous herein.

Numerous variations and modifications will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations

and modifications.

Industrial Applicability

This invention may generally be applicable to the field of processors.
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WHAT IS CLAIMED 18S:

1. A processor (10) comprising:
a cache (16) comprising a data memory (20) configured to store a plurality of cache lines and a tag memory
(22) configured to store a plurality of tags, each of the plurality of tags corresponding to a
respective one of the plurality of cache lines; and
a tag circuit (36) configured to detect a hit in the cache (16) by a first virtual address for a subset of the
plurality of cache lines; and
in response to a hit by the first virtual address in the tag circuit (36), the tag circuit (36) is configured to
prevent a read of the tag memory (22), and wherein the data memory (20) is configured to output at least a portion

of a first cache line corresponding to the first virtual address.

2. The processor as recited in claim 1 further comprising:

a first translation lookaside buffer (TLB) (30) configured to store a plurality of page portions of virtual
addresses identifying a plurality of virtual pages for which physical address translations are stored
in the first TLB (30); and

wherein the tag circuit (36) is coupled to the first TLB (30), and wherein the subset of the plurality of cache
lines are within the plurality of virtual pages;

wherein the tag circuit (36) is configured to prevent a read of the tag memory (22) in the cache (16) further

in response to a hit by the first virtual address in the first TLB.

3. The processor as recited in claim 2 wherein, in response to the hit by the first virtual address in the first TLB (30)
and a miss by the first virtual address in the tag circuit (36), the cache (16) is configured to read one or more tags
stored in the tag memory (22) and is configured to detect whether or not the first virtual address hits in the cache

(16).

4. The processor as recited in claim 3 further comprising a second TLB (38), wherein the second TLB (38) is
accessed in response to a miss in the first TLB (30), and wherein the second TLB (38) is configured to provide a
page portion of a first physical address corresponding to the first virtual address in response to a hit in the second
TLB (38), and wherein the cache (16) is coupled to receive the a tag portion of the first physical address and is
configured to compare the tag portion of the first physical address to at least a first tag from the tag memory (22) to

detect the hit in the cache (16).

5. The processor as recited in claim 2 wherein the first TLB (30) comprises a first plurality of entries (80A-80B),
each of the first plurality of entries (80A-80B) configured to store a respective page portion of the plurality of page
portions of virtual addresses, and wherein the first TLB (30) is configured to output an indication of a first entry of
the first plurality of entries that is hit by the first virtual address, and wherein the tag circuit (36) is coupled to
receive the indication of the first entry, and wherein the tag circuit (36) comprises a second plurality of entries

(100A-100D), wherein a subset of the second plurality of entries (100A-100D) corresponds to one of the first
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plurality of entries (80A-80B) in the first TLB (30) and identifies cache lines that are stored in the cache (16) and
that are within a page indicated by the page portion stored in the one of the first plurality of entries (80A-80B), and

wherein the tag circuit (36) is configured to check the subset for a hit in response to the indication of the first entry.

6. The processor as recited in claim 5 wherein each of the second plurality of entries (100A-100D) is configured to
store virtual address bits that are not included in the page portion of the virtual address and that are not included in

the cache line offset portion of the virtual address.

7. A method comprising:

accessing, with a first virtual address, a first translation lookaside buffer (TLB) (30) configured to store a
plurality of page portions of virtual addresses identifying a plurality of virtual pages for which
physical address translations are stored in the first TLB (30);

in response to a hit by the first virtual address in the first TLB (30), accessing a tag circuit (36) configured
to identify a plurality of cache lines that are stored in a cache (16) and are within the plurality of
virtual pages;

detecting a hit by the first virtual address in the first TLB (30) and the tag circuit (36); and

in response to the hit by the first virtual address in the first TLB (30) and the tag circuit (36), preventing a
read of a tag memory (22) in the cache (16).

8. The method as recited in claim 7 further comprising, in response to the hit by the first virtual address in the first
TLB (30) and a miss by the first virtual address in the tag circuit (36), reading one or more tags stored in the tag

memory (22) and detecting whether or not the first virtual address hits in the cache (16).

9. The method as recited in claim 7 further comprising:
accessing a second TLB (38) in response to a miss in the first TLB (30), wherein the second TLB (38) is
configured to provide a page portion of a first physical address corresponding to the first virtual
address in response to a hit in the second TLB (38); and
the cache (16) comparing the first physical address to at least a first tag from the tag memory (22) to detect
the hit in the cache (16).
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