Repub11k
Osterreich

Patentamt

ATO004 041 U1

(11) Nummer:

a2 GEBRAUCHSMUSTERSCHRIFT

GO6F 7158
Ho4L 9720, 9/18

(21) Anmeldenummer; 715/99 (51) Int.C1.7
(22) Anmeldetag: 15.10.1999
(42) Beginn der Schutzdauer: 15.11.2000

(45) Ausgabetag: 27.12.2000

~—

(73) Gebrauchsmusterinhaber:

WAIS JULIUS
A-3860 HEIDENREICHSTEIN, NIEDERDSTERREICH (AT).

(72) Erfinder:

WAIS JULIUS
HEIDENREICHSTEIN, NIEDEROSTERREICH (AT).

(54) VERFAHREN UND EINRICHTUNG ZUM VERSCHLUSSELN BZW. ENTSCHLUSSELN VON DATEN

(57) Zum Verschllisseln von Daten, die aus_efner Anzahl
von Zeichen bestehen, wird fir jedes Zeichen eine
Zufallszahl generiert, aus der mittels einer o [e
vorgegebenen, injektiven Funktion eine Codezahl erzeugt ‘{7J$%$ nen
wird, mit der das Jjeweilige Zeichen i{ber eine
EXKLUSIV-0DER-Funktion zu einem verschliisselten Zeichen

§ ————

AT 004 041 Ul

logisch verknlpft wird. Die verschliisselten Zeichen
werden zusammen mit den Zufallszahlen in efnem Feld
gespeichert, das mit komplementdren Bits aufgefiillt
wird. Zum Entschllsseln werden dann aus den zusammen

Paramete par(l} £ IR

il lgIN Y

aus Zugangshetechligung
mittels injekBver Funkiionon

estolien

l—{_rmumeu-ol :]

mit den verschlisselten Zeichen Ubermittelten

Zufallszahlen mittels der selben vorgegebenen

injektiven Funktion die jeweiligen Codezahlen erzeugt; 5 —] Senen oo o oaw |
die dann mit den zugehdrigen verschliisselten Zeichen bestinmen

ber die EXKLUSIV-ODER-Funktion Togisch verkniipft
werden, um die urspriinglichen Zeichen zu erhalten.

DVR 0078018

6— R >—owe]
M

8

Anzani der ekzidosanden
Zeictor um 1 emdhen
[Latdl

Duate-zetchen a$

ofsilszablen vo
mittels Zm-:‘szr-hu nganerator

mitvodiN

erzeugen

(P15, 1B)

(716, B}

AT 004 041 U1

Die Erfindung betrifft ein Verfahren zum Verschliisseln von Daten, die aus einer Anzahl von
Zeichen bestehen, sowie ein Verfahren zum Entschliisseln von mit einem solchen Verfahren

verschliisselten Daten.

Weiters bezieht sich die Erfindung auf eine entsprechende Einrichtung zum Ver- bzw.
Entschliisseln von Daten sowie auch auf einem Programmdatentrager, wie eine Diskette oder
eine CD-ROM, mit einem Programm zur Durchfithrung einer derartigen Ver- und

Entschliisselung von Daten.

Es gibt bereits die verschiedensten Techniken zum Verschliisseln von Daten, die aber in der
Regel auf einer aufwendigen Verschliisselungs- und Entschlisselungs-Software beruhen, die
oft verhaltnismaBig lange Rechnerzeiten benétigt und auch nicht sicher ist.

Ziel der Erfindung ist es daher, eine Technik zum Verschliisseln bzw. Entschliisseln von

Daten vorzusehen, die einfach ist, wenig Rechnerzeit erfordert und dabei nichtsdestoweniger

sicher beziglich eines unbefugten Zugriffs ist.

Das erfindungsgemafle Verschliisselungs-Verfahren ist dadurch gekennzeichnet, dass fur
jedes Zeichen der zu verschliisselnden Daten eine Zufallszahl generiert wird, aus der mittels
einer vorgegebenen, injektiven Funktion eine Codezah! erzeugt wird, mit der das jeweilige
Zeichen gemaB der EXKLUSIV-ODER-Funktion zu einem verschlasselten Zeichen logisch
verkniipft wird, und dass die verschlisselten Zeichen zusammen mit den zugehérigen
7ufallszahlen in binarer Form jeweils in einem Feld gespeichert bzw. iibertragen werden, das
eine Feldlange aufweist, die doppelt so groB ist wie die Zahl der Bits der jeweiligen
verschliisselten Zeichen und dazugehdrigen Zufallszahlen zusammen, wobei die restlichen
Platze des jeweiligen Feldes mit den zu den Bits der verschlisselten Zeichen und der

Zufallszahl komplementaren Bits aufgefiillt werden.

Da die Codezahl bei der vorliegenden Verschlﬁsselungstechpik firr jedes zu verschlisselnde
Zeichen aus einer eigenen Zufallszahl mittels einer eindeutig abbildenden Funktion
hergeleitet wird, ist auch jede Codezahl zufillig. Jedes zu verschliisselnde Zeichen wird mit
einer solchen ihm eigens zugeordneten, zufalligen Codezahl logisch uber die EXKLUSIV-
ODER-Funktion (nachstehend kurz XOR-Funktion) verkniipft. Diese XOR-Funktion hat den

Vorteil, dass sie in gleicher Weise auch bei der Riicktransformation der verschlisselten

AT 004 041 U1

Zeichen zu den urspriinglichen, unverschliisselten Zeichen mit Hilfe derselben Codezahl
verwendet werden kann. Die injektive Funktion, mit der aus den Zufallszahlen die
Codezahlen erzeugt werden, ist an sich ein beliebiger Algorithmus, es ist nur notwendig, dass
jeder Zufallszahl eindeutig eine Codezahl zugeordnet wird. Im Hinblick auf eine spatere
einfache Entschlisselung der verschlisselten Zeichen werden die der Verschliisselung zu
Grunde gelegten zufilligen Zufallszahlen zusammen mit den verschliisselten Zeichen
gespeichert bzw. einem Empfinger tibermittelt. Um hierbei einem unbefugten
Entschliisselungsversuch entgegenzuwirken, werden die verschliisselten Zeichen samt den
zugehorigen Zufallszahlen ,,neutralisiert”, und demgemaB sieht die Erfindung weiters vor,
dass ein Feld vorgesehen wird, das durch komplementire Bits aufgefiillt wird. Jedes gesamte
Feld enthélt daher gleich viele ,,1“-Bits und ,,0“-Bits. Dadurch ist es nicht méglich, aus der
jeweiligen Anzah| aus ,,1“-Bits und ,,0“-Bits Riickschliisse auf die benutzten Funktionen oder
Algorithmen zu ziehen, da immer gleich viele ,,0-Bits und ,,1“-Bits im Feld enthalten sind.

Zum ,,Verstecken® der Bits, d.h. zum Mischen der Stellen der Bits der verschliisselten
Zeichen und Zufallszahlen, ist es dabei im Hinblick auf eine zusatzlich erhohte Sicherheit
auch vorteilhaft, wenn die Platze des Feldes fur die Bits des jeweiligen verschliisselten
Zeichens und der jeweiligen Zufallszahl auf Basis einer vorgegebenen bijektiven Funktion,
verschieden von der urspriinglichen Reihung der Bits, festgelegt werden. Im Fall von
beispielsweise jeweils acht Bit langen verschliisselten Zeichen und Zufallszahlen enthalt
daher jedes Feld beispielsweise 2 mal 16 Bits, wobei auf beliebigen Plitzen n, entsprechend
der bijektiven Funktion ,,gemixt“, die Bits der verschliisselten Zeichen und Zufallszahlen
gespeichert werden: Beispielsweise kann sich aufgrund dieser bijektiven Funktion ergeben,
dass das erste Bit des verschlisselten Zeichens an die siebente Stelle des Feldes kommt, das
zweite Bit an die zehnte Stelle usw., wobei diese Umreihung (also die bijektive Funktion) von
Feld zu Feld beibehalten werden kann. Auf den Stellen ,,n + 16“ (modulo 32) des Feldes
werden wie erwéhnt die jeweils komplementiren Bits gespeichert, d.h. wenn an einer Stelle

»1“ oder ,,10“ des Feldes ein ,,1“-Bit gespeichert wird, wird komplementir dazu an der 17.
oder 26. Stelle des Feldes ein ,,0“-Bit gespeichert usw..

Zur zusétzlichen Erhohung der Sicherheit kann als bijektive Funktion eine von einem
eingegebenen Benutzerkennwort abhingige Funktion vorgegeben sein. Dies ist vor allem
dann zweckmaBig, wenn auf einem eigenen Rechner bzw. auf einer eigenen Diskette Dateien

gespeichert werden, die gegen unbefugten Zugriff zu schiitzen sind. Selbstverstindlich

AT 004 041 U1

konnen jedoch die verschlisselten Daten auch iibertragen werden, wobei im letzteren Fall der
Empfinger das Benutzerkennwort kennen mu3, um eine Entschliisselung vornehmen zu

konnen, wie noch erldutert werden wird.

In entsprechender Weise kann auch die vorgegebene injektive Funktion fiir die Erzeugung der
Codezahlen von einem eingegebenen Benutzerkennwort abhéngig festgelegt werden.

Ferner kann die vorgegebene injektive Funktion fiir die Erzeugung der Codezahlen als von
der Anzahl der Zeichen der zu verschliisselnden Daten abhangige Funktion festgelegt werden.
Dadurch andert sich der Algorithmus fir die Erzeugung des Codezahlen aus den
7ufallszahlen von Datensatz zu Datensatz, was ebenfalls zur Sicherheit der Verschisselung
beitragt.

Die Zufallszahlen konnen in an sich bekannter Weise mit einem hardwaremaBig realisierten
Zufallsgenerator, beispielsweise unter Auswertung des WeiBen Rauschens einer Diode oder
eines Widerstandes, oder aber mit einer bekannten Software erzeugt werden. Im Hinblick auf
die bevorzugte Anwendung einer 8-Bit-Codierung sind die generierten Zufallszahlen

vorzugsweise natirliche Zahlen zwischen 0 und 255.

7um Entschliisseln von wie vorstehend angegeben verschlisselten Daten wird derart
vorgegangen, dass aus den zusammen mit den verschliisselten Zeichen tibermittelten
7Zufallszahlen mittels derselben vorgegebenen injektiven Funktion die jeweiligen Codezahlen
erzeugt werden, die dann mit den zugehorigen verschlisselten Zeichen uber die XOR-
Funktion logisch verkniipft werden, um die urspriinglichen Zeichen zu erhalten.

Sofern die verschlisselten Daten in einem mit komplementaren Bits aufgefuillten Feld, wie
vorstehend erlautert, derart ibermittelt werden, dass die Reihung der Bits geandert wurde,
wird erfindungsgemaB weiters vorgesehen, dass unter Anwendung der genannten bijektiven
Funktion die in den jeweiligen Feldem in verschiedenen Reihungen enthaltenen Bits der
jeweiligen verschliisselten Zeichen und zugehorigen Zufaliszahlen in der urspringlichen
Reihung ermittelt werden, bevor die Codezahlen erzeugt und mit den verschisselten Zeichen

logisch verknipft werden.

AT 004 041 U1

Die Erfindung schafft somit eine neue, vorteilhafte Technik zum Verschliisseln bzw.
Entschliisseln von Daten, wobei ein Verfahren bzw. eine Programmlogik in vergleichbarer

Weise wie eine Einrichtung, also ein entsprechend eingerichteter Rechner, betroffen sind.

Die Erfindung wird nachfolgend anhand von bevorzugten Ausfiihrungsbeispielen, auf die sie
jedoch nicht beschrénkt sein soll, und unter Bezugnahme auf die Zeichnung noch weiter
erlautert. Es zeigen: Die Fig. 1 in den zusammengehdrenden Teilfiguren 1A, 1B, 1C
zusammen ein Ablaufdiagramm zur Veranschaulichung eines Verschliisselungsvorganges;
Fig.2 schematisch die Zuordnung der Bits der verschlisselten Zeichen und der zugehorigen
Zufallszahlen in ein Doppel-Feld, unter Auffiillung dieses Feldes mit komplementaren Bits;

und Fig. 3 in den zusammengehérenden Teilfiguren 3A, 3B ein Ablaufdiagramm fur den
Entschliisselungsvorgang.

In der nachfolgenden Beschreibung werden Zeichen bzw. Zahlen im ASCII-Code mit
LASC...“ bezeichnet; in bindrer Form werden die Zeichen bzw. Zahlen mit dem Zusatz
»---bin* angegeben; die alphanumerischen Zeichen der zu verschliisselnden Daten werden mit
,ad“ bzw. ,,al$“, ,a28“ bzw. bezeichnet, die Zufallszahlen (natiirliche Zahlen zwischen 0 und
255) werden mit ,,vc* bezeichnet; aus diesen Zufallszahlen vc wird iiber eine vorgegebene
injektive Funktion ALG1 jeweils eine zugehore Zahl ,,code erzeugt; mit diesen ,,code**-
Zahlen werden die Datenzeichen ,,a$“ logisch verkniipft, so dass die verschlasselten Zeichen

,vz* erhalten werden. Bevorzugt wird ein 8 Bit — Format fiir die jeweiligen Zeichen bzw.

Zahlen verwendet.

Beim Verschlasseln von Daten, vgl. Fig. 1, wird gemaB dem vorliegenden
Ausfiihrungsbeispiel derart vorgegangen, dass nach einem Startschritt 1 (Fig. 1A) bei 2 ein
m-stelliges, z. B. 16-stelliges Benutzerkennwort PW (Zugangsberechtigung, ,,Password*)

eingegeben wird, das bei der nachfolgenden Verschliisselung von Daten mit verwendet wird.

Aus diesem Benutzerkennwort PW, genauer aus dem ASCII-Code der Einzelzeichen hievon,
werden mittels injektiver Funktionen fi reelle Zahlen par(i), mit 1 < i <m, erzeugt. Ein
Beispiel fir die verwendete injektive Funktion ist die Sinus-Funktion, bei deren Anwendung

der Wertebereich auf maximal +1 beschrankt wird; wenn der Betrag der Funktion verwendet

wird, liegen die Werte zwischen 0 und 1:

AT 004 041 U1

par(i) = ABS[SIN((i/100) + ASC(Pw1$))]

Da ASC(PWi$) immer eine ganze Zahl im Intervall {0,255} und weiters das Vielfache der
Zahl k . 7t (3,14159) keine ganze Zahl fir 1 < k <m ist, wird damit eine Funktion definiert,

welche im Wertebereich fiir jedes feste i injektiv ist.

Vor dem Einlesen des zu verschliisselnden Textes oder allgemein der zu verschlusseinden
Datenzeichen a$ wird im Ablauf gemaB Fig. 1 noch in einem Schritt 4 die Textlange tl gleich
0 definiert, und es wird dann bei 5 die Anzahl L der einzulesenden, d.h. zu verschlisselnden
Datenzeichen ermittelt. Bei 6 wird dann vorsorglich abgefragt, ob zu verschlisselnde
Datenzeichen iiberhaupt vorliegen (L > 0 7), und wenn nein, wird bei 7 zum Programm-Ende
gegangen. Bei L > 0 wird hingegen im nachfolgenden Schritt 8 die Textlénge tl inkrementiert
(tl =tl + 1), und es werden dann gemaD Block 9 die Datenzeichen a$ eingelesen und aus
ihrem ASCII-Format ASC(a$) Bin4rformen ASC(a$)bin erzeugt.

Wie erwahnt wird fiir jedes eingelesene Zeichen a$ durch einen Zufallszahlen-Generator eine
natirliche Zahl ve, mit 0 < ve < 255, erzeugt. Daher kann die Binarform vcbin aus 8 Bits
bestehen. Dies ist in Fig. 1A bei 10 veranschaulicht; wobei gemaB Schritt 11 (s. Fig. 1B) die
binare Form der jeweiligen Zufallszahl — vcbin — erzeugt wird.

Uber eine injektive Funktion ALG1, welche von der Anzahl L der eingelesenen Zeichen a$
sowie von par(i), mit 1 < i <m, abhéngig ist, wird eine zur Zufallszahl vc gehorende Zahl
,code*, mit 0 < code <255, erzeugt. Deshalb besteht die Binirform hievon, codebin, aus 8
Bits. Da ,.code® aus der Zufallszahl vc erzeugt wurde, ist ,.code* selbst vom Zufall abhingig.
Dieser Vorgang ist in Fig. 1B bei 12 gezeigt.

Als Beispiel fir die injektive Funktion ALG1 kann eine Exponentialfunktion verwendet
werden. Vorweg wird die Zufallszahl ve durch 256 dividiert:

hz =vc/256
Die dadurch erhaltene reelle Zahl hz ist selbstverstandlich ebenfalls zufallig, und sieist < 1.

Hieraus konnen Werte y* gemaB

berechnet werden, wobei y*< 2 und > 0 ist.

AT 004 041 U1

Um zusétzlich die Sicherheit zu erhohen, kann ergénzend die Anzahl L der eingegebenen

Datenzeichen mit verwendet werden, um Werte y zu berechnen, u.zw. gemaB der Beziehung
y =y*. ABS[SIN(L)].

Da hier ABS[SIN(L)] zwischen 0 und 1 liegt, liegt auch der jeweilige Wert y (wie y*)

zwischen 0 und 2.

Mittels der Beziehung
x =y -INT(y)
werden nun reelle Zahlen x im Intervall [0,1] erzeugt, die zur Erzeugung der Zahlen ,,code”
(aus den Zufallszahlen vc) verwendet werden:
code = INT(1000 . x) mod 255
Somit wird eine ganze Zahl ,,code* erhalten, die aus der Zufallszahl vc hergeleitet und von

der Anzahl L der eingegebenen Zeichen abhangig ist.

Gemal Schritt 13 in Fig. 1B wird sodann die Bindrform codebin der Zahl code erzeugt, und
im Schritt 14 folgt dann die logische Verknipfung zur Verschlﬁsseiung des jeweiligen
Zeichens a$, u.zw. gemaB einer EXKLUSIV-ODER-Funktion (XOR-Funktion):

vzbin = ASC(a$)bin XOR codebin.

Da die Zahl code (bzw. codebin) eine Zufallszahl ist, ist auch vzbin — ein 8 Bit-Zeichen —
zufallig.

GemaB Schritt 15 in Fig. 1B wird nun eine Permutation P von natiirlichen Zahlen zwischen 1
und 32 erzeugt (1 < n(i) < 32), die als Basis fiir ein , Mixen“ und ,, Verstecken der 8 Bit-
Worter vzbin und vcbin (die zusammen 16 Bits aufweisen) in einem 32 Bit-Feld dient, vgl.

auch die nachfolgenden Schritte 16 (in Fig. 1B) und 17 bis 21 (in Fig. 1C) sowie das Schema
gemaB Fig. 2.

Im einzelnen werden dabei gemaB Block 16 (Fig. 1B) die 8 Bits vzbin als s(n(1)) an Stellen
n(1) bis n(8) in einem 32 Bit-Feld s und gemaB Block 17 (Fig. 1C) die 8 Bits von vcbin bin
als s(1) an Stellen n(9) bis n(16) des Feldes s gesetzt, wobei die Stellen n(1) entsprechend der
Permutation P festgelegt werden; an die Stellen n(i + 16) des Feldes s werden die jeweils

- zu den Bits von vzbin und vcbin komplementiren Bits gesetzt, vgl. die Schleife in Fig. 1C

AT 004 041 U1

mit den Feldern 18 bis 21, wobei bei 18 abgefragt wird, ob das jeweilige Bit fir (i), mit
i=12..16, ein ,1“-Bit oder ein ,,0“-Bit ist; je nachdem wird das Komplement — Bit an der
Stelle n(i + 16) als ,,0“-Bit (Feld 19) oder als ., 1¢-Bit (Feld 20) festgelegt und gemaB Feld 21
im s-Feld gespeichert. Damit ergibt sich zwangslaufig, dass das Feld s immer 16 ,,1“-Bits und
16 ,,0“-Bits enthalt, so dass Riickschlisse auf das jeweilige verschliisselte Zeichen bzw. auf
die verwendete Funktion auf Grund einer Wahrscheinlichkeits-Rechnung (wie dies bei nicht
gleich vielen ,,1- und ,,0“-Bits moglich wiare) unmaglich sind.

In Fig. 2 ist dieser Vorgang des Mischens und Versteckens schematisch veranschaulicht,
wobei gezeigt ist, dass die Bits von vzbin und vcbin in einer von der Permutation P
abhangigen Weise an andere Stellen n(i) im Feld s umgereiht werden, wobei die jewells

komplementéren Bits an die Stellen n(i + 16) im Feld s gesetzt wcrden‘

Die Permutation P kann beispielsweise wie folgt abhingig von der Anzahl L der
eingegebenen Zeichen a$ und von den m (=16) Zeichen des Benutzerkennworts PW bestimmt
werden, wobei die wie oben beschrieben abgeleiteten reellen Zahlen par(i) zu Grunde gelegt
werden konnen (mit 0 <i < 16):
Es wird eine natiirliche Zahl j wie folgt ermittelt:

j=1+Lmod 16 mit 1 <j<16.

Beschrankt sich die Permutation P auf die Platze n(i) miti 1,2,.......,31,32, so kann man, mit
L = Anzahl der eingegebenen Zeichen, die Platze n(i) der Permutation P beispielsweise in
einer FOR-NEXT-Schleife abhangig vom Benutzerkennwort PW und der Anzahl der
eingegebenen Zeichen L etwa wie bestimmen. Dabei wird eine Zahl zr berechnet:

zr=100. par(j)mit 1 < j< 16
Hierbei ist zr eine reelle Zahl aus dem Intervall [0,100], da par(j) mit 1 < j < 16 eine reelle
7ah! aus dem Intervall [0,1] ist. Da par(j) aus dem Benutzerkennwort PW hergeleitet wurde,

ist damit zr vom Benutzerkennwort abhangig.

Wenn nun m als Startwert der FOR-NEXT-Schleife definiert wird, so kann weiters
beispielsweise
m = LOG(L + zr)

AT 004 041 U1

gesetzt werden, wobet rn eine reelle Zahl mit m > 0 ist (LOG ist eine streng monoton
wachsende Funktion mit LOG(1) =0). Die Zahl m ist daher vom Benutzerkennwort PW und
der Anzahl L der eingegebenen Zeichen a$ abhingig. Mit
m‘ =m - INT(m) bzw.

r=0,9883 . m‘+03
wird nun der Startwert fiir die Permutation erstellt (0 < m < 1), die sich auf 32 Plitze
beschrinkt, was den maximalen Index festlegt. (Die Zahlen 0,9883 und 0,3 sind willkiirlich
gewihit.)

In den folgenden FOR-NEXT-Schleifen werden fiir einen jeweils um 1 reduzierten Index
(ausgehend vom maximalen Index) Zahlen z mit
z=r1-INT(r)
berechnet, wobei 0 <z < 1 gilt. Hieraus wird die Platz-Zahl n gemaB der Beziehung
n=1+INT(z. Index)
berechnet, wobei , Index” schrittweise (pro Schleifen — Durchlauf) von 32 auf 2 erniedrigt
wird.

Die Bits des Feldes s — die insgesamt ein Zeichen a$ darstellen — werden anschlieSend, nach
einer eventuellen Datenkompression, in einer ,,Codedatei, d.h. in einer
Verschlusselungsdatei, gespeichert (Festplatte bzw. Diskette etc.), s. Feld 22 in Fig. 1C. Im
AnschluBl daran wird bei 23 abgefragt, ab alle Datenzeichen verschliisselt wurden (tl <L ?);
wenn noch Datenzeichen ibrig sind (tl <L), wird zu Schritt 8 in Fig. 1A zuriickgekehrt;
ansonsten wird die Verschliisselung bei 24 beendet.

Beim Entschliisseln, s. Fig.3 (Fig. 3A + 3B), wird auf analoge Weise vorgegangen, wobei
nach einem Startschritt 31 wiederum — bei 32 — die Zugangsberechtigung, d.h. das
Benutzerkennwort PW, eingegeben wird. Danach werden im Schritt 33 die Zahlen par(i), mit
0 <1< 16, auf die vorstehend beschriebene Weise ermittelt, und gemaB den Blocken 34 und
35 in Fig. 3A wird die Textldnge tl = 0 gesetzt bzw. wird die Anzahl L der verschliisselten
Zeichen bestimmt. Nach der Abfrage L >0 ? bei 36, d.h. ob zu entschliisselnde Zeichen
vorliegen — wenn nicht, wird bei 37 zum Programm-Ende gegangen -, wird tl um 1 erhoht

(tl =1l + 1, Schritt 38), und danach wird das erste (bzw. das nichste) zu entschlisselnde
Zeichen aus der ,,Codedatei®, gegebenenfalls unter Datendekompression, in den
Arbeitsspeicher eingelesen (Schritt 39 in Fig. 3A).

AT 004 041 U1

Um nun die , versteckten® Bits von vzbin und vcbin auslesen zu kénnen, miissen ihre Stellen
n(i) wieder festgestellt werden, wozu wiederum auf die beschnebene Weise die Permutation P
— gleich wie beim Verschliisseln — bestimmt wird, s. Feld 40 in Fig. 3A. Danach kénnen die
Bits von vcbin und vzbin ausgelesen werden (s. Felder 41 und 43 in Fig. 3A bzw. 3B), und es
kann die Dezimalcodeform vc der Zufallszahl bestimmt werden (s. Feld 42 in Fig. 3B).

Auf gleiche Weise wie beim Verschliisseln wird nun iiber die Funktion ALG1 die Zahl
_code* abhingig von par(i) erzeugt, s. Feld 44, und in die Binirform (als ,,codebin®)
umgewandelt, s. Feld 45. Hiernach wird wieder tber die XOR-Funktion die eigentliche
Entschliisselung gemif

ASC(a$)bin = vzbin XOR codebin
vorgenommen, s. Feld 46 in Fig. 3B. Aus der Binarform ASC(a$)bin wird nun im Schritt 47
das urspringliche, unverschliisselte Zeichen a$ bestimmt und gespeichert.

Danach wird bei 48 abgefragt, ob noch zu entschliisselnde Zeichen vorliegen, und wenn ja,
wird zu Schritt 38 (s. Fig. 3A) zuriickgekehrt, wenn nein, ist das Programm-Ende 49 erreicht.

10

AT 004 041 U1

Verbale Beschreibung des Verschliisselungs-

bzw. Entschliisselungsablaufes
(analog zum beigelegten FluBdiagramm)

L) Verschliisselung

1.) Zu Beginn des Programmes wird eine PaBworteingabe verlangt. Aus Griinden der
Sicherheit und Praktikabilitit werden 16 Zeichen gefordert. Diese PaBwortlange ist jedoch
nicht Pflicht sondern kann variabel gestaltet werden.

2.) Aus diesem PaBwort werden die Parameter abgeleitet. Dies sind Zahlen zwischen O und 1.
Begriindung: Durch die Kommazahlen ergibt sich ein relativ groBer Spielraum fiir die
Erzeugung von Algorithmen und Permutationen.

3.) Die Textlange wird per Programm im Vorhinein auf Null gesetzt.

4.) Das Programm stellt nun fest aus wie vielen Zeichen (Bytes) die eingelesene Datei
(Ursprungsdatei) besteht.

5.) Danach wird die DateigroBe abgefragt. Ist die Zahl der Zeichen > 0 wir das Programm
fortgesetzt. Andernfalls wird es beendet.

6.) Der Computer erhalt die Anweisung das ti-te Byte der Datei auszulesen. Dies geschieht in
festgelegter Reihenfolge.

7.) Jedem ausgelesenen Zeichen wird dezimal ein ASC Wert zwischen 0 und 255 zugeordnet.
Binar liegen diese Zahlen zwischen 00000000 und 11111111, Der ASC Wert wird in das
Binarformat umgewandelt. Dieser Wert hat immer 8 Bit.

8.) Ein Zufallsgenerator erzeugt Zahlen zwischen 0 und 255. Diese Zahlen werden in weiterer
Reihenfolge vc genannt und ebenfalls in das Bindrformat umgewandelt (vcbin).

9.) Uber einen Algorithmus, der von der Anzahl der eingelesenen Zeichen (tl) und von den
Parametern des Paliwortes abhingig ist, wird aus vc (dezimal) eine Zahl erzeugt, die in
weiterer Folge immer code genannt wird. Code (dezimal) wird ins Binirformat
umgewandelt. Es entsteht codebin.

10.) Die Zah! vzbin wird erzeugt. Der binire Wert des ASC Wertes des eingelesenen

Zeichens ASC(a$)bin wird mit codebin XOR bitweise verschlisselt. Es entsteht die 8
stellige binare Zahl vzbin.

11.) Mit der Permutation wird begonnen. Diese bijektive Funktion ist ebenfalls von den
Parametern und der Anzahl der eigelesenen Zeichen (tl) abhingig. Diese liest die
einzelnen Bits von vcbin und vzbin aus und plaziert diese im Feid s an jene Stellen, die
durch die Permutation festgelegt worden sind. Diese bedeutet folgendes: Das i-te Bit wird

11

AT 004 041 U1

an die Stelle n(i) geschrieben und an die Stelle n(i+16) das komplementére Bit. Das Feld s
besteht somit aus 32 Einsen und Nullen Bits. Es existieren immer genau 16 Einsen und
Nullen Bits. Dadurch ist immer eine Unentscheidbarkeit gegeben. Es ist daher unméglich
zu wissen, an welchen Stellen die Zahlen vcbin und vzbin in diesem Feld gespeichert sind.
Es sind immer alle Zahlenpaare in binirer Form mdglich.

12.) Das Feld s wird bei der Komprimierung in 4 Teilbereiche aufgegliedert. Die ersten 8
Bit des Feldes werden dabei in einem ASC Wert (dezimal) umgewandelt. Es ergibt sich
eine Zahl zwischen 0 und 255. Der Zeichencode dieser Zahl (CHRS) wird in der
Codedatei gespeichert. Ebenso werden die 3 restlichen Bytes auf die gleiche Art und
Weise gespeichert.

13) Ein Abfragemechanismus aberpraft, ob die eigelesene Textlange tl kleiner als die

Gesamtanzahl der Zeichen der Originaldatei ist. Tritt dieser Fall ein so kehrt das
Programm zu Punkt 6 zuriick. Im anderen Fall wird die Verschlisselung beendet.

I1.) Entschliisselung:

1.) Das PaBwort wird abgefragt.
2.) Aus diesem PaBwort werden wieder die Parameter abgeleitet.
3.) Die Textlange wird auf den Wert 0 gesetzt.

4.) Die Anzahl der zu entschlsselnden Bytes der codierten Datei werden bestimmt. Diese
Anzahl wird L genannt.

5.) Es erfolgt die Uberprufung ob L groBer 0 ist. Bei positiver Uberpritfung wird das
Programm fortgesetzt andemfalls beendet.

6.) Die Textlange tl wird jeweils um den Wert 1 gemaB dem Schema tl =1 +1 erhoht.
Dadurch werden alle Zeichen der verschlisselten Datei in festgelegter Reihenfolge
ausgelesen.

7.) Nun werden die 4 Bytes aus der Codedatci gelesen. Diese 4 x 8 Bit reprisentieren jeweils
ein Zeichen der usrpringlichen, unverschlisseiten Datei.

8.) Es erfolgt nun wieder die Permutation von nattirlichen Zahlen. Diese liegen zwischen 1
und 32. Um eine korrekte Entschlisselung zu erméglichen muB es sich dabei nattrlich um
die gleiche Permutation wie bei der Verschlilsselung handeln !

9.) Die Einser- und Nuller — Bits von vcbin werden aus dem Feld s an den Stellen n(1) bis
n(8) ausgelesen.

12

10)

11.)

11)

12)

13)

14.)

15)

AT 004 041 U1

Aus der Dezimalform von vc wird die Binarform vcbin ermittelt.

Die Einser- und Nuller — Bits von vzbin werden aus dem Feld s an den Stellen 9 - 16
ausgelesen.

Mittels eines Algorithmus wird nun die Zahl code erzeugt. Die Funktion, durch welche
code erstellt wird ergibt sich aus den Parametern und ist weiters von vc und tl
abhingig. Es ergibt sich die Zahl code in Dezimalform.

Aus codedezimal wird nun codebin hergestelit.

Der Wert ASC(a$)bin ergibt sich aus der XOR Verschliisselung von vzbin und
codebin. ASC(a$)bin stellt den ASC Wert eines Zeichens aus der Originaldatei dar.

Das Originalzeichen a$ wird nun aus ASC(a$)bin bestimmt und in der
Entschliisselungsdatei gespeichert.

Eine Abfrage kontrolliert, ob tl kleiner L/4 ist. Da die Datei in verschliisselter Form 4
mal so lang ist wie die Ursprungsdatei muB hier die Abfrage nach L/4 erfolgen. Ist der
endgultige Wert von tl erreicht ist die Entschliisselung beendet. Ansonsten springt das
Programm immer wieder zu Punkt 6 zuriick und wiederholt den Auslese- bzw.
Entschltisselungsvorgang.

13

AT 004 041 U1

Bemerkungen zur Programmlogik sowie zum Programm
selbst:

Kryptographie ist ein technischer Bereich, der immer mehr Einzug in das private Leben jedes
einzelnen Mitbirgers nimmt. Das Bedirfnis nach Sicherheit und Privatsphdre nimmt zu.
Unsere Programmlogik bzw. das Programm selbst soll dazu einen wichtigen Beitrag leisten.

Alle bisher bekannten Verschlilsselungssysteme basieren entweder auf einem ,private-key”
oder einem ,public-key“. Dies drickt aus, wie der Zugang zu einer verschliisselten
Information geregelt ist. Unsere Programmlogik 1aBt naturlich nur »private-key*
Verschliisselungen zu. Das bedeutet, daB sich Sender und Empfinger aber genau dasselbe
PaBwort einig sein missen. Jeder andere, der im Besitz des Programmes, der verschlisselten
Datei und des PaBwortes ist, konnte sonst die verschlisselte Datei knacken und den
Originaltext wieder herstellen.

_Public-key* Programme konnen unseres Wissens nach nie so sicher gestaltet werden wie
unser Programm . Deshalb wire trotzdem mdglich fur den ersten Datenaustausch ein ,,public-
key“ Programm, beispielsweise auf RSA-Basis zu verwenden und danach auf unser
Programm umzusatteln.

Nach unseren Informationen basieren alle Verschlisselungsprogramme im wesentlichen auf
einer 64, 128, 256,..... Bit Verschitisselung. Das bedeutet, daf die Entschlasselung der
Nachricht mit zunehmender Anzahl der Bits schwieriger wird. Dies vor allem deshalb, weil
die dazu erforderliche Rechenleistung erst cinmal zur Verfiigung gestellt werden muB.

Nach Informationen aus dem universitaren Bereich, werden dort verwendete GroBrechner im
Jahr 2000 durchschnittlich 3,2 Milliarden Codes pro Sekunde austesten konnen. Dies wird
neuerlich zu einer Steigerung der Bitzahl bei den gangigen Verschliisselungsprogrammen
fohren.

Diese Steigerung geht natirlich nicht nur mit einem hoheren Zeitaufwand fur die
Entschltsselung einher sondem nattrlich auch mit einem deutlich gesteigerten Zeitbedarf bei
der Verschlisselung. Besonders Privatanwender mit alteren Computersystem fallt diese
Tatsache schmerzlich auf Geringere Rechenzeiten sind wieder mit Herabsctzung der
Bitanzah! méglich. Daraus folgt wieder geringere Sicherheit.

Primar haben wir unsere Programmlogik und in weiterer Folge unser erstes Programm mit
dem Marktfuhrer PGP verglichen. PGP steht fiir , Pretty Good Privacy® und stellt, was das
Verschlisseln von kleineren Dateien und das Verschicken von e-mails darstellt nach
Aussagen verschiedenster Experten gegenwartig den Marktfihrer und momentanen
technischen Standard auf dem privaten Bereich dar.

Neben verschiedenen Verschlisselungssystemen wie beispielsweise DES geht PGP von RSA
aus. RSA benotigt zur Verschlissetung einer gleichen Datenmenge ungefihr 100 mal langer
als DES. Zur Erhohung der Sicherheit wurden Varianten wie , Triple-DES“ usw. geschaffen.
Der Erfinder von PGP (Philip Zimmerman) schiagt fur sein PGP gegenwartig eine 1024 Bit
Verschlisselung vor. Es ergibt sich das bereits oben angesprochene Problem. Gesteigerte
Sicherheit ist méglich, jedoch nur unter Inkaufnahme deutlich gesteigerter Rechenzeiten.

14

AT 004 041 U1

Unsere Programmliogik bzw. ein darauf basierendes Computérprogramm beheben diesen
Makel.

Wir schaffen es erhohte Sicherheit bei deutlich gesteigerter Geschwindigkeit fur Ver- und
EntschltsselungsprozeB zu bieten. Das ist die Quintessenz des Programmes.

Diese Tatsache beruht vor allem auf zwei Kempunkten, die unsere Programmiogik
auszeichnen und von anderen Verschliisselungssystemen unterscheiden.

1.) Unsere Programmlogik basiert nicht auf einer konstanten Schlissellinge. Man kann nicht
behaupten, daB es sich dabei um eine 64, 128, usw. Bit-Verschliisselung handelt. Der
Schliissel wird bei unserem Programm durch die Dateilange und den Zufall bestimmt Die
so geschaffene Variabilitat filhrt zu immer neuen verschiedenen Mustern. Dabei handelt
es sich im Programm einstweilen nur um einen Vorschiassel, der im Programm zu einem
spéteren Zeitpunkt noch transformiert wird. Man kann also behaupten, daB bei unserem
Programm die Schliissellinge unendlich ist. Wie in den zusitzlich beigelegten Schriften
angefihrt, kann der Schlissel beispielsweise durch das weile Rauschen einer Diode
generiert werden.

2.) Unsere Programmlogik steilt einen Unbefugten, der versucht die Datei zu entschlisseln,
vor den Grundsatz der Unentscheidbarkeit. Dies bedeutet, daB bei der Entschliisselung der
verschlsselten Datei immer alle Varianten moglich sind. Dies schlieBt alle , sinnvollen
als auch ,nicht sinnvollen* Varianten ein. Bei konventionellen Verschlilsselungssystem
weil man, daB man sobald zumindest ein Teil des Textes eine sinnvolle Bedeutung ergibt,
auf der richtigen Spur ist. Dies ist bei unserem Programm nicht moglich, da immer alle
Varianten gleich wahrscheinlich sind. Es ergibt sich die Unentscheidbarkeit.

Selbst wenn der Betrachter nun den richtig entschliisselten Text vor sich hatte , wiirde er
nicht wissen, daB dieser Text richtig ist. Das ist eine ganz wichtige Kernaussage unseres
Programmes.

Egal wie schnell nun die GroBrechner einmal werden sollten, diese Unentscheidbarkeit
wird immer gegeben bleiben. Ein Unbefugter, der nicht weiB was richtig oder falsch ist
kann mit einer Datei nichts anfangen.

Ein Programm mit unserer Programmlogik bietet auch fir den Privatbenutzer mit einem
veralteten Rechnersystem bestmogliche Sicherheit bei geringem Zeitaufwand. Aus
privaten Versuchen wissen wir, daB die Verschliisselung von einer Datei mit der GroBe
von

1 MB ca. 40 Sekunden dauert. Dabei handelt es sich noch um ein nicht optimiertes und
unausgereiftes Programm. Alle uns bekannten anderen Verschlasselungssysteme benétigen
ein vielfaches dieser Zeit.

Aus dieser einfachen und sehr schnellen Programmlogik ergeben sich natiirlich eine Fiille
von Moglichkeiten, da der Einsatz von wirksamen Verschliisselungssystemen bisher allzu
oft an der dafir benotigten Zeit fur die Entschlisselung gescheitert ist. Wir haben unser
Programm primdr fur die personliche Ver- und Entschlisselung von Textdateien und
e-mails gestaltet. Wie oben angefiihrt sind aber auch Dateien von 1 MB kein Problem und
es gelang uns sogar ganze Festplatten zu ver- und entschlilsseln.

15

AT 004 041 U1

Wir kénnen uns vorstellen, dafl unsere Programmlogik nicht zuletzt auch auf Grund Ihrer
Einfachheit Einzug in die verschiedensten technischen Bereiche erhait. Es ist ja die Ver-
und Entschlsselung von samtlichen Daten moéglich.

Ein moglicher Bereich wire beispielsweise das digitale Fernsehen. Bis dato sind alle
verwendeten Verschlisselungssysteme geknackt worden. Unsere schnelle Programmlogik
konnte dem einen Riegel vorsetzen.

Bei entsprechend angepafBter Hardware sollte Echtzeitentschliisselung moglich sein. Fir
den Einzelfall miBten genauere Priifungen angesetzt werden.

Digitale Telephonie ist ein weiteres Stichwort. Der Einsatzbereich ist wirklich universell
und kann quasi allen technischen Bedirfnissen angepafit werden.

Ein weiteres interessantes Merkmal, daB sich durch unsere Programmlogik ergibt ist die
Tatsache der digitalen Signatur. Eine verschlisselte Datei kann nicht abgefangen und
verandert werden ohne das der Empfinger dies bemerkt. Der Austausch eines einzigen Bits
hat bereits Folgen auf die Entschlusselung. Funktioniert die Entschliisselung beim
Empfanger unter Einhaltung der vorgegebenen Parameter nicht, so weifl man, daB mit
Sicherheit an der verschliisselten Datei manipuliert wurde.

Dabei geht es vor allem auch darum Dateien fur sich selbst zu sichern, also ein Paliwort zu
verwenden, daB sonst niemand kennt.

Abschlubemerkungen:

Nach eingehender Recherche in den Datenbanken der verschiedensten Patentamte weltweit
konnten wir personlich keine gleich geartete Programmlogik entdecken. Auch das Studium
susitzlicher Literatur und fieberhafte Suche im Internet brachte nichts zu Tage. Es gibt
sehr wohl Teilbereiche innerhalb unseres Programmes, die auf bereits dagewesenen
Verfahren beruhen, doch die obig angefithrten Kemnpunkte glauben wir fir neu und noch
nie dagewesen bezeichnen zu dirfen. Dies bezicht sich insbesondere auf die zu schitzende
Programmlogik.

Wir hoffen damit einen neuen und entscheidenden Schritt auf dem Gebiet der
Kryptographie getan zu haben.

16

AT 004 041 U1

Anspriiche

1. Verfahren zum Verschlisseln von Daten, die aus einer Anzahl von Zeichen bestehen,
unter Verwendung eines Rechners, dadurch gekennzeichnet, dass fiir jedes Zeichen eine
Zufallszahl generiert wird, aus der mittels einer vorgegebenen, injektiven Funktion eine
Codezahl erzeugt wird, mit der das jeweilige Zeichen geméaB der EXKLUSIV-ODER-
Funktion zu einem verschliisselten Zeichen logisch verkniipft wird, und dass die
verschliisselten Zeichen zusammen mit den zugehérigen Zufallszahlen in bindrer Form
Jewells in einem Feld gespeichert bzw. iibertragen werden, das eine Feldlidnge aufweist,
die doppelt so grof ist wie die Zahl der Bits der jeweiligen verschliisselten Zeichen und
der zugehdrigen Zufallszahlen zusammen, wobei die restlichen Plitze des jeweiligen
Feldes mit den zu den Bits der verschliisselten Zeichen und Zufallszahlen
komplementiren Bits aufgefiillt werden.

2. Verfahren nach Anspruch 1, dadurch gekénnzeichnet, dass die Platze des Feldes fur die
Bits des jeweiligen verschliisselten Zeichens und der jeweiligen Zufallszahl auf Basis
einer vorgegebenen bijektiven Funktion, verschieden von der urspriinglichen Reihung der
Bits, festgelegt werden.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als bijektive Funktion eine von
einem eingegebenen Benutzerkennwort abhingige Funktion vorgegeben ist.

4. Verfahren nach einem der Anspriiche 1 bis 3, dadurch gekennzeichnet, dass die
vorgegebene injektive Funktion fiir die Erzeugung der Codezahlen als von der Anzahl der
Zeichen der zu verschlisseinden Daten abhingige Funktion festgelegt wird.

5. Verfahren nach einem der Anspriiche 1 bis 4, dadurch gekennzeichnet, dass die
vorgegebene injektive Funktion fur die Erzeugung der Codezahlen von einem

eingegebenen Benutzerkennwort abhingig festgelegt wird.

6. Verfahren nach einem der Anspriiche 1 bis 5, dadurch gekennzeichnet, dass die

generierten Zufallszahien natiirliche Zahlen zwischen 0 und 255 sind.

17

AT 004 041 U1

7 Verfahren zum Entschliisseln von mit einem Verfahren nach einem der Anspriche 1 bis 6
verschliisselten Daten, dadurch gekennzeichnet, dass aus den zusammen mit den
verschliisselten Zeichen Gbermittelten Zufallszahlen mittels der selben vorgegebenen
injektiven Funktion die jeweiligen Codezahlen erzeugt werden, die dann mit den
zugehorigen verschlisselten Zeichen uber die EXKLUSIV-ODER-Funktion logisch

verkniipft werden, um die urspriinglichen Zeichen zu erhalten.

8. Verfahren nach Anspruch 7, zum Entschlisseln von mit einem Verfahren nach Anspruch
2 oder 3 verschliisselten Daten, dadurch gekennzeichnet, dass unter Anwendung der
vorgegebenen bijektiven Funktion die in den jeweiligen Feldern in unterschiedlichen
Reihungen enthaltenen Bits der jeweiligen verschliisselten Zeichen und zugehdrigen
Zufallszahlen in der urspriinglichen Reihung ermittelt werden, l;evor die Codezahlen

erzeugt und mit den verschliisselten Zeichen logisch verkniipft werden.

9. Einrichtung zum Verschlisseln von Daten, die aus einer Anzahl von Zeichen bestehen,
mit einem Rechner, dadurch gekennzeichnet, dass der Rechner eingerichtet ist, fitr jedes
Zeichen eine Zufallszahl zu generieren, aus der mittels einer vorgegebenen, injektiven
Funktion eine Codezahl erzeugt wird, mit der das jeweilige Zeichen gemaB der
EXKLUSIV-ODER-Funktion zu einem verschliisselten Zeichen logisch verknipft wird,
und die verschliisselten Zeichen zusammen mit den zugehdrigen Zufallszahlen in binérer
Form jeweils in einem Feld zu speichern bzw. zu ubertragen, das eine Feldlange aufweist,
die doppelt so groB ist wie die Zahl der Bits der jeweiligen verschlisselten Zeichen und
der zugehorigen Zufallszahlen zusammen, wobei die restlichen Platze des jeweiligen
Feldes mit den zu den Bits der verschliisselten Zeichen und Zufallszahlen

komplementéren Bits aufgefullt werden.

10. Einrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Rechner eingerichtet ist,
die Platze des Feldes fir die Bits des jeweiligen verschlisselten Zeichens und der
jeweiligen Zufallszahl auf Basis einer vorgegebenen bijektiven Funktion, unterschiedlich
von der urspriinglichen Reihung der Bits, festzulegen.

11. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Rechner eingerichtet ist,
als bijektive Funktion eine von einem eingegebenen Benutzerkennwort abhangige

Funktion vorzugeben.

18

12.

13

14.

15.

16.

17.

AT 004 041 U1

Einrichtung nach einem der Anspriiche 9 bis 11, dadurch gekennzeichnet, dass der
Rechner eingerichtet ist, die vorgegebene injektive Funktion fur die Erzeugung der
Codezahlen als von der Anzahl der Zeichen der zu verschliisselnden Daten abhingige
Funktion festzulegen. |

. Einrichtung nach einem der Anspriiche 9 bis 12, dadurch gekennzeichnet, dass der

Rechner eingerichet ist, die vorgegebene injektive Funktion fur die Erzeugung der
Codezahlen von einem eingegebenen Benutzerkennwort abhingig festzulegen.

Einrichtung nach einem der Anspriiche 9 bis 13, dadurch gekennzeichnet, dass die
generierten Zufallszahlen natiirliche Zahlen zwischen 0 und 255 sind.

Einrichtung zum Entschliisseln von mit einer Einrichtung nach einem der Anspriiche 9 bis
14 verschlisselten Daten, mit einem Rechner, dadurch gekennzeichnet, dass der Rechner
eingerichtet ist, aus den zusammen mit den verschliisselten Zeichen iibermittelten
Zufallszahlen mittels der selben vorgegebenen injektiven Funktion die jeweiligen
Codezahlen zu erzeugen, die dann mit den zugehorigen verschliisselten Zeichen iber die
EXKLUSIV-ODER-Funktion logisch verkniipft werden, um die urspriinglichen Zeichen
Zu erhalten.

Einnichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Rechner eingerichtet ist,
unter Anwendung der vorgegebenen bijektiven Funktion die in den jeweiligen Feldern in
unterschiedlichen Reihungen enthaltenen Bits der jeweiligen verschliisselten Zeichen und
zugehdrigen Zufallszahlen in der urspriinglichen Reihung zu ermitteln, bevor die
Codezahlen erzeugt und mit den verschliisselten Zeichen logisch verkntipft werden.

Maschinenlesbarer Programmdatentréger mit einem Computerprogramm, das zur
Durchfithrung eines Verfahrens nach einem der Anspriiche 1 bis 8 eingerichtet ist.

19

AT 004 041 U1

FIG, 1A

Anfan

16-stellige
2 — Zugangsberechtigung
eingeben

[Parameter par() & IR
mitigIN %

3 = aus Zugangsberechtigung
mittels injektiver Funktionen fi
erstelien

4 — Textlangetl=0

Anzahl L der einzulesenden
5 — Zeichen der Original - Datei
bestimmen.

Zeichen um 1 erhshen

| Anzahl der einzulesenden F

1l =ti+1
L

Datenzeichen a$
einlesen und
ASC(a$) erzeugen
Bindrform von
ASC(a$) erzeugen
ASC(a$)bin

8-Bit

+
Zufaliszahlen vc
mittels Zufallszahlengenerator
mit ve £IN L%

erzeugen

10 —

(FIG. 1E)

(Fig.

1B)

AT 004 041 U1

FIG. 1B
(FIG. 14)
(FIG. 14)
Bindrform vcbin
11 — aus vc erzeugen
8-Bit
ALGT
12 code 6IN"
mittels der Funktion ALG1
erzeugen
4
Bin&rform codebin
13 aus code erzeugen
~ 8-Bit
A 4
vzbin = ASC(a$)bin XOR codebin
1 4, vzbin Bindrform der Dezimalzahl vz
. 8-Bit
Permutation vbn natadichen
1 5._1 Zahlen n()) miti& IN
mit 1 <= n(f) <= 32 erstellen
Die 1-Bits bzw. 0-Bits von vzbin !
16 |@n den Stellen
~—{ n(1) bis n(8) als s(n(7)) in das
Feld s() speichem :
(FIG.1C)
(FIG. 1C)

21

AT 004 041 U1

FIG. 1C
(FI1G. 1B)

(FIG. 1B)

Die 1-Bits bzw 0-Bits von vcbin
’ an den Stellen

7 =1 n(9) bis n(16) als s(i) In das
Feld s() speichem

18 Erzeugen des Komplements von s(n(i))
s(n() =1 nein
1€1,23.4,56.7,89,10,11,12,13,14,15,16}

ja

19 —3s(n(i+16)) =0 20 = s(n(i + 16)) =1

. 4

Speichem des Komplements im Feld s
Anmerkung :

21 Das Feld s()besteht aus genau 16 Zahlen
des Typs 1 und genau 16 Zahlen
des Typs 0.(Unentscheidbarkeit)

<

\ Kornprin)iereh von s(
22 — | auf 4 Byles.

Speichem in Codedatei

. _<>‘ N

L 4

nein }

24—1 ENDE

22

AT 004 041 U1
vzbin vcbin
A\ /N

FIG. 2

23

FIG., 2A

31

AT 004 041 U1

Anfan

32 =

1G6-stellige

Zugangsberechtigung
~ eingeben

33 —

Dic Parameter par(i)& IR

mit i {IN¥

aus Zugangsberechtigung
mitiels injektiver Funktionen fi
erstelien

34 —]

Textlénge tl =0

35-\4

—
Anzahl L der Bytes
der zu
entschliisselenden
Codedatei bestimmen

38—

Textlange t§ wm 1 erhéhen
U=tt + 1

39~

4 Bytes

aus Codedatei lesen,
il - ten Satz sQ)
dekomprimieren

40—

Permufation von natarlic

Zahlen n(i) mit i& IN

mil 1 <= n(i) <= 32 erstellen.
Anmerkunkung: Es handelt sich
um die gleiche Permutation wie bei
der Verschliisselung,

41—

Die 1-Bits bzw. 0-Bits von vcbin
werden aus dem Feld s() an den
Stellen n(1).....n(8)

-ausgelesen.

8-Bit

(F1G. 3B)

24

(P76

LR

FIG. 2B

42 —~

AT 004 041 U1

(FIG. 34)

Dezimalform vc von
der Binirform vcbin

ermitteln

43~

Die 1-Bits bzw. 0-Bits von vzbin
werden aus dem Feld sQ an den
Stellen n(9).....n(16)

ausgelesen.

8-Bit

44~

ALGI .

code& IN4SF

wird mittels der. Funktion ALGI
welche von den Parameiern par (i)

mit i& IN*é sowie von ve und il abhingt,

erzeugt

45 ~—

Aus der Dezimalform code wird
die Binirform codebin
hergestellt

8-Bit

v

Entschliisselung
ASC(a$)bin = vzbin XOR codebin

47—

e ———

&
Das Originalzeichen a$ wird
aus ASC(a$)bin bestimmt und
in der EntschlOsselungsdatei
gespeichert

48
ti<L/4

(FIG. 3A)

nein

49 ENDE |

25

ja

OSTERREICHISCHES PATENTAMT
A-1014 Wien, Kohimarkt 8-10, Postfach 95 AT 004 041 U1
TEL. +43/(0)1/53424; FAX +43/(0)1/53424-535; TELEX 136847 OEPA A
Postscheckkonto Nr. 5.160.000; UID-Nr. ATU38266407; DVR: 0078018

RECHERCHENBERICHT zu 15 GM 715/99
Thr Zeichen:

Klassifikation des Antragsgegenstandes gemiB IPC’ : GOGF 7/58, HO4L 9/20, HO4L 9/18,
Recherchierter Priifstoff (Klassifikation): GO6F, HO4L

Konsultierte Online-Datenbank: EPODOC, WPI, PAJ, ACM Digital Library

Die nachstehend genannten Druckschriften konnen in der Bibliothek des Osterreichischen Patentamtes wihrend
der Offnungszeiten (Montag bis Freitag von 8 - 12 Uhr 30, Dienstag 8 bis 15 Uhr) unentgeltlich eingesehen
werden. Bei der von der Hochschiilerschaft TU Wien Wirtschaftsbetriebe GmbH im Patentamt betriebenen
Kopierstelle konnen schriftlich (auch per Fax. Nr. 01 /533 05 54) oder telefonisch (Tel. Nr. 01 / 534 24 - 153)
Kopien der ermittelten Veroffentlichungen bestellt werden.

Auf Anfrage gibt das Patentamt Teilrechtsfihigkeit (TRF) gegen Entgelt zu den im Recherchenbericht genannten
Patentdokumenten allfillige versffentlichte ,,Patentfamilien (denselben Gegenstand betreffende
Patentverédffentlichungen in anderen Landern, die iiber eine gemeinsame Prioritdtsanmeldung zusammenhZingen)
bekannt. Diesbezligliche Auskiinfte erhalten Sie unter der Telefonnummer 01 / 534 24 - 725.

Kategorie Bezeichnung der Ver6ffentlichung o Betreffend
(Landercode, Verdffentlichungsnummer, Dokumentart (Anmelder), Anspruch
Veroffentlichungsdatum, Textstelle oder Figur (soweit erforderlich)

A EP 877 509 A2 (IBM), 11.11.1998 1-17
* gesamtes Dokument *

A US 5,841,872 A (COLVIN), 24.11.1998 1-17
* gesamtes Dokument *

A LEIBERICH Otto.'Vom diplomatischen Code zur 1-17
Falltiirfunktion'. In: Spektrum der Wissenschaft, Juni 1999,
S.26-29.

* 8.30, 3. Spalte iiber Wurm- oder Strom-
Chiffrierverfahren *

[X] Fortsetzung siehe Folgeblatt

Kategorien der angefithrten Dokumente (dient in Anlehnung an die Kategorien bei EP- bzw. PCT-

Recherchenberichten nur zur raschen Einordnung des ermittelten Stands der Technik, stellt keine Beurteilung
der Erfindungseigenschaft dar):

»A% Veroffentlichung, die den allgemeinen Stand der Technik definiert.

»Y“ Verdffentlichung von Bedeutung; die Erfindung kann nicht als neu (bzw. auf erfinderischer T#tigkeit
beruhend) betrachtet werden, wenn die Verdffentlichung mit einer oder mehreren weiteren Versffentlichungen
dieser Kategorie in Verbindung gebracht wird und diese Verbindung fiir den Fachmann naheliegend ist.

»X“ Vertffentlichung von besonderer Bedeutung; die Erfindung kann allein aufgrund dieser Druckschrift nicht
als neu (bzw. auf erfinderischer Titigkeit beruhend) angesehen werden.

»P* zwischenverbffentlichtes Dokument von besonderer Bedeutung (iilteres Recht)

»&“ Verdffentlichung, die Mitglied derselben Patentfamilie ist.

Léndercodes:

AT = Osterreich; AU = Australien; CA = Kanada; CH = Schweiz; DD = ehem. DDR; DE = Deutschland;
EP = Europiisches Patentamt; FR = Frankreich; GB = Vereinigtes Konigreich (UK); JP = Japan;

RU = Russische Foderation; SU = ehem. Sowjetunion; US = Vereinigte Staaten von Amerika (USA);
WO = Verbffentlichung gem. PCT (WIPO/OMPI); weitere siche WIPO-Appl. Codes

Datum der Beendigung der Recherche: 25.8.2000 Priiferin: Fastenbauer

Vordruck RE 31a - Recherchenbericht - Z1.2258/Pris.95

26

OSTERREICHISCHES PATENTAMT
A-1014 Wien, Kohimarkt 8-10, Postfach 95

TEL. +43/(0)1/53424; FAX +43/(011/53424-535; TELEX 136847 OEPA A
Postscheckkonto Nr, 5.160.000; UID-Nr. ATU38266407; DVR: 0078018

AT 004 041 U1

Folgeblatt zu GM 715/99

Kategorie

Bezeichnung der Versffentlichung
(Lindercode, Verdffentlichungsnummer, Dokumentart (Anmelder),
Veroffentlichungsdatum, Textstelle oder Figur (soweit erforderlich)

Betreffend
Anspruch

A

TANG Le1."Methods for Encrypting and Decrypting MPEG
Video Data Efficiently’. IN: Proceedings of the fourth ACM
International multimedia conference on Proceedings ACM
Multimedia 96. Nov. 1996, Boston

* gesamtes Dokument*

KLEIN Shmuel T., BOOKSTEIN Abraham,
DEERWESTER Scott. 'Storing Text Retrieval Systems on
CD-ROM: Compression and Encryption Considerations'.IN:
ACM Transactions on Information Systems, Vol.7, No.3, Juli
1989, S.230-245.

* gesamtes Dokument *

1-17

1-17

[_] Fortsetzung siehe Folgeblaut

Vordruck RE 31b. - Recherchenbericht.-Folgeblaut - Z1. 1010/Pris.98

27

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

