02/03195 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 January 2002 (10.01.2002)

PCT

(10) International Publication Number

WO 02/03195 A2

(51) International Patent Classification’: GOG6F 9/00

(21) International Application Number: PCT/US01/19143

(22) International Filing Date: 15 June 2001 (15.06.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

09/608,785 30 June 2000 (30.06.2000) US

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US];
M/S UPALO1-521, 901 San Antonio Road, Palo Alto, CA
94303 (US).

(72) Inventor: KAMPE, Mark, A.; 4232 Glenwood Avenue,
Los Angeles, CA (US).

(74) Agents: BURTON, Carol, W. et al.; Hogan & Hartson
LLP, Suite 1500, 1200 17th Street, Denver, CO 80202 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™M, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title:

SYSTEM AND METHOD FOR SIMPLIFYING AND MANAGING COMPLEX TRANSACTIONS IN A
DISTRIBUTED HIGH-AVAILABILITY COMPUTER SYSTEM

(57) Abstract: A method and system that manage upgrades in a high-availability computer system by viewing the upgrade process as
driving the system between a succession of stable configurations. The mechanism used by a described embodiment is an availability
manager that is capable of ascertaining the state of each component and driving it toward a goal state by driving toward a succession
of desired stable configurations. A high-level orchestration agent instructs the availability manager when a stable configuration has
been reached and it is time to drive toward a next stable configuration.

WO 02/03195 PCT/US01/19143

10

15

20

25

SYSTEM AND METHOD FOR SIMPLIFYING AND MANAGING
COMPLEX TRANSACTIONS
IN A DISTRIBUTED HIGH-AVAILABILITY COMPUTER SYSTEM

BACKGROUND OF THE INVENTION

Technical Field

This invention relates generally to the reliability of data processing
systems, and more particularly, to a system and method for managing

upgrades of distributed data processing systems.

Background of the Invention

Computers are becoming increasingly vital to servicing the needs of
business. As computer systems and networks become more important to
servicing immediate needs, the continued availability of such systems
becomes paramount. System availability is a measure of how often a system
is capable of providing service to its users. System availability is expressed
as a percentage representing the ratio of the time in which the system
provides acceptable service to the total time in which the system is required to
be operational. Typical high-availability systems provide up to 99.999 percent
(five-nines) availability, or approximately five minutes of unscheduled
downtime per year. Certain high-availability systems may exceed five-nines

availability.

In order to achieve high-availability, a computer system provides
means for redundancy among different elements of the system. Clustering is
a method for providing increased availability. Clusters are characterized by
multiple systems, or "nodes," that work together as a single entity to
cooperatively provide applications, system resources, and data to users.
Computing resources are distributed throughout the cluster. Should one node
fail, the workload of the failed node can be spread across the remaining
cluster members. An example of a clustered computer system is the SunTm

Cluster product, manufactured by Sun Microsystems, Inc.

WO 02/03195 PCT/US01/19143

10

15

20

25

30

Most high-availability service clusters (such as, for example, a network
element in a telephone network) contain redundant components that can take
over in case some components fail. Such redundant components are used
not only to compensate for failed system components ("failover"), but are also
used to make it possible to upgrade the system with no downtime. One
preferred way to upgrade a system with redundant components is to use the
so-called "rolling upgrade,” in which nodes are taken down and upgraded one
at a time. For a pair of nodes, a down node's redundant component operates
in its place while the other node of the pair is down. One drawback to this
method is that it requires all pairs of nodes to be full interoperable between
old and new versions of the nodes. Thus, in general, a rolling upgrade can
only be used in systems that are written and specified to have full
interoperability between the old version and the upgrade version. Many
application developers are not prepared to make this commitment. Another
upgrade mode is a "split mode upgrade," where redundant components are
taken out of service, and upgraded to a new release. There is then an
exchange of states from the old components to the now components. During
this transition, however, old components only provide service to old
components, and new components only provide service to new components.
The only interoperation is the exchange of states between old and new
instances of components implementing the same service. After the new
components take over, the old components can be upgraded. This method
generally does not entail any loss of service, but may involve a temporary loss

of redundancy or capacity.

As an example, a typical split mode upgrade might involve the

following steps:
° identify components to comprise the new domain
° fail any of these components that are busy over to spares
° take the new domain components out of service

° upgrade the new domain components

WO 02/03195 PCT/US01/19143

10

15

20

25

° form a new high-availability cluster of the upgraded elements
° match-make between old and new clusters

° perform state-transfer and cut-over from old to new cluster

° take old cluster elements out of service

° upgrade old cluster elements

° have upgraded old elements join new cluster

° re-establish preferred primary/secondary configurations.

Each of these steps is, by itself, a non-trivial operation that can fail,
and the overall process must run to completion even if the process that is
driving it fails halfway through the process. Generally, system upgrades
involve the user specifying in detail which components have which actions
done to them at which times. This involves detailed planning on the part of
the system operator and does not lend'itself to changes or modification of the

upgrade process.

Thus, there is a need for a system that manages upgrades in a

distributed processing system that is robust enough to handle failures during

. the upgrade process.

SUMMARY OF THE INVENTION

The present invention manages systems upgrades in a high-availability
computer system by viewing the upgrade process as driving the system
between a succession of stable configurations. Each of these stable
configurations is a configuration in which the system can be safely left for an
extended period of time without failure, if need be. The mechanism used by a
described embodiment is an availability manager that is capable of
ascertaining the state of each component and driving it toward a goal state by

driving toward a succession of desired stable configurations.

If the availability manager fails in the middle of the process, the

intermediate configuration (how far the upgrade has gotten) is of no

3

WO 02/03195 PCT/US01/19143

10

15

20

25

importance because a new instance of the availability manager will simply
look at the current and the desired configurations and start driving each
individual component toward its desired state (and ultimately toward the

system goal configuration).

If any of these operations fails (i.e., the control engine determines that
it is not possible to drive the system to the desired configuration), unwinding
the operation is accomplished by running backwards through the succession
of configurations until an acceptable alternative configuration is reached.
Thus, even if an upgrade cannot be accomplished, the availability of the

system is maintained.

In one embodiment of the present invention, a high-availability
computer system includes a plurality of nodes. Each node includes a plurality
of components, which can be hardware or software entities within the
computer system. An availability management system manages the

operational states of the nodes and components.

The availability management system includes an orchestration agent
that communicates with the availability manager and manages the high-level
succession of configurations. When an orchestration agent decides that a
target configuration has been achieved, it instructs the availability manager to

start driving the components toward the state of the next target configuration.

Advantages of the invention will be set forth in part in the description
which follows and in part will be apparent from the description or may be
learned by practice of the invention. The objects and advantages of the
invention will be realized and attained by means of the elements and

combinations particularly pointed out in the appended claims and equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure | is an overview of a cluster within a high available computer

system in accordance with an embodiment of the present invention.

WO 02/03195 PCT/US01/19143

10

15

20

25

Figure 2 is a block diagram of an individual component operating within
a high-availability computer system architecture in accordance with an

embodiment of the present invention.

Figure 3 is a diagram of the states that a component may take within a
high-availability computer system architecture in accordance with an

embodiment of the present invention.

Figure 4 is a block diagram of components of an availability
management system in accordance with an embodiment of the present

invention.

Figure 5 is a flow chart of a method of performing an upgrade in a

computer system, such as the system of Figure 1.

Figure 6 is a flow chart of a method of performing an upgrade in a

computer system, such as the system of Figure 1.

Figure 7 is a block diagram of a control engine that helps control a

system upgrade.

Figures 8(a) and 8(b) show an example of a succession of system

configurations in an example upgrade.

Figures 9(a) and 9(b) show another example of a succession of system

configurations in another example upgrade.

Figure 10 is a block diagram of a cluster within a computer system,
including an availability management system in accordance with an

embodiment of the present invention.

Figure 11 is a block diagram of the availability management system of

Figure 10 in accordance with an embodiment of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

[t will be understood that, although the present invention is described in
the context of a high-availability distributed computer system, the present

invention can be used in conjunction with a wide variety of computer systems

WO 02/03195 PCT/US01/19143

10

15

20

25

30

and is not limited to a high availability system. In a first section, certain
components of an example high-availability computer system are discussed.
Then, in a second section, a system and method for upgrading the
high-availability computer system is discussed. Lastly, in a third section, an

example high-availability computer system is discussed.
I An Example High-Availability Computer System

Figure | shows an overview of a cluster arrangement within a computer
system. Such a system would generally contain multiple clusters. A cluster
100 contains three nodes 102, 104 and 106. Each node is a processing
location within the computer system. Nodes 102, 104 and 106 are connected
to each other by a set of multiple redundant links 108 so that the failure of a
single interconnect cannot isolate that node from its "peers" and hence from
the cluster. Multiple redundant link 108A connects nodes 102 and 104.
Multiple redundant link 108B connects nodes 104 and 106. Multiple
redundant link 108C connects nodes 106 and 102.

Cluster 100 also contains a group of components 110 (110A, 110 B,
110C, 110D, 110E and 110F) representing hardware and software entities
within the cluster 100. Components 110A, 110B and 110C are located
outside of the nodes of the cluster 100. However, components 110D and
110E are located in node 102, and component 110F is located in node 104.
The availability of components 110 and nodes 102, 104 and 106 is managed
by an availability management system 120 located in node 106. Availability
management system 120 additionally manages the overall health of the
cluster 100 and manages upgrades to the cluster, as described below. It will
be understood by one of skill in the art that other clusters may contain more

or fewer nodes and more or fewer components.

In one embodiment, each respective node 102, 104 and 106 contains
a copy of the operating system 112A, 112B and 112C used within the cluster
100. A copy of the operating system 112 is stored in executable memory,
and may be rebooted ftom disk storage (not shown) or from a computer

network connected to the cluster 100. The operating system 112 may also be

6

WO 02/03195 PCT/US01/19143

10

15

20

25

30

stored in nonvolatile random access memory (NVRAM) or flash memory.
Individual nodes 102, 104 and 106 can each be rebooted with no effect on

the other nodes.

Nodes 102, 104 and 106 cooperate jointly to provide high-availability
service. Each node 102, 104 and 106, all of which are members of the
cluster 100, is referred to as a "peer" node. If one of the peer nodes fails or
has to be serviced, another peer node will assume his work, and the cluster
100 will continue to provide service. One role of the availability management
system 120 is to detect failures within the system and orchestrate failure
recovery. Availability management system 120 also manages upgrades as
described below. Applications running on peer nodes interact through a
location-independent distributed processing environment (DPE) so that work
can be easily migrated from a failing node to another healthy peer node. The
multiple redundant links 108 ensure that a failure by a single interconnect
cannot isolate a node from its peers. For example, if a single interconnect
within link 108A fails between nodes 102 and 104, there are other redundant
interconnects within link 108A to continue service between nodes 102 and
104.

The availability management system coordinates operational states of
components to implement a desired redundancy model within the computing
system. Components within the system are able to directly participate in
availability management activities. such as exchanging checkpoints with
backup components, health monitoring, and changing operational states.
However, the availability management system does not require that indiviGual
system components understand the redundancy model and fail-over policies
such as, for example, who is backup for whom, and when a switch should

take place.

Within the availability management system, an availability manager
receives various reports on the status of components and nodes within the
system. The availability manager uses these reports to direct components to

change state, if necessary, in order to maintain the required level of service.

7

WO 02/03195 PCT/US01/19143

10

15

20

25

30

Individual components may report their status changes, such as a failure or a
loss of capacity, to the availability manager via in-line error reporting. In
addition, the availability management system contains a number of other
elements designed to detect component status changes and forward them to

the availability manager.

The set of components 110 within cluster 100 are individual hardware
or software entities that are managed within the cluster to jointly provide
services. The availability of such jointly managed components 110A-F is
greater than the availability of any single component. The availability
management system 120 assigns available selected components to act as
standbys for active components, and introduces the active and standby
components to each other. For example, availability management system
120 could assign components 110D, 110E and 110F to serve as standbys for
active components 110A, 110B and 110C. Components are introduced to
one another by an exchange of messages with the availability management
system 120.

Figure 2 is a block diagram of an individual component operating within
a high-availability computer system architecture in an embodiment of the
present invention. Component 110 interacts with an availability management
system 120. Component 110 contains physical device drivers 210 and
applications 220. The drivers 210 and applications 220 comprise the
functionality for which component 110 is designed. As will be evident to one
of skill in the art, component 110 may contain a wide variety of different
drivers 210 and applications 220. Figure 2 also includes a second
component 111, which includes another instance of application 220, i.e.,
application 220'. An arrow 251 represents an exchange of checkpoints

between the applications 220 and 220'.

Availability management system 120 has limited visibility into the'inner
workings of component 110 and 110'. The components therefore assumes
significant responsibility for their own management. For example, component

| 10 includes several features for internal fault detection. Component 110 has

8

WO 02/03195 PCT/US01/19143

10

15

20

25

30

an auditing function 230 for detecting its own faults and reporting them to the
availability management system 120. Component 110 also includes a
diagnostics function 240 for deter-mining whether component | 10 itself is
currently suitable for service. Component | 10 further includes an error
analysis function 250 for detecting, containing, and if possible repairing

internal failures.

High-availability computer systems may be implemented using a
variety of different component redundancy schemes. The availability
management system 120 of the present invention is capable of supporting
several different redundancy models. Different redundancy models may be
used for different products utilizing the same availability management system
120. Individual components need not understand the redundancy model or
the sensing and management networks and policies that control their use.
The availability management system 120 directs components to change
states, at the appropriate times, to implement the desired redundancy model.
This enables a single component implementation to be used in a wide range

of products.

Figure 3 is a state diagram illustrating the states that a component can
take within a high-availability computer system architecture in an embodiment
of the present invention. In the described embodiment, a component may
take one of four different states: off-line 3 10, spare 320, secondary
(stand-by) 330, or primary (active) 340. Other states may be possible in other
embodiments. An off-line 3 10 component can run diagnostics or respond to
external management commands, but is not available to perform services. A
spare 320 component is not currently performing any services but is available
to do so at any time. A secondary 330 component may not actually be
carrying system traffic, but it is acting as a stand-by for a primary 340
component, and the secondary 330 component is prepared to assume an
active role at any time. A primary 340 component is active and providing
service in the system. If a secondary 330 component has been assigned to it,

the primary 340 component is also sending regular checkpoints to its

WO 02/03195 PCT/US01/19143

10

15

20

25

30

secondary 330. The checkpoint messages keep the secondary 330 informed
of the current status of the primary 340. The same checkpoint mechanism
that is used to keep a secondary up-to-date in case of a fail-over can also be
used to transfer state from a primary running a particular release to a

secondary running another release.

Figure 4 is a block diagram of an availability management system 120
in an embodiment of the present invention. Availability management system
120 includes at least: an availability manager 405 and an orchestration agent
406. It may optionally include separate configuration data 407 or this data
may be incorporated into one of the elements 405, 406. The availability
management system 120 assigns components to active and stand-by roles
according to a wide range of possible redundancy models, without requiring
the components to understand the overall system configuration. The
availability management system 120 also assists components in the
monitoring of their own health, without constraining how individual
components ascertain their own health. The availability management system
120 farther gathers information about component health from a variety of
direct and indirect sources, and facilitates the exchange of checkpoints
between active and stand-by components. The functionality of the availability
management system as described herein is preferably implemented as
software executed by one or more processors, but could also be implemented

as hardware or as a mixture of hardware and software.

Error messages and other types of events are reported through
different inputs into the components of the availability management system
120. Event and error reports are consolidated for final decision-making in the
availability manager 405. The availability manager 405 outputs 480
component state messages and state change information to accomplish the
management tasks of the availability management system 120. The
availability manager 405 receives component error reports from other
components in the system and passes current state information, including

these component error reports, to orchestration agent 406. Orchestration

10

WO 02/03195 PCT/US01/19143

10

15

20

25

30

agent 406 passes new target configuration information to availability manager
405. Configuration data, including a succession of target configurations is

sent from configuration data 407 to orchestration agent 406.
Il System Upgrades

As discussed above, it is imperative that a high-availability system can
be upgraded without having to shut down the system. In the described
embodiment, availability manager 405 and orchestration agent 406 act
together to control and manage system upgrades. A basic tenet of upgrades
performed in accordance with the present invention is that the system passes
through a succession of predefined stable configurations. A configuration
specifies, for a particular service domain, which components should be in

which states (primary, secondary, spare, etc.).

The present invention uses the concept of a "service domain." A node
is, at any given tirhe, a member of exactly one service domain. A node's
domain is primarily defined by related to the software release from which it
boots. Thus, if a node boots with version 1.0 of the system software, it is in
the "release 1.0" service domain. In the described embodiment, changing the
service domain of a node requires a reboot of the node. A cluster may be
made up of multiple service domains. Different service domains may offer
and participate in the same or different sets of services. If all services are
fully operable, then a rolling upgrade is possible. If some services are not
fully operable, then those services must be kept distinct between different
domains (e.g., components in domain1 participate in a different instance of

that service than components in domain2).

As an example, different service domains may have different registries,
name services, and publish/subscribe lists, although this is not required.
Different service domains each support their own registry because different
versions of software may require different configuration data. Because
applications in different service domains are not required to interoperate in
the described embodiment, different service domains can have different

name spaces and different publish/subscribe lists. Components "register" for

11

WO 02/03195 PCT/US01/19143

10

15

20

25

30

a particular domain in response to instructions from availability manager 405.
Information as to which domain contains which components is stored in a
registry for that domain. When a component completes it initialization it
registers to participate in the domain that is appropriate for the version of

software it is running.

Even if they have different domains, nodes in a cluster are all members
of the same cluster and acknowledge the same cluster master. Similarly,
nodes in a cluster can all exchange messages with one another through a
messaging service that is interoperable between domains. Similarly, all

nodes in a cluster register with a single availability manager 405.

The following paragraphs describe a "split mode" upgrade in which the
nodes and devices in the network are divided into two groups. One group
continues to provide service, while the other is upgraded. Once the second
group is ready, the active work is handed-off from the old group to the new
one, after which the old group can be upgraded, and re-merged into a single
network element again. These two groups have two different service

domains corresponding to the old and upgraded software versions.

The upgrade process in divided into two levels. Progress between
high-level configurations is controlled by an orchestration agent 406, while
progress of the state of each component in a node within a configuration is
controlled by availability manager 405. This division into levels results in a
process that is much more robust in the face of failures of the controlling
nodes. [t also isolates the higher-level orchestration mechanism from the

complexity of managing the individual nodes.

Figure 5 is a flow chart of a method of performing an upgrade in a
system, such as the system of Figure 1. In the described embodiment, the
method is performed by orchestration agent 406. In element 502,
orchestration agent 406 identifies a succession of stable system
configurations. These configurations are preferably provided in Configuration
Data 407, as shown in Figure 5. A stable state is preferably defined as a

state in which the system can safely run for a prolonged period of time. This

12

WO 02/03195 PCT/US01/19143

10

15

20

25

30

definition arises out of the fact that failures may prevent the system from

moving quickly on to the next configuration.

It should be noted that some of step 502 can be performed at design
time, and other parts of step 502 can be performed at run time. Different
embodiments may divide these activities differently. For a typical split-mode
upgrade (as illustrated in Figures 8(a) and 8(b)), the general goals of each of
the four successive configurations are fixed at design time. The only work
done at run-time in the described embodiment is the assignment of particular
components to the old and new domains. In a 2N redundant configuration,
this can easily be done automatically (active components in the old domain,
standbys in the new domain). For more complex configurations this
assignment can be done automatically via product specific rules, or with
human assistance. The progress rules in step 502 can also be defined partly
at design time and partly at run-time. The design time decision would be to
designate classes of components, whose failure would result in an
automatic-fall-back, or stopping and awaiting operator intervention. The
run-time decision would be to assign particular component instances to those
classes. For some embodiments, this too can be entirely rule based (for
example, the failure of a component for which other instances exist is not

fatal). Other embodiments might require human input.

Configuration Data 407 may be determined at least partly by a human
being, as in the described embodiment, or may be determined automatically
or semi automatically under software control. In element 504 of Figure 5,
orchestration agent 406 loads an initial configuration that acts as a "current”
configuration. This example configuration has 2N redundant components,
where each has a backup and also has N+1 redundant components, where
one back-up serves multiple primaries. Element 506 is the top of a loop and
determines whether a final configuration has been reached. This final
configuration also is preferably defined in Configuration Data 407 and
represents a system configuration of an upgraded system. Orchestration

agent 406 looks at the current states of the components (received in the

13

WO 02/03195 PCT/US01/19143

10

15

20

25

30

embodiment from cluster membership monitor 420) and at component error
reports (received in the embodiment from availability manager 405). This
information is obtained from the availability manager 405 via predefined APIs
and (optionally) via events subscribed to by orchestration agent 406. If a final

configuration has not been reached, control passes to step A of Figure 6.

Figure 6 is a flow chart of a method of performing an upgrade in a
system, such as the éystem of Figure 1. In the described embodiment, the
method is performed by orchestration agent 406 and is a continuation of the
method of Figure 5. If control reaches element 602, the system has not
reached a final target configuration. Element 602 determines whether a
"next" target configuration in the succession has been reached. The
successive target configurations are defined in Configuration Data 407.
Orchestration agent 406 looks at the current states of the components
(received in the embodiment from cluster membership monitor 420) and at
component error and status reports (received in the embodiment from
availability manager 405). For example, the availability manager might
generate an event reporting on its inability to complete a requested
component state change. As another example, a component that was unable
to boot in a new domain would publish an event to describe the problem
before rebooting. As another example, too much time may have elapsed
since a node was instructed to reboot and join a specific domain. In each of
these cases, orchestration manager 406 would realize that the target

configuration has not been reached.

If the next target configuration has been reached, in element 604
control passes to element B of Figure 5. In element 604, orchestration
manager 406 obtains a next target configuration from Configuration Data 407

and loads the new configuration target into the availability manager.

If the next target configuration has not been reached, in element 604
orchestration agent 406 consults its progress rules to determine what action

(if any) to take. Each configuration has one or more associated progress

14

WO 02/03195 PCT/US01/19143

10

15

20

25

rules that indicate that actions to take if various configurations are currently

not meetable. Some examples of progress rules may include:
° If HSP | or HSP2 fails to rejoin, fall-back.
° [f NHSP | or NHSP2 fails to rejoin, stop.
° IfAA 1, AA2, AB 1, or AB2 fails to come up, retry.
° If 2 of PLI, PL2, or PL3, come up, continue.
° Ifless than 2 of PL |, PL2, or PL3 come up, fall-back.

These actions may include changing the final/ultimate configuration
sought (element 612), "backing up" to a different target configuration (element
606), stopping the upgrade and contacting a human operator or other
diagnosis subsystem (element 608), and retrying to reach the target

configuration (element 610).

Figure 7 is a block diagram of a software control engine 702 in
availability manager 405 that helps control a system upgrade. In general,
availability manager 405 will attempt to drive the system towards the current
target configuration, changing component states and reassigning service
roles as necessary. If, for example, the cluster master node containing
availability manager 405 fails in the middle of the upgrade process, its
successor cluster master will know (through a checkpoint mechanism) what
the current target configuration is and will continue to drive the system
towards it. The successor does not need to know which actions have already
been taken, and which ones remained fo be taken. All he needs to know is
the current states of every component in the system and the target state. The
concept of driving the system towards a target configuration lends itself to a

very robust orchestration mechanism.

Engine 702 receives information concerning the current states of
components in the system. Availability manager 405 periodically receives a
new target configuration from orchestration agent 406. Each new target

configuration includes the desired component states of the target

15

WO 02/03195 PCT/US01/19143

10

15

20

25

configuration. In accordance with internal rules or tables (see, for example,
Figure 8), availability manager 405 drives each component in turn toward its
desired state. In the described embodiment, this means that availability
manager 405 sends adjust component state messages and publishes state
change information as shown by arrow 480 of Figure 4. For example,
availability manager 405 may issue a "quiesce" command to a component,
indicating that the component is to "become quiescent.” Similarly, availability
manager 405 may issue a "become secondary" command to a component
indicating that the component should consider itself secondary to a defined
primary component. [f any command from the availability manager 405 fails,
the availability manager will generate a reconfiguration error and attempt to

ensure that the service in question continues.

Figures 8(a) and 8(b) show an example of a succession of system
con{‘igurations in an example upgrade. In the example, the system contains
two host slot processors HSP | and HSP2, each of which runs a copy of
application A (AA | and AA2) and a copy of application B (AB | and AB2).

The example system also includes two non-host slot processor SHSP | and
SHSP2 and three payload cards PL1, PL2, and PL3. In this example, the
availability manager and orchestration manager run on the active HSP. In the
example, there are 2N slot processors, 2N copies of application A, 2N copies
of application B, 2N copies of non host slot processors, and N+l payload

cards.
A high level overview of the four target configurations would be:

first: the initial, typical running configuration with active and standby

components

second: split off the stand-by components to form a new domain,

where they will again be secondaries to primaries in the old domain

third: hand-off primary responsibilities from the components in the old

domain to their secondaries in the new domain

16

WO 02/03195 PCT/US01/19143

10

15

20

25

30

fourth: move the (now idle) components from the old domain into the

new domain

As shown in the figure, an initial configuration would have HSP1 as
master in service domain one, which includes an instantiation of HSP2, AAl
(primary state), AA2 (secondary state), AB 1 (primary state), A132 (secondary
state), NHSP | (primary state), NHSP2 (secondary state), PLI (primary state),
PL2 (primary state), PL3 (secondary state). This first configuration is the

configuration at the beginning of the upgrade process.

A second, target configuration would have HSP 1 as master in service
domain one and HSP2 as master in service domain two. Service domain one
includes: AAI (primary state), AA2 (spare state), AB | (primary state), AB2
(spare state), NHSPI (primary state), NHSP2 (spare state), PLI (primary
state), PL2 (primary state), PL3 (spare state). To achieve this configuration
for domain one, availability manager 405 has driven AA2, AB2, NHSP2, and
PL3 from secondary states to respective states of "spare." Service domain
two (upgraded components) includes: AA2 (secondary state), A-132
(secondary state), NESP2 (secondary state), and PL3 (secondary state). To
achieve this configuration for domain two, orchestrating agent 406 waits until
the indicated components are all in spare status in domain one and then
instructs HSP2 and NHSP2 to reboot the new release in domain two. Note
that in this embodiment, components moving into domain two are configured
as spare in the old domain (domain one). This permits their reintegration into
domain one if they automatically fall back as a result of a failure to properly

come up in the new domain.

A third, target configuration would have HSP2 as master in service
domain two and HSP | in service domain two. Service domain two includes:
AA2 (primary state), AM (secondary state), AB2 (primary state), AB1
(secondary), NHSP2 (primary state), NHSP | (secondary state), PL3 (primary
state), PLI (spare state) and PL2 (spare state). To achieve this configuration
for domain two, availability manager 405 has driven AA2, AB2, NHSP2, and

PL3 from states of secondary to respective states of primary. Service domain

17

WO 02/03195 PCT/US01/19143

10

15

20

25

30

one includes: AAl (spare state), AB | (spare state), NHSP | (spare state), and
PL2 (spare state). To achieve this configuration for domain one,
orchestrating agent 406 waited until the indicated components were all in
spare status and then instructed HSP | and NHSP | to reboot the new release

in domain two.

A fourth, target configuration is very similar to the initial configuration.
HSPI is master in service domain two and HSP2 is in service domain two.
Service domain two (corresponding to the upgraded release) includes: AA |
(primary state), AA2 (secondary), AB | (primary state), AB 2 (secondary),
NHSP | (primary state), NESP2 (secondary), PL | (primary state), PL2
(primary) and PL3 (secondary). Thus, the original primaries are returned to
primary status in the new domain. (Other embodiments may choose to leave

the former primaries as secondaries.)

Figures 9(a) and 9(b) show another example of a succession of system
configurations in an example upgrade. This example shows a succession of
configurations specified for a "backward" upgrade to return to a previous
release. The example shows an initial configuration and three successive
configurations. The final configuration results in the system being returned to

a previous version, corresponding to service domain one.

It will be understood that the described embodiment includes a
software and configuration upgrade mechanism that is capable of
down-loading new software and new configuration data into an inactive
partition of every boot- and application storage device. It will also be
understood that the described embodiment includes a fail-safe booting
mechanism that is capable of booting any node from either of the two boot
partitions. When a system including a fail-safe booting mechanism performs
a fail-safe boot, on an uncommitted release, it does so in a tentative fashion.
If the system is unable to rejoin the cluster within a predetermined time
period, it will automatically reboot from the previous release. A hardware
watchdog timer enables the system to recover even from a bad operating

system release that causes the entire node to fail.

18

WO 02/03195 PCT/US01/19143

10

15

20

25

30

In at least one embodiment of the present invention, the target
configurations are automatically generated. For 2N redundant components, it
is simple to define the split groups; preferred primaries are placed in the old
domain and preferred secondaries are placed in the new domain. For N+1
redundant components, the described embodiment requires that the basic
redundancy configuration of the system include explicit designations of which
components are to be assigned to the old and new domains. For
components without redundancy, the system preferably specifies that these

are shut down during a split mode upgrade.

It will be understood that the functionality described herein can be
implemented using a wide variety of technologies. In the described
embodiment, functionality of the availability management system, including
the availability manager and the orchestration agent are implemented in
computer software, executable by one or more Processors of the illustrated
cluster computer system. Other embodiments may implement the
functionality as a combination of hardware or software or many implement the
functionality shown without explicitly dividing the functionality between an
availability manager and an orchestration agent. As will be apparent to a
person of ordinary skill in the art, the software implementing this functionality
can be stored on a computer readable medium, such as a computer memory,
a disk, a CD, a dvd, or similar computer readable media. The software can

also be transmitted over a transmission line prior to being executed.

Figure 10 shows an embodiment wherein a centralized availability
management system is structured within the distributed computing
environment of a cluster 1000. It will be understood that the system of Figure
10 is shown only be way of example of a system including the current
invention and is not to be taken in a limiting sense. Information relating to
component availability and upgrade is centralized in a single availability
manager 405. This allows availability decisions to be made in a global
fashion, taking into account information from the entire cluster. Orchestration

agent 406 is also important in upgrade activities as described below.

19

WO 02/03195 PCT/US01/19143

10

15

20

25

30

Cluster 1000 contains three peer nodes 102, 104 and 106. Each node
is interconnected with its peer nodes by a set of multiple redundant links 108.
Each node includes a copy of the operating system 112. The cluster 1000
also includes a set of components 110. Availability manager 405 located in
node 106 receives inputs from various parts of the cluster and manages the
availability of the nodes 102, 104 and 106 and the set of components 110.
Availability manager 405 could alternately be located in node 102 or node

104, if, for instance, the master node 106 failed. .

Each node 102, 104 and 106 contains a cluster membership monitor
1020A, 1020B and 1020C, respectively. Each cluster membership monitor
1020 maintains contact with all other cluster nodes, and elects one of the
nodes to be the "cluster master." The cluster master detects new nodes and
admits them to the cluster, and uses heartbeats to detect failures of existing
members of the cluster. A heartbeat is a short message exchanged regularly
to confirm that the sender is still functioning properly. The cluster master also
acts as a central coordination point for cluster-wide synchonization
operations. In cluster 1000, node 106 is the cluster master. Cluster
membership monitor 1020A provides a heartbeat for node 102 to cluster
membership monitor 1020C. Cluster membership monitor 1020B provides a
heartbeat for node 104 to cluster membership monitor 1020C. The
availability manager 405 typically runs on the cluster master node, to avoid

numerous race conditions and distributed computing issues.

When a node becomes non-responsive, the cluster membership
monitor responsible for monitoring that node reports this error to the
availability manager 405. For example, if node 104 becomes non-responsive,
cluster membership monitor 1020C will no longer receive a heartbeat for node
104 from cluster membership monitor 1020B. Cluster membership monitor
1020C would report this error to the availability manager 405. In an
alternative embodiment of the availability management system with only a

single node, a cluster membership monitor is not required.

20

WO 02/03195 PCT/US01/19143

10

15

20

25

30

Cluster 1000 also contains a multi-component error correlator (MCEC)
10 10 located in node 106. Components 110 report component status
changes to the MCEC 1010. The MCEC 1010 receives both specific and
non-specific event reports and attempts to infer the system failure that has
caused these events. For example, there are situations where an error
cannot reasonably be immediately isolated to a particular component,
because the symptoms seen by any one component are inconclusive. Only
correlating reports from multiple components can identify the real problem. In
the embodiment shown in Figure 10, the MCEC 1010 is located on the cluster
master node 106. However, in another embodiment the MCEC 1010 may be
located on a different node. The MCEC 10 10 uses pre-configured rules to
decide whether or not a sequence of events matches a known pattern,
corresponding to a known error. When a match is found, the MCEC 1010
reports the error to the availability manager 405 as a component error report.
Examples of component error reports include a component failure and a
component loss of capacity. The MCEC 1010 may also perform filtering

actions upon the event reports received.

Figure 11 is a block diagram of an availability management system
1120 in an embodiment of the present invention. An availability management
system 1120 includes: an availability manager 405, an orchestration agent
406, a multi-component error correlator (MCEC) 1010, a health monitor 1140,
a watch-dog timer 1150, and a cluster membership monitor 1020. The
availability management system 1120 assigns components {o active and
stand-by roles according to a wide range of possible redundancy models,
without requiring the components to understand the overall system
configuration. The availability management system 1120 also assists
components in the monitoring of their own health, without constraining how
individual components ascertain their own health. The availability
management system 1120 further gathers information about component
health from a variety of direct and indirect sources, and facilitates the

exchange of checkpoints between active and stand-by components. The

21

WO 02/03195 PCT/US01/19143

10

15

20

25

30

functionality of the availability management system as described herein is
preferably implemented as software executed by one or more processors, but
could also be implemented as hardware or as a mixture of hardware and

software.

Error messages and other types of events are reported through
different inputs into the components of the availability management system
1120. Event and error reports are consolidated for final decision-making in
the availability manager 405. The MCEC 1010 and the cluster membership
monitor 1120 report to the availability manager 405. This information
includes, without limitation, membership events and component states from
cluster membership monitor 1120 and further includes, without limitation,
component error reports from Multi-Component Error Correlator 1110. The
availability manager 405 outputs 1180 component state messages and state
change information to accomplish the management tasks of the availability

management system 120.

The operation of the individual components within the availability
management system 120 shown in Figure 5 will now be discussed in further
detail. Where applicable, reference will be made to additional figures
providing more detail on the operation of individual components within the

availability management system 120.

The MCEC 1010 receives both specific and non-specific error event
reports and component status change reports. The MCEC 1010 uses
pre-configured rules to search for known patterns in the reported events.
When a reported event sequence matches a known pattern, the MCEC 1010
is able to infer a particular error, such as a component failure or a component
becoming non-responsive. The MCEC 1010 then reports the error as a

component error report to the availability manager 405.

Individual components report specific errors to the MCEC 1010 in
multiple ways. Non-specific error event reports 1132, which may not have a
known correlation to any specific component, are sent to the MCEC 1010.

In-line error detection 1120 takes place while a component is performing -

22

WO 02/03195 PCT/US01/19143

10

15

20

25

30

tasks. During the performance of a task, an error is detected by the
component and the MCEC 10 10 is notified of the particular component status
change by the component directly. Additionally, a component may perform
periodic self-audits 1142, which are performed at specified intervals whether
the component is performing a task or is currently idle. Errors detected during
component audits 1142 are reported to the MCEC 1010 as component status
change reports. A health monitor 1140 aids in the performance of

component-specific audit functions.

In one embodiment, all error reports from all components (both specific
and non-specific) are sent to the MCEC 1010. This provides a centralized
decision making location. However, in another embodiment, multiple MCECs
may be used in a network of error correlators. In a multiple MCEC system,
different MCECs receive error reports by subscribing to a certain set of event
reports distributed via a publish/subscribe event system. A publish/subscribe
event system automatically distributes event notifications from an event
publisher to all processes (on all nodes) that have subscribed to that event.
The publish/subscribe event system permits interested processes to obtain
information about service relevant occurrences like errors, new devices
coming on-line, and service fail-overs. The use of multiple MCECs allows
flexibility in the availability management system 1120. For example, an
additional MCEC may be added more easily to deal with certain problems
without changing the existing MCEC structure. Multiple MCECs may all be

located on a single common node, or they may be located on different nodes.

The MCEC 1010 is a rule-based event filter. In one embodiment, the
rules may be implemented in compiled code within the MCEC 1010 in another
embodiment may be expressed in a rule language that is interpreted by the
MCEC 1010. The MCEC 1010 filters out stale, redundant, and misleading
event reports to avoid unnecessary or ineffective error messages being sent
to the availability manager 405. For example, if ten different components all
report the same event to the MCEC 1010, only one error message needs to

be passed along to the availability manager 405. In another example, the

23

WO 02/03195 PCT/US01/19143

10

15

20

25

MCEC 1010 can also perform temporal correlations on event messages to
determine that a particular error message to the availability manager 405 is
not having the desired effect. If the MCEC 1010 discovers that the same
component has failed a successive number of times, the MCEC 1010 may
report an entire node failure to the availability manager 405, to cause a
rebooting of the entire node instead of another (probably fruitless) rebooting
of the failed component. It will be understood by one of skill in the art that

many different sets of rules may be implemented in the MCEC 1010.

In summary, the described embodiment of the present invention drives
components in the system to achieve successive target configurations until a
final goal configuration is reached. An orchestration agent controls high-level
upgrade management, instructing an availability manager when it is time to
move to begin driving toward a next target configuration. The availability
manager controls lower-level upgrade management, driving individual

components in the nodes toward the current target configuration.

Although the invention has been described in considerable detail with
reference to certain embodiments, other embodiments are possible. As will
be understood by those of skill in the art, the invention may be embodied in
other specific forms without departing from the essential characteristics
thereof, For example, the availability management system may be
implemented in a non-clustered computer system architecture. Also,
additional different component states may be implemented and rﬁanaged by
the availability management system. Accordingly, the present invention is
intended to embrace all such alternatives, modifications and variations as fall
within the spirit and scope of the appended claims and equivalents.

24

WO 02/03195 PCT/US01/19143

10

15

20

25

We claim:

1. An upgrade method for a computer system including a plurality
of components, wherein each component has an operational state,
comprising:

providing a succession of stable target configurations of the system, a
configuration specifying a state of one or more components in the system;

providing a progress rule for each target configuration;

driving the system from a current stable target configuration to a next
stable target configuration in the succession; and

applying an associated progress rule if the system fails to reach a

stable target configuration .

2. The method of claim 1, wherein a stable target configuration is
defined as a configuration in which the system can operate for a predefined

length of time.

3. The method of claim 1, wherein the computer system is a

high-availability computer system.

4, The method of claim 1, wherein a target configuration includes a

plurality of states of system components.

5. The method of claim 4, wherein the plurality of states includes

the states of at least: primary, spare, and secondary.

6. The method of claim 1, further including an availability manager,
responsive to receipt of the current target configuration, that drives the

components toward the states that make up the current target configuration.

7. The method of claim 6, wherein the availability manager
publishes component operational states to other nodes within the highly

available computer system.

8. The method of claim 6, wherein the orchestration agent receives

published component operational states from the availability manager.

25

WO 02/03195 PCT/US01/19143

10

15 -

20

25

9. The method of claim 1, wherein a state of a component is

active.

10. The method of claim 1, wherein a state of a component is

standby.

11. The method of claim 1, wherein a state of a component is

spare.

12. The method of claim 1, wherein a state of a component is

off-line.

13. The method of claim 1, wherein a component status change is a

component failure.

14. The method of claim 1, wherein failure to reach a stable target

configuration is caused by a component loss of capacity.

15. The method of claim 1, wherein a failure to reach a stable target

configuration is caused by a new component available.

16. The method of claim 1, wherein failure to reach a stable target

configuration is caused by a request to take a component off-line.

17. An upgrade apparatus for a computer system including a
plurality of components, wherein each component has an operational state,
comprising:

a software portion configured to provide a succession of stable target
configurations of the system,

a configuration specifying a state of one or more components in the
system; a software portion configured to provide a progress rule for each
target configuration;

a software portion configured to drive the system from a current stable
target configuration to a next stable target configuration in the succession;

and

26

WO 02/03195 PCT/US01/19143

10

15

a software portion configured to apply an associated progress rule if

the system fails to reach a stable target configuration .

18. The apparatus of claim 17, wherein a stable target configuration
is defined as a configuration in which the system can operate for a predefined

length of time.

19. A computer program product, on a computer readable medium,
that provides an upgrade method for a computer system including a plurality
of components, wherein each component has an operational state, the acts
performed by the computer program product comprising:

providing a succession of stable target configurations of the system, a
configuration specifying a state of one or more components in the system;

providing a progress rule for each target configuration;

driving the system from a current stable target configuration to a next
stable target configuration in the succession; and

applying an associated progress rule if the system fails to reach a

stable target configuration .

20. The computer program. product of claim 19, wherein a stable
target configuration is defined as a configuration in which the system can

operate for a predefined length of time.

27

PCT/US01/19143

WO 02/03195

1/13

S

02}
W3LSAS
INTNIOYNYI
ALTGYIIVAY —_— 97}
-\ / WALSAS
a80l N // ONILYH3dO
90} 3AON
080}
o —
N : V)l
WALSAS
J,_mm w q ONILYY3d0
N jor3qon ONIIVEEdO 201 300N

WO 02/03195 PCT/US01/19143
2/13

COMPONENT 110

DRIVERS DIAGNOSTICS
APPLICATIONS

ERROR
ANALYSIS
250

AVAILABILITY
MANAGEMENT
SY182T0EM

. l

Y

APPLICATIONS
220'

COMPONENT 111

FIG.2

WO 02/03195 PCT/US01/19143
3/13

)

V\
- p »(SP

PRIMARY

FIG.3

WO 02/03195

AVAILABILITY
MANAGEM%IBIT SYSTEM

X

4/13

PCT/US01/19143

MEMBERSHIP

COMPONENT ERROR
REPORTS

Y

EVENTS

COMPONENTS
STATES

»
>

AVAILABILITY ADJUST COMPONENT STATE
MANAGER MESSAGES PUBLISH STATE
405 CHANGE INFORMATION 480

| T
CURRENT STATE _ NEW
INFORMATION TARGET

l CONFIG%JRATION

Yy

A

CONFIGURATION
DATA (INCLUDES
SUCCESSION OF
TARGET
CONFIGhJA:_i]ATIONS)

ORCHESTRATION
AGENT
406

A

FIG.4

WO 02/03195 PCT/US01/19143

5/13

-IDENTIFY A SUCCESSION OF STABLE SYSTEM
CONFIGURATIONS

-IDENTIFY PROGRESS RULES FOR EACH SYSTEM
CONFIGURATION

(BOTH IN ACCORDANCE WITH CONFIGURATION DATA)

— 502

Y

LOAD INITIAL CONFIGURATION (THIS IS THE
FIRST CURRENT CONFIGURATION)

—— 504

® =

506

FIG.5

PCT/US01/19143

WO 02/03195

6/13

ALITIEYTIVAY OL LTAN3S “9'9) 1l a4YMOL
JAIMA ANY JONINOIS NOILYENOIANOD
NI NOILYENOIANOD LI9HVL LX3IN IHVL

90l ® ®
[1
o | [o
HLIM ONVQH0OY | | HLIM IINYAN0I0Y NI V09
NIAYLY NI dOLS HLIM FORYEQ00Y 3LVINILTN FONVHO
A N« A N_ A Ny A N_
049 809 909 219
G3HOYAY LON NOILYHNOIANOD 1FDMY L
1X3N NSHM 3108 31VIdOtddY AiddV
(4FOVYNVIN

4
d3HIV3H NOLLYENOIANOD

1396VL IXAN

WO 02/03195

CURRENT STATE OF
EACH COMPONENT

7/13

702

TARGET
CONFIGURATION
DESIRED STATE OF
ACH COMPONENT)

.
P

»
'

CONTROL ENGINE IN
AVAILABILITY MANAGER

PCT/US01/19143

DRIVES EACH

COMPONENT

TOWARDS TS
DESIRED STATE IN

TARGET.
CONFIGURATION

FIG.7

WO 02/03195

8/13

SIMPLE UPGRADE SCENARIO:
CONSIDER A SYSTEM WITH:

2 HOST SLOT PROCESSORS
APPLICATION A
APPLICATION B

2 NON HOST SLOT PROCESSORS

3 PAYLOAD CARDS

NAMES

HSP1, HSP2
AA1, AA2

AB1, AB2
NHSP1, NHSP2
PL1, PL2, PL3

PCT/US01/19143

STATUS STATE
2N, HOT STDBY
2N, HOT STDBY
2N, HOT STDBY
2N, HOT STDBY
N+1

ALL MANAGEMENT APPLICATIONS AND THE AVAILABILITY MANAGER

RUN ON THE ACTIVE HSP.

THE INITIAL CONFIGURATION WOULD BE
HSP1 AS MASTER IN DOMAIN ONE

DOMAIN ONE
AA1 PRIMARY
AA2 SECONDARY (TO AA1)
AB1 PRIMARY

AB2 SECONDARY (TO AB1)
NHSP1 PRIMARY

NHSP2 SECONDARY (TO NHSP1)
PL1 PRIMARY

PL2 PRIMARY

PL3 SECONDARY (TO PL1, PL2)

THE SECOND TARGET CONFIGURATION WOULD BE
HSP1 AS MASTER IN DOMAIN ONE

DOMAIN ONE
AA1 PRIMARY
AA2 SPARE
AB1 PRIMARY
AB2 SPARE

NHSP1 PRIMARY
NHSP2 SPARE

PL1 PRIMARY
PL2 PRIMARY
PL3 SPARE

HSP2 IN DOMAIN TWO

DOMAIN TWO

AA2 SECONDARY (TO AA1)

AB2 SECONDARY (TO AB1)

NHSP2 SECONDARY (TO NHSP1)

PL3 ~ SECONDARY (TO PL1AND PL2)

FIG.8(a)

WO 02/03195 PCT/US01/19143
9/13

THE THIRD TARGET CONFIGURATION WOULD BE

HSP2 AS MASTER IN DOMAIN TWO
HSP1 DOMAIN TWO

DOMAIN TWO

AA2 PRIMARY

AB2 PRIMARY

NHSP2 PRIMARY

PL3 PRIMARY

A1 SECONDARY (TO AA2)
AB1 SECONDARY (TO AB2)
NHSP1 SECONDARY (TO NHSP2)

PL1 SPARE
PL2 PRIMARY
DOMAIN ONE

AA1 SPARE

AB1 SPARE

NHSP1 SPARE

PL1 SPARE

PL2 SPARE
THE FINAL CONFIGURATION WOULD BE VERY SIMILAR TO THE INITIAL
CONFIGURATION:

HSP1 AS MASTER IN DOMAIN TWO
HSP2 IN DOMAIN TWO

DOMAIN TWO
AA1 PRIMARY
AA2 SECONDARY (TO AA1)
AB1 PRIMARY

AB2 SECONDARY (TO AB1)
NHSP1 PRIMARY

NHSP2 SECONDARY (TO NHSP1)
PL1 PRIMARY

PL2 PRIMARY

PL3 SECONDARY (TO PL1, PL2)

FIG.8(b)

WO 02/03195 PCT/US01/19143
10/13

REVERSING THE PROCESS
INITIAL CONFIGURATION:

HSP1 AS MASTER IN DOMAIN TWO
HSP2 IN DOMAIN TWO

DOMAIN TWO
AAT PRIMARY
AA2 SECONDARY (TO AAT)
AB1 PRIMARY

AB2 SECONDARY (TO AB1)
NHSP1 PRIMARY
NHSP2 SECONDARY (TO NHSP1)

PLT PRIMARY

P2 PRIMARY

PL3 SECONDARY (TOPL1, PL2)
SECOND CONFIGURATION:

HSP1 AS MASTER IN DOMAIN TWO
HSP2 IN DOMAIN ONE

DOMAIN TWO
AA1 PRIMARY
AA2 SPARE
AB1 PRIMARY
AB2 SPARE

NHSP1 PRIMARY
NHSP2 SPARE

PL1 PRIMARY

PL2 PRIMARY

PL3 SPARE
DOMAIN ONE

AA2 SECONDARY (TO AAT)

AB2 SECONDARY (TO AB1)

NHSP2 SECONDARY (TO NHSP1)

PL3 SECONDARY (TO PL1AND PL2)

(NOTE: AS SOON AS THESE HSP2 REBOOTS IN DOMAIN ONE, IT

FALLS BACK TO THE PREVIOUS REGISTRY, APPROPRIATE
TO THAT DOMAIN.)

FIG.9(a)

WO 02/03195 PCT/US01/19143
11/13

THIRD CONFIGURATION:

HSP2 AS MASTER IN DOMAIN ONE
HSP1 IN DOMAIN ONE

DOMAIN ONE

AA2 PRIMARY

AB2 PRIMARY

NHSP2 PRIMARY

PL3 PRIMARY

AA1 SECONDARY (TO AA2)
AB1 SECONDARY (TO AB2)
NHSP1 SECONDARY (TO NHSP2)

PL1 SPARE
PL2 PRIMARY
DOMAIN TWO
AA1 SPARE
AB1 SPARE
NHSP1 SPARE
PL1 SPARE
PL2 SPARE
FINAL CONFIGURATION:

HSP1 AS MASTER IN DOMAIN ONE
HSP2 IN DOMAIN ONE

DOMAIN ONE
AA1 PRIMARY
AA2 SECONDARY (TO AA1)
AB1 PRIMARY

AB2 SECONDARY (TO AB1)
NHSP1 PRIMARY

NHSP2 SECONDARY (TO NHSP1)
PL1 PRIMARY

PL2 PRIMARY

PL3 ~ SECONDARY (TO PL1, PL2)

FIG.9(b)

PCT/US01/19143

WO 02/03195

12/13

| _
| |
| WrINDY Iy _
NOILVYLSIHIHO | >
~
T / = —
B L v | afRRy [T T\ EanEn
/_ 7\ _ YIS
0101
HOLY1I4H0D HOYHd
L — ININO4NOJ-LTNW
. R
OB R T
e T 1AL F " “
|
|
|
|
__ ININOdWOI
20r3aoN—" | NI o

.HooS

H318NTo

PCT/US01/19143

WO 02/03195

13/13

'Ol 07
(SNOLLYHN9IANOD 9911
199¥VYL 40 SHOLINOW
NOISS3DONS SIANTONI| diHSHIgNaN
3 VLVANOILYHA9IENOD | “W318AT
MIHLO WO
— SININOJWOD
Bt
NOILLVMISTHONO | N oL
j 1 _ V SININOINOD 40 SILVIS
NOILYHNOIANOD odNI A ~ Qzﬁ@ﬁﬁf
e ALViS SIS) 0200
P wdtako | senon,
-
0811 NOLLYIROAN - Allw_ Em A3 d318mo
momm%mmw\}m_%m% LR dIHSHHSNIN o v gz snLvLS INTNOAI
.] 0 1 09
INGNOdWOO 18Aray ALMIEVIVAY] ittt =
_ . ¥3NIL 900
HOLYM
S1M0dTY .
YO INGNOINOD a ally ._.
ANIL
2T WRLALT
— 1 N i P17 SNOILONNA
A o 09 B L NS, HoLINOW
NOILD3L3 IONE] .
WO A iNaNOdwOS LN -
ovl)
YOLINOW HLTVaH
14 1O 19| |V
7817 SLYOd3Y INIAT %/, 021 WALSAS
HONYa 014193dS-NON INTWIOVNYI ALTaVIVAY

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

