(51) International Patent Classification:
A61B 3/113 (2006.01) A61B 3/00 (2006.01)
A61B 3/117 (2006.01) G06T 7/00 (2006.01)
A61B 3/15 (2006.01)

(21) International Application Number:
PCT/EP2012/06621

(22) International Filing Date:
20 August 2012 (20.08.2012)

(25) Filing Language: English

(26) Priority Data:
10 201 1082 901.6
16 September 2011 (16.09.2011) DE
61/535,769 16 September 2011 (16.09.2011) US

(71) Applicant (for all designated States except US): CARL
ZEISS MEDITEC AG [DE/DE]; Goschwitzer Strasse 51-
52, 07745 Jena (DE).

(54) Title: DETERMINATION OF THE AZIMUTHAL ORIENTATION OF A PATIENT'S EYE

(57) Abstract: The invention relates to an eye surgery apparatus (1) having imaging optics (14, 26, 27) for generating an observation image (40) of a patient's eye (16). The eye surgery apparatus (1) has a device (36) for determining the azimuthal orientation of a patient's eye (16) with respect to a reference (3) which is fixed with respect to the patient's eye (16). The device (36) contains a visual display device (34) for simultaneously displaying a section (92) of an observation image (40) of the patient's eye (16), which is captured by the imaging optics (14, 26, 27) and contains at least one segment of the limbus or of the iris, said section being composed of pixels, and a reference image of the patient's eye (16), which is composed of pixels (106) and contains this segment of the limbus or of the iris. The device (36) has an input interface (28) which makes it possible for an observer to move the displayed section (92) of the captured observation image (40) of the patient's eye (16) relative to the displayed section (94) of the reference image (80). The device (36) comprises a measuring system which can be used to determine the azimuthal orientation of the observation image and of the reference image, which orientation is changed during the relative movement. The device (36) has a computer unit (5) having a computer program for calculating the center (46) of the limbus (44) and/or of the iris (43) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), and of the reference image (80). The visual display device (34) displays the pixels (102) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), with polar coordinates in a polar coordinate system (96), the center (46) of which coincides with the calculated center of the circular structure (44) of the limbus and/or of the iris (43) of the patient's eye (16).

(Continued on next page)
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Published:

with international search report (Art. 21(3))

Eye (16) with polar coordinates in a polar coordinate system (98), the center (84) of which corresponds to the calculated center of the circular structure (94) of the limbus of the patient's eye (16) on which the reference image (80) is based.
Determination of the azimuthal orientation of a patient's eye

Description

The invention relates to an eye surgery apparatus having imaging optics for generating an observation image of a patient's eye and having a device for determining the azimuthal orientation of a patient's eye with respect to a reference which is fixed with respect to the patient's eye. In addition, the invention relates to a method and a computer program which can be used to determine the azimuthal orientation of a patient's eye with respect to a reference which is fixed with respect to the patient's eye, for example in a cataract operation.

During the cataract operation, the body's own natural lens of a patient's eye, in which a cataract has developed, is replaced with an artificial lens, a so-called intraocular lens. An opening into the capsular bag is prepared within the inner edge of the iris by means of an incision through the sclera or cornea. The natural lens is then shattered with an ultrasonic instrument through this opening and is then removed. After the natural lens has been removed, the intraocular lens is introduced through the opening in the capsular bag of the patient's eye.

Intraocular lenses with a spherical, aspherical, multifocal and also a toric geometry are used, in particular, in eye surgery. In the case of toric intraocular lenses, it is necessary, in order to compensate for patients' visual defects, for the axis of the torus of the intraocular lens to be oriented in a defined manner in the patient's eye during the cataract operation.

During the cataract operation, the surgeon is faced with the problem that the patient's eye can move during an operation even with local anesthesia. The image of the object area that is presented to a surgeon during a cataract operation is therefore not stationary.
Therefore, in order to indicate the azimuthal orientation of the patient's eye to a surgeon in an operation, the patient's eye is often provided with a mark, which indicates a direction, before the operation.

DE 10 2009 030 504 A1 describes an eye surgery microscopy system of the type mentioned at the outset, in which the azimuthal orientation of a patient's eye provided with a mark can be automatically detected. This eye surgery microscopy system has imaging optics for generating the image of an object plane. It contains an electronic image sensor which receives the image of the object plane. The eye surgery microscopy system has a computer unit which is connected to the image sensor. The computer unit can be used to calculate the position of the center of the limbus or of the iris of a patient's eye. For this purpose, the computer unit contains a computer program which determines the azimuthal orientation of a patient's eye provided with a mark by means of correlation with a reference image.

DE 10 2009 052 128 A1 discloses an eye surgery microscopy system containing a measuring device which can be used to determine an axis of the astigmatism of a patient's eye in an ophthalmological operation. In this eye surgery microscopy system, a determined axis of the astigmatism can be displayed in a manner superimposed on the observation image of the patient's eye.

US 5,865,832 discloses an eye surgery microscopy system containing imaging optics which are automatically corrected when a patient's eye moves. For this purpose, the imaging optics are connected to a device for detecting the position of the patient's eye. This device contains an image sensor which is used to continuously capture the patient's eye in order to correct the imaging optics on the basis of a change in the image captured with the image sensor.
US 6,866,661 B2 describes a device for calculating the change in orientation of a patient's eye in an eye surgery system for laser in-situ keratomileusis. In this device, the patient's eye is continuously captured with an image sensor. The continuously captured images are subjected to image evaluation therein.

5 During this image evaluation, characteristic structures of the patient's eye, for example blood vessels of the sclera, are then determined in order to calculate the change in the orientation of the patient's eye from the locations of these structures in the continuously captured images.

10 DE 10 2005 025 221 A1 discloses an eye tracking system and a method for determining a position of an eye or a part of an eye in an image of an image sequence by performing a comparison between said image and a reference image. This method includes aligning a set of images and computing an enhanced reference image based on a combination of the set of aligned images. The position in said image of the image sequence is determined by comparing the image of the image sequence to the enhanced reference image to yield a motion estimation between the reference image and the image of the image sequence.

20 The object of the invention is to provide an eye surgery apparatus and a method for determining the azimuthal orientation of a patient's eye, which can be used to reliably determine the azimuthal orientation of a patient's eye without the patient's eye necessarily being marked.

25 This object is achieved by means of an eye surgery apparatus of the type mentioned at the outset and claimed in claim 1 and a method for determining the azimuthal orientation of a patient's eye as claimed in claim 12. The device in this eye surgery apparatus has a visual display device for simultaneously displaying a section of an observation image of the patient's eye, which is captured by the imaging optics and contains at least one segment of the sclera, said section being composed of pixels, and a reference image of the patient's eye, which is composed of pixels and contains this segment of the
sclera, and has an input interface which makes it possible for an observer to
move the displayed section of the captured observation image of the patient's
eye relative to the displayed section of the reference image, and contains a
measuring system which can be used to determine an azimuthal orientation
of the observation image and of the reference image, which orientation is
changed during the relative movement.

The invention uses the fact that the azimuthal orientation of a patient's eye,
that is to say the azimuth angle or angle of rotation of the patient's eye, can
be determined in a polar coordinate system, which is fixed with respect to the
patient's eye and the origin of which is at the center of the limbus and in
which the patient's eye can rotate about a perpendicular axis through the
origin of the polar coordinate system, using structures in the sclera around
the edge of the limbus of the patient's eye or the iris by comparing image in-
formation. The sclera extends in that region of the eye which adjoins the out-
er edge of the iris, that is to say in that region which adjoins the limbus.

One idea of the invention is, in particular, for a surgeon, to whom the pixels of
the image of the patient's eye, as captured by the imaging optics of the eye
surgery apparatus, are displayed with the pixels of a reference image of the
patient's eye in the polar coordinates of a polar coordinate system, the center
of which coincides with a calculated center of the limbus and/or of the iris of
the patient's eye, to be able to identify in a particularly effective manner, in
the patient's eye, those structures which are suitable for determining the azi-
muthal orientation of the patient's eye with respect to a reference which is
fixed with respect to the patient's eye and is in the form of a reference image.

The inventors have namely realized that the practice of determining the azi-
imuth angle or angle of rotation of a patient's eye in a cataract operation using
two images which cannot be moved, are displayed beside one another
and/or alternately in terms of time and are not subjected to any suitable coor-
dinate transformation is very inaccurate and unreliable. The inventors have
also realized that the practice of determining the azimuth angle or angle of rotation of a patient's eye by superposing an observation image of the patient's eye on a reference image likewise does not make it possible to reliably determine an astigmatism axis.

In order to calculate the center of the limbus and/or of the iris of the image of the patient's eye, as captured by the imaging optics, and of the reference image, the device contains a computer unit having a computer program. This computer program can calculate the center of the limbus and/or of the iris of the observation image of the patient's eye, as captured by the imaging optics, and of the reference image. In this case, the visual display device preferably displays the pixels of the observation image of the patient's eye, as captured by the imaging optics, with polar coordinates in a polar coordinate system, the center of which coincides with the calculated center of the circular structure of the limbus and/or of the iris of the patient's eye. The pixels of the reference image of the patient's eye are likewise preferably also displayed with polar coordinates in a polar coordinate system, the center of which corresponds to the calculated center of the circular structure of the limbus and/or of the iris of the patient's eye on which the reference image is based.

By virtue of the fact that the visual display device displays the pixels of the observation image of the patient's eye, as captured by the imaging optics, and displays the pixels of the reference image of the patient's eye in an image strip, an observer can compare mutually corresponding structures of the observation image and of the reference image in a particularly effective manner. For this purpose, it is advantageous if the image strip containing the pixels of the observation image of the patient's eye, as captured by the imaging optics, and the image strip containing the pixels of the reference image of the patient's eye adjoin one another.
It is favorable if the image strip containing the pixels of the observation image of the patient's eye, as captured by the imaging optics, is parallel to the image strip containing the pixels of the reference image of the patient's eye.

One idea of the invention is also that the azimuthal orientation of the observation image of the patient's eye relative to the reference image can be determined in a particularly exact manner by virtue of the fact that the pixels in the image strip containing the pixels of the observation image of the patient's eye, as captured by the imaging optics, can be shifted in the longitudinal direction of the image strip on the basis of a shift signal specified at an input interface, and/or by virtue of the fact that the pixels in the image strip containing the pixels of the reference image of the patient's eye can be shifted on the basis of a shift signal specified at the input interface.

The input interface may be in the form of a touch-sensitive user interface of the visual display device. It is advantageous if the device for determining the azimuthal orientation of the patient's eye has a display unit on which the change in the azimuthal orientation of the image and of the reference image, as determined using the measuring system, is indicated.

By virtue of the fact that the device has a computer unit having a computer program for calculating a direction of the astigmatism of the patient's eye, based on the observation image, from the change in the azimuthal orientation of the observation image relative to the reference image, as determined using the measuring system, and a direction of the astigmatism of the patient's eye, which direction is stored in a data memory of the computer unit and is based on a reference, for example the reference image, it is possible to display the direction of the astigmatism in the observation image to an observer. In this case, it is advantageous if the computer unit generates an item of display information, which is superimposed on the image of the patient's eye, in order to display the direction of the astigmatism of the patient's eye, which direction is based on the observation image. This display information may be
an astigmatism axis, for example. In addition, it is advantageous if the imaging optics are arranged in an operating microscope which has a binocular viewer and has a device for reflecting in data, which device has a display which is connected to the computer unit and is intended to display the display information in the object plane in a manner superimposed on the operating area.

One idea of the invention is to determine the azimuthal orientation of a patient's eye with respect to a reference which is fixed with respect to the patient's eye by comparing at least one section of an observation image of the patient's eye, which comprises a segment of the limbus and/or of the iris, with a section of a reference image of the patient's eye containing this segment. The azimuthal orientation of the patient's eye relative to the azimuthal orientation of the patient's eye, on which the reference image is based, can then be namely inferred from the azimuthal offset \((\Delta \phi)\) of characteristic, mutually corresponding structures of the observation image of the patient's eye and of the reference image in the region of the limbus. In order to compare the observation image of the patient's eye with the reference image, the section of the observation image and the section of the reference image of the patient's eye are displayed to an observer in such a manner that they can be moved relative to one another. That is to say, the observer can move these images relative to one another on a screen display by initiating an image control function. In this case, the change in an azimuthal orientation of the observation image relative to the reference image is determined.

It is advantageous if the center of the limbus and/or of the iris is calculated for the observation image and for the reference image. In particular, it is advantageous if the section of the image of the patient's eye and the section of the reference image are each displayed in polar coordinates in a polar coordinate system, the center of which corresponds to the calculated center of the limbus and/or of the iris in the observation image and in the reference image.
In this case, one idea of the invention is that the section of the observation image is shifted relative to the section of the reference image along an axis corresponding to the azimuth angle (ϕ) in the polar coordinate systems until mutually corresponding structures of the observation image of the patient's eye and of the reference image are beside one another.

The invention also comprises a computer program for determining the azimuthal orientation of an observation image of a patient's eye with respect to a reference which is fixed with respect to the patient's eye, which computer program calculates the center of the limbus and/or of the iris for an observation image and a reference image of a patient's eye and determines the change in the azimuthal orientation ($\Delta \phi$) of the observation image relative to the reference image from a movement of a section of the observation image, which section contains at least one segment of the limbus and/or of the iris, relative to the reference image of the patient's eye, which movement can be input via an input interface.

The invention is explained in more detail below using the exemplary embodiments which are diagrammatically illustrated in the drawing, in which:

fig. 1 shows an eye surgery apparatus having a computer unit, a video camera and a touch-sensitive screen;

fig. 2 shows the observation image of a patient's eye captured with the video camera;

fig. 3 shows a reference image of the patient's eye, which image is stored in a memory of the computer unit;

fig. 4 shows a display on the touch-sensitive screen in order to determine the azimuthal orientation of the patient's eye;
fig. 5 shows another display on the touch-sensitive screen;

fig. 6 shows an observation image of the patient's eye in the eye surgery apparatus; and

fig. 7 shows a toric intraocular lens with position marks.

The eye surgery apparatus 1 in fig. 1 comprises an operating microscope 3 having a computer unit 5. The operating microscope 3 has an operating microscope base body 29. It is accommodated on the arm 9 of a stand (not illustrated any further) with an XY adjusting device 7. A suitable XY adjusting device is described, for example, in DE 198 56 696 A1. The operating microscope 3 makes it possible for an observer to view a patient's eye 16 with variable magnification with a binocular observation beam path 11 through a binocular viewer 12, a magnification system 26 and a microscope main lens 14 in an object plane 15. The operating microscope 3 has a device for reflecting in data, which device has a display 18 and a beam splitter 20. A video camera 23 containing a CCD module as an image sensor 22 is also integrated in the operating microscope 3. The object image is supplied to the image sensor 22 via a beam splitter 24 in the observation beam path 11 and via an imaging lens 27. In this case, the microscope main lens 14 and the magnification system 26 as well as the imaging lens 27 act as imaging optics for the image sensor 22. The video camera 23 is a PAL color camera, for example. It provides RGB image information with a red color channel (R), a green color channel (G) and a blue color channel (B). The video camera 23 can be used to continuously capture observation images of the patient's eye 16 in real time.

The eye surgery apparatus 1 contains a visual display device 34 having a computer unit 5. The computer unit 5 can be used to control the operating microscope 3. The computer unit 5 acquires image data recorded using the image sensor 22 of the video camera 23 in order to process said data further
using a computer program. The computer unit 5 has an input interface 28 in the form of a keyboard. The computer unit 5 comprises a screen 30 which is used as an output interface. A data memory 32 is assigned to the computer unit 5. The data memory 32 contains a preoperatively captured image of the patient's eye 16. The astigmatism axis preoperatively recorded using a known diagnostic device (not illustrated any further) is stored for the preoperatively captured image of the patient's eye 16 in the data memory 32.

The computer unit 5 is connected to a touch-sensitive screen 36 of the visual display device 34. Image data processed by the computer unit 5 can therefore be displayed both on the external screen 36 and in the device for reflecting in data which has the display 18 in the operating microscope 3.

Fig. 2 shows the observation image 40 of the patient's eye 16, as captured in the object plane 15 by the imaging optics 14, 26, 27 of the operating microscope 3 in the eye surgery apparatus 1 with the video camera 23. The observation image 40 of the patient's eye 16 has a first circular structure 42 formed by the inner edge of the iris 43. A second circular structure 44 is formed in the patient's eye 16 by the limbus, that is to say the transition between the sclera and the cornea in the patient's eye. The iris 43 and the limbus 44 have a common center 46 which is situated in the region of the lens 48 of the patient's eye 16.

In order to determine the position of the center 46 of the circular structure of the limbus of the patient's eye 16, the computer unit 5 correlates the observation image 40 captured using the image sensor 22 in the object plane 15 with annular comparison objects of different sizes. This is described in detail on page 3, line 12 to page 4, line 14 and page 5, line 9 to page 9, line 15 of the international patent application with the file reference PCT/EP2008/068104 and also in the international patent application with the file reference PCT/EP2008/068103.
Correlation is effected by calculating a correlation function, preferably by varying the location, with the result that the correlation function is a function of the location variables. In this case, the values of the pixels of the observation image are calculated with the values of the pixels of the comparison object while the comparison object is moved over the image. The value of the correlation function is a measure of the correspondence between the observation image and the comparison object. With maximum correspondence between the observation image and the comparison object, that is to say if the characteristic feature of the comparison object and the characteristic feature sought in the image lie on top of one another, the value of the correlation function is at a maximum.

Fig. 3 shows the reference image 80 of the patient's eye 16, which is stored in the data memory 32 of the computer unit 5, in the operating microscope 3. Like the operating microscope 3, the reference image 80 is a fixed reference with respect to the observation image 40.

The reference image 80 of the patient's eye 16 likewise shows the circular structure 82 of the limbus with the center 84. The edge of the iris 86, that is to say the pupil, has a circular structure 88. However, the iris 86 of the patient's eye 16 is widened to a lesser extent in the reference image 80 than in the observation image 40. The magnification for the reference image 80 and the magnification of the observation image 40 captured in the eye surgery microscopy system 1 from fig. 1 are generally different.

The patient's eye 16 has the astigmatism axis 89 depicted in the reference image 80. The axis 89 is preoperatively determined for the patient's eye 16 in the abovementioned diagnostic device. The orientation of the axis 89 of the reference image 80 in a coordinate system which is fixed with respect to the operating microscope 3 was determined in the relevant diagnostic device and is likewise stored in the data memory 32 of the eye surgery apparatus 1. The position of the center 84 of the circular structure 82 of the limbus is deter-
mined in the computer unit 5 for the reference image 80, like for the observation image 40 captured using the video camera 23.

The computer unit 5 contains a computer program for calculating coordinate transformations. The computer program transforms an annular image segment 92 with the width b1, which comprises a section of the circular structure 44 of the limbus in the image 40, and an annular image segment 94 of a part (delimited by the dashed line 95) of the sclera of the patient's eye 16 with the width b2 around a section of the circular structure 82 of the limbus in the reference image 80 into a polar coordinate representation on the basis of an input at the input interface 28 and displays it on the screen 34. The polar coordinate system 96, 98 on which this polar coordinate representation is based is shown in fig. 2 and fig. 3. The origin of the polar coordinate systems 96, 98 is respectively the center 46, 84 of the limbus 44 and 94 in the observation image 40 of the patient's eye and in the reference image 80, as calculated by means of correlation with comparison objects.

Fig. 4 shows a display 100 on the screen 36. The pixels 102 of the image of the patient's eye 16, as captured by the imaging optics 14, 26, 27 of the eye surgery microscopy system 1, are arranged in the image strip 104. The pixels 102 correspond to the annular image segment 92 of the observation image 40 of the patient's eye 16, as shown in fig. 2. The pixels 106 of the reference image 80 are situated in the image strip 108. The pixels 106 lie in the image segment 94 of the reference image 80 of the patient's eye 16, as shown in fig. 3. The pixels 102, 106 in the image strips 104, 108 have an azimuth angle cp96, φ98 which increases in the direction of the arrow 110. The image strip 104 has structures 112, 114 to which a structure 116, 118 in the image strip 108 respectively corresponds.

The touch-sensitive screen 34 has an interactive user interface with an input window 120. The input window 120 can be used to move the pixels 102 in the image strip 104 to the left or to the right according to the double-headed
arrow 122. This movement of the pixels 102 in the image strip 104 corresponds in this case to the rotation of the image 40 of the patient's eye 16, as captured by the imaging optics of the eye surgery microscopy system 1 with the video camera 23, relative to the reference image 80 around the origin 46 of the coordinate system 96.

It is thus possible for an observer to arrange the mutually corresponding structures 112, 114 and 116, 118 in the image strips 104, 108 beside one another. For the display 100, the observer must move the pixels 102 in the image strip 104 to the left by the angle \(\Delta \phi \approx -20^\circ \) in the direction of the double-headed arrow 122 by actuating the control function in the input window 120. In this case, the pixels 102 in the image strip 104 are not moved in the axis perpendicular to the double-headed arrow 122. The pixels 102 in the direction perpendicular to the double-headed arrow 122 are not moved even when the patient's eye 16 moves.

Fig. 5 shows a display 130 on the touch-sensitive screen 34. The computer unit 5 contains a measuring routine for the purpose of measuring the azimuthal shift of the pixels 102 in the image strip 104 relative to the image strip 108. This measuring routine acts as a measuring system. It generates a display window 132 on the touch-sensitive screen 34. The shifting of the pixels 102 is displayed to the observer as an azimuth angle value \(\Delta \phi \) in the display window 132.

Fig. 6 shows an observation image 140 of the patient's eye 16 on the binocular viewer 12 of the eye surgery microscopy system 1 in fig. 1. In this case, an axis 142 through the pupil 148, which is reflected in using the device for reflecting in data in the operating microscope 3, is superimposed on the observation image 140 of the patient's eye 16. The axis 142 runs through the center 144 of the limbus 146 of the patient's eye 16. The axis 142 corresponds to the direction of the astigmatism in the patient's eye 16. The axis 142 is calculated in the computer unit 5, on the basis of an input on the input
interface 28, from the astigmatism axis 89 in the reference image 80 from fig. 3, which is stored in the memory 32, and the shift of the observation image 40 (shown in fig. 2) of the patient's eye, as measured using the measuring system, with respect to the reference image 80.

Fig. 7 shows a toric intraocular lens 60. The intraocular lens 60 has a lens body 62 with a toric geometry and comprises holding sections 64, 66 which bear the lens body 62. There are marks 70, 72 on the holding sections 64, 66. These marks 70, 72 project into the lens body 62. The marks 70, 72 make it possible for a surgeon to orient such a lens during the cataract operation to a target axis 142 which is generated on the display 18 in the eye surgery microscopy system 1 from fig. 1 with the device for reflecting in data and is indicated in fig. 6.

In summary, the following can be stated in particular: the invention relates to an eye surgery apparatus 1 having imaging optics 14, 26, 27 for generating an observation image 40 of a patient's eye 16. The eye surgery apparatus 1 has a device 36 for determining the azimuthal orientation of a patient's eye 16 with respect to a reference 3, 80 which is fixed with respect to the patient's eye 16. The device 36 contains a visual display device 34 for simultaneously displaying a section 92 of an observation image 40 of the patient's eye 16, which is captured by the imaging optics 14, 26, 27 and contains at least one segment of the limbus 44 or of the iris 43, said section being composed of pixels 102, and a reference image 80 of the patient's eye 16, which is composed of pixels 106 and contains this segment of the limbus 98 or of the iris 86. The device 36 has an input interface 28 which makes it possible for an observer to move the displayed section 92 of the captured observation image 40 of this patient's eye 16 relative to the displayed section 94 of the reference image 80. The device 36 comprises a measuring system which can be used to determine the azimuthal orientation of the observation image 40 and of the reference image 80, which orientation is changed during the relative movement. The device 36 has a computer unit 5 having a computer pro-
gram for calculating the center 46 of the limbus 44 and/or of the iris 43 of the observation image 40 of the patient's eye 16, as captured by the imaging optics 14, 26, 27, and of the reference image 80. The visual display device 34 displays the pixels 102 of the observation image 40 of the patient's eye 16, as captured by the imaging optics 14, 26, 27, with polar coordinates in a polar coordinate system 96, the center 46 of which coincides with the calculated center of the circular structure 44 of the limbus and/or of the iris 43 of the patient's eye 16. It displays the pixels 106 of the reference image 80 of the patient's eye 16 with polar coordinates in a polar coordinate system 98, the center 84 of which corresponds to the calculated center of the circular structure 94 of the limbus of the patient's eye 16 on which the reference image 80 is based.
Patent claims

1. An eye surgery apparatus (1) having imaging optics (14, 26, 27) for generating the image (40) of a patient's eye (16), and having a device (36) for determining the azimuthal orientation of a patient's eye (16) with respect to a reference (3, 80) which is fixed with respect to the patient's eye (16), said device (36) having a visual display device (34) for simultaneously displaying a section (92) of an observation image (40) of the patient's eye (16), which is captured by the imaging optics (14, 26, 27) and contains at least one segment of the sclera, said section being composed of pixels (102), and a reference image (80) of the patient's eye (16), which is composed of pixels (106) and contains this segment of the sclera, and has an input interface (28) which makes it possible for an observer to move the displayed section (92) of the captured observation image (40) of the patient's eye (16) relative to the displayed section (94) of the reference image (80), and contains a measuring system which can be used to determine an azimuthal orientation of the observation image (40) and of the reference image (80), which orientation is changed during the relative movement,

wherein

said device (36) has a computer unit (5) having a computer program for calculating the center (46) of the limbus (44) and/or of the iris (43) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), and of the reference image (80), the visual display device (34) displaying the pixels (102) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), with polar coordinates in a polar coordinate system (96), the center (46) of which coincides with the calculated center of the circular structure (44) of the limbus and/or of the iris (43) of the patient's eye (16), and displaying the pixels (106) of the reference image (80) of
the patient's eye (16) with polar coordinates in a polar coordinate system (98), the center (84) of which corresponds to the calculated center of the circular structure (94) of the limbus of the patient's eye (16) on which the reference image (80) is based.

2. The eye surgery apparatus as claimed in claim 1, wherein the visual display device (34) displays the pixels (102) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), and displays the pixels (106) of the reference image (80) of the patient's eye (16) in an image strip (104, 108).

3. The eye surgery apparatus as claimed in claim 2, wherein the image strip (104) containing the pixels (102) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), and the image strip (108) containing the pixels (106) of the reference image (80) of the patient's eye (16) adjoin one another.

4. The eye surgery apparatus as claimed in claim 2 or 3, wherein the image strip (104) containing the pixels (102) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), is parallel to the image strip (108) containing the pixels (106) of the reference image (80) of the patient's eye (16).

5. The eye surgery apparatus as claimed in one of claims 2 to 4, wherein the pixels (102) in the image strip (104) containing the pixels (102) of the observation image (40) of the patient's eye (16), as captured by the imaging optics (14, 26, 27), can be shifted in the longitudinal direction (122) of the image strip (104) on the basis of a shift signal specified at an input interface (120), and/or wherein the pixels (106) in the image strip (108) containing the pixels (106) of the reference image (80) of the patient's eye (16) can be shifted on the basis of a shift signal specified at the input interface (120).
6. The eye surgery apparatus as claimed in claim 5, **wherein** the input interface (120) is a touch-sensitive user interface of the visual display device (34).

7. The eye surgery apparatus as claimed in one of claims 1 to 6, **wherein** the device (36) for determining the azimuthal orientation of the patient's eye (16) has a display unit (18, 132) on which the change in the azimuthal orientation of the image (40) and of the reference image (80), as determined using the measuring system, can be displayed.

8. The eye surgery apparatus as claimed in claim 7, **wherein** the device (36) has a computer unit (5) having a computer program for calculating a direction of the astigmatism of the patient's eye (16), based on the observation image (40), from the change in the azimuthal orientation of the observation image (40) relative to the reference image (80), as determined using the measuring system, and a direction (89) of the astigmatism of the patient's eye (16), which direction is stored in a data memory of the computer unit (32) and is based on a reference, for example the reference image (80).

9. The eye surgery apparatus as claimed in claim 8, **wherein** the computer unit (5) generates an item of display information (142), which is superimposed on the observation image (140) of the patient's eye (16), in order to display the direction of the astigmatism of the patient's eye (16), which direction is based on the observation image (140).

10. The eye surgery apparatus as claimed in claim 9, **wherein** the display information is an astigmatism axis (142).

11. The eye surgery apparatus as claimed in claim 9 or 10, **wherein** the imaging optics (14, 26, 27) are arranged in an operating microscope.
(3) which has a binocular viewer (12) and has a device for reflecting in
data, which device contains a display (18) which is connected to the
computer unit (5) and is intended to display the display information
(142) in the binocular viewer (12) in a manner superimposed on an
operating area in an object plane (15).

12. A method for determining the azimuthal orientation of a patient's eye
(16) with respect to a reference (80) which is fixed with respect to the
patient's eye (16), in which at least one section (92) of an observation
image (40) of the patient's eye (16), which comprises a segment of the
limbus (44) and/or of the iris (43), is compared with a section (94) of a
reference image (40) of the patient's eye (16) containing this segment,
and the azimuthal orientation of the patient's eye (16) relative to the
azimuthal orientation of the patient's eye (16), on which the reference
image (80) is based, is inferred from the azimuthal offset ($\Delta\phi$) of char-
acteristic, mutually corresponding structures (112, 114) of the observation
image (40) of the patient's eye and of the reference image (80) in
the region of the limbus (98), and in which said at least one section
(92) of the observation image (40) of the patient's eye (16) and the
section (94) of the reference image (80) of the patient's eye (16) are
displayed to an observer in such a manner that they can be moved
relative to one another, and the change in an azimuthal orientation
($\Delta\phi$) of the observation image (40) relative to the reference image (80)
is determined if the section (92) of the observation image (40) is
moved relative to the section (94) of the reference image,

wherein

the center (46) of the limbus (44) and/or of the iris (43) of the observa-
tion image (40) and of the reference image (80) is calculated, and the
section (92) of the image (40) of the patient's eye (16) and the section
(94) of the reference image (80) are each displayed in polar coordi-
nates in a polar coordinate system (96, 98), the center of which corresponds to the calculated center of the limbus (44) and/or of the iris (43) in the observation image (40) and in the reference image (80).

13. The method as claimed in claim 12, wherein the section (92) of the observation image (40) is shifted relative to the section (94) of the reference image (80) along an axis corresponding to the azimuth angle (φ) in the polar coordinate systems (96, 98) until mutually corresponding structures of the observation image (40) of the patient's eye (16) and of the reference image (80) are beside one another.

14. A computer program for determining the azimuthal orientation of an observation image (40) of a patient's eye (16) with respect to a reference (3, 80) which is fixed with respect to said patient's eye (16), which computer program calculates the center (46) of the limbus (44) and/or of the iris (43) for an observation image (40) and a reference image (80) comprising at least one section (92) including a segment of the sclera and containing at least one segment of the limbus (44) and/or of the iris (43) of a patient's eye (16), which computer program displays said section (92) of said observation image (40) and said reference image (80) in polar coordinates in a polar coordinate system (96, 98), the center of which corresponds to the calculated center of the limbus (44) and/or of the iris (43) in said observation image (40) and in said reference image (80), and which computer program determines the change in the azimuthal orientation (Δφ) of said observation image (40) relative to said reference image (80) from a movement of said at least one section (92) of said observation image (40), relative to the reference image (80) of said patient's eye (16), which movement can be input via an input interface (28).
INTERNATIONAL SEARCH REPORT

Invention:

A61B3/113 A61B3/117 A61B3/15 A61B3/00 G06T7/00

According to International Patent Classification (IPC) and/or both national classification and IPC

Minimum documentation searched (classification system followed by classification symbols):

A61B G06T

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"B" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

*I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search

14 November 2012

Date of mailing of the international search report

22/11/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Faymann, Juan

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 10 2009 052128 AI (LEICA INSTR SINGAPORE PTE LTD [SG]) 14 April 2011 (2011-04-14) cited in the application on the whole document</td>
<td>1-14</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 102009030504 AI 30-12-2010 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2004143245 AI 22-07-2004 AT 380498 T 15-12-2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>780951 B2 28-04-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5248101 A 30-10-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0106072 A 02-04-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2376752 AI 25-10-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60131827 T2 04-12-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1210002 A2 05-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2296745 T3 01-05-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4515687 B2 04-08-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004524050 A 12-08-2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA01013121 A 04-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002013576 AI 31-01-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004143245 AI 22-07-2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0178584 A2 25-10-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2005119642 AI 02-06-2005 AU 2002361210 AI 09-07-2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10297574 B4 10-09-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10297574 T5 07-04-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005119642 AI 02-06-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012127429 AI 24-05-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03053228 A2 03-07-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 102009052128 AI 14-04-2011 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)