(54) Title: ADAPTIVE ARRAY ANTENNA DEVICE

(57) Abstract
An array antenna which is used in a transmitter/receiver for a time-division transmission/reception communication system such as a TDD (Time Division Duplex) system and which calibrates an amplitude and a phase of each antenna element in a transmitter/receiver and during communication without depending on external information. A first transmitter (1-3-1) has a means (1-5-1) for transmitting a transmission signal to an antenna element (1-1-1) and for feeding back to at least one of receivers (1-4-1 to 1-4-k), and transmitters (1-3-2 to 1-3-k) other than the first transmitter have a means (1-5-k) for transmitting signals to corresponding antenna elements (1-1-2 to 1-1-k) and for transmitting them to a first receiver (1-4-1) corresponding to the first transmitter. A weighted amplitude phase value of each antenna element is calibrated from an amplitude phase value obtained at the first receiver (1-4-1) and those obtained at receivers (1-4-2 to 1-4-k) other than the first receiver, according to a specified directivity, and within a reception time slot duration.
TDD（Time Division Duplex）方式のように送信と受信を時分割で行う通信システムの送受信機で用いられるアレーランテナに関し、各アンテナ素子の振幅と位相の校正を外部からの情報によらずに、送受信機内で、かつ通信中に行う。第1の送信機（1−3−1）は送信信号をアンテナ素子（1−1−1）に送出すると共に少なくともひとつの受信機（1−4−1〜1−4−k）に帰還させる手段（1−5−1）を有し、第1の送信機以外の送信機（1−3−2〜1−3−k）は送信信号を対応するアンテナ素子（1−1−2〜1−1−k）に送出すると共に第1の送信機に対応する第1の受信機（1−4−1）に送る手段（1−5−k）を有する。第1の受信機（1−4−1）に得られる振幅位相値と、第1の受信機以外の受信機（1−4−2〜1−4−k）に得られる振幅位相値とから、所望の指向性に従って、各アンテナ素子の重み付けされた振幅位相値を校正する。校正は受信タイムスロット期間内で行われる。
明細書
適応アレーナンテナ装置

技術分野
本発明は、アレーナンテナ装置に関し、特にTDD(Time Division Duplex: TDD)方式などの送信と受信を時分割で異なる時間に行う通信システムにおいて、アレーナンテナの振幅と位相を装置内でかつ通信中に自動的に校正する回路に関するものである。

背景技術
近年の携帯電話やPHS(Personal Handyphone System)などの移動通信の急速な普及に伴って、限られた周波数帯においてできる限り多くの加入者を確保することが必要になってきている。そのため、移動通信では多数の加入者で必要に応じて特定のチャネルを割り当てるマルチチャネルアクセス方式を用いることが現在の主流となっている。セルラーシステムやPHSなどに代表される現在の移動通信システムでは、マルチチャネルアクセス方式として主に時分割多重化(Time Division Multiple Access: TDMA)方式が採用されている。さらに周波数の利用効率が優れているマイクロセル方式では、1つの周波数で送信と受信を時間を分割して行う時分割複信伝送(Time Division Duplex: TDD)方式が採用されている。
一方、無線区間で周波数の利用効率を高めるためには、隣接セルからの干渉波の影響を低減することが必要となる。干渉波を低減する技術として適応アレーナンテナが知られている。この事実は例えば文献「Monzingo et. al, "Introduction to Adaptive Array", John Willy & Sons New York, 1980」などに開示されている。適応
アレーアンテナは複数のアンテナ要素をアレー状に配列して、アレーアンテナの各ブランチ毎に入力された信号に対して振幅と位相を重みづけすることにより、干渉波の方向にアレーアンテナの放射パターンのヌルを形成し、干渉波の影響を低減する技術である。

アダプティブアレーアンテナを前述のTDDシステムで用いる場合の構成図を図13に示す。アダプティブアレーアンテナをTDDシステムに適用する際には、送信と受信の周波数が同じであることを利用して、受信側で得られたアンテナの放射パターンを送信でもそのまま用いることが可能であり、送信時の特性を考慮すればアダプティブアレーアンテナはTDD方式に適していると言える。

図13で、13−1−1～13−1−NはN個（Nは2以上の自然数）の要素アンテナを示意、各々、送受信切替スイッチ13−2−1～13−2−Nを介して送信機13−3−1～13−3−N、又は、受信機13−4−1～13−4−Nに接続される。

受信信号はアンテナ要素から送受信切替スイッチを介して受信機に印加され、その出力は指向性制御演算回路13−7に入力され各チャンネルの振幅値と位相値を計算する。重みづけ演算回路13−6は各振幅値と位相値を送信される信号に乗算し、乗算結果を送信機と送受信切替スイッチを介してアンテナ要素に印加する。各アンテナ要素に印加される送信信号の振幅と位相は、所望のアンテナビームを形成するように重みづけ演算回路により制御されている。

従って、受信機で得られた信号に対して指向性演算回路により得られる各チャンネルの振幅値と位相値と送信される信号を重みづけ演算回路の中で乗算し、この値を用いて送信を行うことで、原理的には受信側で得られたアンテナの放射パターンを送信でもそのまま実現できる。
しかし、アダプティブアレーテナで用いるアレーテナ装置はそれらの振幅と位相が各ブランチ間で等しいことが理想的であるが、実際は電力増幅機などの高周波回路やケーブルの個体差、設置場所の温度特性の変動などによって異なることが多く、これらの誤差により理想的な放射パターンに対してヌルの低下やサイドロブの上昇が生じ、アダプティブアレーテナの本来持つ干渉波抑圧特性を劣化させる要因となっている。この事実は例えば文献「J. Litva et. al. "Digital Beamforming in Wireless Communications", Artech House Publishers, 1996.」などに開示されている。

この現象の一例を図11に示す。図11では3素子円形配置のアレーテナにおいて、理想的には(a)に示す振幅・位相条件を与えた場合に対して、(b)には(a)の各素子の振幅・位相条件値に対し、各素子の振幅と位相に誤差を与えた場合の放射パターンのヌル深度を表わしている。(a)から理想的には180°方向にヌルを有するパターンを形成するのに対し、(b)からも分かるようにアレーテナの各素子の振幅と位相が理想的な値から異なることにより、著しく放射パターンの劣化を招いてしまうことがある。したがって、TDDシステムにおいてアダプティブアレーテナの送信と受信のパターンを一致させるためには、アレーテナの各ブランチ間の振幅と位相を校正する技術が必要となる。

No.5, pp.555-560」に開示されている。しかし、一般にマイクロセル移動通信では用いられる基地局は必ずしも規則的に設置されるとは限らず、通話エリアの不感地の解消やトラフィックに応じて置局が行われるため、各基地局に対して上記の方法を用いることは困難である。また、端末などから校正に相当する情報を与えるという方法も考えられるが、校正用の情報を通信中に送る必要が生じるため、通信フレームの伝送効率を低下させるといった問題が生じる。したがって、移動通信などの環境下では装置内でアレーニンテナの各ブランチ間の振幅と位相を校正できることが望まれる。

(1) 基準信号発生機12-11から分岐手段12-14aを介して各ブランチ毎に共通の信号が受信機12-3に送られる。各ブランチ毎の受信機で得られた値のあるブランチの値を基準値として受信機における校正値を求める。

(2) 受信機12-4から信号をスイッチ12-13とアッテネーター12-12を介して受信機12-3に送り、各ブランチ毎に得られた値を(1)で基準としたブランチの値を基準値として校正値を求める。

(3) (1)と(2)で求めた校正値を差し引き、送信機の校正値を求める。

したがって、図12の校正回路を用いることにより、装置内でアレー
アンテナの各ブランチ間の振幅と位相を校正することが可能となる。

しかし、図12に示されるような従来の装置内で校正を実現する方法では送信機と受信機の校正が完全に独立して行われるため、TDD方式のような送信と受信が異なった時間で行われるようなシステムでは、通信中に校正を行うことはできず、基地局の設置場所や通信中の温度変化などにおける環境の変化に従従できないといった問題が生じる。

本発明は、適応アレーダンテナ装置におけるアレーダンテナの各ブランチ間の振幅と位相を校正する手段として、外部の情報を用いることによって通信の伝送効率の低下を招かないために装置内で校正を行い、かつ通信中に校正值を求めることが可能な適応アレーダンテナ装置を提供することを目的とする。

発明の開示

前記目的を達成するための本発明の特徴は、N(N≧2, Nは整数)のアンテナ素子と、N個の送信機と、N個の受信機と、各アンテナ素子から対応する受信機に入力された信号に対して振幅と位相の重みづけを行った後合成を行ってアレーダンテナの放射パターンを制御する指向性演算回路を具備する適応アレーダンテナ装置において、各送信機は、送信信号を対応するアンテナ素子に接続すると共にその一部を少なくとも1つの受信機に帰還させる手段を具備し、送信機からの信号を送信タイムスロットの間に受信する少なくとも2つの受信機の受信出力の比から当該送信機及び受信機に関連するブランチの振幅・位相校正值を決定する振幅・位相校正值演算回路とを具備することを特徴とする適応アレーダンテナ装置にある。
本発明の実施例によると、適応アレーマアンテナ装置は、N（N≥2，N
は整数）本のアンテナ素子と、N個の送信機と、N個の受信機と、前記
アンテナ素子を、前記送信機、又は、前記受信機へ選択的に接続す
る、アンテナ素子毎に設けた第1のスイッチと、受信機毎に入力さ
れた信号に、振幅と位相の重みづけを行った後合成を行ってアレー
アンテナの放射パターンを制御する指向性制御演算回路と、該指向
性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重
みづけ演算回路と、送信機毎に接続され、送信機の出力信号に対応
するアンテナ素子に接続すると共に一部を分岐するN個の分岐手段
と、該分岐手段の中の1番目の分岐手段により分岐された信号を前
記受信機の中の2〜N番目のいずれかに接続する第2のスイッチと、
該分岐手段の中の2〜N番目のいずれかの分岐手段により分岐され
た信号を1番目の受信機に接続する第3のスイッチと、前記第1の
スイッチで前記アンテナ素子から受信機に送られる信号、又は、前
記第2のスイッチ又は、第3のスイッチのいずれかから送られる信
号を各受信機に接続する第4のスイッチと、各受信機から得られる
振幅・位相値を用いて各アンテナ素子の振幅位相校正値を求める処
理を行う振幅・位相校正値演算回路を具備する。

好ましくは、前記振幅・位相校正値演算回路は、1番目の送信機
から送られる信号を分岐し、該分岐された信号を前記第2のスイッ
チを介して第4のスイッチのi（2≤i≤N，iは整数）番目に接続し、該
信号を前記第4のスイッチの中のi番目のスイッチを介してi番目の
受信機に送ることで該i番目の受信機の出力に得られる値1と、i番
目の送信機から送られる信号を分岐し、該分岐された信号を前記の
第3のスイッチを介して1番目の第4のスイッチに接続し、該信号
を1番目の受信機に送ることで当該受信機の出力に得られる値2に
対して、「値1／値2」の演算処理を行い、該計算結果をアンテナ素子の1番目の校正値とする。

本発明の別実施例による適応アレーアンテナ装置は、N(N≧2, Nは整数)本のアンテナ素子と、N個の送信機と、N個の受信機と、アンテナ素子毎に接続され該アンテナ素子に対して送信機もしくは受信機への切り替えを行う1のスイッチと、受信機毎に入力された信号に振幅と位相の重みづけを行った後合成を行うことでアレーアンテナの放射パターンを制御する指向性制御演算回路と、該指向性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重みづけ演算回路と、各送信機から送られる信号を分岐するN個の分岐手段と、該分岐手段の中のk－1(2≦k≦N－1, kは整数)番目もしくはk＋1番目の分岐手段のいずれかをk番目の受信機に接続するN－2個の第2のスイッチと、前記分岐手段の中のk番目の分岐手段から送られる信号をk－1番目もしくはk＋1番目の受信機に接続するN－2個の第3のスイッチと、第1のスイッチでアンテナ素子から受信機側に送られる信号もしくは第2のスイッチまたは第3のスイッチから送られる信号を受信機に接続する第4のスイッチと、上記各手段から得られる振幅・位相値を用いて各プランチ間の振幅位相校正値を求める処理を行う振幅・位相校正演算回路を具備する。

好ましくは、前記振幅・位相校正演算回路は、i(1≦i≦N－1, iは整数)番目の送信機から送られる信号をi番目の分岐手段を通じて分岐し、該分岐された信号を前記第2のスイッチを介してi＋1番目の第4のスイッチに接続し、該信号をi＋1番目の第4のスイッチを介してi＋1番目の受信機に送ることで得られる値A(i)と、i＋1番目の送信機から送られる信号をi＋1番目の分岐手段を通じて分岐し、該分岐された信号を前記の第3のスイッチを介してi番目の第4の
スイッチに接続し、該信号を前記i番目のスイッチを介してi番目の受信機に送ることで得られる値B(i)に対し、「該値A(i)/該値B(i)」の演算を行い、該演算結果値をC(i)とし、i=1の場合は、該i+1番目の振幅・位相校正値を該値C(i)とし、i≠1の場合は、「該値C(i-1)・C(i)」の演算を行い、該演算結果値D(i)をi+1番目のアンテナ素子の振幅・位相校正値とする。

本発明の更に別の実施例による適応アレーレアンテナ装置は、N(N≧2, Nは整数)本のアンテナ素子と、N個の送信機と、N個の受信機と、アンテナ素子每に接続される該アンテナ素子に対して送信機もしくは受信機への切り替えを行う第1のスイッチと、受信機毎に入力された信号に振幅と位相の重みづけを行った後合成を行うことでアレーレアンテナの放射パターンを制御する指向性制御演算回路と、該指向性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重みづけ乗算回路と、各送信機から送られる信号を分岐するN個の分岐手段と、1番目の分岐手段から送られる信号を1～N番目の受信機のいずれかに接続する第2のスイッチと、1～N番目のいずれかの分岐手段から送られる信号を1番目の受信機に接続する第3のスイッチと、第1のスイッチでアンテナ素子から受信機側に送られる信号もしくは第2あるいは第3のスイッチのいずれかから送られる信号を当該受信機に接続する第4のスイッチと、上記各手段から得られる振幅・位相値を用いて各ブランチ間の振幅位相校正値を求める処理を行う振幅・位相校正値演算回路を具備する。

好ましくは、前記振幅・位相校正値演算回路は、1番目の送信機から送られる信号を1番目の分岐手段を通じて分岐し、該分岐された信号を前記第2のスイッチを介して第4のスイッチのi(i≦i≦N, iは整数)番目に接続し、該信号を前記第4のスイッチの中のi番目
のスイッチを介してi番目の受信機に送ることで得られる（値1）と
、i番目の送信機から送られる信号をi番目の分岐手段を通して分岐
し、該分岐された信号を前記の第3のスイッチを介して第4のスイッ
チの1番目に接続し、該信号を前記第4スイッチの中の1番目の
スイッチを介して前記受信機の中の1番目の受信機に送ることで得
られる（値2）に対して、「（値1）/（値2）」の演算処理を行い、
該演算結果を該アンテナ素子のi番目のアンテナ素子の校正值とす
る。

本発明の更に別の実施例による適応アレーヤンテナ装置は、N(N
≧2, Nは整数)本のアンテナ素子と、N個の送信機と、N個の受信機と
、アンテナ素子毎に接続されアンテナ素子に対して送信機もしくは
受信機への切り替えを行う第1のスイッチと、受信機毎に入力され
た信号に振幅と位相の重みづけを行った後合成を行うことでアレーヤ
ンテナの放射パターンを制御する指向性制御演算回路と、該指向
性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重
みづけ演算回路と、各送信機から送られる信号を分岐するN個の分岐
手段と、1番目の分岐手段から送られる信号を1〜N番目の受信機の
いずれかに接続する第2のスイッチと、1番目とk(2≦k≦N, kは整
数)番目のいずれかの分岐手段から送られる信号をk番目の受信機に
接続する第3のスイッチと、第1のスイッチでアンテナ素子から受
信機側に送られる信号もしくは第2あるいは第3のスイッチのいず
れかから送られる信号を当該受信機に接続する第4のスイッチと、
上記各手段から得られる振幅・位相値を用いて各ブランチ間の振幅
位相校正值を求める処理を行う振幅・位相校正值演算回路を具備す
る。

好ましくは、前記振幅・位相校正值演算回路は、1番目の送信機
から送られる信号を1番目の分岐手段を通して分岐し、該分岐された信号を前記第2のスイッチを介して第4のスイッチのi(1≦i≦N, iは整数)番目に接続し、該信号を前記第4のスイッチの中のi番目のスイッチを介してi番目の受信機に送ることで得られる値A(i)と、k(2≦k≦N, kは整数)番目の送信機から送られる信号をk番目の分岐手段を通して分岐し、該分岐された信号を前記の第3のスイッチを介して第4のスイッチのk番目に接続し、該信号を前記第4スイッチの中のk番目のスイッチを介してk番目の受信機に送ることで得られる値B(k)と、「該値A(i)／該値A(1)」の演算を行い、該演算結果値C(i)と、「該値B(k＝i)／該値A(i)」の演算を行い、該演算結果値D(i)に対して、「該値C(i)／D(i)」の演算を行い、該演算結果値を該i番目のアンテナ素子の振幅・位相校正值とする。

従来の技術では、送信と受信のパターンを一致させるために、送信部と受信部を別々に校正していた。よって、受信機用と送信機用にそれぞれ校正装置が必要とした。しかし、一般にアダプティブアレイアンテナは受信時においては、ブランチ間に振幅・位相誤差が存在する場合も、その値を考慮した最適な指向性を形成することで干渉低減が可能である。また、実際は送信を行う際に受信時に最適とされるパターンが結果的に送信できればよいので、TDDシステムのような送信と受信が異なった時間で実現されるシステムにおいては、送信中に送信部と受信部の両方の校正が求まればよい。

本発明では、送信信号を受信信号に帰還させるループを複数設け、それらの帰還が自布ランチのみではなく、他ブランチの受信部に帰還されることを特徴としている。すなわち、従来技術のように、自己ブランチに対して、送信部からの信号を受信部に帰還させるのではなく、ブランチ間で送信信号を帰還させることで、通信中に
送信部と受信部の校正值を求めることができるのを特徴としている。

図2と図3の実施例は、1個のプランチを基準として、その他のプランチと基準プランチ間で送信信号の帰還と受信機側への回り込みを実現することで、通信中に送信機と受信機の校正值を得る、及び、振幅・位相校正値演算回路の校正を計算するための手段を示す。

図4と図5の実施例は、基準プランチとその他のプランチとの間の送信信号の受信機への帰還に用いるスイッチ分岐数を削減するための構成となっていることを特徴とする。具体的には、2個のプランチ間で必要な校正值を求め、それらの値を順次求めるので、必要な校正值を得ることができることを特徴としている。さらに、振幅・位相校正値演算回路の校正を計算するための手段を示す。

図6と図7と図8に示す実施例は、送信部と受信部の校正值が通信中に同時に得られるだけでなく、送信部と受信部の校正值が別々にも得ることができることを特徴としている。さらに、振幅・位相校正値演算回路の校正を計算するための手段を示す。

図9と図10の実施例は、送信部と受信部の校正值が通信中に同時に得られるだけではなく、送信部と受信部の校正值が別々にも得ることができるのを特徴としている。さらに、本発明は基準となるプランチ以外の送信信号の帰還は、自己プランチに対する受信機への帰還のみであるため、校正回路の配線などの引き回しが比較的容易になることを特徴としている。さらに、振幅・位相校正値演算回路の校正を計算するための手段を示す。

図面の簡単な説明

図1は本発明の構成図の例である。
図2は本発明の実施例のブロック図である。
図3は図2に従って校正值を求めるためのフローチャートを表す。
図4は本発明の別の実施例のブロック図である。
図5は図4に従って校正值を求めるためのフローチャートを表す。
図6は本発明の更に別の実施例のブロック図である。
図7は図6に従って校正值を求めるためのフローチャートを表す。
図8は図6に従って校正值を求めるための別のフローチャートを表す。
図9は本発明の更に別の実施例のブロック図である。
図10は図9に従って校正值を求めるためのフローチャートを表す。
図11はアレイアンテナに対して理想的な振幅・位相の状態から各ブランチ間で振幅・位相の誤差を与えたときのスル深度の例を表したものである。
図12は従来の校正回路を表す図である。
図13は従来のアダプティブアレーニンテナをTDDシステムに適用した場合の構成を表す図である。
図14は本発明をTDD通信方式に適用した場合の動作タイムチャートである。

発明を実施するための最良の形態

TDD通信方式では、図14に示すごとく、送信のタイムスロットTと受信のタイムスロットRとが交互に配置される。ひとつのタイムスロ
ットの時間長は非常に短い。従って、送信のタイムスロットの間は、受信機は休止期間である。本発明はこの休止期間に、送信信号の一部を受信機に帰還してアレーヌタナの校正を行う。校正は、例えば、各送信タイムスロットにおいて、ひとつのアンテナ素子に対する校正を行うようにする。例えばあるタイムスロットでi=2のアンテナ素子に対する校正を行ったときは、次のタイムスロットではi=3のアンテナ素子に対する校正を行い、この動作を繰り返して全てのアンテナ素子に対する校正を行う。アンテナ素子に対する校正が終了すると、そのアンテナ素子の振幅及び位相は校正された値に固定される。校正の動作は所定時間毎（例えば1時間毎）に行われる。

図1は本発明の概略を示す図である。図1において、1－1はアンテナを、1－2は送信・受信分離回路を、1－3は送信機を、1－4は受信機を、1－5は分岐手段を、1－6は振幅位相校正値演算回路を、1－7は指向性制御演算回路を表す。

本発明における原理を以下に示す。以下の振幅・位相値の表現を簡易化するために、各パラメータを複素数で表現するものとする。例えば、Aを振幅、θを位相とするとき、これらをまとめてB＝Aexp(jθ)で表現するものとする。

i番目のブランチに対する入力信号をX_iとし、受信時において、各ブランチ間の振幅・位相差が存在しない場合の最適ウエイトをW_{opt}とし、受信信号に受信機による振幅位相変動が加えられた後の信号に対して求めたウエイトをW_iとすると、受信におけるi番目のブランチの出力Y_iは以下の式で表わされる。

\[Y_i = W_{opt}X_i \]
\[= W_iM_iR_iX_i \quad (1) \]
ここで、M_iはそれぞれアンテナおよびケーブルで生じる振幅および位相を表わし、R_iはそれぞれ受信機で生じる振幅および位相を表わす。一方、i番目のブランチにおける送信機からの出力信号をs_iとすると、アダプティブアレーバタナで指向性制御を行った後にi番目のブランチに対して実際に空間に出力される信号y_{ii}は以下の式で表わされる。

$$y_{ii} = W_i s_i M_i T_i$$ (2)

ここで、T_iはそれぞれ送信機で生じる振幅および位相を表わす。送受信のパターンを一致させるためには$y_{ii} = y_{ii}$を満たす必要があります。式(1)と式(2)よりW_iを消去すると、

$$y_{ii} = \left(W_{opt} / M_i R_i \right) s_i M_i T_i$$

$$= W_{opt} s_i \left(T_i / R_i \right)$$ (3)

となる。式(3)より、アンテナ及びケーブルで生じる振幅・位相は受信と送信の間でキャンセルされ、i番目のブランチで生じる振幅・位相をK_iとすると

$$K_i = R_i / T_i$$ (4)

となる。この値を各ブランチ毎に求め、あるブランチを基準にした値の相対的な差を求めれば、各ブランチ間の振幅・位相の校正が可能となる。例えば、1番目のブランチを基準とした場合、i番目のブランチにおける校正值をH_iとすると校正值は以下の式で与えることができる。

$$H_i = K_i / K_i$$

$$= (R_i / T_i) / (R_i / T_i)$$

$$= T_i R_i / (T_i R_i)$$ (5)

校正された出力y'_{ii}は式(3)と式(5)を用いて以下の式で与えられる。

$$y'_{ii} = W_{opt} s_i T_i / R_i H_i$$
式 (6) において K_1 は一定値であるため、式 (6) を用いれば受信時における各ブランチ間の振幅・位相差が存在しない場合の最適ウェイトで送信を行うことが可能になる。したがって、式 (5) を求めることができれば送信時のみで各ブランチ間の校正が可能となる。

ここで、図 1 では、式 (5) を得るために、従来の校正回路のように、自己ブランチにおける送信機からの受信機への帰還のみではなく、他のブランチへの送信信号の帰還を設けている。例えば、k 番目において、自己ブランチにおける送信機から受信機への帰還で得られる値は、$T_k R_k$ となり、必要な校正値はこの式のみでは直接求められない。そこで、1 番目のブランチと k 番目のブランチにおいて、1 番目の送信機から k 番目の受信機に信号を送るループと、k 番目の送信機から 1 番目の受信機に信号を送るループを設けることで、それぞれ $T_1 R_k, T_k R_1$ が得られる。これらの値を割算すれば、式 (5) が得られ、1 番目のブランチに対する k 番目の送受信機の振幅・位相校正値が得られる。すなわち、本発明により送信中に、送信信号を他ブランチの受信機に帰還させるとループを組み合わせることにより、必要とされる校正値を求めることが可能となる。

図 2 は請求項 2 の概略を示すブロック図である。図 3 は図 2 の回路を用いて校正を行うための手順を示すためのフローチャートである。図 2 において、$2-K-I$ の i (1 ≤ i ≤ N, i: 整数) は K 番目のブランチに接続される名称を表わすものとし、図 2 ではブランチの数は N である。
また、図 2 に示されている矢印は信号の方向を表わすものである。2 -1 はアンテナ素子を、2 -2 はアンテナ素子を送信機又は受信機に接続するための第 1 のスイッチを、2 -3 は送信機を、2 -4 は受信機を、2 -5 は送信機の出力をアンテナ素子に接続すると共に一部を分岐
する分岐手段を、2－6は1の分岐手段2－5－1からの信号を2－4－2－4－Nまでのいずれかの受信機と接続する2のスイッチを、2－7は第2－Nの分岐手段2－5－2－5－Nまでのいずれかからの信号を第1の受信機2－4－1と接続する第3のスイッチを、2－8は第2のスイッチ2－6もしくは第3のスイッチ2－7を受信機2－4の入力に接続する第4のスイッチを、2－9は振幅位相校正値演算回路を、2－10は指向性制御演算回路を表わす。2－11は重みづけ乗算回路を表わす。

以下に、図3のフローチャートに従って式(5)を各ブランチ毎で求める方法を示す。

(1) 1番目のブランチの送信回路(2－3－1)からi番目のブランチの受信回路(2－4－i)に信号を送る(S－21)。この信号を送る際に分岐手段(2－5－1)と第2のスイッチ(2－6)と第4のスイッチ(2－8)を通過する。この処理により、先ほど示したパラメータを用いると振幅・位相校正値演算回路で得られる値は以下の値となる。

\[T_{1,R_i} \]

ここで、2－3－1から2－8に信号を送るために分岐手段を用いているのは、送信を行う際には送信でのパワーを確保するために電力増幅機をアンテナの手前で用いており、この信号をそのまま受信すると受信回路の受信レベルの許容値の範囲を超えてしまうためであり、2－3－1から2－8における信号は実際の通信での送信信号に対してレベルを低くするように設定する。分岐手段の具体的な構成としては例えばカップラーを用いればよい。また、第2のスイッチを用いるのは、ブランチ1の送信信号をブランチ1以外のいずれかの受信回路に送るためである。さらに第4のスイッチを用いるのは、通信中の受信の状態では1番目のアンテナ素子で受信される信号のみが
必要であり、校正値を求めるためには第1の送信回路（2-3-1）から送られる信号のみを受信することが必要となるためである。

(2) (1)の処理と平行して、i番目のブランチの送信回路（2-3-i）から1番目のブランチの受信回路（2-4-1）に信号を送る(S-22)。
この信号を送る際に分岐手段（2-5-i）と第3のスイッチ（2-7）と第4のスイッチ（2-8-1）を通してする。この処理により、先ほど示したパラメータを用いると振幅・位相校正値演算回路で得られる値は以下の値となる。

\[T_i R_1 \]

(8)

2-3-iから2-8に信号を送るために分岐手段を用いているのは、
(1) の理由と同じである。また第4のスイッチを用いると、ブランチiの送信信号のいずれかをブランチ1の受信回路に送るためである。さらに第4のスイッチ2-7を用いるのは、通信中の受信では第1のアンテナで受信される信号のみが必要であり、校正値を求めるためには送信回路（2-3-i）から送られる信号のみを受信することが必要となるためである。

(3) 式(7)／式(8)を求めれば、式(5)が求められ、ブランチiのブランチ1に対する校正値が求められる(S-23)。

(4) i→i+1としi=Nとなるまで(1)～(3)を繰り返す(S-24)。

最後に、上記より得られた校正値と受信で得られた振幅・位相値を重みづけ乗算回路2-11で各ブランチ毎に乗算し、この値を用いて送信を行えば、アレーマンテナの各ブランチ間の振幅・位相値の補正を行うことができため、装置内でブランチ間の振幅・位相差がない場合と等価な状態で送信していることになる。すなわち、本発明による装置を用いれば、アレーマンテナの各ブランチ間の振幅・位相値の補正を行うことができる。本発明による校正回路では、送信
に用いる信号を用いて校正值を求めるため、通信中にリアルタイムで校正が可能であり、従来の校正回路では実現が困難であった高周波回路における温度特性などの補償も可能となる。

本発明の別の実施例

図4は本発明の別の実施例の概略を示すブロック図である。図5は図4の回路を用いて校正を行うための手順を示すためのフローチャートである。図4において、4-K-iのi(1≦i≦N,i:整数)はi番目のブランチに接続される名称を表わすものとする。また、図4に示されている矢印は信号の方向を表わすものである。4-1はアンテナ素子を、4-2はアンテナ素子に対して送信と受信を切り替える第1のスイッチを、4-3は送信機を、4-4は受信機を、4-5は分岐手段を、4-7-K(2≦k≦N-1,kは整数)は4-5-Kからの信号を4-4-K-1もしくは4-4-K+1のいずれかと接続する第3のスイッチを、4-6-K(2≦k≦N-1,kは整数)は4-5-K-1からの信号と4-5-K+1からの信号のいずれかを4-4-Kと接続する第2のスイッチを、4-8は4-6もしくは4-7と4-4を接続する第4のスイッチを、4-9は振幅位相校正值演算回路を、4-10は指向性制御演算回路を表わす。4-11は重みづけ乗算回路を表わす。

以下に、図5のフローチャートに従って式(5)を各ブランチ毎で求める方法を示す。

(1) i=1とした場合について述べる。この場合は、1番目のブランチと2番目のブランチの間の校正值を求める。1番目のブランチの送信回路(4-3-1)から2番目のブランチの受信回路(4-4-2)に信号を送る。この信号を送る際に分岐手段(4-5-1)と第2のスイッチ(4-6-2)と第4のスイッチを通過する。この処理により、先ほど示
したパラメータを用いると振幅・位相校正値演算回路で得られる値は以下の値となる。

\[T_1 R_2 \] (9)

ここで、4－3－1から4－4－2に信号を送るために分岐手段を用いているのは、送信を行う際には送信でのパワーを確保するために電力増幅機をアンテナの手前で用いており、この信号をそのまま受信すると受信回路の受信レベルの許容値の範囲を超えてしまうためである。4－3－1から4－4－2における信号は実際の通信での送信信号に対してレベルを低くするように設定する。分岐手段の具体的な構成としては例えばカップラーを用いればよい。また、第2のスイッチを用いるのは、受信機2に対して、ブランチ1の送信信号の他にブランチ3の送信信号を送るからであり、 この理由は後述する。さらに第4のスイッチを用いるのは、通信中の受信の状態ではアンテナで受信される信号のみが必要であり、校正値を求めるためには送信機1（4－3－1）から送られる信号のみを受信することが必要となるためである。

(2) 2番目のブランチの送信回路（4－3－2）から1番目のブランチの受信回路（4－4－1）に信号を送る。この信号を送る際に分岐手段（4－5－2）と第3のスイッチ（4－7－2）と第4のスイッチ（4－8－1）を通過する。この処理により、先ほど示したパラメータを用いると振幅・位相校正値演算回路で得られる値は以下の値となる。

\[T_2 R_1 \] (10)

4－3－2から4－4－1に信号を送るために分岐手段を用いているのは、(1)の理由と同じである。また第3のスイッチを用いるのは、ブランチ2からの送信信号をブランチ1の受信機の他にブランチ3の受信機に送る必要があるからであり、この理由も後述する。さらに第
4のスイッチを用いるのは、通信中の受信ではアンテナで受信される信号のみが必要であり、校正値を求めるためには送信機 \((4 - 3 - 2)\) から送られる信号のみを受信することが必要となるためである。

(3) 式(9)／式(10)を求めれば、i = 1とした場合の式(5)が求められ、プランチ2のプランチ1に対する校正値が求められる。

(4) 次にi→i+1とする。さきほどと同様に(1)と(2)をくり返すと、

(1)と(2)のループでそれぞれ以下の値が得られる。

\[
\begin{align*}
T_2 & R_3 \\
T_3 & R_2 \\
\end{align*}
\]

（11）

（12）

ここで式(11)／(12)より、2番目のプランチに対する3番目のプランチの校正値を求めることができる。

(5) 実際に校正値を用いて送信を行うためには、ある1個のプランチを基準とした各プランチの校正値を求める必要がある。ここで1番目のプランチを基準プランチと考える。\(H_{2,1} = \text{式(9)／式(10)}\)と\(H_{3,2} = \text{式(11)／式(12)}\)とすると、これらの結果を用いて1番目のプランチを基準とした、3番目のプランチに対する校正値\(H_{3,1}\)を以下の式で与えることができる。

\[
H_{3,1} = H_{2,1} \times H_{3,2}
\]

\[
= \left(T_1 R_2 / (T_2 R_1) \right) \times \left(T_2 R_3 / (T_3 R_2) \right)
\]

\[
= T_1 R_3 / (T_3 R_1)
\]

\[
= (R_3 / T_3) / (R_1 / T_1)
\]

（13）

(6) 以上より、iプランチの校正値は、i − 1プランチに対するi番目の校正値\(H_{i-1,i-1}\)と、1プランチに対するi−1番目の校正値\(H_{i-1,1}\)より求めることができると。

\[
H_{i,1} = H_{i-1,1} \times H_{i,i-1}
\]

\[
= \left(T_i R_{i-1} / (T_{i-1} R_1) \right) \times \left(T_{i-1} R_i / (T_i R_{i-1}) \right)
\]
\[T_1 R_1 / (T_1 R_1) = (R_1 / T_1) / (R_1 / T_1) \] \hspace{1cm} (14)

最後に、上記の仮定より得られた校正値と受信で得られた振幅位相値を重みづけ乗算回路で各ブランチ毎に乗算し、この値を用いて送信を行えば、アレーヤンテナの各ブランチ間の振幅・位相値の補正を行うことができるため、装置内でブランチ間の振幅・位相差がない場合と等価な状態で送信していることになる。本発明による装置を用いれば、アレーヤンテナの各ブランチ間の振幅・位相値の補正を行うことができるため、先ほどの実施例と同様に、本発明による校正回路では、送信中に用いる信号を用いて校正値を求めるため、通信中にリアルタイムで校正が可能であり、従来の校正回路では実現が困難であった高周波回路における温度特性などの補償も可能となる。さらに、図4の構成をとることで、図2の構成に対して、校正用のスイッチの数は増加するものの、スイッチの分岐数をN－1から2に削減することができる。実際には分岐数2のスイッチは、汎用のスイッチで実現できるため、アンテナ素子数が増加した場合にも、図4の構成は容易にハードウエアを実現できる。

図6は本発明の更に別の実施例の概略を示すブロック図である。図7と図8は図6の回路を用いて校正を行うための手順を示すためのフローチャートである。図6において、6－K－iのi(1≤i≤N, i:整数)はi番目のブランチに接続される名称を表すものとする。また、図6に示されている矢印は信号の方向を表すものである。6－1はアンテナを、6－2はアンテナに対して送信と受信を切り替える第1のスイッチを、6－3は送信機を、6－4は受信機を、6－5は分岐手段を、6－6は6－5－1からの信号を6－4－1～6－4－Nまでのいずれかと接続する第2のスイッチを、6－7は6－5－1～6－5－Nまでのいずれか
からの信号を6-4-1と接続する第3のスイッチを、6-8は6-6もしくは6-7と6-4を接続する第4のスイッチを、6-9は振幅位相校正値演算回路を、6-10は指向性制御演算回路を表わす。6-11は重みづけ乗算回路を表わす。

以下に、図7のフローチャートに従って式(5)を各ブランチ毎に求める動作を示す。

(1) 1番目のブランチの送信回路(6-3-1)からi番目のブランチの受信回路(6-4-i)に信号を送る。この信号を送る際に分岐手段(6-5-1)と第2のスイッチ(6-6)と第4のスイッチを通過する。この処理により、先ほど示したパラメータを用いると振幅・位相校正値演算回路で得られる値は以下の値となる。

\[T_1, R_1 \] (15)

ここで、6-3-1から6-4に信号を送るために分岐手段を用いているのは、送信を行う際には送信でのパワーを確保するために電力増幅機をアンテナの手前で用いており、この信号をそのまま受信すると受信回路の受信レベルの許容値の範囲を超えてしまうためであり、6-3-1から6-7におくる信号は実際の通信での送信信号に対してレベルを低くするように設定する。分岐手段の具体的な構成としては例えばカップラーを用いればよい。また、第2のスイッチを用いるのは、ブランチ1の送信信号をブランチ1～Nまでの受信回路に送るためである。さらに第4のスイッチを用いるのは、通信中の受信の状態ではアンテナiで受信される信号のみが必要であり、校正値を求めるためには送信回路1(6-3-1)から送られる信号のみを受信することが必要となるためである。

(2) i番目のブランチの送信回路(6-3-i)から1番目のブランチの受信回路(6-4-1)に信号を送る。この信号を送る際に分岐手段(6-
-5-i)と第3のスイッチ(6-7)と第4のスイッチ(6-8-1)を通
する。この処理により、先ほど示したパラメータを用いると振幅・
位相校正値演算回路で得られる値は以下の値となる。

\[T_{R_1} \] \hspace{1cm} (16)

6-3-i(i=2〜N)から6-7に信号を送るために分岐手段を用いてい
るのは、(1)の理由と同じである。また3のスイッチを用いるのは
、ブランチiの送信信号のいずれかをブランチ1の受信回路に送るた
めである。さらに4のスイッチを用いるのは、通信中の受信では
アンテナ1で受信される信号のみが必要であり、校正値を求めるた
めには送信回路(6-3-i)から送られる信号のみを受信することが
必要となるためである。

(3) 式(15)／式(16)を求めれば、式(5)が求められ、ブランチiのブ
ランチ1に対する校正値が求められる。

(4) i→i+1としi=Nとなるまで(1)〜(3)を繰り返す。

最後に、得られた校正値と受信で得られた振幅位相値を重みづけ
乗算回路で各ブランチ毎に乗算し、この値を用いて送信を行えば、
アレーマンテナの各ブランチ間の振幅・位相値の補正を行うことが
できるため、装置内でブランチ間の振幅・位相差がない場合と等価
な状態で送信していることになる。この実施例においても同様に、
アレーマンテナの各ブランチ間の振幅・位相値の補正を行うことができる。本発明による校正回路では、送信中に用いる信号を用いて
校正値を求めることで、通信中にリアルタイムで校正が可能であり、
従来の校正回路では実現が困難であった高周波回路における温度特
性などの補償も可能となる。

一方、到来方向推定などのアルゴリズムを用いてアダプティブア
レーパを動作させる場合には受信部と送信部を合わせたブランチの校
正值ばかりでなく受信部、送信部のみの校正值が必要になる。図8には受信部、送信部の校正值をそれぞれ個別に求めるためのフローチャートを示す。（1）のループにおいて、式（15）を1番目〜N番目のブランチに対してそれぞれ求めることがで、以下の式で与えられる受信部のみの校正值を求めることも可能である。

\[R_i / R_1 \] (17)

同様に、（2）のループにおいて、式（16）を1番目〜N番目のブランチに対してそれぞれ求めることがで、以下の式で与えられる送信部のみの校正值を求めることも可能である。

\[T_i / T_1 \] (18)

図9は請求項8の概略を示すブロック図である。図10は図9の回路を用いて校正を行うための手順を示すためのフローチャートである。図9において、9-K-iのi（1≦i≦N, i:整数）はN番目のブランチに接続される名称を表すものとする。また、図9に示されている矢印は信号の方向を表すものである。9-1はアンテナ素子を、9-2はアンテナ素子に対して送信と受信を切り替える第1のスイッチを、9-3は送信機を、9-4は受信機を、9-6は9-5-1からの信号を9-4-1から9-4-Nまでのいずれかと接続する第2のスイッチを、9-7は9-5-m（2≦m≦N）からの信号を9-4-mと接続する第3のスイッチを、9-8は9-6もしくは9-7と9-4を接続する第4のスイッチを、9-9は振幅相校正値演算回路を、9-10は指向性制御演算回路を表す。9-11は重みづけ乗算回路を表す。

以下に、図10のフローチャートに従って式（5）を各ブランチ毎で求める方法を示す。

（1）1番目のブランチの送信回路（9-3-1）からi（1≦i≦N）番目のブランチの受信回路（9-4-i）に信号を送る。この信号を送る際に分
岐手段（9−5−1）と第2のスイッチ（9−6）と第4のスイッチを通過する。この処理により、先ほど示したパラメータを用いると振幅・位相校正値演算回路で得られる値は以下の値となる。

\[T_1 R_1 \]

ここで、9−3−1から9−6に信号を送るために分岐手段を用いているのは、送信を行う際には送信でのパワーを確保するために電力増幅機をアンテナの手前で用いており、この信号をそのまま受信すると受信回路の受信レベルの許容値の範囲を超えてしまうためであり、9−3−1から9−6における信号は実際の通信での送信信号に対してレベルを低くするように設定する。分岐手段の具体的な構成としては例えばカップラーを用いればよい。また、第2のスイッチを用いるのは、ブランチ1の送信信号をブランチ1からNまでの受信回路に送るためである。さらに第4のスイッチを用いるのは、通信中の受信の状態ではアンテナiで受信される信号のみが必要であり、校正値を求めためには送信回路1（9−3−1）から送られる信号のみを受信することが必要となるためである。

(2) 9−3−kから9−7−kに信号を送るために分岐手段を用いているのは、(1)と同様である。また第3のスイッチを用いるのは、ブランチkの送信信号をブランチkの受信回路に送るためである。さらに第4のスイッチを用いるのは、通信中の受信ではアンテナ1で受信
される信号のみが必要であり，校正値を求めるためには送信回路（9
3−k）から送られる信号のみを受信することが必要となるためで
ある。
（3）i→i+1，k→k+1としi＝N, k＝Nとなるまで（1）、（2）を繰り返
す。
（4）式（20）においてk＝1として，式（19）／式（20）を求めると以下の
式が得られる。

\[\frac{T_i R_i}{T_1 R_1} = \frac{R_i}{R_1} \] \hspace{1cm} (21)

式（21）は1番目のブランチに対するi番目のブランチの受信部の校
正値に相当する。

（5）式（19）と式（20）において，k＝i（ただし，k＝i≠1の場合）の場合
に式（20）／式（19）を求めると以下の式が得られる。

\[\frac{T_i R_i}{T_1 R_i} = \frac{T_i}{T_1} \] \hspace{1cm} (22)

式（22）は1番目のブランチに対するi番目のブランチの送信部の校
正値に相当する。

（6）式（21）／式（22）を求めることで以下の式が得られる。

\[\frac{R_i}{R_1} / \frac{T_i}{T_1} = \frac{T_i R_i}{T_i R_i} = H_i \] \hspace{1cm} (23)

すなわち，式（5）が求められ，ブランチiのブランチ1に対する校正
値を求めることができる。

最後に，上記の仮定より得られた校正値と受信で得られた振幅位
相値を重みづけ乗算回路で各ブランチ毎に乗算し，この値を用いて
送信を行えば，アレーランテナの各ブランチ間の振幅・位相値の補
正を行うことができるため，装置内でブランチ間の振幅・位相差が
ない場合と等価な状態で送信していることになる。したがって，本
実施例の場合も，アレーランテナの各ブランチ間の振幅・位相値の
補正を行うことができる。本発明による校正回路では、送信中に用いる信号を用いて校正值を求めるため、通信中にリアルタイムで校正が可能であり、従来の校正回路では実現が困難であった高周波回路における温度特性などの補償も可能となる。
また、式(21)、(22)の結果からも分かるように、図9の構成も図6の構成と同様に、送信部と受信部の個別の校正值を求めることが可能である。さらに、基準ブランチ以外のブランチは、送信信号を自己ブランチの受信機のみに帰還させる構成をとっているため、配線の引き回しが他の構成にくらべ少なく、校正回路を作成するうえで比較的容易になる利点がある。

発明の効果
以上述べたように、本発明を用いると、装置内で校正を行っているため、外部の情報を用いる場合に生じる通信の伝送効率の低下を防ぐことができる利点がある。また、通信中に校正值を求めることが可能であるため、基地局の設置場所の違いによる環境の変化や通信中の温度特性の変化により生じる各ブランチ間の振幅・位相誤差を補償することが可能となる利点がある。
請求の範囲

1. \(N(N \geq 2, N \)は整数)本のアンテナ素子と、

 N個の送信機と、

 N個の受信機と、

 各アンテナ素子から対応する受信機に入力された信号に対して振幅と位相の重みづけを行った後合成を行ってアレーランテナの放射パターンを制御する指向性演算回路を具備し、TDD通信方式に適用される適応アレーランテナ装置において、

 各送信機は、通信中の送信タイムスロットで送信信号を対応するアンテナ素子に接続すると共にその一部を少なくとも1つの受信機に帰還させる手段を具備し、

 送信機からの信号を送信タイムスロットの間に受信する少なくとも2つの受信機の受信出力の比から当該送信機及び受信機に関連するブランチの振幅・位相校正値で決定する振幅・位相校正値演算回路とを具備することを特徴とする適応アレーランテナ装置。

2. \(N(N \geq 2, N \)は整数)本のアンテナ素子と、

 N個の送信機と、

 N個の受信機と、

 前記アンテナ素子を、前記送信機、又は、前記受信機へ選択的に接続する、アンテナ素子毎に設けた第1のスイッチと、

 受信機毎に入力された信号に、振幅と位相の重みづけを行った後合成を行ってアレーランテナの放射パターンを制御する指向性制御演算回路と、

 該指向性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重みづけ乗算回路と、
送信機毎に接続され、送信機の出力信号を対応するアンテナ素子に接続すると共に一部を分岐するN個の分岐手段と、

該分岐手段の中の1番目の分岐手段により分岐された信号を前記受信機の中の2～N番目のいずれかに接続する第2のスイッチと、

該分岐手段の中の2～N番目のいずれかの分岐手段により分岐された信号を1番目の受信機に接続する第3のスイッチと、

前記第1のスイッチで前記アンテナ素子から受信機に送られる信号、又は、前記第2のスイッチ又は、第3のスイッチのいずれかから送られる信号を各受信機に接続する第4のスイッチと、

各受信機から得られる振幅・位相値を用いて各アンテナ素子の振幅位相校正值を求める処理を行う振幅・位相校正值演算回路を具備することを特徴とする請求項1記載の適応アレーディアンテナ装置。

3. 前記振幅・位相校正值演算回路は、

1番目の送信機から送られる信号を分岐し、

該分岐された信号を前記第2のスイッチを介して第4のスイッチのi(2≦i≦N, iは整数)番目に接続し、

該信号を前記第4のスイッチの中のi番目のスイッチを介してi番目の受信機に送ることで該i番目の受信機の出力に得られる値1と、

i番目の送信機から送られる信号を分岐し、

該分岐された信号を前記の第3のスイッチを介して1番目の第4のスイッチに接続し、該信号を1番目の受信機に送ることで当該受信機の出力に得られる値2に対して、「値1／値2」の演算処理を行い、該演算結果をアンテナ素子のi番目の校正值とする請求項2記載の適応アレーディアンテナ装置。

4. N(N≧2, Nは整数)本のアンテナ素子と、

N個の送信機と、
N個の受信機と、
アンテナ素子毎に接続され該アンテナ素子に対して送信機もしくは受信機への切り替えを行う第1のスイッチと、
受信機毎に入力された信号に振幅と位相の重みづけを行った後合成を行うことでアレーナntenの放射パターンを制御する指向性制御演算回路と、
該指向性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重みづけ乗算回路と。
各送信機から送られる信号を分岐するN個の分岐手段と、
該分岐手段中のk-1(2≦k≦N-1, kは整数)番目もしくはk+1番目の分岐手段のいずれかをk番目の受信機に接続するN-2個の第2のスイッチと、
前記分岐手段中のk番目の分岐手段から送られる信号をk-1番目もしくはk+1番目の受信機に接続するN-2個の第3のスイッチと、
第1のスイッチでアンテナ素子から受信機側に送られる信号もしくは第2のスイッチまたは第3のスイッチから送られる信号を受信機に接続する第4のスイッチと。
上記各手段から得られる振幅・位相値を用いて各ブランチ間の振幅位相校正値を求める処理を行う振幅・位相校正演算回路を具備することを特徴とする請求項1記載の適応アレーナnten装置。
5. 前記振幅・位相校正演算回路は、i(1≦i≦N-1, iは整数)番目の送信機から送られる信号をi番目の分岐手段を通して分岐し、該分岐された信号を前記第2のスイッチを介してi+1番目の第4のスイッチに接続し、該信号をi+1番目の第4のスイッチを介してi+1番目の受信機に送ることで得られる値A(i)と、
i + 1番目の送信機から送られる信号をi + 1番目の分岐手段を通じて分岐し、該分岐された信号を前記の第3のスイッチを介してi番目の第4のスイッチに接続し、該信号を前記のi番目のスイッチを介してi番目の受信機に送ることで得られる値B(i)に対し、

「該値A(i)/該値B(i)」の演算を行い、該演算結果値をC(i)とし、

i = 1の場合は、該i + 1番目の振幅・位相校正値を該値C(i)とし、
i = 1の場合は、「該値C(i - 1)・C(i)」の演算を行い、該演算結果値D(i)をi + 1番目のアンテナ素子の振幅・位相校正値とすることを特徴とする請求項4記載の適応アレーバンテナ装置。

6. N(N ≥ 2, Nは整数)本のアンテナ素子と、

N個の送信機と、

N個の受信機と、

アンテナ素子毎に接続される該アンテナ素子に対して送信機をしくは受信機への切り替えを行う第1のスイッチと、

受信機毎に入力された信号に振幅と位相の重みづけを行った後合成を行うことでアレーバンテナの放射パターンを制御する指向性制御演算回路と、

該指向性制御演算回路で得られた振幅値と位相値を送信信号に乗算する重みづけ乗算回路と、

各送信機から送られる信号を分岐するN個の分岐手段と、

1番目の分岐手段から送られる信号を1〜N番目の受信機のいずれかに接続する第2のスイッチと、

1〜N番目のいずれかの分岐手段から送られる信号を1番目の受信機に接続する第3のスイッチと、

第1のスイッチでアンテナ素子から受信機側に送られる信号もし
くは第2あるいは第3のスイッチのいずれかから送られる信号を当
該受信機に接続する第4のスイッチと、

上記各手段から得られる振幅・位相値を用いて各ブランチ間の振
幅・位相値求める処理を行う振幅・位相値演算回路を具備
することを特徴とする請求項1記載の適応アレーナンテナ装置。

7. 前記振幅・位相値演算回路は、1番目の送信機から送られ
る信号を1番目の分岐手段を通して分岐し、該分岐された信号を前
記第2のスイッチを介して第4のスイッチのi(1≤i≤N、iは整数)
番目に接続し、該信号を前記第4のスイッチの中のi番目のスイッチ
を介してi番目の受信機に送することで得られる（値1）と、

i番目の送信機から送られる信号をi番目の分岐手段を通して分岐
し、該分岐された信号を前記の第3のスイッチを介して第4のスイ
ッチの1番目に接続し、該信号を前記第4スイッチの中の1番目の
スイッチを介して前記受信機の中の1番目の受信機に送ることで得
られる（値2）に対して、「（値1）／（値2）」の演算処理を行い、
該演算結果を該アンテナ素子のi番目のアンテナ素子の査正値とす
る請求項6記載の適応アレーナンテナ装置。

8. N(N≥2、Nは整数)本のアンテナ素子と、

N個の送信機と,

N個の受信機と、

アンテナ素子毎に接続されアンテナ素子に対して送信機もしくは
受信機への切り替えを行う第1のスイッチと、

受信機毎に入力された信号に振幅と位相の重みづけを行った後合
成を行うことでアレーナンテナの放射パターンを制御する指向性制
御演算回路と、

該指向性制御演算回路で得られた振幅値と位相値を送信信号に乗
算する重みづけ乗算回路と、
各送信機から送られる信号を分岐するN個の分岐手段と、
1番目の分岐手段から送られる信号を1～N番目の受信機のいずれかに接続する第2のスイッチと、
1番目とk(2≦k≦N, kは整数)番目のいずれかの分岐手段から送られる信号をk番目の受信機に接続する第3のスイッチと、
第1のスイッチでアンテナ素子から受信機側に送られる信号もしくは第2あるいは第3のスイッチのいずれかから送られる信号を当該受信機に接続する第4のスイッチと、
上記各手段から得られる振幅・位相値を用いて各ブランチ間の振幅・位相校正値を求める処理を行う振幅・位相校正値演算回路を具備することを特徴とする請求項1記載の適応アレーレアンテナ装置。

9. 前記振幅・位相校正値演算回路は、1番目の送信機から送られる信号を1番目の分岐手段を通して分岐し、該分岐された信号を前記第2のスイッチを介して第4のスイッチのi(1≦i≦N, iは整数)番目に接続し、該信号を前記第4のスイッチの中のi番目のスイッチを介してi番目の受信機に送ることで得られる値A(i)と、
k(2≦k≦N, kは整数)番目の送信機から送られる信号をk番目の分岐手段を通して分岐し、該分岐された信号を前記の第3のスイッチを介して第4のスイッチのk番目に接続し、該信号を前記第4スイッチの中のk番目のスイッチを介してk番目の受信機に送ることで得られる値B(k)と、
「該値A(i)／該値A(i)」の演算を行い、該演算結果値C(i)と、
「該値B(k＝i)／該値A(i)」の演算を行い、該演算結果値D(i)に対して、
「該値C(i)／D(i)」の演算を行い、該演算結果値を該i番目のアン
テナ素子の振幅・位相校正値とすることを特徴とする請求項8記載の適応アレーテナ装置。
図1

アンテナ素子
1-1-1

分岐手段
1-5-1

1-2-1

1-3-1

送信機

1-4-1

受信機

1-3-k

1-4-k

1-5-k

1-6

振幅位相校正演算回路

1-7

指向性制御演算回路
図5

始め

i=1

i=i+1

4-3-iから4-5-iに信号を送る

4-5-iで分岐された信号を4-6-i+1に送る

4-6-i+1を用いて4-6-i+1と4-8-i+1を接続

4-6-i+1から4-8-i+1に信号を送る

4-8-i+1を用いて4-8-i+1と4-4-i+1を接続

4-8-i+1から4-4-i+1に信号を送る

4-9で「(1)の信号/ (2)の信号」を求める

(3)の信号

i=1

i≠1 No

(3)の信号*(4)の信号を求める

(4)の信号として保存

No

i=N-1

No

Yes

終わり
図7

始め

i=1

6-3-1から6-5-1に信号を送る

6-5-1で分岐された信号を6-6に送る

6-6を用いて6-6と6-8-iを接続

6-8-iを用いて6-8-iと6-4-iを接続

6-8-iから6-4-iに信号を送る

(1)の信号

6-9で「(1)の信号/2の信号」を求める

No

i=N

No

Yes

終わり
図8

受信部の校正值

始め

$i=1$

$i=i+1$

6-3-1から6-5-1に信号を送る

6-5-1で分歧された信号を6-6に送る

6-6を用いて6-6と6-8-iを接続

6-6から6-8-iに信号を送る

6-8-iを用いて6-8-iと6-4-iを接続

6-8-iから6-4-iに信号を送る

No $i=N$

Yes

6-9で(Ishimata: 信号) / (番目: 信号) を求める

終わり

送信部の校正值

始め

$i=1$

$i=i+1$

6-3-1から6-5-1に信号を送る

6-5-1で分歧された信号を6-7に送る

6-7を用いて6-7と6-8-1を接続

6-7から6-8-1に信号を送る

6-8-1を用いて6-8-1と6-4-1を接続

6-8-1から6-4-1に信号を送る

No $i=N$

Yes

6-9で(Ishimata: 信号) / (番目: 信号) を求める

終わり
図11

アンテナ#1 1 0°
アンテナ#2 0.5 45°
アンテナ#3 0.5 45°

(a)

(b)
図 14

T

R

校正

(i = 2) (i = 3) (i = 4)

→ t
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl 7 H01Q 3/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl 7 H01Q 3/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, 2-265302, A (Mitsubishi Electric Corporation), 30 October, 1990 (30.10.90) (Family: none)</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>JP, 9-219615, A (Toshiba Corporation), 19 August, 1997 (19.08.97) (Family: none)</td>
<td>1-9</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family

"&" Date of the actual completion of the international search
08 February, 2000 (08.02.00)

Date of mailing of the international search report
22 February, 2000 (22.02.00)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際出願番号 PCT/JP99/06471

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. H01Q 3/26

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. H01Q 3/26

最小限資料以外の資料で調査を行った分野に含まれるもの
- 日本国実用新案公報 (1926-1996)
- 日本国公報実用新案公報 (1971-2000)
- 日本国実用新案公開公報 (1996-2000)
- 日本国登録実用新案公報 (1994-2000)

国際調査で使用した電子データベース（データベースの名称・調査に使用した用語）

C. 関連する認められた文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名及ぼし一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A JP, 2-265302, A, (三菱電機株式会社) 30.10月. 1990 (30.10.90) (ファミリーなし)</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>A JP, 9-219615, A, (株式会社東芝) 19.8月. 1997 (19.08.97) (ファミリーなし)</td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>順番</th>
<th>引用文献のカテゴリー*</th>
<th>引用文献名及ぼし一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>「A」特に関連のある文献ではなく、一般的技術水準を示すもの</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>2</td>
<td>「E」国際出願日の出願または特許であるが、国際出願日以後に公表されたもの</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>3</td>
<td>「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由付す）</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>4</td>
<td>「O」口頭による開示、使用、展示等に言及する文献</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>5</td>
<td>「P」国際出願日前で、かつ優先権の主張の基礎となる出願</td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

■ C欄の続きにも文献が列挙されている。

■ パテントファミリーに関する別紙を参照。

<table>
<thead>
<tr>
<th>国際調査を完了した日</th>
<th>国際調査報告の発送日</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.02.00</td>
<td>22.02.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>国際調査機関の名称及びあて先</th>
<th>特許庁審査官（権限のある職員）</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本国特許庁（ISA/JP）</td>
<td>浜野 弘友 萩印</td>
</tr>
<tr>
<td>郵便番号100-8915</td>
<td>5T 7190</td>
</tr>
<tr>
<td>東京都千代田区霞が関三丁目4番3号</td>
<td>電話番号 03－3581－1101 内線 3567</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページ）（1998年7月）