

March 22, 1932.

H. H. PINNEY

1,850,180

SIGN

Filed Sept. 16, 1931

2 Sheets-Sheet 1

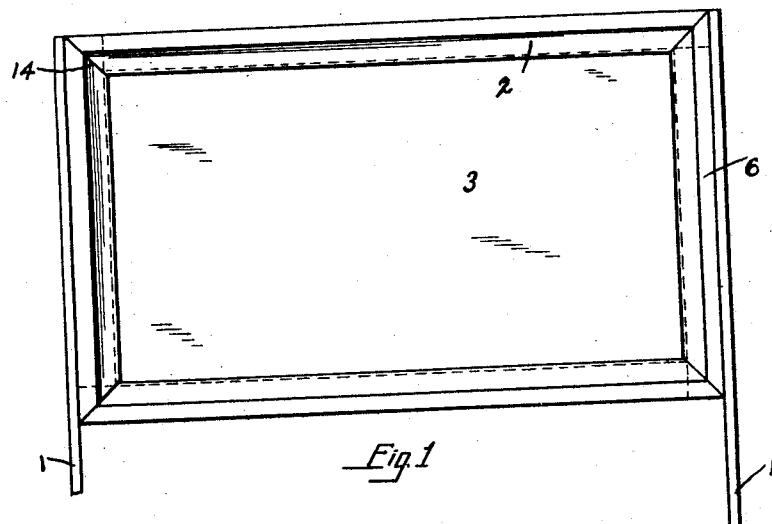


Fig. 1

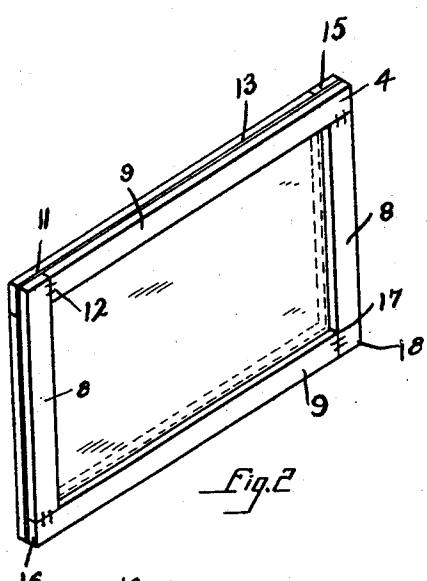


Fig. 2

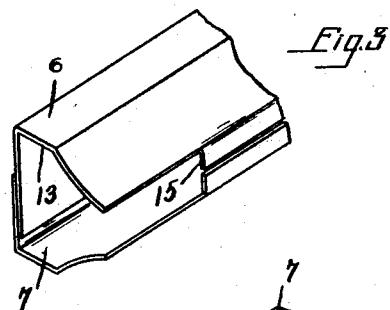


Fig. 3

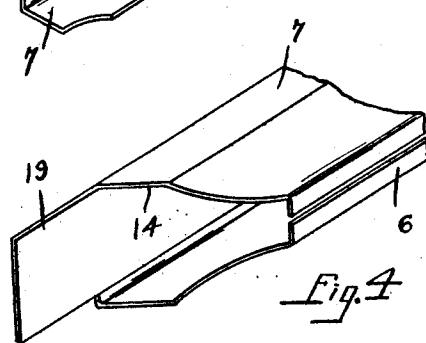


Fig. 4

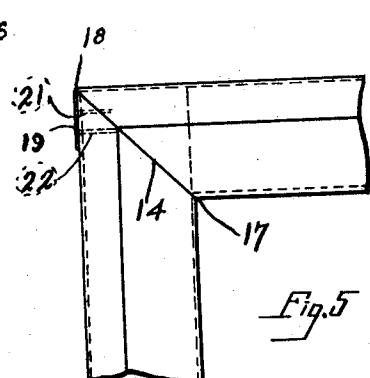


Fig. 5

INVENTOR.

Harry H. Pinney

BY

Day Offerlin & Day
ATTORNEYS.

March 22, 1932.

H. H. PINNEY

1,850,180

SIGN

Filed Sept. 16, 1931

2 Sheets-Sheet 2

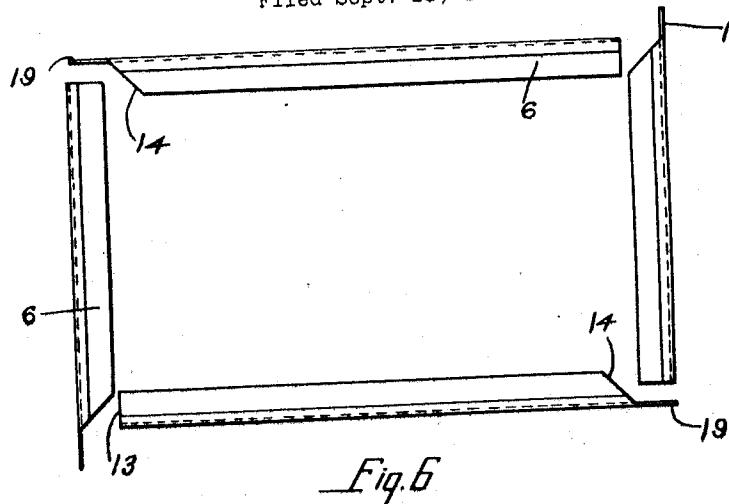


Fig. 6

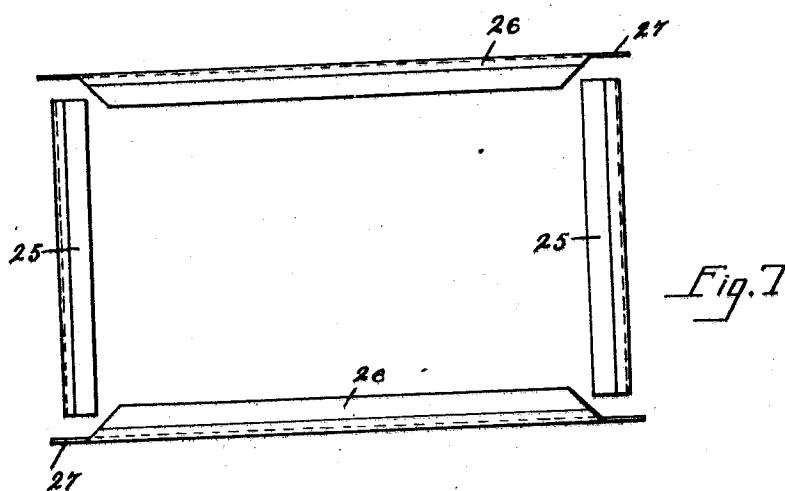


Fig. 7

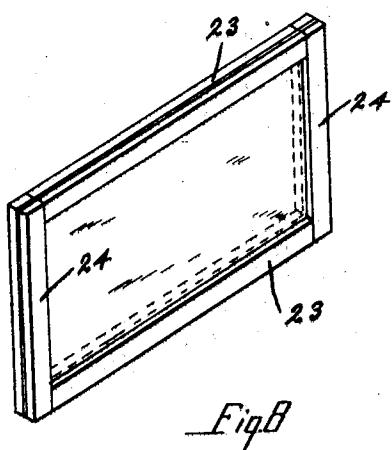


Fig. 8

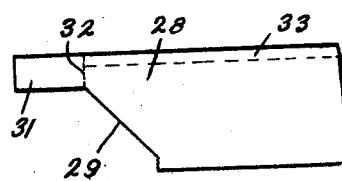


Fig. 9

INVENTOR.

Harry H. Pinney
BY

Bay O'Neil & Bay
ATTORNEYS.

Patented Mar. 22, 1932

1,850,180

UNITED STATES PATENT OFFICE

HARRY H. PINNEY, OF CLEVELAND, OHIO

SIGN

Application filed September 16, 1931. Serial No. 563,070.

This invention relates to signs and is more particularly directed to a new and improved means for securing together signs of the type now in general use as, for example, those used along roads and in similar exposed positions.

It is desirable in signs of this character that the construction be durable and that the panel carrying the advertising or other matter be securely held while, at the same time, preserving a pleasing and decorative appearance for the sign as a whole. An inexpensive construction embodying the foregoing features is also a requisite since these signs are put out in large numbers. It is, accordingly, an object of the invention to provide a sign which is durable and decorative as well as inexpensive to construct. Another object of the invention is to provide a sign put together in a new and improved manner and simulating a more expensive construction. To the accomplishment of the foregoing and related ends, said invention, then, consists of the means hereinafter fully described and particularly pointed out in the claims.

The annexed drawings and the following description set forth in detail certain mechanism embodying the invention, such disclosed means constituting, however, but one of various mechanical forms in which the principle of the invention may be used.

In said annexed drawings:

Fig. 1 is a front elevation of a sign constructed according to the improved manner; Fig. 2 is a perspective of the framework of the sign; Fig. 3 is a perspective of a pair of sheath sections for the sign showing one end thereof; Fig. 4 is a perspective showing the opposite ends of the sheath sections; Fig. 5 is an enlarged front elevation of one corner of the sign; Fig. 6 is a view illustrating the positions of the different sheath sections relative to one another as they are to be placed on a frame; Fig. 7 is a view similar to Fig. 6 showing a modified form of sheath section; Fig. 8 is a perspective of a modified framework for a sign intended for use with the form of sheath sections illustrated in Fig. 7; and Fig. 9 is a view illustrating one end of a

flat stamping which may be molded to form a sheath section.

Referring to Fig. 1, an improved sign of the type referred to consists of uprights 1 which are continued and embedded in the ground. Between these uprights is mounted a sign 2, consisting of a panel 3 mounted between wooden frame sections 4 and 5 which are covered by means of stamped metal sheath sections 6 and 7, which may be formed in any desired manner provided that they engage snugly against the wooden frame strips 4 and 5.

The wooden frame, as shown in Fig. 2, consists of a plurality of pairs of sections, each pair constituted by a front strip 4 and a rear strip 5. Ordinarily, the sign will have four sides, but it will be obvious that a greater number of sides may be used. The sides 8 and 9 are joined together by means of butt joints as at 11 and are held together by metal pieces 12. As illustrated, the butt joints at front and back are staggered to increase the strength of the frame. This butt joint construction is particularly advantageous for retaining the particular form of metal sheathing covering the frame, as will appear hereinafter. A groove 13 is left between the back and front wood sections for the reception of the sign panel 3.

In order to give the frame an ornamental appearance and to render the same more durable, the wooden sections are covered by a metal sheathing which may be given a molded contour for decorative purposes but, to any particular shape of which, the invention is not limited. This sheathing consists of sections 6 and 7 in matched pairs which are adapted to fit snugly over the wooden frame. Each section has one rectangular end 13 as indicated in Fig. 3, and one beveled end 14, as indicated in Fig. 4, or the sheath sections may be cut with both ends rectangular or with both ends beveled, the two kinds of sections being alternated around the frame. The rectangular end is provided with a cut away portion 15 in order that it may fit on the frame with the terminal edge 13 coincident with a terminal edge 16 of one of the wooden sections forming the frame. The

beveled end is so cut, usually at an angle of 45°, that the beveled edge 14 coincides with a line drawn from an inner corner 17 to an outer corner 18 of the frame. This end of one sheath section in each pair is also provided with a tab 19 which can be bent and nailed to the frame. In Fig. 5 is shown the manner in which the sheathing is placed over the wooden frame at one corner, a similar procedure being followed at each of the other corners. A rectangular end of a sheath section is first placed on the wooden frame so that its terminal edge 13 coincides with a terminal edge 16 of the frame, this being made possible by the cut away portion 15 which accommodates the width of the adjoining wood section, for example, section 8. The beveled end of another sheath section is then slid over the sheath section first applied, so that its beveled edge 14 coincides with a line drawn between the inside and outside frame corners 17 and 18 and simulates a mortise joint at the corner. The tab 19 is then bent over and nailed to the side of the frame by nails 21 and 22. Due to the fact that the beveled end is placed across the front wood joint, this tab will be attached with nails 21 and 22 running transversely of the grain of the wood. This is one of the improved features of the sign construction since the nails are better retained in this way than if they were driven into the end of the grain, and there is also less chance of splitting the wood. Of course, additional nails will be used to attach the sheathing to the frame along the sides of the latter.

The manner in which the sheath sections will be disposed on the wooden frame shown in Fig. 2 is illustrated in Fig. 6. The sections 6 shown therein are not attached to the frame but are placed adjacent one another for illustrative purposes only. It will be seen that each section has a rectangular end and a beveled end, the beveled end 14 having a tab 19. Each beveled end is placed adjacent the rectangular end over which it is intended to fit and the beveled ends follow each other in sequence around the frame. The rear sheath sections are similarly disposed but do not require tabs 19. This arrangement of the sheath sections is adapted for use with the frame-work illustrated in Fig. 2 in which the butt joints 11 also follow in sequence around the frame, the rear joints 55 being staggered, however, in relation to the front joints.

Another modification of the sign structure is illustrated in Figs. 7 and 8, Fig. 8 illustrating a wooden frame-work so put together that the butt joints do not follow in sequence around the frame, but in which two of the pairs of wooden strips 23 are held between other two pairs of strips against the sides of which the ends of the strips 23 abut. This construction of the frame permits the use of

sheath sections such as shown in the arrangement depicted in Fig. 7 in which sheath sections 25 are made with both ends rectangular and co-operate with sections 26 having both ends beveled and having tabs 27 at both of these beveled ends. The appearance of a sign constructed in this manner will be identical with that constructed according to the arrangement shown in Fig. 6 but the tabs 27 are positioned so that they may be nailed against the sides of the wooden strips 24, thus permitting nails to be driven transversely into the grain of the wood as in the first modification.

In order that these signs may be constructed with a minimum of expense, it is necessary that the sheath sections be formed by a single operation of a stamping die. A blank so prepared will have an outline at a beveled end as shown in Fig. 9 in which the blank 28 has a beveled end 29 and a tab 31. The opposite end may either be cut rectangular, which presents no difficulties, or may have an outline identical with the end shown, where a sheath section similar to 26 in Fig. 7 is to be prepared. The flat blank can then be molded and bent to form the ornamental outline for the sign. The same blank may be bent in one direction or the other in accordance with whether a front or back section is to be made. Of course, tabs need not be used on the rear sections and it will be obvious that the tab 31 may be cut off along the line 32 and, also, where a narrower blank is required for a rear section, a strip of metal may be sheared off the blank along the line 33. It will thus be seen that only one shape of blank may be used to form any of the sheath sections illustrated in the drawings, simple trimming operations being availed of where necessary.

The new sign formed as described above is simple and inexpensive to make and yet is very durable as well as being highly ornamental due to the simulation of a mortise joint at the corners of the sheathing. The combination in the structure of a butt joint frame-work together with the sheathing of the kind described results in a strong but inexpensive structure due to the manner in which the tabs 19 may be attached to the frame.

Other modes of applying the principle of my invention may be employed instead of the one explained, change being made as regards the mechanism herein disclosed, provided the means stated by any of the following claims or the equivalent of such stated means be employed.

I therefore particularly point out and distinctly claim as my invention:

1. In a sign structure, the combination which comprises metal sheathing placed over a frame, said sheathing consisting of sections having rectangular ends and beveled

ends, each of said beveled ends fitting over a rectangular end on said frame.

2. In a sign structure, the combination which comprises molded metal sheathing placed over a frame, said sheathing consisting of sections having rectangular ends and beveled ends, each of said beveled ends fitting over a rectangular end on said frame and being attached to said frame.

3. In a sign structure, the combination which comprises a panel-engaging frame, and molded metal sheathing enclosing said frame, said sheathing consisting of sections having rectangular ends and beveled ends, each of said beveled ends fitting over a rectangular end on said frame.

4. In a sign structure, the combination which comprises a wooden frame and molded metal sheathing covering said frame, said sheathing consisting of sections having rectangular ends and beveled ends, and said sections being placed on said frame with said beveled ends covering said rectangular ends to simulate a miter joint.

5. In a sign structure, the combination which comprises a wooden frame having butt joints, and formed metal sheathing covering said frame, said sheathing consisting of sections having one rectangular end and one beveled end, each beveled end fitting over a rectangular end and having a tab bent over and nailed to the side of said frame.

6. In a sign structure, the combination which comprises a wooden frame composed of a plurality of sections joined together by butt joints, formed metal sheathing covering said frame, said sheathing consisting of sections having rectangular ends and beveled ends, said beveled ends fitting over said rectangular ends and having a tab bent over and nailed to said frame transversely of the grain of the wood.

7. In a sign structure, the combination which comprises a wooden frame composed of a plurality of sections joined together by butt joints, molded metal sheathing covering said frame, said sheathing consisting of sections having rectangular ends and beveled ends, said rectangular ends being placed with their terminal edges coinciding with the terminal edges of a frame section and said beveled ends being placed over said rectangular ends with their terminal edges lying on a line between the inner and outer corners of said frame.

8. In a sign structure, the combination which comprises a wooden frame composed of a plurality of sections joined together by butt joints and molded metal sheathing enclosing said frame, said sheathing consisting of sections having one rectangular end and one beveled end, said rectangular ends being placed with their terminal edges coinciding with the terminal edges of a frame section and said beveled ends being placed over said rectangular ends with their terminal edges coinciding with a line between the inner and outer corners of said frame.

9. In a sign structure, the combination which comprises a wooden frame composed of a plurality of sections joined together by butt joints, molded metal sheathing covering said frame, said sheathing consisting of sections having rectangular ends and beveled ends, said sections being placed on said frame with said beveled ends covering said rectangular ends to simulate a miter joint, and said beveled ends having tabs bent over and nailed to said frame transversely of the grain of the wood.

10. In a sign structure, the combination which comprises a frame having butt joints, and formed sheathing covering said frame, said sheathing consisting of sections having rectangular ends and beveled ends, said beveled ends fitting over said rectangular ends and tabs bent over and nailed to the sides of said frame.

11. In a sign structure, the combination which comprises a frame, a formed metal sheathing covering said frame, said sheathing consisting of sections having rectangular ends and beveled ends, said beveled ends fitting over said rectangular ends, and tabs nailed over the corners of said frame.

Signed by me this 16th day of July, 1931.

HARRY H. PINNEY.

100

105

110

115

120

125

130