发明名称
用于校正非球面非零位检测时的原理误差的方法

摘要
本发明公开了一种用于校正非球面非零位检测中的原理误差的方法。 包括如下步骤：1) 对包括被测非球面在内的非球面非零位检测系统进行建模；2) 根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前；3) 将被测非球面的参数设为变量，利用光线追迹，以非零位检测系统的探测器实际检测得到的波前为目标进行优化；4) 判断优化是否结束，若结束，则结束误差校正优化，否则继续等待优化结束，优化结束的条件是由事先设定的检测误差所决定的。 本发明可以实现非球面非零位检测的高精度误差补偿。 通过优化迭代进行补偿。 理论上来说，本发明可以实现非球面非零位检测中误差的完全校正，是一种可以实现高精度的补偿方法。
1. 一种用于校正非球面非零位检测中的原理误差的方法，其特征在于包括如下步骤：

1) 对包括被测非球面在内的非球面非零位检测系统进行建模；
2) 根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前；
3) 将被测非球面的参数设为变量，利用光线追迹，以非零位检测系统的探测器实际检测得到的波前为目标进行优化；
4) 判断优化是否结束，若结束，则结束误差校正优化，否则继续等待优化结束，优化结束的条件是由事先设定的检测误差所决定的。

2. 根据权利要求1所述的一种用于校正非球面非零位检测中的原理误差的方法，其特征在于所述对包括被测非球面在内的非球面非零位检测系统进行建模的方法为：将光学系统中透镜各表面的曲率半径、厚度、彼此的空气间隔以及彼此相对位置和参数输入到光线追迹软件中。

3. 根据权利要求1所述的一种用于校正非球面非零位检测中的原理误差的方法，其特征在于所述根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前方法为：将被测非球面的参数设置为其自身理论值，对光线在光学系统中进行光线追迹，得到探测器平面上的波前。

4. 根据权利要求1所述一种用于校正非球面非零位检测中的原理误差的方法，其特征在于所述非球面非零位检测系统为：利用与被测非球面理论值存在偏差的补偿波面对被测非球面进行补偿，并通过检测补偿返回波面来得到被测非球面面形的检测系统。
用于校正非球面非零位检测时的原理误差的方法

技术领域

本发明涉及一种用于校正非球面非零位检测中的原理误差的方法。

背景技术

由于非球面形状各异，光学非球面检测一直以来都是个难题。经过长期发展，人们探索出了多种检测非球面的方法。商业非球面检测系统多采用接触式轮廓仪，它可以实现较高精度的检测。但是由于其属于接触式测量，探针容易对被测非球面造成损伤，应用上受到很大限制。目前应用最多的非接触检测是采用零位器件作为辅助工具的零位检测法，其中包括零位补偿镜（如 Offner 补偿镜、Dall 补偿镜等）法，也有适用于二次曲面的无像高点法，以及使用计算全息像（Computer Generated Holograms）的方法等。这些零位方法同样可以实现较高精度的检测，但是，由于对于任意一个非球面，都需要一个相应的零位器件与其对应，通用性差。同时，加工、检测这些零位器件也是一项需要大量时间、智力和财力投入的工程。由于这些缺点，在对精度要求不非常高的情况下，人们更倾向于用非零位检测方法来检测非球面，如长波长法、双波长法、剪切法、高密度探测器等。这些方法一定程度上实现了非球面的通用化检测，可以快速给出检测结果。

在通常的非零位非球面检测法中，一般都套用球面的测量原理，认为探测器检测得到的波面位相是被测非球面与参考波面偏离的 2 倍。然而，由于非零位方法偏离了零位条件，使检测光束从非球面反射回来后不能沿着入射时的光路返回，造成最后检测系统探测器平面上的波前畸变并不是被测非球面与参考波面偏离的 2 倍，而是存在误差。通常，这些误差随被测非球面的口径及相对口径的增大而增大，同时也将随被测非球面面形的变化而变化，并不能够被预先确定。这样就导致非球面的非零位检测法的测量精度在原理上就有很大误差。

发明内容

本发明的目的在于提供一种用于校正非球面非零位检测中的原理误差的方法。

用于校正非球面非零位检测中的原理误差的方法包括如下步骤：
1)对包括被测非球面在内的非球面非零位检测系统进行建模；
2)根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前；
3) 将被测非球面的参数设为变量，利用光线追踪，以非零位检测系统的探测器实际检测得到的波前为目标进行优化；

4) 判断优化是否结束。若结束，则结束误差校正优化，否则继续等待优化结束，优化结束的条件是事先设定的检测误差所决定的。

所述对包括被测非球面在内的非球面非零位检测系统进行建模的方法为：将光学系统中透镜各表面的曲率半径，厚度，彼此的空气间隔以及彼此相对位置和参数输入到光线追踪软件中。

所述根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前方法为：将被测非球面的参数设置为其自身理论值，对光线在光学系统中进行光线追踪，得到探测器平面上的波前。

所述非球面非零位检测系统为：利用与被测非球面理论值存在偏差的补偿波面对被测非球面进行补偿，并通过检测补偿返回波面来得到被测非球面面形的检测系统。

本发明与现有技术相比具有的有益效果主体现在其可以实现非球面非零位检测的高精度误差补偿。现有非球面非零位检测方法基本上都没有进行误差补偿，而本发明通过优化迭代进行补偿。理论上来说，本发明可以实现非球面非零位检测中误差的完全校正，是一种可以实现高精度的补偿方法。

附图说明

图1是简要表示采用本发明的非球面非零位检测系统原理框图；
图2是表示本发明非球面非零位检测误差校正方法的示意图；
图3是表示本发明非球面非零位检测误差校正方法的流程图；
图4是本发明应用于一基于麦克尔逊干涉仪的非球面非零位检测系统的原理图；

图5是根据对图4中系统建立的系统模型，由被测非球面的理论面形，模拟出的上述非球面非零位检测系统的探测器平面上的波前（设为Wr）；

图6是基于麦克尔逊干涉仪的非球面非零位检测系统在探测器上实际检测得到的波前（设为Wr）；

图7是利用实施例中系统的模型，由被测非球面理论值出发，以非球面非零位检测系统在探测器上实际检测得到的波前（示于图6），通过实施例中的优化方法得到的非球面的真正面形（设为ASP）。

具体实施方式

在图中，图1简要表示了采用本发明的非球面非零位检测系统原理框图。
平行光经过补偿透镜 3 产生补偿波面 2 对被测非球面 1 进行补偿。补偿后返回的波面进入波前检测光学系统 4 后，最终到达探测器 5。

补偿透镜 3 可以是消球差透镜，这样产生的补偿波面 2 即为球面波；也可以是任意一种可以产生能够对被测非球面 1 进行补偿的波面的透镜。

波前检测光学系统 4 为任何一种可以对波前进行检测的光学系统，其作用是传递从非球面反射回来并从补偿透镜 3 出射的波面，使该波面保持原来的形式或经过确定的变化后到达探测器 5，以进行检测。

非球面检测系统要检测的就是非球面 1 相对于其自身设计理论面形的偏差，可设为 Err_{ap}。在非球面的非零位检测中，一般都套用球面检测原理，认为检测系统的探测器 5 检测得到的波前（设为 W ）为非球面 1 相对于透镜 3 所产生的补偿波面 W_{con} 的偏差 Err_{con} 的 2 倍，即

\[W = 2 \times Err_{con} \]

（1）

于是，被测非球面的面形误差为

\[Err_{ap} = \frac{W}{2} \]

（2）

可以看出，这种数据处理方法存在很大的问题。由于非零位方法偏离了零位条件，使检测光束从非球面反射回来后不能沿着入射时的光路返回，造成最后检测系统探测器平面上的波前并不是被测非球面与参考波面偏差的 2 倍，而是存在误差。通常，这些误差随被测非球面的口径及相对口径的增大而增大，同时也将随被测非球面面形的变化而变化，并不能够被预先确知。这样就导致非球面的非零位检测法的测量精度在原理上就有很大误差。

本发明提出的可用于校正非球面非零位检测时的原理误差的方法，便可以校正这种非球面非零位检测中的原理性误差。

图 2 为本发明非球面非零位检测误差校正方法的示意图。利用任意非零干涉仪检测得到探测器平面的波前，经过误差校正模块对误差进行校正后，即可得到被测非球面面形。

图 3 为本发明非球面非零位检测误差校正模块的流程图。用于校正非球面非零位检测中的原理误差的方法包括如下步骤：

1) 对包括被测非球面在内的非球面非零位检测系统进行建模。

建模的方法就是将光学系统中透镜各表面的曲率半径、厚度、彼此的空气间隔以及彼此相对位置和参数输入到光线追踪软件中。光学系统中的元件参数包括：

光源的输出波长,
准直扩束系统个元件的曲率半径和面形质量、
分光镜的厚度、面形以及放置位置、
用于产生补偿波面的透镜的各镜片的曲率半径、厚度以及各自之间的空气间隔、
被测非球面的理论值、
成像透镜的各镜片的曲率半径、厚度以及各自之间的空气间隔、
探测器平面的参数和位置
以及上述所有器件彼此之间的相对位置和间隔。
光线追踪可以现有的任意一种光学设计软件中进行，如 ZEMAX, CODE V 等，也可以是自行编写的程序。

2) 根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前；

所述根据被测非球面的理论面形，模拟出上述非球面非零位检测系统的探测器平面上的波前方法为将被测非球面的参数设置为其自身理论值，对光线在光学系统中进行光线追踪，得到探测器平面上的波前。

3) 将被测非球面的参数设为变量，利用光线追踪，以非零位检测系统的探测器实际检测得到的波前为目标进行优化；

其中的优化算法可以采用任意一种有效的优化算法，既可以采用全局优化也可以采用局部优化。

4) 判断优化是否结束，若结束，则结束误差校正优化，否则继续等待优化结束，优化结束的条件是由事先设定的检测误差所决定的。

本发明所述的非球面非零位检测系统，是指利用与被测非球面理论值存在偏差的补偿波面对被测非球面进行补偿，并通过检测补偿返回波面来得到被测非球面面形的检测系统。该补偿波面是能够对被测非球面进行补偿的理论上可以定量计算的任意波面。

实施例

本发明应用于基于麦克尔逊干涉仪的非球面非零位检测系统的实例描述如下。

图 4 为系统原理图。激光器 S1 发出激光经准直扩束系统 S2 扩束成宽光束平面波。该平面波被分光镜 S3 分成两束光，一束反射后经透镜 S4 后形成补偿波面入射至被测非球面 S5，对被测非球面 S5 进行补偿，补偿后返回的波面经透镜 S4 后，透过分光镜 S3，形成检测光束；一束透射后，经反射镜 S6→标准
面镜 S7→反射镜 S6 后，被分光镜 S3 反射形成参考光束。两光束发生干涉，被成像透镜 S8 成像于探测器 S9 的探测器平面上。

首先，对包含被测非球面在内非球面非零位检测系统建模，如表 1 所示（本次建模在 ZEMAX 中完成）。由于认为参考光束光路为标准光路，故不对其进行建模，为了精度考虑之故同时对检测光束光路和参考光束光路均进行建模。本应用对系统进行建模时也认为激光器 S1 发出的激光经准直扩束系统 S2 扩束后形成的光束为标准平面波，故建模可以直接从透镜 S4 开始至探测器平面为止。同时，由于分光镜面形质量良好，本次建模中也未考虑。

表 1 — 基于麦克尔逊干涉仪的非球面非零位检测系统在 ZEMAX 中的建模结果

<table>
<thead>
<tr>
<th>注释</th>
<th>曲率半径</th>
<th>厚度 (毫米)</th>
<th>玻璃</th>
<th>口径 (毫米)</th>
<th>二次曲面系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>透镜 S4 第一面</td>
<td>63.9</td>
<td>12.000</td>
<td>F3</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>透镜 S4 第二面</td>
<td>44.2</td>
<td>6.000</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>透镜 S4 第三面</td>
<td>63.8</td>
<td>12.000</td>
<td>BK7</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>透镜 S4 第四面</td>
<td>-250</td>
<td>966</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>被测非球面 S5</td>
<td>816</td>
<td>-966</td>
<td>—</td>
<td>120</td>
<td>-1</td>
</tr>
<tr>
<td>透镜 S4 第四面</td>
<td>-250</td>
<td>-12.000</td>
<td>BK7</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>透镜 S4 第三面</td>
<td>63.8</td>
<td>-6.000</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>透镜 S4 第二面</td>
<td>44.2</td>
<td>-12.000</td>
<td>F3</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>透镜 S4 第一面</td>
<td>63.9</td>
<td>-67</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>成像镜 S8 第一面</td>
<td>92.8</td>
<td>6.000</td>
<td>BK7</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>成像镜 S8 第二面</td>
<td>-30.7</td>
<td>3.000</td>
<td>F2</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>成像镜 S8 第三面</td>
<td>-78.2</td>
<td>97.47</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>探测器平面</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
其次，根据上述建立的系统模型，根据波测非球面的理论面形，模拟出上述非球面非零检测系统的探测器平面上的波前（设为W_c）如图 5 所示。

第三，探测器上实际检测得到的波前（设为W_a）如图 6 所示。

第四，在上述的包含波测非球面的非球面非零检测系统中，将波测非球面的参数设为变量，利用光线追踪，以非零检测系统的探测器实际检测得到的波前为目标进行优化。

被测非球面 S5 的面型可以用下式表示：

$$
\begin{align*}
 z &= \frac{cr^2}{1+\sqrt{1-(1+k)c^2r^2}} + \sum_{i=1}^{n} a_i r^{n_i} + \sum_{i=1}^{n} B_i Z_i(\rho, \varphi) \\
 c &= \frac{1}{R} \\
 k &= -e^2
\end{align*}
$$

其中 R 为顶点球半径，e 是二次曲面的离心率，$a_i (i=1,2,...,n)$ 为偶次项系数，r 是极径，n 为泽尼克系数项数，$B_i (i=1,2,...,n)$ 是第 i 项泽尼克系数值，ρ 为极化径坐标，φ 为极角。

则将 $B_i (i=1,2,...,n)$ 系数设为变量即可在上述包含波测非球面 S5 的系统中，利用光线追踪，以非零检测系统的探测器实际检测得到的波前（图 6 所示）为发展目标进行优化。

优化算法很多，下面简述基于最小二乘法优化方法：

设向量 $ASP=[B_1, B_2, \ldots, B_n]$，其中 $B_i(i=1,2,...,n)$ 是第 i 项泽尼克系数值。这里设定前 N 项泽尼克系数为被测非球面面形误差的变量。为推导简单起见，设 $X = (x_1, x_2, \ldots, x_N)^T = ASP$，为可变非球面状态矩阵。

检测系统探测器平面处波前 W_a 由干涉仪检测获得，把它作为优化目标，改变非球面面形及调状状态矩阵 X 进行优化。设优化过程中第 k 次迭代后检测系统探测器平面 S9 处的当前波前为 W_k，则可定义广义加权偏差函数 $f_k = \rho_k (W_k - W_a)$，
其中 \(\rho_k \) 为权因子，则

\[
X = (x_1, x_2, \ldots, x_N)^T
\]
为可变非球面参数向量；

\[
f = (f_1, f_2, \ldots, f_N)^T
\]
为加权广义偏差向量。

将 \(f \) 对 \(X \) 在初始点展开，并取线性项，得

\[
\begin{align*}
\Delta f_1 &= \frac{\partial f_1}{\partial x_1} \Delta x_1 + \frac{\partial f_1}{\partial x_2} \Delta x_2 + \cdots + \frac{\partial f_1}{\partial x_N} \Delta x_N \\
\Delta f_2 &= \frac{\partial f_2}{\partial x_1} \Delta x_1 + \frac{\partial f_2}{\partial x_2} \Delta x_2 + \cdots + \frac{\partial f_2}{\partial x_N} \Delta x_N \\
&\vdots \\
\Delta f_N &= \frac{\partial f_N}{\partial x_1} \Delta x_1 + \frac{\partial f_N}{\partial x_2} \Delta x_2 + \cdots + \frac{\partial f_N}{\partial x_N} \Delta x_N
\end{align*}
\]

(5)

把 \(f \) 写为

\[
f = f_0 + \Delta f = f_0 + A \Delta X
\]

(6)

其中

\[
f_0 = (f_{10}, f_{20}, \ldots, f_{N0})^T
\]

\[
\Delta X = (\Delta x_1, \Delta x_2, \ldots, \Delta x_N)^T
\]

\[
A = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_N} \\
& \ddots & \ddots & \ddots \\
\frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_N}
\end{bmatrix}
\]

设评价函数为

\[
\Psi(X) = \sum_{i=1}^{N} f_i^2 + p \Delta X^T \Delta X
\]

(7)

其中 \(p \) 为阻尼因子，作用是限制解的范围，使单位波面变化量不致太大而仍处于线性范围内，保证评价函数的下降（本实施例中此处优化取 1E-10）。由极值条件化 \(\nabla \Psi(X) = 0 \)，得方程组

\[
(A^T A + pI) \Delta X = A^T f_0
\]

(8)
这样，只要使$|A' A + pl| \neq 0$，单位波面变化量ΔX即为有意义。

经过上述过程，可以得到X的真实值，从而即可得到非球面的面形ASP（如图7所示）。

可见，上述过程是一个基于系统模型的，利用光线追迹，以非零位检测系统的探测器实际检测得到的波前为目标的优化过程。

综上所述，利用本发明方法可以在非球面非零位检测系统中将含有原理性误差的探测器实际探测得到的波前进行校正，得到被测非球面的真正确形。该发明有利于提高非球面非零位检测系统的检测精度，对非球面检测技术的发展具有重要作用。
图 1

任意非零干涉仪检测得到探测器平面的波前

误差校正模块对误差进行校正

被测非球面实际面形

图 2
误差校正开始

对包含被测非球面在内的非零位检测系统进行建模

根据被测非球面的理论面型，在上述建模系统中模拟探测器平面的波前

在上述建模系统中利用光线追迹，以探测器实际检测得到的波前为目标进行优化

等待优化停止

优化是否停止

是

误差校正结束

图 3

图 4
图5

图6

图7