MODULATION OF GLUCAGON RECEPTOR EXPRESSION

Inventors: Sanjay Bhanot, Carlsbad, CA (US);
 Susan M. Freier, San Diego, CA (US);
 Kenneth W. Dobie, Del Mar, CA (US);
 Robert McKay, Poway, CA (US)

Correspondence Address:
ISIS PHARMACEUTICALS INC
1896 RUTHERFORD RD.
CARLSBAD, CA 92008 (US)

Publication Classification

Compounds, compositions and methods are provided for modulating the expression of glucagon receptor. The compositions comprise oligonucleotides, targeted to nucleic acid encoding glucagon receptor. Methods of using these compounds for modulation of glucagon receptor expression and for diagnosis and treatment of disease associated with expression of glucagon receptor are provided.
MODULATION OF GLUCAGON RECEPTOR EXPRESSION

SEQUENCE LISTING

[0001] The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled B10L0007USD3SEQ.txt, created on Apr. 5, 2007 which is 208 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention provides compositions and methods for modulating the expression of glucagon receptor. In particular, this invention relates to compounds, particularly oligonucleotide compounds, which, in preferred embodiments, hybridize with nucleic acid molecules encoding glucagon receptor. Such compounds are shown herein to modulate the expression of glucagon receptor.

BACKGROUND OF THE INVENTION

[0003] The maintenance of normal glycemia is a carefully regulated metabolic event. Glucagon, the 29-amino acid peptide responsible for maintaining blood glucose levels in the postabsorptive state, increases glucose release from the liver by activating hepatic glycoegenolysis, glycoegenogenesis, stimulating lipolysis in adipose tissue, and stimulating insulin secretion. During high blood glucose levels, insulin reverses the glucagon-mediated enhancement of glycogenolysis and glycoegenogenesis. In patients with diabetes, insulin is either not available or not fully effective. While treatment for diabetes has traditionally focused on increasing insulin levels, antagonism of glucagon function has been considered as an alternative therapy. As glucagon exerts its physiological effects by signaling through the glucagon receptor, the glucagon receptor has been proposed as a potential therapeutic target for diabetes (Madsen et al., Curr. Pharm. Des., 1999, 5, 683-691).

[0004] Glucagon receptor is belongs to the superfamily of G-protein-coupled receptors having seven transmembrane domains. It is also a member of the smaller sub-family of homologous receptors which bind peptides that are structurally similar to glucagon. The gene encoding human glucagon receptor was cloned in 1994 and analysis of the genomic sequence revealed multiple introns and an 82% identity to the rat glucagon receptor gene (Lok et al., Gene, 1994, 140, 203-209; MacNeil et al., Biochem. Biophys. Res. Commun., 1994, 198, 328-334). Cloning of the rat glucagon receptor gene also led to the description of multiple alternative splice variants (Maget et al., FEBS Lett., 1994, 351, 271-275). Disclosed and claimed in U.S. Pat. No. 5,776,725 is an isolated nucleic acid sequence encoding a human or rat glucagon receptor (Kindsvogel et al., 1998). The human glucagon receptor gene is localized to chromosome 17q25 (Menzel et al., Genomics, 1994, 20, 327-328). A missense mutation of Gly to Ser at codon 40 in the glucagon receptor gene leads to a 3-fold lower affinity for glucagon (Fujisawa et al., Diabetologia, 1995, 38, 983-985) and this mutation has been linked to several disease states, including non-insulin-dependent diabetes mellitus (Fujisawa et al., Diabetes, 1995, 38, 983-985), hypertension (Chambers and Morris, Nat. Genet., 1996, 12, 122), and central adiposity (Stani et al., Obes. Res., 2001, 9, 722-726).

[0005] Inhibiting glucagon function by antagonizing the glucagon receptor has been proposed as a therapeutic target for diabetes. Currently, there are no known therapeutic agents which effectively inhibit the synthesis of glucagon receptor and to date, investigative strategies aimed at modulating glucagon receptor function have involved the use of antibodies, peptidyl antagonists, and small molecules. In addition, targeted disruption of the glucagon receptor gene in mice has shown that, despite a total absence of glucagon receptors and elevated plasma glucagon levels, the mice maintain near-normal glycemia and lipidemia (Parker et al., Biochem. Biophys. Res. Commun., 2002, 290, 839-843). Patent application WO 02/45494 (Allen et al.) discloses transgenic mice expressing mutations in a glucagon receptor gene. Also claimed are agonists or antagonists of glucagon receptor, agents that modulate the function, expression or activity of a glucagon receptor gene, methods of identifying such agents, methods of ameliorating conditions associated with impaired glucose tolerance, methods of identifying agents that affect obesity, weight gain, diabetes, methods of treating obesity or diabetic conditions, and phenotypic data associated with a transgenic mouse comprising a mutation in a glucagon receptor gene.

[0006] A glucagon-neutralizing monoclonal antibody has been described that antagonizes glucagon-stimulated signal transduction in part by binding to the glucagon binding site of the glucagon receptor (Bugly et al., Horm. Metab. Res., 1996, 28, 215-219). An antibody which specifically binds to the amino acid sequence of a glucagon receptor has been disclosed and claimed in U.S. Pat. No. 5,770,445 (Kindsvogel et al., 1998).

[0007] Several peptidyl antagonists of glucagon receptor have been reported in the art. Six glucagon analogs with N-terminal modifications were designed to have a higher affinity than glucagon for the glucagon receptor (Zechel et al., Int. J. Pept. Protein Res., 1991, 38, 131-138). Two somatostatin analogs have been reported to be inhibitors of glucagon secretion (Rosowski and Coy, Biochem. Biophys. Res. Commun., 1994, 205, 341-346).

[0009] There remains a long felt need for additional agents capable of effective inhibition of glucagon receptor function. Antisense technology is an effective means for reducing the expression of specific gene products and has proven to be uniquely useful in a number of therapeutic, diagnostic, and
research applications. The present invention provides compositions and methods for modulating glucagon receptor expression.

SUMMARY OF THE INVENTION

[0010] The present invention is directed to compounds, especially nucleic acid and nucleic acid-like oligomers, which are targeted to a nucleic acid encoding glucagon receptor, and which modulate the expression of glucagon receptor. Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of screening for modulators of glucagon receptor and methods of modulating the expression of glucagon receptor in cells, tissues or animals comprising contacting said cells, tissues or animals with one or more of the compounds or compositions of the invention. Methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of glucagon receptor are also set forth herein. Such methods comprise administering a therapeutically or prophylactically effective amount of one or more of the compounds or compositions of the invention to the person in need of treatment.

DETAILED DESCRIPTION OF THE INVENTION

A. Overview of the Invention

[0011] The present invention employs compounds, preferably oligonucleotides and similar species for use in modulating the function or effect of nucleic acid molecules encoding glucagon receptor. This is accomplished by providing oligonucleotides which specifically hybridize with one or more nucleic acid molecules encoding glucagon receptor. As used herein, the terms “target nucleic acid” and “nucleic acid molecule encoding glucagon receptor” have been used for convenience to encompass DNA encoding glucagon receptor, RNA (including pre-mRNA and mRNA or portions thereof) transcribed from such DNA, and also cDNA derived from such RNA. The hybridization of a compound of this invention with its target nucleic acid is generally referred to as “antisense”. Consequently, the preferred mechanism believed to be included in the practice of some preferred embodiments of the invention is referred to herein as “antisense inhibition.” Such antisense inhibition is typically based upon hydrogen bonding-based hybridization of oligonucleotide strands or segments such that at least one strand or segment is cleaved, degraded, or otherwise rendered inoperable. In this regard, it is presently preferred to target specific nucleic acid molecules and their functions for such antisense inhibition.

[0012] The functions of DNA to be interfered with can include replication and transcription. Replication and transcription, for example, can be from an endogenous cellular template, a vector, a plasmid construct or otherwise. The functions of RNA to be interfered with can include functions such as translocation of the RNA to a site of protein translation, translocation of the RNA to sites within the cell which are distant from the site of RNA synthesis, translation of protein from the RNA, splicing of the RNA to yield one or more RNA species, and catalytic activity or complex formation involving the RNA which may be engaged in or facilitated by the RNA. One preferred result of such interference with target nucleic acid function is modulation of the expression of glucagon receptor. In the context of the present invention, “modulation” and “modulation of expression” mean either an increase (stimulation) or a decrease (inhibition) in the amount or levels of a nucleic acid molecule encoding the gene, e.g., DNA or RNA. Inhibition is often the preferred form of modulation of expression and mRNA is often a preferred target nucleic acid.

[0013] In the context of this invention, “hybridization” means the pairing of complementary strands of oligomeric compounds. In the present invention, the preferred mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases (nucleobases) of the strands of oligomeric compounds. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. Hybridization can occur under varying circumstances.

[0014] An antisense compound is specifically hybridizable when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays.

[0015] In the present invention the phrase “stringent hybridization conditions” or “stringent conditions” refers to conditions under which a compound of the invention will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances and in the context of this invention, “stringent conditions” under which oligomeric compounds hybridize to a target sequence are determined by the nature and composition of the oligomeric compounds and the assays in which they are being investigated.

[0016] “Complementary,” as used herein, refers to the capacity for precise pairing between two nucleobases of an oligomeric compound. For example, if a nucleobase at a certain position of an oligonucleotide (an oligomeric compound), is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, said target nucleic acid being a DNA, RNA, or oligonucleotide molecule, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The oligonucleotide and the further DNA, RNA, or oligonucleotide molecule are complementary to each other when a sufficient number of complementary positions in each molecule are occupied by nucleobases which can hydrogen bond with each other. Thus, “specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of nucleobases such that stable and specific binding occurs between the oligonucleotide and a target nucleic acid.

[0017] It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable.
Moreover, an oligonucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure).

It is preferred that the antisense compounds of the present invention comprise at least 70% sequence complementarity to a target region within the target nucleic acid, more preferably that they comprise 90% sequence complementarity and even more preferably comprise 95% sequence complementarity to the target region within the target nucleic acid sequence to which they are targeted. For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 17, 649-656).

B. Compounds of the Invention

According to the present invention, compounds include antisense oligomeric compounds, antisense oligonucleotides, ribozymes, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other oligomeric compounds which hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, circular or hairpin oligomeric compounds and may contain structural elements such as internal or terminal bulges or loops. Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect modification of the target nucleic acid.

One non-limiting example of such an enzyme is Rnase H, a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. It is known in the art that single-stranded antisense compounds which are “DNA-like” elicit Rnase H. Activation of Rnase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. Similar roles have been postulated for other ribonucleases such as those in the RNase III and ribonuclease L family of enzymes.

While the preferred form of antisense compound is a single-stranded antisense oligonucleotide, in many species the introduction of double-stranded structures, such as double-stranded RNA (dsRNA) molecules, has been shown to induce potent and specific antisense-mediated reduction of the function of a gene or its associated gene products. This phenomenon occurs in both plants and animals and is believed to have an evolutionary connection to viral defense and transposon silencing.

The first evidence that dsRNA could lead to gene silencing in animals came in 1995 from work in the nematode, Caenorhabditis elegans (Guo and Kempehus, Cell, 1995, 81, 611-620).

Montgomery et al. have shown that the primary interference effects of dsRNA are posttranscriptional (Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95, 15502-15507). The posttranscriptional antisense mechanism defined in Caenorhabditis elegans resulting from exposure to double-stranded RNA (dsRNA) has since been designated RNA interference (RNAi). This term has been generalized to mean antisense-mediated gene silencing involving the introduction of dsRNA leading to the sequence-specific reduction of endogenous targeted mRNA levels (Fire et al., Nature, 1998, 391, 806-811). Recently, it has been shown that it is, in fact, the single-stranded RNA oligomers of antisense polarity of the dsRNAs which are the potent inducers of RNAi (Tijsterman et al., Science, 2002, 295, 694-697).

In the context of this invention, the term “oligomeric compound” refers to a polymer or oligomer comprising a plurality of monomeric units. In the context of this invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics, chimers, analogs and homologs thereof. This term includes oligonucleotides composed of naturally occurring nucleobases, sugars and covalent intranucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for a target nucleic acid and increased stability in the presence of nucleases.

While oligonucleotides are a preferred form of the compounds of this invention, the present invention comprehends other families of compounds as well, including but not limited to oligonucleotide analogs and mimetics such as those described herein.

The compounds in accordance with this invention preferably comprise from about 8 to about 80 nucleobases (i.e. from about 8 to about 80 linked nucleosides). One ordinary skill in the art will appreciate that the invention embodies compounds of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleobases in length.

In one preferred embodiment, the compounds of the invention are 12 to 50 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleobases in length.

In another preferred embodiment, the compounds of the invention are 15 to 30 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length.
Particularly preferred compounds are oligonucleotides from about 12 to about 50 nucleobases, even more preferably those comprising from about 15 to about 30 nucleobases.

Antisense compounds 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative antisense compounds are considered to be suitable antisense compounds as well.

Exemplary preferred antisense compounds include oligonucleotide sequences that comprise at least the 8 consecutive nucleobases from the 5'-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same oligonucleotide beginning immediately upstream of the 5'-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the oligonucleotide contains about 8 to about 80 nucleobases). Similarly preferred antisense compounds are represented by oligonucleotide sequences that comprise at least the 8 consecutive nucleobases from the 3'-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same oligonucleotide beginning immediately downstream of the 3'-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the oligonucleotide contains about 8 to about 80 nucleobases). One having skill in the art armed with the preferred antisense compounds illustrated herein will be able, without undue experimentation, to identify further preferred antisense compounds.

C. Targets of the Invention

“Targeting” an antisense compound to a particular nucleic acid molecule, in the context of this invention, can be a multistep process. The process usually begins with the identification of a target nucleic acid whose function is to be modulated. This target nucleic acid may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target nucleic acid encodes glucagon receptor.

The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result. Within the context of the present invention, the term “region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Within regions of target nucleic acids are segments. “Segments” are defined as smaller or sub-portions of regions within a target nucleic acid. “Sites,” as used in the present invention, are defined as positions within a target nucleic acid.

Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the “AUG codon,” the “start codon” or the “AUG start codon”. A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms “translation initiation codon” and “start codon” can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, “start codon” and “translation initiation codon” refer to the codon or codons that are used in vivo to initiate translation of a mRNA transcribed from a gene encoding glucagon receptor, regardless of the sequence(s) of such codons. It is also known in the art that a translation termination codon (or “stop codon”) of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively).

The terms “start codon region” and “translation initiation codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms “stop codon region” and “translation termination codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon. Consequently, the “start codon region” (or “translation initiation codon region”) and the “stop codon region” (or “translation termination codon region”) are all regions which may be targeted effectively with the antisense compounds of the present invention.

The open reading frame (ORF) or “coding region,” which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Within the context of the present invention, a preferred region is the intragenic region encompassing the translation initiation or termination codon of the open reading frame (ORF) of a gene.

Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA (or corresponding nucleotides on the gene), and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA (or corresponding nucleotides on the gene). The 5' cap site of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap site. It is also preferred to target the 5' cap region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as “introns,” which are excised from a transcript before it is translated. The remaining (and therefore trans-
lated) regions are known as “exons” and are spliced together to form a continuous mRNA sequence. Targeting splice sites, i.e., intron-exon junctions or exon-intron junctions, may also be particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred target sites. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as “fusion transcripts”. It is also known that introns can be effectively targeted using antisense compounds targeted to, for example, DNA or pre-mRNA.

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as “variants”. More specifically, “pre-mRNA variants” are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence.

Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA variants produce smaller “miRNA variants”. Consequently, miRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique miRNA variant as a result of splicing. These miRNA variants are also known as “alternative splice variants”. If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the miRNA variant.

It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and miRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or miRNA that use alternative start codons are known as “alternative start variants” of that pre-mRNA or miRNA. Those transcripts that use an alternative stop codon are known as “alternative stop variants” of that pre-mRNA or miRNA. One specific type of alternative stop variant is the “polyA variant” in which the multiple transcripts produced result from the alternative selection of one of the “polyA stop signals” by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites. Within the context of the invention, the types of variants described herein are also preferred target nucleic acids.

The locations on the target nucleic acid to which the preferred antisense compounds hybridize are hereinbelow referred to as “preferred target segments.” As used herein the term “preferred target segment” is defined as at least an 8-nucleobase portion of a target region to which an active antisense compound is targeted. While not wishing to be bound by theory, it is presently believed that these target segments represent portions of the target nucleic acid which are accessible for hybridization.

While the specific sequences of certain preferred target segments are set forth herein, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional preferred target segments may be identified by one having ordinary skill.

Target segments 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative preferred target segments are considered to be suitable for targeting as well.

Target segments can include DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 5’-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5’- terminus of the target segment and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). Similarly preferred target segments are represented by DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 3’-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3’-terminus of the target segment and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). One having skill in the art armed with the preferred target segments illustrated herein will be able, without undue experimentation, to identify further preferred target segments.

Once one or more target regions, segments or sites have been identified, antisense compounds are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

D. Screening and Target Validation

In a further embodiment, the “preferred target segments” identified herein may be employed in a screen for additional compounds that modulate the expression of glucagon receptor. “Modulators” are those compounds that decrease or increase the expression of a nucleic acid molecule encoding glucagon receptor and which comprise at least an 8-nucleobase portion which is complementary to a preferred target segment. The screening method comprises the steps of contacting a preferred target segment of a nucleic acid molecule encoding glucagon receptor with one or more candidate modulators, and selecting for one or more candidate modulators which decrease or increase the expression of a nucleic acid molecule encoding glucagon receptor. Once it is shown that the candidate modulator or modulators are capable of modulating (e.g., either decreasing or increasing) the expression of a nucleic acid molecule encoding glucagon receptor, the modulator may then be employed in further investigative studies of the function of glucagon receptor, or for use as a research, diagnostic, or therapeutic agent in accordance with the present invention.

The preferred target segments of the present invention may also be combined with their respective complementary antisense compounds of the present invention to form stabilized double-stranded (duplexed) oligonucleotides.

Such double stranded oligonucleotide moieties have been shown in the art to modulate target expression and regulate translation as well as RNA processing via an antisense mechanism. Moreover, the double-stranded moieties may be subject to chemical modifications (Fire et al., Nature, 1998, 391, 806-811; Timmons and Fire, Nature 1998, 395, 854; Timmons et al., Gene, 2001, 263, 103-112; Tabara et al., Science, 1998, 282, 430-431; Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95, 15502-15507;
The compounds of the present invention can also be applied in the areas of drug discovery and target validation. The present invention comprehends the use of the compounds and preferred target segments identified herein in drug discovery efforts to elucidate relationships that exist between glucagon receptor and a disease state, phenotype, or condition. These methods include detecting or modulating glucagon receptor comprising contacting a sample, tissue, cell, or organism with the compounds of the present invention, measuring the nucleic acid or protein level of glucagon receptor and/or a related phenotype or chemical endpoint at some time after treatment, and optionally comparing the measured value to a non-treated sample or sample treated with a further compound of the invention. These methods can also be performed in parallel or in combination with other experiments to determine the function of unknown genes for the process of target validation or to determine the validity of a particular gene product as a target for treatment or prevention of a particular disease, condition, or phenotype.

E. Kits, Research Reagents, Diagnostics, and Therapeutics

The compounds of the present invention can be utilized for diagnostics, therapeutics (including prophylaxis) and as research reagents and kits. Furthermore, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes or to distinguish between functions of various members of a biological pathway.

For use in kits and diagnostics, the compounds of the present invention, either alone or in combination with other compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

As one nonlimiting example, expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

The compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding glucagon receptor. For example, oligonucleotides that are shown to hybridize with such efficiency and under such conditions as disclosed herein as to be effective glucagon receptor inhibitors will also be effective primers or probes under conditions favoring gene amplification or detection, respectively. These primers and probes are useful in methods requiring the specific detection of nucleic acid molecules encoding glucagon receptor and in the amplification of said nucleic acid molecules for detection or for use in further studies of glucagon receptor. Hybridization of the antisense oligonucleotides, particularly the primers and probes, of the invention with a nucleic acid encoding glucagon receptor can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of glucagon receptor in a sample may also be prepared.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense compounds have been employed as therapeutic moieties in the treatment of disease states in animals, including humans. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that antisense compounds can be useful therapeutic modalities that can be configured to be useful in treatment regimes for the treatment of cells, tissues and animals, especially humans.

For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of glucagon receptor is treated by administering antisense compounds in accordance with this invention. For example, in one non-limiting embodiment, the methods comprise the step of administering to an animal a therapeutically effective amount of a glucagon receptor inhibitor. The glucagon receptor inhibitors of the present invention effectively inhibit the activity of the glucagon receptor protein or inhibit the expression of the glucagon receptor protein. In one embodiment, the activity or expression of glucagon receptor in an animal is inhibited by about 10%. Preferably, the activity or expression of glucagon receptor in an animal is inhibited by about 30%. More preferably, the activity or expression of glucagon receptor in an animal is inhibited by 50% or more. Because
the compounds herein are inhibitors of glucagon receptor, they are believed to be useful in lowering blood glucose, for example, and in treating conditions associated with glucagon receptor activity, such as high blood glucose and other metabolic conditions such as diabetes (including Type 2 diabetes), obesity, and insulin resistance.

[0058] The reduction of the expression of glucagon receptor may be measured, for example, in blood, plasma, serum, adipose tissue, liver or any other body fluid, tissue or organ of the animal.

[0059] Preferably, the cells contained within said fluids, tissues or organs being analyzed contain a nucleic acid molecule encoding glucagon receptor protein and/or the glucagon receptor protein itself.

[0060] The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the compounds and methods of the invention may also be useful prophylactically.

F. Modifications

[0061] As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn, the respective ends of this linear polymeric compound can be further joined to form a circular compound, however, linear compounds are generally preferred. In addition, linear compounds may have internal nucleobase complementarity and may therefore fold in a manner as to produce a fully or partially double-stranded compound. Within oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

Modified Internucleoside Linkages (Backbones)

[0062] Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

[0063] Preferred modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphorothriesters, aminophosphorothriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramide and aminooalkylphosphoramidates, thionophosphoramidates, thioalkylphosphonates, thioalkylphosphorothioesters, selenophosphates and boronophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be acidic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

[0064] Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,908; 4,469,863; 4,476,301; 5,023,243; 5,177,186; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

[0065] Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed from the sugar portion of a nucleoside): siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacethyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneiminio and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.

[0066] Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Modified Sugar and Internucleoside Linkages-Mimetics

[0067] In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage (i.e. the backbone), of the nucleotide units are replaced with novel groups. The nucleobase units are maintained for hybridization with an appropriate target nucleic acid. One such compound, an oligonucleotide mimic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or
indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., *Science*, 1991, 254, 1497-1500.

[0068] Preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones. Also preferred are oligonucleosides with heteroatom backbones, and in particular —CH$_2$—N—O—CH$_2$—, —CH$_2$—N(CH$_3$)$_2$—O—CH$_3$—[known as a methylene (methylimino) or MMI backbone], —CH$_2$—N—O(N(CH$_3$)$_2$)—CH$_2$—, —CH$_2$—N(CH$_3$)$_2$—N(CH$_3$)$_2$—CH$_2$—, and —O—N(CH$_3$)$_2$—CH$_2$—CH$_2$—[wherein the native phosphodiester backbone is represented as —O—P—O—CH$_2$—] of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above referenced U.S. Pat. No. 5,034,506.

Modified Sugars

[0069] Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O- S- or N-alkyl; O- S- or N-alkenyl; O- S- or N-alknyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C$_1$ to C$_{10}$ alkyl or C$_2$ to C$_{10}$ alkenyl and alkynyl. Particularly preferred are O(2'CH$_3$)$_2$N$_m$CH$_2$, O(2'CH$_3$)$_2$OCH$_3$, O(2'CH$_3$)$_2$NH$_2$, O(2'CH$_3$)$_2$CH$_3$, O(2'CH$_2$)$_2$ONH$_2$, and O(2'CH$_3$)$_2$ON(2'CH$_2$)$_2$O, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C$_1$ to C$_{10}$ lower alkyl, substituted lower alkyl, alkynyl, alkenyl, alkylk, unalkyl, O-alkaryl or O- aralkyl, SH, SCHR, OCN, CN, CN, OCN, SO$_2$CH$_3$, ONO$_2$, NO$_2$, NH$_2$, heterocyclicalkyl, heteroalkylaryl, aminobenzylaminobenzyl, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, for a group improving the pharmacokinetic properties of oligonucleotide, or a group improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O—CH$_2$CH$_2$OCH$_3$, also known as 2'-O(2-methoxy ethyl) or 2'-MOE) (Martin et al., *Helv. Chim. Acta*, 1995, 78, 486-504) i.e., an alkoxalkyl group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH$_2$)$_2$ON(CH$_3$)$_2$ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminooxyethoxy (also known in the art as 2'-O(dimethylamino ethoxy-ethyl or 2'-DMAEE), i.e., 2'-O—CH$_2$—O—CH$_2$—N(CH$_3$)$_2$), also described in examples hereinbelow.

[0070] Other preferred modifications include 2'-methoxy (2'-O—CH$_3$), 2'-aminoproxy (2'-OCH$_2$CH$_2$NH$_2$), 2'-allyl (2'-CH$_2$—CH=CH$_2$), 2'-O-allyl (2'-O—CH$_2$—CH$_2$—CH=CH$_2$), and 2'-fluoro (2'-F). The 2'-modification may be in the arabinof (up) position or ribo (down) position. A preferred 2'-arabinof modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2' to 5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

[0071] A further preferred modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety. The linkage is preferably a methylene (—CH$_2$—), group bridging the 2' oxygen atom and the 4' carbon atom where n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

Natural and Modified Nucleobases

[0072] Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-amino adenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiouracil and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C=C—CH$_3$) uracil and cytosine and other alkyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenosines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino adenine, 8-azaguanine and 8-aza adenine, 7-deaza-adenine and 7-deaza guanine and 3-deazaguanine and 3-deaza guanine. Further modified nucleobases include triazine pyrimidines such as phenoazine cytidine (1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)1H-pyrimido [5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridino diethyl cytidine (H-pyridino[3',2',3:4,5]pyrrole[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deaza guanosine, 2-aminopyridine and 2-pyridine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in *The Concise Encyclopedia Of Polymer Science And Engineering*, pages 858-859, and those disclosed in International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, *Antisense Research and Applications*, pages 289-302, Crooke, S. T. and Leblon, B., ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the compounds of the invention. These include 5-substituted
pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 2-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions.

[0073] Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. Nos. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,091; 5,614,677; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

Conjugates

[0074] Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesteryl, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamines, coumarin, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. No. 6,287,860, the entire disclosure of which are incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesteryl moiety, oleic acid, a thiourea, e.g., hexyl-S-tritylthiol, a thiocolesterol, an aliphatic chain, e.g., dodecanol or undecyl residues, a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycerol-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmitoyl moiety, or an octadecylamine or hexylamino-carbonyl-oxycarbonyl moiety. Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+) pranoprofen, caprofen, dansylcysteine, 2,3,5-triiodo-benzoic acid, fluordeacetyl, folic acid, a benzothiadiazide, chlorothiazide, a diuretic, indo-methicin, a b-bitururate, a cephalosporin, a sulfon drug, an antibiotic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334,130 (filed Jun. 15, 1999) which is incorporated herein by reference in its entirety.

[0075] Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,252,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717; 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,141,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241; 5,391,723; 5,416,203; 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923, 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.

Chimeric Compounds

[0076] It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide.

[0077] The present invention also includes antisense compounds which are chimeric compounds. “Chimeric” antisense compounds or “chimeras,” in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, increased stability and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. The cleavage of RNA:RNA hybrids can, in like fashion, be accomplished through the actions of endoribonucleases, such as RNAsel, which cleaves both cellular and viral RNA. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

[0078] Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,056; 5,652,355; 5,652,356; and 5,700,922,
certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

Salts

[0079] The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. The term “pharmaceutically acceptable salts” refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. For oligonucleotides, preferred examples of pharmaceutically acceptable salts and their uses are further described in U.S. Pat. Nos. 6,287,860, which is incorporated herein in its entirety. Sodium salts are especially suitable salts of the compounds of the present invention.

G. Formulations

[0080] The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,035,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,334,259; 5,543,152; 5,536,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

[0081] The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer, intratracheal, intranasal, epidural and transdermal), oral or parenteral. Parenteral administration includes intravenous, intramuscular, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2' O-methoxyethyl modification are believed to be particularly useful for oral administration. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

[0082] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

[0083] The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

[0084] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, foams and liposome-containing formulations. The pharmaceutical compositions and formulations of the present invention may comprise one or more penetration enhancers, carriers, excipients or other active or inactive ingredients.

[0085] Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Microemulsions are included as an embodiment of the present invention. Emulsions and their uses are well known in the art and are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

[0086] Formulations of the present invention include liposomal formulations. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers. Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior that contains the composition to be delivered. Cationic liposomes are positively charged liposomes which are believed to interact with negatively charged DNA molecules to form a stable complex. Liposomes that are pH-sensitive or negatively-charged are believed to entrap DNA rather than complex with it. Both cationic and noncationic liposomes have been used to deliver DNA to cells.

[0087] Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome comprises one or more glycolipid or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. Liposomes and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

[0088] The pharmaceutical formulations and compositions of the present invention may also include surfactants.
The use of surfactants in drug products, formulations and in emulsions is well known in the art. Surfactants and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

[0089] In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Penetration enhancers and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

[0090] One of skill in the art will recognize that formulations are routinely designed according to their intended use, i.e. route of administration.

[0091] Preferred formulations for topical administration include those in which the oligonucleotides of the invention are admixed with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearoylphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol DMG) and cationic (e.g. dioleoyltrimethylammoniumpropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA).

[0092] For topical or other administration, oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters, pharmaceutically acceptable salts thereof, and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315,298 filed on May 20, 1999, which is incorporated herein by reference in its entirety.

[0093] Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticles, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts and fatty acids and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally, in granular form including sprayed dried particles, or complexes to form micro or nanoparticles. Oligonucleotide complexing agents and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Oral formulations for oligonucleotides and their preparation are described in detail in U.S. application Ser. Nos. 09/108,673 (filed Jul. 1, 1998), 09/315,298 (filed May 20, 1999) and 10/071,822, filed Feb. 8, 2002, each of which is incorporated herein by reference in its entirety.

[0094] Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

[0095] Certain embodiments of the invention provide pharmaceutical compositions containing one or more oligomeric compounds and one or more other pharmaceutical agents which function by a non-antisense mechanism. Examples of such pharmaceutical agents include but are not limited to cancer chemotherapeutic drugs, anti-inflammatory drugs, anti-viral drugs, and compounds for treatment of metabolic diseases such as diabetes, high blood sugar or obesity, or cardiovascular conditions such as elevated blood cholesterol or blood pressure. Combinations of antisense compounds and other non-antisense drugs are also within the scope of this invention. Two or more combined compounds may be used together or sequentially. When used with the compounds of the invention, such pharmaceutical agents may be used individually (e.g., rosiglitazone and oligonucleotide), sequentially (e.g., 5-fluorouracil and oligonucleotide for a period of time followed by methotrexate and oligonucleotide), or in combination with one or more other treatments (e.g., 5-fluorouracil, methotrexate and oligonucleotide, or 5-fluorouracil, radiotherapy and oligonucleotide).

[0096] In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Alternatively, compositions of the invention may contain two or more antisense compounds targeted to different regions of the same nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

H. Dosing

[0097] The formulation of therapeutic compositions and their subsequent administration (dosing) is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC_{50} found to be effective in vitro and in vivo animal models. In general, dosage is from 0.01 μg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art
can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 to 100 g per kg of body weight, once or more daily, to once every 20 years.

[0098] While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES

Example 1

Synthesis of Nucleoside Phosphoramidites

[0099] The following compounds, including amidites and their intermediates were prepared as described in U.S. Pat. No. 6,426,220 and published PCT WO 02/36743: 5'-O-Dimethoxytrityl-thymidine intermediate for 5-methyl dC amidite, 5'-O-Dimethoxytrityl-2'-deoxy-5-methylcytidine intermediate for 5-methyl dC amidite, 5'-O-Dimethoxytrityl-2'-deoxy-N4-benzoyl-5-methylcytidine penultimate intermediate for 5-methyl dC amidite, 5'-O-(4,4'-(Dimethoxytritylphenethyl)-2'-deoxy-N4'-benzoyl-5-methylytidin-3'-O-yl)-2'-cyanoethyl-N,N-diisopropyl phosphoramidite (5'-methyl dC amidite), 2'-Fluoro(deoxyadenosine, 2'-Fluoro(deoxyguanosine, 2'-Fluoro(uridine, 2'-Fluoro(exoxytidine, 2'-O-(2-Methoxy(ethyl) modified amidites, 2'-O-(2-Methoxyethyl) 5-methyluridine intermediate, 5'-O-DMT-2'-O-(2-methoxyethyl)-5-methyluridine penultimate intermediate, 5'-O-(4,4'-(Dimethoxy(phenethyl)-2'-O-(2-methoxyethyl)-5-methyluridin-3'-O-yl)-2'-cyanoethyl-N,N-diisopropyl phosphoramidite (MOE T amidite, 5'-O-Dimethoxytrityl-2'-O-(2-methoxyethyl)-5-methylcytidine intermediate, 5'-O-Dimethoxytrityl-2'-O-(2-methoxyethyl)-N4'-benzoyl-5-methylcytidine penultimate intermediate, 5'-O-(4,4'-(Dimethoxytritylphenethyl)-2'-O-(2-methoxyethyl)-N4'-benzoyl-5-methylcytidin-3'-O-yl)-2'-cyanoethyl-N,N-diisopropylphosphoramidite (MOE 5-Me-C amidite, 5'-O-(4,4'-(Dimethoxytritylphenethyl)-2'-O-(2-methoxyethyl)-N4'-benzoyladenosin-3'-O-yl)-2'-cyanoethyl-N,N-diisopropylphosphoramidite (MOE A amidite, 5'-O-(4,4'-(Dimethoxytritylphenethyl)-2'-O-(2-methoxyethyl)-N4'-isobutrylguanosin-5'-O-yl)-2'-cyanoethyl-N,N-diisopropylphosphoramidite (MOE G amidite, 2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) nucleoside amidites, 2'-O-(Dimethylaminooxyethyl) nucleoside amidites, 5'-O-t-BuButyldiphenylsilyl-O2'-2'-anhydro-5-methyluridine, 5'-O-t-BuButyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine, 2'-O-[2-phthalimidoxoyethyl]-t-BuButyldiphenylsilyl-5-methyluridine, 5'-O-t-BuButyldiphenylsilyl-2'-O-[2-formamidooxyethyl]-5-methyluridine, 5'-O-t-BuButyldiphenylsilyl-2'-O-[2-formamidooxyethyl]-5-methyluridine, 5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine, 2'-O-(dimethylaminooxyethyl)-5-methyluridine, 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine, 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-O-(2-cyanoethyl)-N,N-diisopropyl phosphoramidite, 2'-O-(Aminooxyethyl) nucleoside amidites, N2-isobutryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-O-[2-cyanoethyl]-N,N-diisopropylphosphoramidite, 2'-dimethylaminoethoxyethoxy (2'-DMEOE) nucleoside amidites, 2'-O-[2-N,N-dimethylaminooxyethyl]-5-methyl uridine, 5'-O-dimethoxytrityl-2'-O-[2-N,N-dimethylaminooxyethyl]-5-methyl uridine and 5'-O-Dimethoxytrityl-2'-O-[2-N,N-dimethylaminooxyethyl]-5-methyl uridine-3'-O-(2-cyanoethyl)-N,N-diisopropylphosphoramidite.

Example 2

Oligonucleotide and Oligonucleoside Synthesis

[0100] The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

Oligonucleotides: Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 394) using standard phosphoramidite chemistry with oxidation by iodine.

[0101] Phosphorothioates (P=S) are synthesized similar to phosphodiester oligonucleotides with the following exceptions: thiation was effected by utilizing a 10% w/v solution of 3,1-H1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the oxidation of the phosphate linkages. The thiation reaction step time was increased to 180 sec and preceded by the normal capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55° C. (12-16 hr), the oligonucleotides were recovered by precipitating with 3 volumes of ethanol from a 1 M NH4Ac solution. Phosphinate oligonucleotides are prepared as described in U.S. Pat. No. 5,508,270, herein incorporated by reference.

[0102] Alkyl phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 4,469,863, herein incorporated by reference.

[0103] 3'-Deoxy-3'-methylen phosphonate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,610,289 or 5,625,050, herein incorporated by reference.

[0104] Phosphoramide oligonucleotides are prepared as described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878, herein incorporated by reference.

[0106] 3'-Deoxy-3'-amino phosphoramide oligonucleotides are prepared as described in U.S. Pat. No. 5,476,925, herein incorporated by reference.

[0107] Phosphorothioester oligonucleotides are prepared as described in U.S. Pat. No. 5,023,243, herein incorporated by reference.
Borano phosphate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198, both herein incorporated by reference.

Oligonucleosides: Methylenevinylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenevinyliminohydrino linked oligonucleosides, also identified as MDH linked oligonucleosides, and methyleneacarbomylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Pat. No. 5,223,618, herein incorporated by reference.

Example 3

RNA Synthesis

In general, RNA synthesis chemistry is based on the selective incorporation of various protecting groups at strategic intermolecular reactions. Although one of ordinary skill in the art will understand the use of protecting groups in organic synthesis, a useful class of protecting groups includes silyl ethers. In particular bulky silyl ethers are used to protect the 3'-hydroxyl in combination with an acyl-labile orthoester protecting group on the 2'-hydroxyl. This set of protecting groups is then used with standard solid-phase synthesis technology. It is important to first remove the acid labile orthoester protecting group after all other synthetic steps. Moreover, the early use of the silyl protecting groups during synthesis ensures facile removal when desired, without undesired deprotection of 2'-hydroxyl.

Following this procedure for the sequential protection of the 3'-hydroxyl in combination with protection of the 2'-hydroxyl by protecting groups that are differentially removed and are differentially chemically labile, RNA oligonucleotides were synthesized.

RNA oligonucleotides are synthesized in a stepwise fashion. Each nucleotide is added sequentially (3'-to 5'-direction) to a solid support-bound oligonucleotide. The first nucleoside at the 3'-end of the chain is covalently attached to a solid support. The nucleotide precursor, a ribonucleoside phosphoramidite, and activator are added, coupling the second base onto the 5'-end of the first nucleoside. The support is washed and any unreacted 5'-hydroxyl groups are capped with acetic anhydride to yield 5'-acetyl moieties. The linkage is then oxidized to the more stable and ultimately desired P(V) linkage. At the end of the nucleotide addition cycle, the 5'-silyl group is cleaved with fluoride. The cycle is repeated for each subsequent nucleotide.

Following synthesis, the methyl protecting groups on the phosphates are cleaved in 30 minutes utilizing 1 M disodium-2-carbamoyl-2-ethylenedioxy-1,1-dithiolate trihydrate (S$_2$N$_2$) in DMF. The deprotection solution is washed from the solid support-bound oligonucleotide using water. The support is then treated with 40% methanolamine in water for 10 minutes at 55 °C. This releases the RNA oligonucleotides into solution, deprotects the exocyclic amines, and modifies the 2'-groups. The oligonucleotides can be analyzed by anion-exchange HPLC at this stage.

The 2'-orthoester groups are the last protecting groups to be removed. The ethylene glycol monooctadecyl orthoester protecting group developed by Dharmacon Research, Inc. (Lafayette, Colo.), is one example of a useful orthoester protecting group which has the following important properties. It is stable to the conditions of nucleoside phosphoramidite synthesis and oligonucleotide synthesis. However, after oligonucleotide synthesis the oligonucleotide is treated with methanolamine which not only cleaves the oligonucleotide from the solid support but also removes the acetyl groups from the orthoesters. The resulting 2-ethoxy hydroxyl substituents on the orthoester are less electron withdrawing than the acetylated precursor. As a result, the modified orthoester becomes more labile to acid-catalyzed hydrolysis. Specifically, the rate of cleavage is approximately 10 times faster after the acetyl groups are removed. Therefore, this orthoester possesses sufficient stability in order to be compatible with oligonucleotide synthesis and yet, when subsequently modified, permits deprotection to be carried out under relatively mild aqueous conditions compatible with the final RNA oligonucleotide product.

RNA antisense compounds (RNA oligonucleotides) of the present invention can be synthesized by the methods herein or purchased from Dharmacon Research, Inc. (Lafayette, Colo.). Once synthesized, complementary RNA antisense compounds can then be annealed by methods known in the art to form double stranded (duplexed) antisense compounds. For example, duplexes can be formed by combining 30 μl of each of the complementary strands of RNA oligonucleotides (50 nM RNA oligonucleotide solution) and 15 μl of 5x annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, 2 mM magnesium acetate) followed by heating for 1 minute at 90 °C, then 1
hour at 37°C. The resulting duplexed antisense compounds can be used in kits, assays, screens, or other methods to investigate the role of a target nucleic acid.

Example 4

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the “gap” segment of linked nucleosides is positioned between 5’ and 3’“wing” segments of linked nucleosides and a second “open end” type wherein the “gap” segment is located at either the 3’ or the 5’ terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as “gapmers” or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as “hemimers” or “wingmers”.

[2’-O-Me]–[2’-deoxy]–[2’-O-Me] Chimeric Phosphorothioate Oligonucleotides

Chimeric oligonucleotides having 2’-O-alkyl phosphorothioate and 2’-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 394, as above. Oligonucleotides are synthesized using the automated synthesizer and 2’-deoxy-5’-dimethoxytrityl-3’-O-phosphoramidite for the DNA portion and 5’-dimethoxytrityl-2’-O-methyl-3’-O-phosphoramidite for 5’ and 3’ wings. The standard synthesis cycle is modified by incorporating coupling steps with increased reaction times for the 5’-dimethoxytrityl-2’-O-methyl-3’-O-phosphoramidite. The fully protected oligonucleotide is cleaved from the support and deprotected in concentrated ammonia (NH₄OH) for 12-16 hr at 55°C. The deprotected oligo is then recovered by an appropriate method (precipitation, column chromatography, vacuum reduced in vacuo and analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2’-O-(2-Methoxyethyl)]–[2’-deoxy]–[2’-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides

Chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2’-O-methyl chimeric oligonucleotide, with the substitution of 2’-O-(methoxyethyl) amidites for the 2’-O-methyl amidites.

Example 5

Design and Screening of Duplexed Antisense Compounds Targeting Glucagon Receptor

In accordance with the present invention, a series of nucleic acid duplexes comprising the antisense compounds of the present invention and their complements can be designed to target glucagon receptor. The nucleobase sequence of the antisense strand of the duplex comprises at least an 8-nucleobase portion of an oligonucleotide in Table 1. The ends of the strands may be modified by the addition of one or more natural or modified nucleobases to form an overhang. The sense strand of the dsRNA is then designed and synthesized as the complement of the antisense strand and may also contain modifications or additions to either terminus. For example, in one embodiment, both strands of the dsRNA duplex would be complementary over the central nucleobases, each having overhangs at one or both termini.

For example, a duplex comprising an antisense strand having the sequence C CGAGGGGCGGACCG (SEQ ID NO: 824) and having a two-nucleobase overhang of deoxythymidine(dT) would have the following structure:

<table>
<thead>
<tr>
<th>ccagagccgagcggagcc</th>
<th>Antisense Strand (SEQ ID NO:825)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTgcttcgctgcctgcggc</td>
<td>Complement (SEQ ID NO:826)</td>
</tr>
</tbody>
</table>

In another embodiment, a duplex comprising an antisense strand having the same sequence CGAGGGCGGACCG (SEQ ID NO: 824) may be prepared with blunt ends (no single strand overhang) as shown:

<table>
<thead>
<tr>
<th>ccagagccgagcggagcc</th>
<th>Antisense Strand (SEQ ID NO:824)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gcttcgctgcctgcggc</td>
<td>Complement (SEQ ID NO:827)</td>
</tr>
</tbody>
</table>
The RNA duplex can be unimolecular or biomolecular; i.e., the two strands can be part of a single molecule or may be separate molecules. RNA strands of the duplex can be synthesized by methods disclosed herein or purchased from Dharmacon Research Inc. (Lafayette, Colo.). Once synthesized, the complementary strands are unanneled. The single strands are aliquoted and diluted to a concentration of 50 nM. Once diluted, 30 µl of each strand is combined with 15 µl of a 5X solution of annealing buffer. The final concentration of said buffer is 100 nM potassium acetate, 30 nM HEPES-KOH pH 7.4, and 2 mM magnesium acetate. The final volume is 75 µl. This solution is incubated for 1 minute at 90°C and then centrifuged for 15 seconds. The tube is allowed to sit for 1 hour at 37°C at which time the dsRNA duplexes are used in experimentation. The final concentration of the dsRNA duplex is 20 nM. This solution can be stored frozen (-20°C) and freeze-thawed up to 5 times. Once prepared, the duplexed antisense compounds are evaluated for their ability to modulate glucagon receptor expression.

When cells reached 80% confluency, they are treated with duplexed antisense compounds of the invention. For cells grown in 96-well plates, wells are washed once with 200 µl OPTI-MEM-1 reduced-serum medium (Gibco BRL) and then treated with 130 µl of OPTI-MEM-1 containing 12 µg/ml LIPOFECTIN (Gibco BRL) and the desired duplex antisense compound at a final concentration of 200 nM. After 5 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16 hours after treatment, at which time RNA is isolated and target reduction measured by RT-PCR.

Oligonucleotide Isolation

After cleavage from the controlled pore glass solid support and deblocking in concentrated ammonium hydroxide at 55°C for 12-16 hours, the oligonucleotides or oligonucleosides are recovered by precipitation out of 1 M NH₄OH with ≥3 volumes of ethanol. Synthesized oligonucleotides are analyzed by electrospray mass spectroscopy (molecular weight determination) and by capillary gel electrophoresis and judged to be at least 70% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in the synthesis is determined by the ratio of correct molecular weight relative to the -16 amu product (±324/±48). For some studies oligonucleotides are purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material are similar to those obtained with non-HPLC purified material.

Oligonucleotide Synthesis—96 Well Plate Format

Oligonucleotides are synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a 96-well format. Phosphodiester internucleotide linkages are afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages are generated by sulfuration utilizing 3,4-H-1,2 benzodithiole-3-one, 1,1 dioxiide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyl-diso-propyl phosphoramidites are purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, Calif., or Pharmacia, Piscataway, N.J.). Non-standard nucleosides are synthesized as per standard or patented methods. They are utilized as base protected beta-cyanoethyldisopropyl phosphoramidites.

Oligonucleotides are cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product is then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 8

[0131] Oligonucleotide Analysis—96-Well Plate Format

The concentration of oligonucleotide in each well is assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products is evaluated by capillary electrophoresis (CE) in either the 96-well format (Beckman P/ACE™ MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABL 270). Base and backbone composition is confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates are diluted from the master plate using single and multi-channel robotic pipettors. Plates are judged to be acceptable if at least 85% of the compounds on the plate are at least 85% full length.

Example 9

Cell Culture and Oligonucleotide Treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, ribonuclease protection assays, or RT-PCR.

T-24 Cells:

The human transitional cell bladder carcinoma cell line T-24 is obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). T-24 cells are routinely cultured in complete McCoy's 5A basal media (Invitrogen Corporation, Carlsbad, Calif.) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, Calif.), penicillin 100 units per ml, and streptomycin 100 micrograms per ml (Invitrogen Corporation, Carlsbad, Calif.). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #353872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.
A549 cells:

[0136] The human lung carcinoma cell line A549 is obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). A549 cells are routinely cultured in DMEM basal media (Invitrogen Corporation, Carlsbad, Calif.) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, Calif.), penicillin 100 units per ml., and streptomycin 100 micrograms per ml. (Invitrogen Corporation, Carlsbad, Calif.). Cells are routinely passaged by trypsinization and dilution when they reach 90% confluence.

NIIDF cells:

[0137] Human neonatal dermal fibroblast (NIIDF) are obtained from the Clonetics Corporation (Walkersville, Md.). NIIDFs are routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, Md.) supplemented as recommended by the supplier. Cells are maintained for up to 10 passages as recommended by the supplier.

HEK Cells:

[0138] Human embryonic kidney cells (HEK) are obtained from the Clonetics Corporation (Walkersville, Md.). HEKs are routinely maintained in Culture Medium (Clonetics Corporation, Walkersville, Md.) formulated as recommended by the supplier. Cells are routinely maintained for up to 10 passages as recommended by the supplier.

HepG2 cells:

[0139] The human hepatoblastoma cell line HepG2 is obtained from the American Type Culture Collection (Manassas, Va.). HepG2 cells are routinely cultured in Eagle’s MEM supplemented with 10% fetal calf serum, non-essential amino acids, and 1 mM sodium pyruvate (Gibco/Life Technologies, Gaithersburg, Md.). Cells are routinely passaged by trypsinization and dilution when they reach 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[0140] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Primary Mouse Hepatocytes

[0141] Primary mouse hepatocytes are prepared from CD-1 mice purchased from Charles River Labs. Primary mouse hepatocytes are routinely cultured in Hepatocyte Attachment Media (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco/Life Technologies, Gaithersburg, Md.), 250 nM dexamethasone (Sigma), 10 nM bovine insulin (Sigma). Cells are seeded into well plates (Falcon-Primaria #3872) at a density of 10000 cells/well for use in RT-PCR analysis.

[0142] For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with Antisense Compounds:

[0143] When cells reached 65-75% confluency, they are treated with oligonucleotide. For cells grown in 96-well plates, wells are washed once with 100 μL OPTI-MEM™-1 reduced-serum medium (Invitrogen Corporation, Carlsbad, Calif.) and then treated with 130 μL of OPTI-MEM™-1 containing 3.75 μg/ml. LIPOFECTINT™ (Invitrogen Corporation, Carlsbad, Calif.) and the desired concentration of oligonucleotide. Cells are treated and data are obtained in triplicate. After 4-7 hours of treatment at 37° C, the medium is replaced with fresh medium. Cells are harvested 16-24 hours after oligonucleotide treatment.

[0144] The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is selected from either ISIS 13920 (TCCGAT-CATGCTTCTCATGGG, SEQ ID NO: 1) which is targeted to human H-ras, or ISIS 18078, (GTGCCCGCGACCGAAAATC, SEQ ID NO: 2) which is targeted to human Jun-N-terminal kinase-2 (JNK2). Both controls are 2’-O-methoxethyl gapmers (2’-O-methoxyethyls shown in bold) with a phosphorothioate backbone. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCTCCAGGA, SEQ ID NO: 3, a 2’-O-methoxyethyl gapmer (2’-O-methoxyethyls shown in bold) with a phosphorothioate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-H-ras (for ISIS 13920), JNK2 (for ISIS 18078) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of c-H-ras, JNK2 or c-raf mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments. The concentrations of antisense oligonucleotides used herein are from 50 nM to 300 nM.

Example 10

Analysis of Oligonucleotide Inhibition of Glucagon Receptor Expression

[0145] Antisense modulation of glucagon receptor expression can be assayed in a variety of ways known in the art. For example, glucagon receptor mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. The preferred method of RNA analysis of the present invention is the use of total cellular RNA as described in other examples herein. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer’s instructions.

[0146] Protein levels of glucagon receptor can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA) or fluo-
rescence-activated cell sorting (FACS). Antibodies directed to glucagon receptor can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art.

Example 11
Design of Phenotypic Assays and in Vivo Studies for the use of Glucagon Receptor Inhibitors

Phenotypic Assays

Once glucagon receptor inhibitors have been identified by the methods disclosed herein, the compounds are further investigated in one or more phenotypic assays, each having measurable endpoints predictive of efficacy in the treatment of a particular disease state or condition.

Phenotypic assays, kits and reagents for their use are well known to those skilled in the art and are herein used to investigate the role and/or association of glucagon receptor in health and disease. Representative phenotypic assays, which can be purchased from any of several commercial vendors, include those for determining cell viability, cytotoxicity, proliferation or cell survival (Molecular Probes, Eugene, Oreg.; PerkinElmer, Boston, Mass.), protein-based assays including enzymatic assays (Panvera, I.C.C. Madison, Wis.; BD Biosciences, Franklin Lakes, N.J.; Oncogene Research Products, San Diego, Calif.), cell regulation, signal transduction, inflammation, oxidative processes and apoptosis (Assay Designs Inc., Ann Arbor, Mich.), triglyceride accumulation (Sigma-Aldrich, St. Louis, Mo.), angiogenesis assays, tube formation assays, cytokine and hormone assays and metabolic assays (Chemicon International Inc., Temecula, Calif.; Amersham Biosciences, Piscataway, N.J.).

In one non-limiting example, cells determined to be appropriate for a particular phenotypic assay (i.e., MCF-7 cells selected for breast cancer studies; adipocytes for obesity studies) are treated with glucagon receptor inhibitors identified from the in vitro studies as well as control compounds at optimal concentrations which are determined by the methods described above. At the end of the treatment period, treated and untreated cells are analyzed by one or more methods specific for the assay to determine phenotypic outcomes and endpoints.

Phenotypic endpoints include changes in cell morphology over time or treatment dose as well as changes in levels of cellular components such as proteins, lipids, nucleic acids, hormones, saccharides or metals. Measurements of cellular status which include pH, stage of the cell cycle, intake or excretion of biological indicators by the cell, are also endpoints of interest.

Analysis of the genotype of the cell (measurement of the expression of one or more of the genes of the cell) after treatment is also used as an indicator of the efficacy or potency of the glucagon receptor inhibitors. Hallmark genes, or those genes suspected to be associated with a specific disease state, condition, or phenotype, are measured in both treated and untreated cells.

In Vivo Studies

The individual subjects of the in vivo studies described herein are warm-blooded vertebrate animals, which includes humans.

The clinical trial is subjected to rigorous controls to ensure that individuals are not unnecessarily put at risk and that they are fully informed about their role in the study. To account for the psychological effects of receiving treatments, volunteers are randomly given placebo or glucagon receptor inhibitor. Furthermore, to prevent the doctors from being biased in treatments, they may not be informed as to whether the medication they are administering is a glucagon receptor inhibitor or a placebo. Using this randomization approach, each volunteer has the same chance of being given either the new treatment or the placebo.

Volunteers may receive either the glucagon receptor inhibitor or placebo for eight week period with biological parameters associated with the indicated disease state or condition being measured at the beginning (baseline measurements before any treatment), end (after the final treatment), and at regular intervals during the study period. Such measurements may include the levels of nucleic acid molecules encoding glucagon receptor or glucagon receptor protein levels in body fluids, tissues or organs compared to pre-treatment levels. Other measurements may include, but are not limited to, indices of the disease state or condition being treated, body weight, blood pressure, serum titers of pharmacologic indicators of disease or toxicity as well as ADME (absorption, distribution, metabolism and excretion) measurements.

Information recorded for each patient may include age (years), gender, height (cm), family history of disease state or condition (yes/no), motivation rating (some/moderate/great) and number and type of previous treatment regimens for the indicated disease or condition.

Volunteers taking part in this study are healthy adults (age 18 to 65 years) and, typically, roughly an equal number of males and females participate in the study. Volunteers with certain characteristics are equally distributed for placebo and glucagon receptor inhibitor treatment. In general, the volunteers treated with placebo have little or no response to treatment, whereas the volunteers treated with the glucagon receptor inhibitor show positive trends in their disease state or condition index at the conclusion of the study.

One of ordinary skill will know how to conduct an appropriate clinical trial and will recognize that this is just one of many protocols which may be appropriately used.

Example 12
RNA Isolation
Poly(A)+ mRNA Isolation

Poly(A)+ mRNA was isolated according to Miura et al., (Clin. Chem., 1996, 42, 1758-1764). Other methods for poly(A)+ mRNA isolation are routine in the art. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadylribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate was transferred to Oligo (dT) coated 96-well plates (AGCT Inc., Irvine Calif.). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6,
1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 µL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C, was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate. Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Total RNA Isolation

[0159] Total RNA was isolated using an RNEASY kit and purified buffers purchased from Qiagen Inc. (Valencia, Calif.) following the manufacturer’s recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well washed with 200 µL cold PBS. 150 µL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 150 µL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96™ plate well plate attached to a QIACUBE™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 1 minute. 500 µL of Buffer RW1 was added to each well of the RNEASY 96™ plate incubated for 15 minutes and the vacuum was again applied for 1 minute. An additional 500 µL of Buffer RW1 was added to each well of the RNEASY 96™ plate and the vacuum was applied for 2 minutes. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum was applied for a period of 90 seconds. The Buffer RPE was then washed and the vacuum was applied for an additional 3 minutes. The plate was then removed from the QIAcube manifold and blotted dry on paper towels. The plate was then reattached to the QIAcube manifold fitted with a collection tube rack containing 2 mL collection tubes. RNA was then eluted by pipetting 140 µL of RNase free water into each well, incubating 1 minute, and then applying the vacuum for 3 minutes.

[0160] The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia, Calif.). Essentially, after lysing the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 13

Real-time Quantitative PCR Analysis of Glucagon Receptor mRNA Levels

[0161] Quantitation of glucagon receptor mRNA levels was accomplished by real-time quantitative PCR using the ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer’s instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., FAM or JOE, obtained from either PE-Applied Biosystems, Foster City, Calif., Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 5’ end of the probe and a quencher dye (e.g., TAMRA, obtained from either PE-Applied Biosystems, Foster City, Calif., Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 3’ end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3’ quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5’- exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after anti-sense oligonucleotide treatment of test samples.

[0162] Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be “multiplexed” with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only (“single-plexing”), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

[0163] PCR reagents were obtained from Invitrogen Corporation, (Carlsbad, Calif.). RT-PCR reactions were carried out by adding 20 µL PCR cocktail (2.5X PCR buffer minus MgCl₂, 6.6 mM MgCl₂, 375 µM each of dATP, dTTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNase inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV reverse transcriptase, and 2.5XROX dye) to 96-well plates containing 30 µL total RNA solution (20-200 ng). The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10-minute incubation at 95°C, to activate the PLATINUM® Taq, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

[0164] Gene target quantities obtained by real time RT-PCR are normalized using either expression levels of GAPDH, a gene whose expression is constant, or by quantifying total RNA using Ribogreen™ (Molecular Probes, Inc. Eugene, Ore.). GAPDH expression is quantified by

[0165] In this assay, 170 µL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:50 in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 50 µL purified, cellular RNA. The plate is read in a CytoFlor 4000 (PE Applied Biosystems) with excitation at 485 nm and emission at 530 nm.

[0166] Probes to human glucagon receptor were designed to hybridize to a human glucagon receptor sequence, using published sequence information (GenBank accession number NM_000160.1, incorporated herein as SEQ ID NO:4). For human glucagon receptor the PCR primers were:

forward primer: GACACCCCCCGGCAATACC (SEQ ID NO: 5)

reverse primer: CCGGATCTCCGGAACGAA (SEQ ID NO: 6) and the PCR probe was:

FAM-TTGGCACCACAAAGT-TAMRA (SEQ ID NO: 7) where FAM is the fluorescent dye and TAMPA is the quencher dye. For human GAPDH the PCR primers were:

forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO:8)

reverse primer: GAAGATGGTGATGAGATTTC (SEQ ID NO:9) and the PCR probe was: 5' JOE-CAAGCTTTCCCTCCGATCTGAC-3' (SEQ ID NO: 10) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.

[0167] Probes and primers to mouse glucagon receptor were designed to hybridize to a mouse glucagon receptor sequence, using published sequence information (GenBank accession number NM_008101.1, incorporated herein as SEQ ID NO: 11). For mouse glucagon receptor the PCR primers were:

forward primer: ATTTCTGGCCCTCTGTACCT (SEQ ID NO:12)

reverse primer: CCGGCCCAACACCTTCTGG (SEQ ID NO: 13) and the PCR probe was: FAM-CCACAAAGTGCAGCACCGCTTAGGT-TAMRA

(SEQ ID NO: 14) where FAM is the fluorescent reporter dye and TAMPA is the quencher dye.

For mouse GAPDH the PCR primers were:

forward primer: GGCAAAATCAACGGCACAGT (SEQ ID NO: 15)

reverse primer: GGGTCTCGCTCTGGAAGAT (SEQ ID NO:16) and the PCR probe was: 5' JOE-AAAGCGCAGAATGGGAGACTTGTGATC-TAMRA 3' (SEQ ID NO: 17) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.

Northern Blot Analysis of Glucagon Receptor mRNA Levels

[0168] Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 ml RNAZOl™ (TEL-TEST "B" Inc., Friendswood, Tex.). Total RNA was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc., Solon, Ohio). RNA was transferred from the gel to HYBOND™ -N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, N.J.) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, Tex.). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER™ UV Crosslinker 2400 (Stratagene, Inc, La Jolla, Calif.) and then probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, Calif.) using manufacturer’s recommendations for stringent conditions.

[0169] To detect human glucagon receptor, a human glucagon receptor specific probe was prepared by PCR using the forward primer GACACCCCCCGGCAATACC (SEQ ID NO: 5) and the reverse primer CGGATCTCCGGAACGAA (SEQ ID NO: 6). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

[0170] To detect mouse glucagon receptor, a mouse glucagon receptor specific probe was prepared by PCR using the forward primer ATTTCTGGCCCTCTGTACCT (SEQ ID NO: 12) and the reverse primer CGGCCCCACACCTTCTGG (SEQ ID NO: 13). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

[0171] Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, Calif.). Data was normalized to GAPDH levels in untreated controls.

Example 15

Antisense Inhibition of Human Glucagon Receptor Expression by Chimeric Phosphorothioate Oligonucleotides having 2'-MOE: Wings and a Deoxy Gap

[0172] In accordance with the present invention, a series of antisense compounds were designed to target different regions of the human glucagon receptor RNA, using published sequences (GenBank accession number NM_000160.1, incorporated herein as SEQ ID NO: 4, a concatenation of three contigs from GenBank accession number AC069004.2, incorporated herein as SEQ ID NO: 18, and GenBank accession number AJ245489.1, incorporated herein as SEQ ID NO: 19). The compounds are shown in Table 1. “Target site” indicates the first (5'-most) nucleotide number on the particular target sequence to which the compound binds. All compounds in Table 1 are chimeric oligonucleotides (“gappers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2’-deoxy-nucleotides, which is flanked on both sides (5’ and 3’
directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human glucagon receptor mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from three experiments in which HepG2 cells were treated with the antisense oligonucleotides of the present invention. The positive control for each datapoint is identified in the table by sequence ID number. If present, "N.D." indicates "no data".

<table>
<thead>
<tr>
<th>ISIS # REGION</th>
<th>SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding 4</td>
<td>310462</td>
<td>4</td>
<td>560 ccgcacctctcttaaacagaga</td>
<td>61 20</td>
</tr>
<tr>
<td>Coding 4</td>
<td>2908801</td>
<td>4</td>
<td>97 ttcgcctccgggagcgcgc</td>
<td>56 21</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290885</td>
<td>4</td>
<td>121 gtgcctcctcctgaagctgc</td>
<td>68 22</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290883</td>
<td>4</td>
<td>163 gtagcagcgagcagcgagc</td>
<td>56 23</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290884</td>
<td>4</td>
<td>192 ttcgctgctgcctccgc</td>
<td>76 24</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290885</td>
<td>4</td>
<td>198 ttcgctgctgcctcagc</td>
<td>67 25</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290886</td>
<td>4</td>
<td>205 atgcgacgtctcctgttg</td>
<td>30 26</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290887</td>
<td>4</td>
<td>254 ggggcgcgtactgcctcc</td>
<td>38 27</td>
</tr>
<tr>
<td>Start Codon</td>
<td>290888</td>
<td>4</td>
<td>263 ggcgtgcctctggcagcta</td>
<td>73 28</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290889</td>
<td>4</td>
<td>462 cagcaggaatcattgctga</td>
<td>43 29</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290890</td>
<td>4</td>
<td>328 gacactgtgctggcagggcc</td>
<td>72 30</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290891</td>
<td>4</td>
<td>350 aagtcctgcaocgtggaggg</td>
<td>39 31</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290892</td>
<td>4</td>
<td>361 ttcgaagcagggatctcct</td>
<td>37 32</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290893</td>
<td>4</td>
<td>366 cctcttccacagcagtcgt</td>
<td>24 33</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290894</td>
<td>4</td>
<td>386 catctgttaaacagacggttt</td>
<td>31 34</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290895</td>
<td>4</td>
<td>391 ggtgactgtcagtcctctag</td>
<td>40 35</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290896</td>
<td>4</td>
<td>431 cacacagcgtctcgtggggg</td>
<td>35 36</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290897</td>
<td>4</td>
<td>442 agttcttggctgcacacagc</td>
<td>76 37</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290898</td>
<td>4</td>
<td>453 atactttgctgagagttctgt</td>
<td>28 38</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290899</td>
<td>4</td>
<td>539 cgtgtgctgaccttttggtg</td>
<td>85 39</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290900</td>
<td>19</td>
<td>546 ccctgcagacagcagcagcc</td>
<td>79 40</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290901</td>
<td>4</td>
<td>552 cttgaacccgaagcagtgtt</td>
<td>83 41</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290902</td>
<td>4</td>
<td>564 gggccgcaatcttgggaaca</td>
<td>87 42</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290903</td>
<td>18</td>
<td>15279 ctcctgcagttcagttgc</td>
<td>58 43</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290904</td>
<td>4</td>
<td>651 cttgacatctctctctcctc</td>
<td>43 44</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290905</td>
<td>4</td>
<td>656 cttttttggacatctctcctc</td>
<td>5 45</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290906</td>
<td>4</td>
<td>663 gggccgacatctctctcctc</td>
<td>80 46</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290907</td>
<td>4</td>
<td>669 cacctgtgccactctctctc</td>
<td>39 47</td>
</tr>
<tr>
<td>Coding 4</td>
<td>290908</td>
<td>4</td>
<td>681 ggaagctgtgctacatctttgg</td>
<td>71 48</td>
</tr>
<tr>
<td>ISIS #</td>
<td>REGION</td>
<td>SEQ ID</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29909</td>
<td>751</td>
<td>ccccccaggagttggcaggcg</td>
<td>69</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29910</td>
<td>830</td>
<td>acggagcgtgcttcagcagc</td>
<td>49</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29911</td>
<td>866</td>
<td>ctgtagctggtgctagctgagc</td>
<td>48</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29912</td>
<td>872</td>
<td>ttctcgtgctagcggctttcag</td>
<td>54</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29913</td>
<td>879</td>
<td>gcaaatatttcgcttgatgc</td>
<td>61</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29914</td>
<td>889</td>
<td>tggagtctgctgctaccatctcc</td>
<td>56</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29915</td>
<td>898</td>
<td>tgtgacactgagctgcttg</td>
<td>63</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29916</td>
<td>904</td>
<td>gcaagctgctagcgtgagc</td>
<td>67</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29917</td>
<td>966</td>
<td>caagctgccatattgggctg</td>
<td>59</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29918</td>
<td>1028</td>
<td>gctgcccaggccacgagtttgc</td>
<td>52</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29919</td>
<td>1122</td>
<td>cagacacttacccctacccagc</td>
<td>40</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29920</td>
<td>1182</td>
<td>ccccagagttcccccaggcag</td>
<td>46</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29921</td>
<td>1210</td>
<td>tgtcagagggctcagggag</td>
<td>42</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29922</td>
<td>1228</td>
<td>gcaagagaaggagagtttg</td>
<td>44</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29923</td>
<td>1259</td>
<td>cgcaccgtggccagggcag</td>
<td>8</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29924</td>
<td>1274</td>
<td>tgtgctgctgctgctgctgg</td>
<td>58</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29925</td>
<td>1291</td>
<td>actttagcctgtgtgcttg</td>
<td>34</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29926</td>
<td>1415</td>
<td>aggtcgaggaagagagtggc</td>
<td>38</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29927</td>
<td>1528</td>
<td>gcacccggctgcccagcag</td>
<td>78</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29928</td>
<td>1539</td>
<td>ctctcctccatacctcttcg</td>
<td>40</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29929</td>
<td>1608</td>
<td>aaactgcagctctctgctg</td>
<td>46</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29930</td>
<td>1635</td>
<td>atgatctctgctgctgctg</td>
<td>70</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29931</td>
<td>1670</td>
<td>ctggacagcccaccagccaa</td>
<td>49</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29932</td>
<td>1681</td>
<td>ttcacggcaatctagggagg</td>
<td>63</td>
</tr>
<tr>
<td>Coding 4</td>
<td>29933</td>
<td>1704</td>
<td>tccacggaggttttcaagg</td>
<td>30</td>
</tr>
<tr>
<td>Coding 5'UTR</td>
<td>29934</td>
<td>1747</td>
<td>ttctctgctagtgaccccagc</td>
<td>50</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29935</td>
<td>1841</td>
<td>ttcgcacagcagcagcagcagc</td>
<td>43</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29936</td>
<td>1854</td>
<td>agggagccacactcctgca</td>
<td>79</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29937</td>
<td>1881</td>
<td>tgcaccgggcagacgacagc</td>
<td>0</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29938</td>
<td>1901</td>
<td>ttggacactcgctgctgctgc</td>
<td>58</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29939</td>
<td>1938</td>
<td>ttgctgacgcatctcctcggac</td>
<td>54</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29940</td>
<td>1969</td>
<td>acatggagctgctgacacata</td>
<td>63</td>
</tr>
<tr>
<td>Coding 3'UTR</td>
<td>29941</td>
<td>1978</td>
<td>ttcccattgcacatggaagct</td>
<td>63</td>
</tr>
</tbody>
</table>
Inhibition of human glucagon receptor mRNA levels by chimeric phosphorothioate oligonucleotides having us/3′/6′-MOE wings and a deoxy gap

<table>
<thead>
<tr>
<th>ISIS # REGION</th>
<th>SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>299942 3′UTR</td>
<td>4</td>
<td>1989</td>
<td>gttggaggaacattccttcagtc</td>
<td>79</td>
</tr>
<tr>
<td>299943 3′UTR</td>
<td>4</td>
<td>2015</td>
<td>caaggtgaccacttgagtc</td>
<td>83</td>
</tr>
<tr>
<td>299944 intron</td>
<td>10</td>
<td>11002</td>
<td>agatgtctggttttctcagc</td>
<td>9</td>
</tr>
<tr>
<td>299945 intron</td>
<td>18</td>
<td>11557</td>
<td>taataacttttttaagaggg</td>
<td>17</td>
</tr>
<tr>
<td>299946 intron</td>
<td>18</td>
<td>12295</td>
<td>tacagctgctgcggaccagc</td>
<td>23</td>
</tr>
<tr>
<td>299947 intron</td>
<td>18</td>
<td>14121</td>
<td>agctctgtgctgctagttacc</td>
<td>74</td>
</tr>
<tr>
<td>299948 intron: exon junction</td>
<td>18</td>
<td>15467</td>
<td>gttgcagctttgctgctggcaca</td>
<td>47</td>
</tr>
<tr>
<td>299949 Intron</td>
<td>10</td>
<td>16094</td>
<td>cacgaacccgtgtgtaaggg</td>
<td>100</td>
</tr>
<tr>
<td>299950 intron: exon junction</td>
<td>18</td>
<td>17017</td>
<td>aqaagttgatctgctgtgtaaggg</td>
<td>29</td>
</tr>
<tr>
<td>299951 intron: exon junction</td>
<td>18</td>
<td>17456</td>
<td>ccagcagggccccctgagagac</td>
<td>53</td>
</tr>
<tr>
<td>304471 3′UTR</td>
<td>4</td>
<td>100</td>
<td>ccttgagccctccaggggccc</td>
<td>42</td>
</tr>
<tr>
<td>304472 3′UTR</td>
<td>4</td>
<td>103</td>
<td>gococcttgtggctcagggg</td>
<td>25</td>
</tr>
<tr>
<td>304473 3′UTR</td>
<td>4</td>
<td>167</td>
<td>agotgatggccagacagca</td>
<td>76</td>
</tr>
<tr>
<td>304474 3′UTR</td>
<td>4</td>
<td>169</td>
<td>gccagctgctgctgagccagc</td>
<td>75</td>
</tr>
<tr>
<td>304475 3′UTR</td>
<td>4</td>
<td>190</td>
<td>tgtgtgtatgctcctgagc</td>
<td>73</td>
</tr>
<tr>
<td>304476 3′UTR</td>
<td>4</td>
<td>194</td>
<td>gtgtgttgtgctagatctcc</td>
<td>72</td>
</tr>
<tr>
<td>304477 3′UTR</td>
<td>4</td>
<td>196</td>
<td>ctgtgtgtgtgtgatctcc</td>
<td>71</td>
</tr>
<tr>
<td>304478 3′UTR</td>
<td>4</td>
<td>207</td>
<td>gtyccatggggtccttggt</td>
<td>65</td>
</tr>
<tr>
<td>304479 3′UTR</td>
<td>4</td>
<td>246</td>
<td>ctgctgctcccatactctg</td>
<td>54</td>
</tr>
<tr>
<td>304480 3′UTR</td>
<td>4</td>
<td>249</td>
<td>ccgctagtgcctccacactg</td>
<td>85</td>
</tr>
<tr>
<td>304481 3′UTR</td>
<td>4</td>
<td>257</td>
<td>cccttgagccctccaggggagc</td>
<td>44</td>
</tr>
<tr>
<td>304482 Start Codon</td>
<td>4</td>
<td>262</td>
<td>gcagcagcttctgagggcagtag</td>
<td>62</td>
</tr>
<tr>
<td>304483 Coding</td>
<td>4</td>
<td>325</td>
<td>ccttggtgtggtggccagc</td>
<td>68</td>
</tr>
<tr>
<td>304484 Coding</td>
<td>4</td>
<td>368</td>
<td>ttccactttctcaacacagaa</td>
<td>24</td>
</tr>
<tr>
<td>304485 Coding</td>
<td>4</td>
<td>370</td>
<td>gctttcactttcctaaagcag</td>
<td>49</td>
</tr>
<tr>
<td>304486 Coding</td>
<td>4</td>
<td>375</td>
<td>tgtgcatttcaccctcta</td>
<td>41</td>
</tr>
<tr>
<td>304487 Coding</td>
<td>4</td>
<td>376</td>
<td>cctgatagacactgggttacc</td>
<td>38</td>
</tr>
<tr>
<td>304488 Coding</td>
<td>4</td>
<td>395</td>
<td>tgtggtggcaacgggtctc</td>
<td>24</td>
</tr>
<tr>
<td>304489 Coding</td>
<td>4</td>
<td>407</td>
<td>acgagggctcaggtgctggtg</td>
<td>52</td>
</tr>
<tr>
<td>304490 Coding</td>
<td>4</td>
<td>534</td>
<td>tgtggactttgtggctgcaag</td>
<td>61</td>
</tr>
<tr>
<td>304491 Coding</td>
<td>4</td>
<td>535</td>
<td>gttgcacttttgtgctggcaca</td>
<td>57</td>
</tr>
<tr>
<td>Isis # Region</td>
<td>Target site sequence</td>
<td>% inhib</td>
<td>ISIS # Region</td>
<td>Target site sequence</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Coding 4</td>
<td>536 tgttgcacttttggtgcca</td>
<td>67</td>
<td>Coding 4</td>
<td>537 tgttgcacttttggtgcc</td>
</tr>
<tr>
<td>Coding 4</td>
<td>563 ggccgcactctttggaacac</td>
<td>87</td>
<td>Coding 4</td>
<td>567 gtcgggcccctcttggga</td>
</tr>
<tr>
<td>Coding 4</td>
<td>617 tggagggacacgcaaggg</td>
<td>60</td>
<td>Coding 4</td>
<td>627 cacttgcaggtgggacat</td>
</tr>
<tr>
<td>Coding 4</td>
<td>666 cttgcccactctcctttgga</td>
<td>74</td>
<td>Coding 4</td>
<td>671 tacatcttgccacacctctt</td>
</tr>
<tr>
<td>Coding 4</td>
<td>695 cctggaactctgctagctac</td>
<td>71</td>
<td>Coding 4</td>
<td>795 attcgcgggtggagattgc</td>
</tr>
<tr>
<td>Coding 4</td>
<td>848 agcccaatcagggccagcc</td>
<td>31</td>
<td>Coding 4</td>
<td>861 ggcgggtctggagcgactcat</td>
</tr>
<tr>
<td>Coding 4</td>
<td>886 gtccttgccagacttttcttg</td>
<td>50</td>
<td>Coding 4</td>
<td>893 acaactgaggtctgtgccaat</td>
</tr>
<tr>
<td>Coding 4</td>
<td>900 gtcgggtacactgtgctgtgct</td>
<td>60</td>
<td>Coding 4</td>
<td>962 atgcagatatttgcatgaaac</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1032 gaggttggccagagccagc</td>
<td>56</td>
<td>Coding 4</td>
<td>1124 aacagacactggaactgc</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1125 gaacagacactggaactcg</td>
<td>8</td>
<td>Coding 4</td>
<td>1158 ggtgtaatttgaggtgcag</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1168 agaaggcccatgttgctgttctgg</td>
<td>44</td>
<td>Coding 4</td>
<td>1187 ggaaacgccagagatcaca</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1230 cggaggagaagagtagaatgc</td>
<td>54</td>
<td>Coding 4</td>
<td>1630 agatgacatctctgctgccc</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1727 cccagtgcccacgcttactgctg</td>
<td>41</td>
<td>Coding 4</td>
<td>1732 ggggctgccaagccgctccc</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1735 ctctggtgcagagatgcccag</td>
<td>65</td>
<td>Coding 4</td>
<td>1736 ctctggtgcagagatgcccag</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1737 ctcgctgggtgccagatgcccag</td>
<td>74</td>
<td>Coding 4</td>
<td>1740 agcgcctcctgggtgccagatg</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1760 cagcttgggtgccagatgcccag</td>
<td>52</td>
<td>Coding 4</td>
<td>1849 aggcgcactctccgacagcc</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1850 gagggccacttcccagacga</td>
<td>80</td>
<td>Coding 4</td>
<td>1856 ggagggggccacatcctcg</td>
</tr>
<tr>
<td>ISIS #</td>
<td>REGION</td>
<td>SEQ ID</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>304526</td>
<td>3'UTR</td>
<td>4</td>
<td>1861</td>
<td>tgcagggagggagggc</td>
</tr>
<tr>
<td>304527</td>
<td>3'UTR</td>
<td>4</td>
<td>1883</td>
<td>tgcacacgggacagagga</td>
</tr>
<tr>
<td>304528</td>
<td>3'UTR</td>
<td>4</td>
<td>1891</td>
<td>tgcacacttcgacagggg</td>
</tr>
<tr>
<td>304529</td>
<td>3'UTR</td>
<td>4</td>
<td>1893</td>
<td>tgcacacttcgacacag</td>
</tr>
<tr>
<td>304530</td>
<td>3'UTR</td>
<td>4</td>
<td>1899</td>
<td>gactcctcgtgacacag</td>
</tr>
<tr>
<td>304531</td>
<td>3'UTR</td>
<td>4</td>
<td>1905</td>
<td>gacgtgcgtccgtgacaa</td>
</tr>
<tr>
<td>304532</td>
<td>3'UTR</td>
<td>4</td>
<td>1932</td>
<td>gacgtgcgtccgtgaca</td>
</tr>
<tr>
<td>304533</td>
<td>3'UTR</td>
<td>4</td>
<td>1933</td>
<td>gactcctcgtgacacag</td>
</tr>
<tr>
<td>304534</td>
<td>3'UTR</td>
<td>4</td>
<td>1945</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304535</td>
<td>3'UTR</td>
<td>4</td>
<td>1971</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304536</td>
<td>3'UTR</td>
<td>4</td>
<td>1984</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304537</td>
<td>3'UTR</td>
<td>4</td>
<td>1986</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304538</td>
<td>3'UTR</td>
<td>4</td>
<td>1999</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304539</td>
<td>3'UTR</td>
<td>4</td>
<td>2001</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304540</td>
<td>3'UTR</td>
<td>4</td>
<td>2008</td>
<td>gacgtgcgtccgtgacag</td>
</tr>
<tr>
<td>304541</td>
<td>intron</td>
<td>18</td>
<td>3174</td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td>304542</td>
<td>intron</td>
<td>18</td>
<td>5650</td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td>304543</td>
<td>intron</td>
<td>18</td>
<td>7544</td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td>304544</td>
<td>intron</td>
<td>18</td>
<td>7975</td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td>304545</td>
<td>intron:</td>
<td>18</td>
<td>14888</td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td></td>
<td>exon junction</td>
<td></td>
<td></td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td>304546</td>
<td>intron:</td>
<td>18</td>
<td>15285</td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td></td>
<td>exon junction</td>
<td></td>
<td></td>
<td>gacgtgggagggacgacag</td>
</tr>
<tr>
<td>304443</td>
<td>Coding</td>
<td>4</td>
<td>321</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304444</td>
<td>Coding</td>
<td>4</td>
<td>347</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304445</td>
<td>Coding</td>
<td>4</td>
<td>351</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304446</td>
<td>Coding</td>
<td>4</td>
<td>355</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304447</td>
<td>Coding</td>
<td>4</td>
<td>365</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304448</td>
<td>Coding</td>
<td>4</td>
<td>389</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304449</td>
<td>Coding</td>
<td>4</td>
<td>393</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>304450</td>
<td>Coding</td>
<td>4</td>
<td>397</td>
<td>ggagggagggagggacgacag</td>
</tr>
<tr>
<td>ISIS # REGION</td>
<td>SEQ ID NO</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
<td>% INHIB</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>403</td>
<td>ggctcaaggtgtgtgacac</td>
<td>62</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>452</td>
<td>tacttgtgaaggttcgtt</td>
<td>44</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>458</td>
<td>caggaataccttgctgaagtt</td>
<td>40</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>493</td>
<td>tggtagcgttgatgttgacac</td>
<td>90</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>497</td>
<td>gaggctgttgccgtctgtt</td>
<td>97</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>500</td>
<td>caggtacttgggtggcgtgtt</td>
<td>95</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>501</td>
<td>gcaatttggttggtgaagtcg</td>
<td>96</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>540</td>
<td>gcgctgttgctcttggtgac</td>
<td>92</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>544</td>
<td>cagaggctgttgctgaac</td>
<td>50</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>548</td>
<td>aacacgaaggctgttgacac</td>
<td>87</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>556</td>
<td>atctctggaacagaaacagc</td>
<td>65</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>588</td>
<td>ggctcaacGcaacocatgtac</td>
<td>50</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>606</td>
<td>cagcaaggctggcccccagcctgg</td>
<td>71</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>608</td>
<td>cactttctcttgcctgacctgg</td>
<td>31</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>603</td>
<td>tgaagctgtgtctgtcaatgtcttt</td>
<td>87</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>607</td>
<td>cacttgaagctgtctgtcaac</td>
<td>60</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>611</td>
<td>acatcacotgtgagctgac</td>
<td>73</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>695</td>
<td>gtgtcatacactgtgacgctg</td>
<td>79</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>720</td>
<td>ccacagggcaggtgacaacgtg</td>
<td>86</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>722</td>
<td>gcacccccagaggtgctggctgg</td>
<td>62</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>860</td>
<td>caggtactcagcagctgacgctg</td>
<td>48</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>864</td>
<td>tgtggcgtggctgacagc</td>
<td>58</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>862</td>
<td>gcgctgtgctgacagcgtg</td>
<td>48</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>868</td>
<td>gcgtctgacgcggctgac</td>
<td>48</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>919</td>
<td>cccgccagctccatgtacg</td>
<td>52</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>923</td>
<td>gcacacgctccatgtacg</td>
<td>41</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>951</td>
<td>catgacacacacggcagggc</td>
<td>63</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>955</td>
<td>atgcataagacacacggcag</td>
<td>76</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>960</td>
<td>gcataattgtcatgaacacg</td>
<td>66</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>1019</td>
<td>cccagcagttgtgctgcag</td>
<td>58</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>1023</td>
<td>gcagggcagggcaggtggtg</td>
<td>72</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>1029</td>
<td>ggtggcagggcagggcagggcaggtg</td>
<td>93</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>1055</td>
<td>ggctgagatgagactccttc</td>
<td>71</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>1059</td>
<td>gggtggactgagactccttc</td>
<td>46</td>
</tr>
<tr>
<td>Coding 4</td>
<td>4</td>
<td>1063</td>
<td>cccagtgagaggtgactccttc</td>
<td>25</td>
</tr>
</tbody>
</table>
TABLE 1-continued

Inhibition of human glucagon receptor mRNA levels by chimeric phosphorothioate oligonucleotides having ur/3/36 2’-MOE wings and a deoxy gap

<table>
<thead>
<tr>
<th>ISIS # REGION</th>
<th>SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding 4</td>
<td>310486</td>
<td>1068</td>
<td>gatgcccaagtgtagaggtga</td>
<td>51 212</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310467</td>
<td>1072</td>
<td>gocccgatggctggtaggaggg</td>
<td>70 213</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310488</td>
<td>1156</td>
<td>tgtcatgtgctggtcagcagc</td>
<td>83 214</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310469</td>
<td>1160</td>
<td>atgtgtccattgtggtgctgca</td>
<td>53 215</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310490</td>
<td>1167</td>
<td>gaagcccagatggtgctgattgc</td>
<td>45 216</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310491</td>
<td>1173</td>
<td>ccccaagaagcccctgytgt</td>
<td>50 217</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310492</td>
<td>1176</td>
<td>gatcaccagaagcccagctg</td>
<td>53 218</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310493</td>
<td>1185</td>
<td>gaacctcagatgctcccagcag</td>
<td>47 219</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310494</td>
<td>1206</td>
<td>caggtggccagggaggg</td>
<td>39 220</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310495</td>
<td>1209</td>
<td>gatccagatggcaggaag</td>
<td>67 221</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310496</td>
<td>1219</td>
<td>tgaagaggttgatcagggg</td>
<td>10 222</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310497</td>
<td>1222</td>
<td>agatgagaggcttctagcc</td>
<td>20 223</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310498</td>
<td>1287</td>
<td>gtagttcgggtgttgctgactct</td>
<td>35 224</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310499</td>
<td>1290</td>
<td>cttgtgagttcttggtgtgca</td>
<td>63 225</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310500</td>
<td>1293</td>
<td>gaaattgttaccttggtgtgt</td>
<td>27 226</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310501</td>
<td>1414</td>
<td>gttgcaagaagagaggccgcg</td>
<td>46 227</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310502</td>
<td>1417</td>
<td>agggtggccagggaggg</td>
<td>26 228</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310503</td>
<td>1423</td>
<td>tggagagagagggctgaagag</td>
<td>17 229</td>
</tr>
<tr>
<td>Coding 4</td>
<td>310504</td>
<td>1669</td>
<td>tagggaggccacccagccag</td>
<td>53 230</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315163</td>
<td>606</td>
<td>acctggaagcttgctgtcact</td>
<td>75 231</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315164</td>
<td>409</td>
<td>gcagccaggtctcaggggtg</td>
<td>24 232</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315165</td>
<td>1424</td>
<td>ctgagggagagcccaggaag</td>
<td>42 233</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315166</td>
<td>390</td>
<td>agggtggttggtgcaaccttgct</td>
<td>34 234</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315167</td>
<td>1212</td>
<td>gtgtgcaaggggctcaggg</td>
<td>47 235</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315168</td>
<td>1062</td>
<td>caggtgagagggctgaagag</td>
<td>40 236</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315169</td>
<td>559</td>
<td>cgcatctttggaacccagcag</td>
<td>48 237</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315170</td>
<td>543</td>
<td>gaagcggagtgttgacaccttgg</td>
<td>61 238</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315171</td>
<td>454</td>
<td>aatatcttgcagaggtttctg</td>
<td>16 239</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315172</td>
<td>1026</td>
<td>ggccagggcccgaggg</td>
<td>72 240</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315173</td>
<td>1070</td>
<td>cccgagggccaggtagagct</td>
<td>59 241</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315174</td>
<td>496</td>
<td>agatgtggtggctgtagtttgg</td>
<td>79 242</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315175</td>
<td>399</td>
<td>caggtttgttgtgcaacttgt</td>
<td>58 243</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315176</td>
<td>1420</td>
<td>ggaagaggtcagaagagagc</td>
<td>26 244</td>
</tr>
<tr>
<td>Coding 4</td>
<td>315177</td>
<td>392</td>
<td>tgtgacacactgtgcccagta</td>
<td>49 245</td>
</tr>
<tr>
<td>ISIS # REGION</td>
<td>SEQ ID NO</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
<td>% INHIB</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Coding 4</td>
<td>402</td>
<td>TGTGAGTGGGTGTTGAGTC</td>
<td>62 246</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>533</td>
<td>TGACTTGGTTGTGGCCAAGG</td>
<td>75 247</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>689</td>
<td>ATCCCTGGAGCTGTTGA</td>
<td>45 248</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>956</td>
<td>TACTGATGACACCAGCGGC</td>
<td>78 249</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1208</td>
<td>ATCCATGGGCGACAGAAC</td>
<td>36 250</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>555</td>
<td>TCTTGGACAGAGCGGTTG</td>
<td>71 251</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>553</td>
<td>TCTTGGACAGAGCGGTTG</td>
<td>87 252</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1027</td>
<td>TGCCGGGCGGCGACAGAAC</td>
<td>61 253</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>871</td>
<td>TCTTGGACAGAGCGGTTG</td>
<td>73 254</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>498</td>
<td>GGAGGTGTGGGCGAGTTGAT</td>
<td>93 255</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>259</td>
<td>TGCCTTGGGGCGAGCTGCTG</td>
<td>70 256</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1058</td>
<td>TAGGGTGAAGGCTTCTTCT</td>
<td>54 257</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>348</td>
<td>GTCCACATCTGGAGCGGAGG</td>
<td>68 258</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1292</td>
<td>AAATGTGCATGTGTTGCTG</td>
<td>39 259</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1705</td>
<td>GTCCCAGGCGGTCCAGAAG</td>
<td>31 260</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>953</td>
<td>TGATGACCCAGCCGGCAAC</td>
<td>73 261</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1024</td>
<td>CACGGCCGAGCGTTGTCG</td>
<td>73 262</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1061</td>
<td>AGTAGGCGCTGAGAGCCTT</td>
<td>57 263</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1169</td>
<td>CAGAGGCGATGTGGTATCTT</td>
<td>47 264</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1161</td>
<td>CAGCCTTCCTGCTGCTCCT</td>
<td>0 265</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1021</td>
<td>GGCCGCAAGTGGTGGAGCA</td>
<td>84 266</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>400</td>
<td>TCAAATGTGGTTGAGACCTT</td>
<td>42 267</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1165</td>
<td>AGGCGATGTGGCATTGCTG</td>
<td>45 268</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>363</td>
<td>TCTTCAACCGAGGTAACG</td>
<td>47 269</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>550</td>
<td>TGACCGAGCGGCGTGTGGC</td>
<td>93 270</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>367</td>
<td>TGAATTTGGGGCAAGAAA</td>
<td>67 271</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>353</td>
<td>AGGAGTGCTACATGGTCAAC</td>
<td>26 272</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1071</td>
<td>GCCATGCGGGGAGTCAGGG</td>
<td>82 273</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1186</td>
<td>GGCAAGCCAGTGACACAGG</td>
<td>36 274</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>349</td>
<td>AGGCTACATCCGAGCGGAGG</td>
<td>63 275</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>1221</td>
<td>GATGAGAAGTGGTGGTAGGA</td>
<td>28 276</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>461</td>
<td>CAGCAAGAATACTGGTCAA</td>
<td>27 277</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>463</td>
<td>GCAGCGAAGAATGCTGCG</td>
<td>41 278</td>
<td></td>
</tr>
<tr>
<td>ISIS # REGION</td>
<td>SEQ ID NO</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
<td>% INHIB ID NO</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Coding</td>
<td>31521</td>
<td>320</td>
<td>ggctggcaggccagcagcag</td>
<td>72 279</td>
</tr>
<tr>
<td>Coding</td>
<td>31522</td>
<td>3183</td>
<td>acgccaggtcaccacagaaag</td>
<td>59 280</td>
</tr>
<tr>
<td>Coding</td>
<td>31523</td>
<td>862</td>
<td>acgccaggctctgagccca</td>
<td>68 281</td>
</tr>
<tr>
<td>Coding</td>
<td>31524</td>
<td>565</td>
<td>cgggccgccctcttggac</td>
<td>88 282</td>
</tr>
<tr>
<td>Coding</td>
<td>31525</td>
<td>1295</td>
<td>ggccacctggtagtctgtag</td>
<td>29 283</td>
</tr>
<tr>
<td>Coding</td>
<td>31526</td>
<td>1177</td>
<td>ggatccacgagacagccat</td>
<td>58 284</td>
</tr>
<tr>
<td>Coding</td>
<td>31527</td>
<td>1794</td>
<td>ggctggcaggccagcagcag</td>
<td>34 285</td>
</tr>
<tr>
<td>Coding</td>
<td>31528</td>
<td>1184</td>
<td>aacccgaggtcaccacagaa</td>
<td>55 286</td>
</tr>
<tr>
<td>Coding</td>
<td>31529</td>
<td>410</td>
<td>ggccaggctgctggtgtg</td>
<td>50 287</td>
</tr>
<tr>
<td>Coding</td>
<td>31530</td>
<td>495</td>
<td>gatggtggccgtgtatgg</td>
<td>86 288</td>
</tr>
<tr>
<td>Coding</td>
<td>31531</td>
<td>455</td>
<td>gatactgtgacaagttct</td>
<td>37 289</td>
</tr>
<tr>
<td>Coding</td>
<td>31532</td>
<td>1215</td>
<td>gaaagtcagtcgctgca</td>
<td>39 290</td>
</tr>
<tr>
<td>Coding</td>
<td>31533</td>
<td>688</td>
<td>tcaacctggagctgtgta</td>
<td>48 291</td>
</tr>
<tr>
<td>Coding</td>
<td>31534</td>
<td>959</td>
<td>ccatattgctgaacacgoc</td>
<td>20 292</td>
</tr>
<tr>
<td>Coding</td>
<td>31535</td>
<td>863</td>
<td>tagcgytctggcagc</td>
<td>61 293</td>
</tr>
<tr>
<td>Coding</td>
<td>31536</td>
<td>256</td>
<td>ctotggcagctgctgtct</td>
<td>28 294</td>
</tr>
<tr>
<td>Coding</td>
<td>31537</td>
<td>359</td>
<td>tcaaccaggegtcctcac</td>
<td>17 295</td>
</tr>
<tr>
<td>Coding</td>
<td>31538</td>
<td>1172</td>
<td>caacccagccctgtggtc</td>
<td>15 296</td>
</tr>
<tr>
<td>Coding</td>
<td>31539</td>
<td>694</td>
<td>tgtacatoacctggagct</td>
<td>67 297</td>
</tr>
<tr>
<td>Coding</td>
<td>31540</td>
<td>494</td>
<td>atgtggtgccgtgtatggc</td>
<td>52 298</td>
</tr>
<tr>
<td>Coding</td>
<td>31541</td>
<td>1069</td>
<td>cgtgccccagttagggctg</td>
<td>7 299</td>
</tr>
<tr>
<td>Coding</td>
<td>31542</td>
<td>1178</td>
<td>aggtacaccagagccagct</td>
<td>83 300</td>
</tr>
<tr>
<td>Coding</td>
<td>31543</td>
<td>1207</td>
<td>tcaaggctggccagagccag</td>
<td>52 301</td>
</tr>
<tr>
<td>Coding</td>
<td>31544</td>
<td>352</td>
<td>gggtctccctactgctag</td>
<td>60 302</td>
</tr>
<tr>
<td>Coding</td>
<td>31545</td>
<td>261</td>
<td>catgctctgtggccagctag</td>
<td>65 303</td>
</tr>
<tr>
<td>Coding</td>
<td>31546</td>
<td>561</td>
<td>ccgcactttctggaacgag</td>
<td>51 304</td>
</tr>
<tr>
<td>Coding</td>
<td>31547</td>
<td>323</td>
<td>tgtgtgctggcagccagcag</td>
<td>60 305</td>
</tr>
<tr>
<td>Coding</td>
<td>31548</td>
<td>324</td>
<td>tgttgcctggccagggccag</td>
<td>43 306</td>
</tr>
<tr>
<td>Coding</td>
<td>31549</td>
<td>1179</td>
<td>caggtacaccagagccca</td>
<td>88 307</td>
</tr>
<tr>
<td>Coding</td>
<td>31550</td>
<td>1223</td>
<td>aagatgaaagcttgcag</td>
<td>0 308</td>
</tr>
<tr>
<td>Coding</td>
<td>31551</td>
<td>1289</td>
<td>ttgtagctctggtgctagct</td>
<td>66 309</td>
</tr>
<tr>
<td>Coding</td>
<td>31552</td>
<td>322</td>
<td>gttgcctggcagggccagcag</td>
<td>47 310</td>
</tr>
<tr>
<td>Coding</td>
<td>31553</td>
<td>406</td>
<td>gcaagctcgaggtgtgga</td>
<td>44 311</td>
</tr>
</tbody>
</table>

TABLE 1-continued

Inhibition of human glucagon receptor mRNA levels by chimeric phosphorothioate oligonucleotides having 2′-MOE wings and a deoxy gap.
<table>
<thead>
<tr>
<th>ISIS # REGION</th>
<th>SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding 4</td>
<td>870</td>
<td></td>
<td>ctggcttgtagcgggctctga</td>
<td>61</td>
</tr>
<tr>
<td>Coding 4</td>
<td>255</td>
<td></td>
<td>ttcgccctaggctgtgcttc</td>
<td>24</td>
</tr>
<tr>
<td>Coding 4</td>
<td>464</td>
<td></td>
<td>gcgacgcggagastaattgtgc</td>
<td>71</td>
</tr>
<tr>
<td>Coding 4</td>
<td>360</td>
<td></td>
<td>ctcaacagactgaccaactca</td>
<td>13</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1060</td>
<td></td>
<td>gttagccgctgtcagagcttc</td>
<td>49</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1422</td>
<td></td>
<td>ggagccggactgcaagagcagctg</td>
<td>69</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1416</td>
<td></td>
<td>gaggccgcatgcagctgttgcttc</td>
<td>32</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1208</td>
<td></td>
<td>tggctctctgtgtggtcactc</td>
<td>30</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1216</td>
<td></td>
<td>gaggctgtcaggctgtggcc</td>
<td>17</td>
</tr>
<tr>
<td>Coding 4</td>
<td>542</td>
<td></td>
<td>aacgcctggctgagcacttgg</td>
<td>55</td>
</tr>
<tr>
<td>Coding 4</td>
<td>456</td>
<td></td>
<td>ggaactctttgtagaaggcttc</td>
<td>44</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1419</td>
<td></td>
<td>gataagctggctcagagctgactgc</td>
<td>34</td>
</tr>
<tr>
<td>Coding 4</td>
<td>460</td>
<td></td>
<td>cgcaacagactgtcggagtgaag</td>
<td>10</td>
</tr>
<tr>
<td>Coding 4</td>
<td>404</td>
<td></td>
<td>gaggctctctgtgtggtcactc</td>
<td>58</td>
</tr>
<tr>
<td>Coding 4</td>
<td>530</td>
<td></td>
<td>ggtgctttgagcacttctggg</td>
<td>58</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1294</td>
<td></td>
<td>gaaacttgactgtcctgtggg</td>
<td>30</td>
</tr>
<tr>
<td>Coding 4</td>
<td>390</td>
<td></td>
<td>cggccactctgctcacttgacta</td>
<td>19</td>
</tr>
<tr>
<td>Coding 4</td>
<td>954</td>
<td></td>
<td>tgctcgtgacacccgagccgca</td>
<td>59</td>
</tr>
<tr>
<td>Coding 4</td>
<td>684</td>
<td></td>
<td>ctcggagctgtgctgcaactct</td>
<td>61</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1174</td>
<td></td>
<td>tccaccagacacccatgttg</td>
<td>1</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1214</td>
<td></td>
<td>aagctgtcagctgagagccag</td>
<td>44</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1023</td>
<td></td>
<td>cagccgcaagcctgtgacca</td>
<td>51</td>
</tr>
<tr>
<td>Coding 4</td>
<td>920</td>
<td></td>
<td>acgactcactctacagctgagcca</td>
<td>38</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1220</td>
<td></td>
<td>atgagaaaagatctcaagat</td>
<td>0</td>
</tr>
<tr>
<td>Coding 4</td>
<td>554</td>
<td></td>
<td>cccttgagacacccagagcttg</td>
<td>78</td>
</tr>
<tr>
<td>Coding 4</td>
<td>318</td>
<td></td>
<td>ctggcggccaggacgcaagca</td>
<td>37</td>
</tr>
<tr>
<td>Coding 4</td>
<td>499</td>
<td></td>
<td>aagagatggtggctgagctggta</td>
<td>97</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1164</td>
<td></td>
<td>gccccagtctctctctgctg</td>
<td>66</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1217</td>
<td></td>
<td>aagctaatttctctctgctgac</td>
<td>25</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1064</td>
<td></td>
<td>ccaggtgagctcagagctcagagca</td>
<td>62</td>
</tr>
<tr>
<td>Coding 4</td>
<td>1163</td>
<td></td>
<td>ccctgagctctctctgctg</td>
<td>55</td>
</tr>
<tr>
<td>Coding 4</td>
<td>547</td>
<td></td>
<td>acagcagagctgctgtgctcact</td>
<td>46</td>
</tr>
<tr>
<td>Coding 4</td>
<td>408</td>
<td></td>
<td>cagcagctcactctctgctg</td>
<td>62</td>
</tr>
<tr>
<td>Coding 4</td>
<td>394</td>
<td></td>
<td>ctgctgagcacttctctcaccg</td>
<td>15</td>
</tr>
</tbody>
</table>
TABLE 1-continued

Inhibition of human glucagon receptor mRNA levels by chimeric phosphorothioate oligonucleotides having us/3/36 2'-MOE wings and a deoxy gap

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>REGION</th>
<th>SEQ ID</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>INHIB ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>315278 Coding</td>
<td>4</td>
<td>1020</td>
<td>gccacagcagttcaggt</td>
<td>83</td>
<td>346</td>
</tr>
<tr>
<td>315279 Coding</td>
<td>4</td>
<td>869</td>
<td>tgtgtagcgggtcttag</td>
<td>33</td>
<td>347</td>
</tr>
<tr>
<td>315280 Coding</td>
<td>4</td>
<td>562</td>
<td>gccgcatctcttgacagtgcag</td>
<td>77</td>
<td>348</td>
</tr>
<tr>
<td>315281 Coding</td>
<td>4</td>
<td>1418</td>
<td>aagaggtcagagagcttt</td>
<td>40</td>
<td>349</td>
</tr>
<tr>
<td>315282 Coding</td>
<td>4</td>
<td>411</td>
<td>ggacagcagcagttcaggt</td>
<td>23</td>
<td>350</td>
</tr>
<tr>
<td>315283 Coding</td>
<td>4</td>
<td>557</td>
<td>catctcttgacagtgcag</td>
<td>40</td>
<td>351</td>
</tr>
<tr>
<td>315284 Coding</td>
<td>4</td>
<td>1175</td>
<td>atcaccacgagccagcatgt</td>
<td>38</td>
<td>352</td>
</tr>
<tr>
<td>315285 Coding</td>
<td>4</td>
<td>1155</td>
<td>gctctttgctcttcagac</td>
<td>75</td>
<td>353</td>
</tr>
<tr>
<td>315286 Coding</td>
<td>4</td>
<td>566</td>
<td>tggggcgcagctccttgaag</td>
<td>74</td>
<td>354</td>
</tr>
<tr>
<td>315287 Coding</td>
<td>4</td>
<td>721</td>
<td>cccccaccagacaggtcag</td>
<td>53</td>
<td>355</td>
</tr>
<tr>
<td>315288 Coding</td>
<td>4</td>
<td>1162</td>
<td>ccatggtcagcttggccag</td>
<td>43</td>
<td>356</td>
</tr>
<tr>
<td>315289 Coding</td>
<td>4</td>
<td>1056</td>
<td>gaggctagaagagctcctt</td>
<td>2</td>
<td>357</td>
</tr>
<tr>
<td>315290 Coding</td>
<td>4</td>
<td>549</td>
<td>gaacagcagcagttcaggt</td>
<td>88</td>
<td>358</td>
</tr>
<tr>
<td>315291 Coding</td>
<td>4</td>
<td>362</td>
<td>ttctcacaagcaggtacagtct</td>
<td>9</td>
<td>359</td>
</tr>
<tr>
<td>315292 Coding</td>
<td>4</td>
<td>1159</td>
<td>tyttgtcatttgcagcttcag</td>
<td>47</td>
<td>360</td>
</tr>
<tr>
<td>315293 Coding</td>
<td>4</td>
<td>457</td>
<td>aggaaacttcctgacagtctt</td>
<td>55</td>
<td>361</td>
</tr>
<tr>
<td>315294 Coding</td>
<td>4</td>
<td>405</td>
<td>cggctcaggtgctcaggt</td>
<td>30</td>
<td>362</td>
</tr>
<tr>
<td>315295 Coding</td>
<td>4</td>
<td>1421</td>
<td>cgaagaggtgacctagacagaag</td>
<td>19</td>
<td>363</td>
</tr>
<tr>
<td>315296 Coding</td>
<td>4</td>
<td>1425</td>
<td>gctgaaagctgaggtgacatgt</td>
<td>33</td>
<td>364</td>
</tr>
<tr>
<td>315297 Coding</td>
<td>4</td>
<td>546</td>
<td>cagacagcagcagttcaggt</td>
<td>81</td>
<td>365</td>
</tr>
<tr>
<td>315298 Coding</td>
<td>4</td>
<td>1166</td>
<td>agccagcagcagttcaggt</td>
<td>35</td>
<td>366</td>
</tr>
<tr>
<td>315299 gCodon</td>
<td>4</td>
<td>260</td>
<td>atgctcttggcagcttcag</td>
<td>63</td>
<td>367</td>
</tr>
<tr>
<td>315300 Coding</td>
<td>4</td>
<td>690</td>
<td>cactccccctgtcaggtcaggt</td>
<td>63</td>
<td>368</td>
</tr>
<tr>
<td>315301 Coding</td>
<td>4</td>
<td>364</td>
<td>aacctctcacaacgaggtcag</td>
<td>31</td>
<td>369</td>
</tr>
<tr>
<td>315302 Coding</td>
<td>4</td>
<td>558</td>
<td>gcaatctcttcacacgcagct</td>
<td>44</td>
<td>370</td>
</tr>
<tr>
<td>315303 Coding</td>
<td>4</td>
<td>958</td>
<td>catattgcatgacacacgagct</td>
<td>48</td>
<td>371</td>
</tr>
<tr>
<td>315304 Coding</td>
<td>4</td>
<td>1170</td>
<td>ccaagaacacagctcaggt</td>
<td>33</td>
<td>372</td>
</tr>
<tr>
<td>315305 Coding</td>
<td>4</td>
<td>867</td>
<td>gctgtagcgggtctcaggt</td>
<td>50</td>
<td>373</td>
</tr>
<tr>
<td>315306 Coding</td>
<td>4</td>
<td>865</td>
<td>tggaggtagcgtcaggtcag</td>
<td>62</td>
<td>374</td>
</tr>
<tr>
<td>315307 Coding</td>
<td>4</td>
<td>1022</td>
<td>aagccacgacagttggtcaggg</td>
<td>37</td>
<td>375</td>
</tr>
<tr>
<td>315308 Coding</td>
<td>4</td>
<td>692</td>
<td>tacactcttttgaagcttcag</td>
<td>41</td>
<td>376</td>
</tr>
<tr>
<td>315309 Coding</td>
<td>4</td>
<td>1181</td>
<td>cgcagagctcacaacgcaggt</td>
<td>49</td>
<td>377</td>
</tr>
<tr>
<td>315310 Coding</td>
<td>4</td>
<td>357</td>
<td>aacacgagcagttcaacag</td>
<td>21</td>
<td>378</td>
</tr>
<tr>
<td>315311 Coding</td>
<td>4</td>
<td>1057</td>
<td>aagaggtcagagagcttcttcag</td>
<td>49</td>
<td>379</td>
</tr>
<tr>
<td>ISIS # REGION</td>
<td>SEQ ID NO</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
<td>% INHIB</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3121</td>
<td>ttgatcagggtagggccaggaa</td>
<td>54</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3131</td>
<td>acggagtctgctctctctctct</td>
<td>81</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3141</td>
<td>gctggagccgagggctggcagc</td>
<td>75</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3151</td>
<td>cagagcggactgctctctctct</td>
<td>68</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3161</td>
<td>catatgacccgagggctgtctca</td>
<td>80</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3171</td>
<td>caggagtccacactctctag</td>
<td>26</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3181</td>
<td>gcaagtcgccccgagggctgtctca</td>
<td>72</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3191</td>
<td>agttgctcagctgagggctggcagc</td>
<td>33</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3201</td>
<td>gctggagccgagggctggcagc</td>
<td>51</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3211</td>
<td>aacagggagttcctcactctctctct</td>
<td>0</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3221</td>
<td>statttgctgctacagggctggcagc</td>
<td>56</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3231</td>
<td>gcagagacctgtgctctctctctct</td>
<td>59</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3241</td>
<td>gtaccctatcctctgta</td>
<td>79</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3251</td>
<td>cattgctgctacagggctggcagc</td>
<td>61</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3261</td>
<td>caacagggagttcctcactctctctct</td>
<td>10</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3271</td>
<td>aggggctgagggctggcagc</td>
<td>27</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3281</td>
<td>ttgacccgagggctgtctca</td>
<td>66</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3291</td>
<td>aacagggagttcctcactctctctctctctctct</td>
<td>47</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3301</td>
<td>atccggtgctgctacagggctggcagc</td>
<td>14</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>Coding 4</td>
<td>3311</td>
<td>gctgctgctacagggctggcagc</td>
<td>5</td>
<td>399</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 1, SEQ ID NOs 20, 21, 22, 24, 25, 28, 29, 30, 35, 37, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 80, 81, 82, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 124, 125, 127, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 164, 166, 168, 169, 170, 171, 174, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 221, 225, 227, 230, 231, 233, 235, 237, 238, 240, 241, 242, 243, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271, 273, 275, 278, 279, 280, 281, 282, 284, 286, 287, 288, 291, 293, 297, 298, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 314, 316, 317, 321, 322, 325, 326, 329, 330, 332, 333, 335, 336, 338, 339, 341, 342, 343, 344, 346, 348, 349, 351, 353, 354, 355, 356, 358, 360, 361, 365, 367, 368, 370, 371, 373, 374, 376, 377, 379, 380, 381, 382, 383, 384, 386, 388, 390, 391, 392, 393, 396 and 397 demonstrated at least 40% inhibition of human glucagon receptor expression in this assay and are therefore preferred. SEQ ID NO: 183, 184, 231, 240, 254, 346, 365 and 392 are presently more preferred. The target regions to which the preferred sequences are complementary are herein referred to as "preferred target segments" and are therefore preferred for targeting by compounds of the present invention. These preferred target segments are shown in Table 3. These sequences are shown to contain thymine (T) but one of skill in the art will appreciate that thymine (T) is generally replaced by uracil (U) in RNA sequences. The sequences represent the reverse complement of the preferred antisense compounds shown in Table 1. "Target site" indicates the first (5'-most) nucleotide number on the particular target nucleic acid to which the oligonucleotide binds. Also shown in Table 3 is the species in which each of the preferred target segments was found.
Example 16

Antisense Inhibition of Mouse Glucagon Receptor Expression by Chimeric Phosphorothioate Oligonucleotides having 2'-MOE: Wings and a Deoxy Gap

In accordance with the present invention, a second series of antisense compounds were designed to target different regions of the mouse glucagon receptor RNA, using published sequences (GenBank accession number NM_008101.1, incorporated herein as SEQ ID NO: 11, an mRNA sequence derived from GenBank accession number AF229079.1 with an alternate promoter, incorporated herein as SEQ ID NO: 400, GenBank accession number AF229079.1, incorporated herein as SEQ ID NO: 401, a second mRNA sequence derived from GenBank accession number AF229079.1 with an alternate promoter, incorporated herein as SEQ ID NO: 402, and GenBank accession number AA920726.1, incorporated herein as SEQ ID NO: 403). The compounds are shown in Table 2. “Target site” indicates the first (5’-most) nucleotide number on the particular target nucleic acid to which the compound binds. All compounds in Table 2 are chimeric oligonucleotides (‘gapmers’) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5’ and 3’ directions) by five-nucleotide “wings”. The wings are composed of 2’-methoxyethyl (2’-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on mouse glucagon receptor mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from three experiments in which mouse primary hepatocytes were treated with the antisense oligonucleotides of the present invention. The positive control for each datapoint is identified in the table by sequence ID number. If present, “N.D.” indicates “no data”.

<table>
<thead>
<tr>
<th>ISIS # REGION</th>
<th>TARGET SEQ ID NO</th>
<th>SITE</th>
<th>SEQUENCE</th>
<th>CONTROL SEQ ID NO</th>
<th>INHIB %</th>
</tr>
</thead>
<tbody>
<tr>
<td>148350 5'UTR</td>
<td>11</td>
<td>57</td>
<td>cccacatctggcaagagctg</td>
<td>53412</td>
<td>1</td>
</tr>
<tr>
<td>148355 coding</td>
<td>11</td>
<td>182</td>
<td>ttctctacaacaaagcccct</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>148356 coding</td>
<td>11</td>
<td>193</td>
<td>agaggtctttcactttcacao</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>148357 coding</td>
<td>11</td>
<td>203</td>
<td>tggttctatagccccctgg</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>148359 coding</td>
<td>11</td>
<td>227</td>
<td>agcaggttaggtggtgct</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>148363 coding</td>
<td>11</td>
<td>322</td>
<td>ggcaggaatgtggccagt</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>148366 coding</td>
<td>11</td>
<td>383</td>
<td>ggcccacacttgtgacagc</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>148368 exon:</td>
<td>11</td>
<td>477</td>
<td>cccttttgtggacactgtatct</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>exon junction</td>
<td>148371 coding</td>
<td>11</td>
<td>538</td>
<td>ccagggacagactgtgccc</td>
<td>52413</td>
</tr>
<tr>
<td>148372 exon:</td>
<td>11</td>
<td>589</td>
<td>agtgacgttctctggccccc</td>
<td>52413</td>
<td>1</td>
</tr>
<tr>
<td>exon junction</td>
<td>148381 coding</td>
<td>11</td>
<td>930</td>
<td>cacttgccaccacccaggg</td>
<td>47414</td>
</tr>
<tr>
<td>148382 coding</td>
<td>11</td>
<td>947</td>
<td>tccacagacacagtcgcc</td>
<td>0</td>
<td>415</td>
</tr>
<tr>
<td>148385 coding</td>
<td>11</td>
<td>977</td>
<td>tygctatttgtgtgtctccgga</td>
<td>57</td>
<td>416</td>
</tr>
<tr>
<td>148387 coding</td>
<td>11</td>
<td>998</td>
<td>aggctccacagatctgcat</td>
<td>53417</td>
<td>1</td>
</tr>
<tr>
<td>148390 coding</td>
<td>11</td>
<td>1139</td>
<td>aggctcagcttgacccctgc</td>
<td>45418</td>
<td>1</td>
</tr>
<tr>
<td>148393 coding</td>
<td>11</td>
<td>1226</td>
<td>aagaggttggtggaagcagc</td>
<td>26419</td>
<td>1</td>
</tr>
<tr>
<td>148394 coding</td>
<td>11</td>
<td>1277</td>
<td>tngagaacacacacgcacag</td>
<td>26420</td>
<td>1</td>
</tr>
<tr>
<td>148395 coding</td>
<td>11</td>
<td>1285</td>
<td>ggnacagtgagagacagcc</td>
<td>26421</td>
<td>1</td>
</tr>
</tbody>
</table>
Inhibition of mouse glucagon receptor mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOR wings and a deoxy gap

<table>
<thead>
<tr>
<th>ISIS # REGION</th>
<th>TARGET SITE</th>
<th>TARGET SEQUENCE</th>
<th>% INHIB</th>
<th>CONTROL SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>exon: exon junction</td>
<td>11</td>
<td>1299 cacctctttgtgaggaac</td>
<td>0</td>
<td>422 1</td>
</tr>
<tr>
<td>180446 5'UTR</td>
<td>11</td>
<td>7 ctctcagttgcaagggag</td>
<td>15</td>
<td>423 1</td>
</tr>
<tr>
<td>180447 5'UTR</td>
<td>11</td>
<td>14 tgacaccctctctcaggtgc</td>
<td>38</td>
<td>424 1</td>
</tr>
<tr>
<td>180448 5'UTR</td>
<td>11</td>
<td>25 ctgagagttgcaaacctc</td>
<td>54</td>
<td>425 1</td>
</tr>
<tr>
<td>180449 5'UTR</td>
<td>11</td>
<td>30 aggtctctcagttgctgca</td>
<td>55</td>
<td>426 1</td>
</tr>
<tr>
<td>180450 5'UTR</td>
<td>11</td>
<td>48 ggagaagttgcaacactag</td>
<td>39</td>
<td>427 1</td>
</tr>
<tr>
<td>180451 Start Codon</td>
<td>11</td>
<td>80 ggcggcrtctctggagcaca</td>
<td>40</td>
<td>428 1</td>
</tr>
<tr>
<td>180452 Coding</td>
<td>11</td>
<td>141 tggccacatcgacagcaca</td>
<td>5</td>
<td>429 1</td>
</tr>
<tr>
<td>180453 Coding</td>
<td>11</td>
<td>192 gacgccactctcctccaga</td>
<td>37</td>
<td>430 1</td>
</tr>
<tr>
<td>180454 Coding</td>
<td>11</td>
<td>251 cagacacagtctcaggttg</td>
<td>45</td>
<td>431 1</td>
</tr>
<tr>
<td>180455 Coding</td>
<td>11</td>
<td>291 ggcgtcagcagcagaggt</td>
<td>58</td>
<td>432 1</td>
</tr>
<tr>
<td>180456 Coding</td>
<td>11</td>
<td>359 cggtctctcactctggtgca</td>
<td>68</td>
<td>433 1</td>
</tr>
<tr>
<td>180457 Coding</td>
<td>11</td>
<td>371 ttcgacacactctggtctg</td>
<td>69</td>
<td>434 1</td>
</tr>
<tr>
<td>180458 Coding</td>
<td>11</td>
<td>410 ctggccotctgaacacactg</td>
<td>39</td>
<td>435 1</td>
</tr>
<tr>
<td>180459 Coding</td>
<td>11</td>
<td>545 aagggccccccgagaggt</td>
<td>56</td>
<td>436 1</td>
</tr>
<tr>
<td>180460 Coding</td>
<td>11</td>
<td>572 cccacgacgcagtcagcgc</td>
<td>59</td>
<td>437 1</td>
</tr>
<tr>
<td>180461 Coding</td>
<td>11</td>
<td>582 ctctcagcctccgagctc</td>
<td>40</td>
<td>438 1</td>
</tr>
<tr>
<td>180462 Coding</td>
<td>11</td>
<td>650 acagacacgcctctgagc</td>
<td>47</td>
<td>439 1</td>
</tr>
<tr>
<td>180463 Coding</td>
<td>11</td>
<td>764 actgtggcactctcgcagc</td>
<td>43</td>
<td>440 1</td>
</tr>
<tr>
<td>180464 Coding</td>
<td>11</td>
<td>775 actgctatgctactgctg</td>
<td>60</td>
<td>441 1</td>
</tr>
<tr>
<td>180465 Coding</td>
<td>11</td>
<td>785 atgtgctctctgctgtatat</td>
<td>58</td>
<td>442 1</td>
</tr>
<tr>
<td>180466 Coding</td>
<td>11</td>
<td>836 agoaggtctctacagctacac</td>
<td>36</td>
<td>443 1</td>
</tr>
<tr>
<td>180467 Coding</td>
<td>11</td>
<td>974 tcatgctctctctccgctct</td>
<td>62</td>
<td>444 1</td>
</tr>
<tr>
<td>180468 Coding</td>
<td>11</td>
<td>1011 gcacgacagccagctgcc</td>
<td>0</td>
<td>445 1</td>
</tr>
<tr>
<td>180469 Coding</td>
<td>11</td>
<td>1079 gacaggttggcaccagaaag</td>
<td>56</td>
<td>446 1</td>
</tr>
<tr>
<td>180470 Coding</td>
<td>11</td>
<td>1090 tcgtatggccacgccttg</td>
<td>8</td>
<td>447 1</td>
</tr>
<tr>
<td>180471 Coding</td>
<td>11</td>
<td>1100 gcatgctctctctgtgggc</td>
<td>45</td>
<td>448 1</td>
</tr>
<tr>
<td>180472 Coding</td>
<td>11</td>
<td>1110 ctgtctacagcatactgca</td>
<td>14</td>
<td>449 1</td>
</tr>
<tr>
<td>180473 Coding</td>
<td>11</td>
<td>1256 ccctggaagcagcggaagaa</td>
<td>45</td>
<td>450 1</td>
</tr>
<tr>
<td>180474 Coding</td>
<td>11</td>
<td>1292 ttgctgagcagcagcagcag</td>
<td>47</td>
<td>451 1</td>
</tr>
<tr>
<td>180475 Coding</td>
<td>11</td>
<td>1348 gagcttgctctctctgctcag</td>
<td>64</td>
<td>452 1</td>
</tr>
<tr>
<td>180476 Coding</td>
<td>11</td>
<td>1360 tttccctctgacacgcctttt</td>
<td>56</td>
<td>453 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET</th>
<th>SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>CONTROL</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>180477 Coding</td>
<td>11</td>
<td>1388</td>
<td>atgtggctgcctaggctgct</td>
<td>64</td>
<td>454</td>
</tr>
<tr>
<td>180478 Coding</td>
<td>11</td>
<td>1435</td>
<td>gctgaaatttccttccagggagga</td>
<td>56</td>
<td>455</td>
</tr>
<tr>
<td>180479 Coding</td>
<td>11</td>
<td>1450</td>
<td>gctgacctactctagaagctgta</td>
<td>48</td>
<td>456</td>
</tr>
<tr>
<td>180480 Coding</td>
<td>11</td>
<td>1470</td>
<td>actggcaagctggtctgctgctct</td>
<td>41</td>
<td>457</td>
</tr>
<tr>
<td>180481 Coding</td>
<td>11</td>
<td>1512</td>
<td>cctgggagatctggggca</td>
<td>56</td>
<td>458</td>
</tr>
<tr>
<td>180482 Stop Codon</td>
<td>11</td>
<td>1544</td>
<td>cagttggaagctctgctctgggg</td>
<td>47</td>
<td>459</td>
</tr>
<tr>
<td>180483 3' UTR</td>
<td>11</td>
<td>1567</td>
<td>ttagcaaaaccttgcctggaggg</td>
<td>9</td>
<td>460</td>
</tr>
<tr>
<td>180484 3' UTR</td>
<td>11</td>
<td>1575</td>
<td>gctttttgtggaacaaaacc</td>
<td>34</td>
<td>461</td>
</tr>
<tr>
<td>180485 3' UTR</td>
<td>11</td>
<td>1600</td>
<td>atctgtgcctgtgggtctct</td>
<td>59</td>
<td>462</td>
</tr>
<tr>
<td>180486 3' UTR</td>
<td>11</td>
<td>1610</td>
<td>tggccgggccatctggctgct</td>
<td>53</td>
<td>463</td>
</tr>
<tr>
<td>180487 3' UTR</td>
<td>11</td>
<td>1620</td>
<td>ctctcaaaacctgtggggcc</td>
<td>66</td>
<td>464</td>
</tr>
<tr>
<td>180488 3' UTR</td>
<td>11</td>
<td>1646</td>
<td>tacaagtctgtgtgttctggctgctgct</td>
<td>54</td>
<td>465</td>
</tr>
<tr>
<td>180489 3' UTR</td>
<td>11</td>
<td>1687</td>
<td>ggcgtgctgcagctgctgctgctgctgct</td>
<td>47</td>
<td>466</td>
</tr>
<tr>
<td>180490 3' UTR</td>
<td>11</td>
<td>1724</td>
<td>gcttctcactcatatcacaacc</td>
<td>47</td>
<td>467</td>
</tr>
<tr>
<td>180491 3' UTR</td>
<td>11</td>
<td>1750</td>
<td>aacactcagaaaatcatag</td>
<td>51</td>
<td>468</td>
</tr>
<tr>
<td>180492 3' UTR</td>
<td>11</td>
<td>1756</td>
<td>cttggagaacactctctctctctctgaggg</td>
<td>49</td>
<td>469</td>
</tr>
<tr>
<td>180493 3' UTR</td>
<td>11</td>
<td>1795</td>
<td>ctagaaggcatatctttggttaa</td>
<td>51</td>
<td>470</td>
</tr>
<tr>
<td>180494 intron</td>
<td>401</td>
<td>3953</td>
<td>gtaaaaagggccagacaggg</td>
<td>36</td>
<td>471</td>
</tr>
<tr>
<td>180495 intron</td>
<td>401</td>
<td>5396</td>
<td>gggagagtgtcagacttcaaggg</td>
<td>23</td>
<td>472</td>
</tr>
<tr>
<td>180496 intron: exon junction</td>
<td>401</td>
<td>7321</td>
<td>cgacccgagctcgtgcastgag</td>
<td>32</td>
<td>473</td>
</tr>
<tr>
<td>180497 intron: exon junction</td>
<td>401</td>
<td>7505</td>
<td>eggtgcgtgcactgggctctacctgatgg</td>
<td>77</td>
<td>474</td>
</tr>
<tr>
<td>180498 exon: intron junction</td>
<td>401</td>
<td>8075</td>
<td>ctgggctcaacctcctgctgctact</td>
<td>27</td>
<td>475</td>
</tr>
<tr>
<td>180499 intron</td>
<td>401</td>
<td>8766</td>
<td>cccagagttgctccagctgctg</td>
<td>33</td>
<td>476</td>
</tr>
<tr>
<td>180500 exon: intron junction</td>
<td>401</td>
<td>9005</td>
<td>cttccacaaacgaggcactctgct</td>
<td>2</td>
<td>477</td>
</tr>
<tr>
<td>180501 genomic</td>
<td>402</td>
<td>128</td>
<td>cctcttctcagttgtctgctga</td>
<td>3</td>
<td>478</td>
</tr>
<tr>
<td>180502 genomic</td>
<td>400</td>
<td>10</td>
<td>ccaagcctagagctctctctctc</td>
<td>40</td>
<td>479</td>
</tr>
<tr>
<td>180503 genomic</td>
<td>400</td>
<td>85</td>
<td>ctcaagctctgagacaggtcca</td>
<td>39</td>
<td>480</td>
</tr>
<tr>
<td>180504 genomic</td>
<td>403</td>
<td>40</td>
<td>taggtctctccctctctctctct</td>
<td>4</td>
<td>481</td>
</tr>
</tbody>
</table>
As shown in Table 2, SEQ ID NOs 404, 406, 407, 408, 409, 410, 411, 412, 413, 414, 416, 417, 418, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 446, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 473, 474, 476, 479 and 480 demonstrated at least 30% inhibition of mouse glucagon receptor expression in this experiment and are therefore preferred. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention. These preferred target segments are shown in Table 3. These sequences are shown to contain thymine (T) but one of skill in the art will appreciate that thymine (T) is generally replaced by uracil (U) in RNA sequences. The sequences represent the reverse complement of the preferred antisense compounds shown in Tables 1 and 2. “Target site” indicates the first (5'-most) nucleotide number on the particular target nucleic acid to which the oligonucleotide binds. Also shown in Table 3 is the species in which each of the preferred target segments was found.

<table>
<thead>
<tr>
<th>TARGET SITE ID NO</th>
<th>TARGET SEQ ID</th>
<th>TARGET SITE SEQUENCE</th>
<th>RBV COMP OF SEQ ID</th>
<th>ACTIVE IN NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>215734</td>
<td>4</td>
<td>gcgcgggcctgggctcaaa</td>
<td>21 H. sapiens 484</td>
<td></td>
</tr>
<tr>
<td>215735</td>
<td>4</td>
<td>gcaacccctgggagcaccc</td>
<td>22 H. sapiens 485</td>
<td></td>
</tr>
<tr>
<td>215737</td>
<td>4</td>
<td>cggagagttgcacacgaca</td>
<td>24 H. sapiens 486</td>
<td></td>
</tr>
<tr>
<td>215738</td>
<td>4</td>
<td>agctacacacacacccagg</td>
<td>25 H. sapiens 487</td>
<td></td>
</tr>
<tr>
<td>110316</td>
<td>4</td>
<td>tgtgtccgcagcagctgca</td>
<td>28 H. sapiens 488</td>
<td></td>
</tr>
<tr>
<td>215690</td>
<td>4</td>
<td>tcgaacagttcccctggc</td>
<td>29 H. sapiens 489</td>
<td></td>
</tr>
<tr>
<td>215741</td>
<td>4</td>
<td>gcgtccgcacagcagcagc</td>
<td>30 H. sapiens 490</td>
<td></td>
</tr>
<tr>
<td>215746</td>
<td>4</td>
<td>ctacggtgccagctgccac</td>
<td>35 H. sapiens 491</td>
<td></td>
</tr>
<tr>
<td>215748</td>
<td>4</td>
<td>gccgtggtgccacagcagc</td>
<td>37 H. sapiens 492</td>
<td></td>
</tr>
<tr>
<td>110318</td>
<td>4</td>
<td>caccacacagctgccaccc</td>
<td>39 H. sapiens 493</td>
<td></td>
</tr>
<tr>
<td>215798</td>
<td>19</td>
<td>tgcggtgtcttcacagctgg</td>
<td>40 H. sapiens 494</td>
<td></td>
</tr>
<tr>
<td>215750</td>
<td>4</td>
<td>acacagcctggtcagtttg</td>
<td>41 H. sapiens 495</td>
<td></td>
</tr>
<tr>
<td>215751</td>
<td>4</td>
<td>tgcctccggcaggctgccc</td>
<td>42 H. sapiens 496</td>
<td></td>
</tr>
<tr>
<td>215801</td>
<td>18</td>
<td>gcaccctgctacactgcagc</td>
<td>43 H. sapiens 497</td>
<td></td>
</tr>
<tr>
<td>215752</td>
<td>4</td>
<td>gcagggagataacctgctag</td>
<td>44 H. sapiens 498</td>
<td></td>
</tr>
<tr>
<td>215754</td>
<td>4</td>
<td>agttccagagaggagctgg</td>
<td>46 H. sapiens 499</td>
<td></td>
</tr>
<tr>
<td>215756</td>
<td>4</td>
<td>ccaagatcacacgctgctc</td>
<td>48 H. sapiens 500</td>
<td></td>
</tr>
<tr>
<td>215757</td>
<td>4</td>
<td>tgtgctgctggcctgggctg</td>
<td>49 H. sapiens 501</td>
<td></td>
</tr>
<tr>
<td>215758</td>
<td>4</td>
<td>gggtggtggttggtggtg</td>
<td>50 H. sapiens 502</td>
<td></td>
</tr>
<tr>
<td>215759</td>
<td>4</td>
<td>ccttcagaggccagtcagag</td>
<td>51 H. sapiens 503</td>
<td></td>
</tr>
<tr>
<td>215760</td>
<td>4</td>
<td>agaccaccgtcagccagaa</td>
<td>52 H. sapiens 504</td>
<td></td>
</tr>
<tr>
<td>215761</td>
<td>4</td>
<td>gctctggtgctggcctggcc</td>
<td>53 H. sapiens 505</td>
<td></td>
</tr>
<tr>
<td>215762</td>
<td>4</td>
<td>gatgtcagcagctccctca</td>
<td>54 H. sapiens 506</td>
<td></td>
</tr>
<tr>
<td>215763</td>
<td>4</td>
<td>cgacagcttacaggtacagca</td>
<td>55 H. sapiens 507</td>
<td></td>
</tr>
<tr>
<td>215764</td>
<td>4</td>
<td>tccaagttgtgctagcagctgc</td>
<td>56 H. sapiens 508</td>
<td></td>
</tr>
<tr>
<td>215765</td>
<td>4</td>
<td>ccctgcatctctagctgg</td>
<td>57 H. sapiens 509</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.

<table>
<thead>
<tr>
<th>TARGET SITE NO</th>
<th>TARGET SITE SEQUENCE</th>
<th>REV COMP OF SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>215766</td>
<td>acctgctggcgtggccac</td>
<td>58 H. sapiens</td>
</tr>
<tr>
<td>215767</td>
<td>ggcactgtggtaaagccttg</td>
<td>59 H. sapiens</td>
</tr>
<tr>
<td>215768</td>
<td>gttctgtgtggctctggcc</td>
<td>60 H. sapiens</td>
</tr>
<tr>
<td>215769</td>
<td>ctcctggtgccatctgtgca</td>
<td>61 H. sapiens</td>
</tr>
<tr>
<td>215770</td>
<td>caacttcctcctctgcccc</td>
<td>62 H. sapiens</td>
</tr>
<tr>
<td>215771</td>
<td>ttcgccccgcctggagagag</td>
<td>64 H. sapiens</td>
</tr>
<tr>
<td>215774</td>
<td>cctgcggctttcctgggaa</td>
<td>67 H. sapiens</td>
</tr>
<tr>
<td>215775</td>
<td>gcgaagtcttgctcctgag</td>
<td>68 H. sapiens</td>
</tr>
<tr>
<td>215776</td>
<td>cacacacagcagctggggt</td>
<td>69 H. sapiens</td>
</tr>
<tr>
<td>215777</td>
<td>tggctgcgcgtcctgggcc</td>
<td>70 H. sapiens</td>
</tr>
<tr>
<td>215778</td>
<td>ttccctcctgctctgctct</td>
<td>71 H. sapiens</td>
</tr>
<tr>
<td>215779</td>
<td>cctccctcctgctctgctct</td>
<td>72 H. sapiens</td>
</tr>
<tr>
<td>215780</td>
<td>cttcctcctgctctgctct</td>
<td>73 H. sapiens</td>
</tr>
<tr>
<td>215781</td>
<td>ctttctcctgctctgctct</td>
<td>74 H. sapiens</td>
</tr>
<tr>
<td>215782</td>
<td>ttgcttgcttcctttctct</td>
<td>76 H. sapiens</td>
</tr>
<tr>
<td>215784</td>
<td>gcgggcagcagctgtctctt</td>
<td>78 H. sapiens</td>
</tr>
<tr>
<td>215785</td>
<td>gtgcgggtgctcctctttctt</td>
<td>79 H. sapiens</td>
</tr>
<tr>
<td>215786</td>
<td>ttgcttgcttcctttctctt</td>
<td>80 H. sapiens</td>
</tr>
<tr>
<td>215787</td>
<td>gtgcgggtgctcctttctctt</td>
<td>81 H. sapiens</td>
</tr>
<tr>
<td>215788</td>
<td>gctgcctctttctttctttctt</td>
<td>82 H. sapiens</td>
</tr>
<tr>
<td>215789</td>
<td>gctgcctctttctttctttctt</td>
<td>83 H. sapiens</td>
</tr>
<tr>
<td>215790</td>
<td>gctgcctctttctttctttctt</td>
<td>84 H. sapiens</td>
</tr>
<tr>
<td>215791</td>
<td>gctgcctctttctttctttctt</td>
<td>85 H. sapiens</td>
</tr>
<tr>
<td>215792</td>
<td>gctgcctctttctttctttctt</td>
<td>86 H. sapiens</td>
</tr>
<tr>
<td>215793</td>
<td>gctgcctctttctttctttctt</td>
<td>87 H. sapiens</td>
</tr>
<tr>
<td>215794</td>
<td>gctgcctctttctttctttctt</td>
<td>88 H. sapiens</td>
</tr>
<tr>
<td>215795</td>
<td>gctgcctctttctttctttctt</td>
<td>89 H. sapiens</td>
</tr>
<tr>
<td>215796</td>
<td>gctgcctctttctttctttctt</td>
<td>90 H. sapiens</td>
</tr>
<tr>
<td>215797</td>
<td>gctgcctctttctttctttctt</td>
<td>91 H. sapiens</td>
</tr>
<tr>
<td>215798</td>
<td>gctgcctctttctttctttctt</td>
<td>92 H. sapiens</td>
</tr>
<tr>
<td>215799</td>
<td>gctgcctctttctttctttctt</td>
<td>93 H. sapiens</td>
</tr>
<tr>
<td>215800</td>
<td>gctgcctctttctttctttctt</td>
<td>94 H. sapiens</td>
</tr>
<tr>
<td>215801</td>
<td>gctgcctctttctttctttctt</td>
<td>95 H. sapiens</td>
</tr>
<tr>
<td>215802</td>
<td>gctgcctctttctttctttctt</td>
<td>96 H. sapiens</td>
</tr>
<tr>
<td>215803</td>
<td>gctgcctctttctttctttctt</td>
<td>97 H. sapiens</td>
</tr>
<tr>
<td>215804</td>
<td>gctgcctctttctttctttctt</td>
<td>98 H. sapiens</td>
</tr>
<tr>
<td>215805</td>
<td>gctgcctctttctttctttctt</td>
<td>99 H. sapiens</td>
</tr>
<tr>
<td>215806</td>
<td>gctgcctctttctttctttctt</td>
<td>100 H. sapiens</td>
</tr>
</tbody>
</table>
TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.

<table>
<thead>
<tr>
<th>SITE ID</th>
<th>TARGET SEQ ID NO</th>
<th>TARGET SITE</th>
<th>REV COMP OF SEQ ID NO</th>
<th>SEQ ID ACTIVE IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>220256</td>
<td>4 262 ctagotgcagtgccgctgctg</td>
<td>103 H. sapiens 544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220257</td>
<td>4 325 gctggccgctgctgctg</td>
<td>104 H. sapiens 545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220259</td>
<td>4 370 cctgcttgacgctgctgctg</td>
<td>106 H. sapiens 546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220260</td>
<td>4 375 ttggtacgctgctgctg</td>
<td>107 H. sapiens 547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110262</td>
<td>4 407 caccacactgtgctgctg</td>
<td>110 H. sapiens 548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220263</td>
<td>4 534 ctgggctgctgctgctg</td>
<td>111 H. sapiens 549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220264</td>
<td>4 535 ttaggcagatcgtgctgctg</td>
<td>112 H. sapiens 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220265</td>
<td>4 536 tggccctgtgctgctgctg</td>
<td>113 H. sapiens 551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220266</td>
<td>4 537 ggggctgctgctgctgctg</td>
<td>114 H. sapiens 552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110268</td>
<td>4 563 ctagotgcagtgccgctg</td>
<td>115 H. sapiens 553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220267</td>
<td>4 567 tccaaggtgctgctgctg</td>
<td>116 H. sapiens 554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220268</td>
<td>4 617 cccggtcagatgcgtgctg</td>
<td>117 H. sapiens 555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220269</td>
<td>4 627 atgtgctgctgctgctg</td>
<td>118 H. sapiens 556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220270</td>
<td>4 666 tcgatgctgctgctgctg</td>
<td>119 H. sapiens 557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220271</td>
<td>4 685 gatgctgctgctgctgctg</td>
<td>121 H. sapiens 558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220272</td>
<td>4 795 gcaatcgtgctgctgctg</td>
<td>122 H. sapiens 559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220273</td>
<td>4 861 atgggctgctgctgctg</td>
<td>124 H. sapiens 560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220274</td>
<td>4 886 ccagaaaatgtgctgctg</td>
<td>125 H. sapiens 561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220277</td>
<td>4 900 acgcgtcagatgcgtgctg</td>
<td>127 H. sapiens 562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220279</td>
<td>4 1032 tgctgctgctgctgctg</td>
<td>129 H. sapiens 563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220282</td>
<td>4 1158 gctggccgctgctgctg</td>
<td>132 H. sapiens 564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220283</td>
<td>4 1169 caggccactgtgctgctg</td>
<td>133 H. sapiens 565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220284</td>
<td>4 1187 gctggccgctgctgctg</td>
<td>134 H. sapiens 566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220285</td>
<td>4 1230 actcttctctctctgctg</td>
<td>135 H. sapiens 567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220286</td>
<td>4 1639 gctgctgctgctgctg</td>
<td>136 H. sapiens 568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220287</td>
<td>4 1727 cagctggcagtgctgctg</td>
<td>137 H. sapiens 569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220288</td>
<td>4 1732 aggctgtgctgctgctg</td>
<td>138 H. sapiens 570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220289</td>
<td>4 1735 gctggccgctgctgctg</td>
<td>139 H. sapiens 571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220290</td>
<td>4 1735 ctggactgtgctgctgctg</td>
<td>140 H. sapiens 572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220291</td>
<td>4 1737 tgtgactgtgctgctgctg</td>
<td>141 H. sapiens 573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220292</td>
<td>4 1740 actctgctgctgctgctg</td>
<td>142 H. sapiens 574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220293</td>
<td>4 1760 cgctgtggcagtgctgctg</td>
<td>143 H. sapiens 575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220294</td>
<td>4 1849 ctgtgctgctgctgctg</td>
<td>144 H. sapiens 576</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.

<table>
<thead>
<tr>
<th>TARGET SITE ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>tgtctg.cgagattgggcc to cgagattgggccitcct citcc ttggg cctoctotccctgca tgc cittgtcc citggtgcaga CCCt9.gtgcagaggtag ... gcc ttgg caccacaaagtgc accacaaagtgcaa.caccgc caaagtgcaa.caccgctt.cg gtgcaac accgctt.cgtgtt cc.gctitcgtgttcaagagat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REW COMP OF SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 46 47 48 49 52 53 55 56 57 58 59 60 61 62 64 66 68 69 70 71. 74 77 78 79 81 82 83 84 85 86 87 88</td>
</tr>
</tbody>
</table>

| ACTWE IN sapiens ... sapiens |

| SEQ ID NO 577 578 579 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 603 604 605 606 607 608 609 610 |

<p>| Oct. 11, 2007 |</p>
<table>
<thead>
<tr>
<th>TARGET SITE</th>
<th>SEQ ID NO</th>
<th>TARGET SITE</th>
<th>REV COMP OF SEQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>226103</td>
<td>4</td>
<td>588</td>
<td>189</td>
</tr>
<tr>
<td>226104</td>
<td>4</td>
<td>606</td>
<td>190</td>
</tr>
<tr>
<td>226106</td>
<td>4</td>
<td>683</td>
<td>192</td>
</tr>
<tr>
<td>226107</td>
<td>4</td>
<td>687</td>
<td>193</td>
</tr>
<tr>
<td>226108</td>
<td>4</td>
<td>691</td>
<td>194</td>
</tr>
<tr>
<td>226109</td>
<td>4</td>
<td>695</td>
<td>195</td>
</tr>
<tr>
<td>226110</td>
<td>4</td>
<td>720</td>
<td>196</td>
</tr>
<tr>
<td>226111</td>
<td>15</td>
<td>723</td>
<td>197</td>
</tr>
<tr>
<td>226112</td>
<td>4</td>
<td>860</td>
<td>198</td>
</tr>
<tr>
<td>226113</td>
<td>4</td>
<td>864</td>
<td>199</td>
</tr>
<tr>
<td>226114</td>
<td>4</td>
<td>868</td>
<td>200</td>
</tr>
<tr>
<td>226115</td>
<td>4</td>
<td>919</td>
<td>201</td>
</tr>
<tr>
<td>226116</td>
<td>4</td>
<td>923</td>
<td>202</td>
</tr>
<tr>
<td>226117</td>
<td>4</td>
<td>951</td>
<td>203</td>
</tr>
<tr>
<td>226118</td>
<td>4</td>
<td>955</td>
<td>204</td>
</tr>
<tr>
<td>226119</td>
<td>4</td>
<td>960</td>
<td>205</td>
</tr>
<tr>
<td>226120</td>
<td>4</td>
<td>1019</td>
<td>206</td>
</tr>
<tr>
<td>226121</td>
<td>4</td>
<td>1025</td>
<td>207</td>
</tr>
<tr>
<td>226122</td>
<td>4</td>
<td>1029</td>
<td>208</td>
</tr>
<tr>
<td>226123</td>
<td>4</td>
<td>1055</td>
<td>209</td>
</tr>
<tr>
<td>226124</td>
<td>4</td>
<td>1059</td>
<td>210</td>
</tr>
<tr>
<td>226126</td>
<td>4</td>
<td>1069</td>
<td>212</td>
</tr>
<tr>
<td>110302</td>
<td>4</td>
<td>1072</td>
<td>213</td>
</tr>
<tr>
<td>226127</td>
<td>4</td>
<td>1156</td>
<td>214</td>
</tr>
<tr>
<td>226128</td>
<td>4</td>
<td>1160</td>
<td>215</td>
</tr>
<tr>
<td>226129</td>
<td>4</td>
<td>1167</td>
<td>216</td>
</tr>
<tr>
<td>226130</td>
<td>4</td>
<td>1173</td>
<td>217</td>
</tr>
<tr>
<td>226131</td>
<td>4</td>
<td>1176</td>
<td>218</td>
</tr>
<tr>
<td>226132</td>
<td>4</td>
<td>1185</td>
<td>219</td>
</tr>
<tr>
<td>226134</td>
<td>4</td>
<td>1209</td>
<td>221</td>
</tr>
<tr>
<td>226138</td>
<td>4</td>
<td>1290</td>
<td>225</td>
</tr>
<tr>
<td>226140</td>
<td>4</td>
<td>1414</td>
<td>227</td>
</tr>
<tr>
<td>226143</td>
<td>4</td>
<td>1669</td>
<td>230</td>
</tr>
</tbody>
</table>

TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.
TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.

<table>
<thead>
<tr>
<th>TARGET SITE ID</th>
<th>TARGET SEQ ID</th>
<th>REV COMP SEQ ID</th>
<th>SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>231032</td>
<td>4 686 atgtacagcagcttcaggt</td>
<td>231 N. sapiens 644</td>
<td></td>
</tr>
<tr>
<td>231034</td>
<td>4 1424 tctttgacacctctctctcag</td>
<td>233 N. sapiens 645</td>
<td></td>
</tr>
<tr>
<td>231036</td>
<td>4 1212 tacgtgccatcctctgaccc</td>
<td>235 N. sapiens 646</td>
<td></td>
</tr>
<tr>
<td>231037</td>
<td>4 1062 gctttctcagctctacctgtg</td>
<td>236 N. sapiens 647</td>
<td></td>
</tr>
<tr>
<td>231038</td>
<td>4 559 ttctgtttcagagatgaggtc</td>
<td>237 N. sapiens 648</td>
<td></td>
</tr>
<tr>
<td>231039</td>
<td>4 543 acaagtcacacaccgccttc</td>
<td>238 N. sapiens 649</td>
<td></td>
</tr>
<tr>
<td>231041</td>
<td>4 1026 acacactgtgctccgctggcc</td>
<td>240 N. sapiens 650</td>
<td></td>
</tr>
<tr>
<td>231042</td>
<td>4 1070 agctctactgctggcatcgg</td>
<td>241 N. sapiens 651</td>
<td></td>
</tr>
<tr>
<td>231043</td>
<td>4 496 cactaaccagcggcacactct</td>
<td>242 N. sapiens 652</td>
<td></td>
</tr>
<tr>
<td>231044</td>
<td>4 399 accagtgtcacaaccacacttg</td>
<td>243 N. sapiens 653</td>
<td></td>
</tr>
<tr>
<td>231046</td>
<td>4 392 tacgagccagcctgtacccaa</td>
<td>245 N. sapiens 654</td>
<td></td>
</tr>
<tr>
<td>231047</td>
<td>4 402 aggtcaccacaccacactgacc</td>
<td>246 N. sapiens 655</td>
<td></td>
</tr>
<tr>
<td>110267</td>
<td>4 533 cttgcaacaccacaagtggca</td>
<td>247 N. sapiens 656</td>
<td></td>
</tr>
<tr>
<td>231048</td>
<td>4 689 taacagagcttcagttgat</td>
<td>248 N. sapiens 657</td>
<td></td>
</tr>
<tr>
<td>231049</td>
<td>4 956 gcggcgygttcgttgcacts</td>
<td>249 N. sapiens 658</td>
<td></td>
</tr>
<tr>
<td>231051</td>
<td>4 555 acgctttcgttgtcagaga</td>
<td>251 N. sapiens 659</td>
<td></td>
</tr>
<tr>
<td>231052</td>
<td>4 553 acacaccacctggtggccc</td>
<td>252 N. sapiens 660</td>
<td></td>
</tr>
<tr>
<td>231053</td>
<td>4 1027 caccctgctgtggctggcca</td>
<td>253 N. sapiens 661</td>
<td></td>
</tr>
<tr>
<td>231054</td>
<td>4 871 cagagccgacaaggccagag</td>
<td>254 N. sapiens 662</td>
<td></td>
</tr>
<tr>
<td>231055</td>
<td>4 498 ataaccagggccaaactctccc</td>
<td>255 N. sapiens 663</td>
<td></td>
</tr>
<tr>
<td>231056</td>
<td>4 259 cagctagctgcccagggcc</td>
<td>256 N. sapiens 664</td>
<td></td>
</tr>
<tr>
<td>231057</td>
<td>4 1058 aggagotttcttcagucota</td>
<td>257 N. sapiens 665</td>
<td></td>
</tr>
<tr>
<td>231058</td>
<td>4 348 cctcgctcaggtgtggcaca</td>
<td>258 N. sapiens 666</td>
<td></td>
</tr>
<tr>
<td>231061</td>
<td>4 935 gtggcgcgcggtggtctgc</td>
<td>261 N. sapiens 667</td>
<td></td>
</tr>
<tr>
<td>231062</td>
<td>4 1024 gcacacacctgtggctggc</td>
<td>262 N. sapiens 668</td>
<td></td>
</tr>
<tr>
<td>231063</td>
<td>4 1061 agctttcagctcttactcc</td>
<td>263 N. sapiens 669</td>
<td></td>
</tr>
<tr>
<td>231064</td>
<td>4 1169 caggccacatcggggtcctg</td>
<td>264 N. sapiens 670</td>
<td></td>
</tr>
<tr>
<td>231066</td>
<td>4 1021 cctgcacaaacctgctggccc</td>
<td>266 N. sapiens 671</td>
<td></td>
</tr>
<tr>
<td>231067</td>
<td>4 400 ccaagtcacacccacactgga</td>
<td>267 N. sapiens 672</td>
<td></td>
</tr>
<tr>
<td>231068</td>
<td>4 1165 cagcattgcacacactggctg</td>
<td>268 N. sapiens 673</td>
<td></td>
</tr>
<tr>
<td>231069</td>
<td>4 363 tcgcccttcgttttgagag</td>
<td>269 N. sapiens 674</td>
<td></td>
</tr>
<tr>
<td>231070</td>
<td>4 550 gcacacacgctctgctgcc</td>
<td>270 N. sapiens 675</td>
<td></td>
</tr>
<tr>
<td>231071</td>
<td>4 367 cttctctgttggagatggg</td>
<td>271 N. sapiens 676</td>
<td></td>
</tr>
<tr>
<td>231073</td>
<td>4 1071 gccttcaccgctgggtcgc</td>
<td>273 N. sapiens 677</td>
<td></td>
</tr>
<tr>
<td>TARGET</td>
<td>SEQ NO</td>
<td>SITE ID</td>
<td>TARGET SITE</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>231075 4</td>
<td>349</td>
<td>275</td>
<td>N. sapiens 678</td>
</tr>
<tr>
<td>231077 4</td>
<td>463</td>
<td>278</td>
<td>N. sapiens 679</td>
</tr>
<tr>
<td>231078 4</td>
<td>320</td>
<td>279</td>
<td>N. sapiens 680</td>
</tr>
<tr>
<td>231079 4</td>
<td>1183</td>
<td>280</td>
<td>N. sapiens 681</td>
</tr>
<tr>
<td>231080 4</td>
<td>862</td>
<td>281</td>
<td>N. sapiens 682</td>
</tr>
<tr>
<td>231081 4</td>
<td>565</td>
<td>282</td>
<td>N. sapiens 683</td>
</tr>
<tr>
<td>231083 4</td>
<td>1177</td>
<td>284</td>
<td>N. sapiens 684</td>
</tr>
<tr>
<td>231085 4</td>
<td>1184</td>
<td>286</td>
<td>N. sapiens 685</td>
</tr>
<tr>
<td>231086 4</td>
<td>410</td>
<td>287</td>
<td>N. sapiens 686</td>
</tr>
<tr>
<td>231097 4</td>
<td>495</td>
<td>288</td>
<td>N. sapiens 687</td>
</tr>
<tr>
<td>231099 4</td>
<td>688</td>
<td>291</td>
<td>N. sapiens 688</td>
</tr>
<tr>
<td>231100 4</td>
<td>863</td>
<td>293</td>
<td>N. sapiens 689</td>
</tr>
<tr>
<td>231102 4</td>
<td>694</td>
<td>297</td>
<td>N. sapiens 690</td>
</tr>
<tr>
<td>231104 4</td>
<td>494</td>
<td>298</td>
<td>N. sapiens 691</td>
</tr>
<tr>
<td>231107 4</td>
<td>1178</td>
<td>300</td>
<td>N. sapiens 692</td>
</tr>
<tr>
<td>231109 4</td>
<td>1207</td>
<td>301</td>
<td>N. sapiens 693</td>
</tr>
<tr>
<td>231110 4</td>
<td>352</td>
<td>302</td>
<td>N. sapiens 694</td>
</tr>
<tr>
<td>231111 4</td>
<td>261</td>
<td>303</td>
<td>N. sapiens 695</td>
</tr>
<tr>
<td>231112 4</td>
<td>561</td>
<td>304</td>
<td>N. sapiens 696</td>
</tr>
<tr>
<td>231113 4</td>
<td>323</td>
<td>305</td>
<td>N. sapiens 697</td>
</tr>
<tr>
<td>231114 4</td>
<td>324</td>
<td>306</td>
<td>N. sapiens 698</td>
</tr>
<tr>
<td>231116 4</td>
<td>1179</td>
<td>307</td>
<td>N. sapiens 699</td>
</tr>
<tr>
<td>231117 4</td>
<td>1289</td>
<td>309</td>
<td>N. sapiens 700</td>
</tr>
<tr>
<td>231118 4</td>
<td>322</td>
<td>310</td>
<td>N. sapiens 701</td>
</tr>
<tr>
<td>231119 4</td>
<td>405</td>
<td>311</td>
<td>N. sapiens 702</td>
</tr>
<tr>
<td>231120 4</td>
<td>870</td>
<td>312</td>
<td>N. sapiens 703</td>
</tr>
<tr>
<td>231121 4</td>
<td>464</td>
<td>314</td>
<td>N. sapiens 704</td>
</tr>
<tr>
<td>231122 4</td>
<td>1060</td>
<td>316</td>
<td>N. sapiens 705</td>
</tr>
<tr>
<td>231123 4</td>
<td>1422</td>
<td>317</td>
<td>N. sapiens 706</td>
</tr>
<tr>
<td>231124 4</td>
<td>542</td>
<td>321</td>
<td>N. sapiens 707</td>
</tr>
<tr>
<td>231125 4</td>
<td>456</td>
<td>322</td>
<td>N. sapiens 708</td>
</tr>
<tr>
<td>231126 4</td>
<td>404</td>
<td>325</td>
<td>N. sapiens 709</td>
</tr>
<tr>
<td>231127 4</td>
<td>538</td>
<td>326</td>
<td>N. sapiens 710</td>
</tr>
</tbody>
</table>
TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.

<table>
<thead>
<tr>
<th>TARGET SITE ID</th>
<th>SEQ ID</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>REV COMP OF SEQ ID</th>
<th>NO. ACTIVE</th>
<th>NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>231126</td>
<td>4</td>
<td>954</td>
<td>tggcgcgggtttcgacgta</td>
<td>329 H. sapiens</td>
<td>711</td>
<td></td>
</tr>
<tr>
<td>231127</td>
<td>4</td>
<td>684</td>
<td>agatgtacacacgcccag</td>
<td>330 H. sapiens</td>
<td>712</td>
<td></td>
</tr>
<tr>
<td>231129</td>
<td>4</td>
<td>1214</td>
<td>ctggcagctctgataaactgtc</td>
<td>332 H. sapiens</td>
<td>713</td>
<td></td>
</tr>
<tr>
<td>231130</td>
<td>4</td>
<td>1023</td>
<td>tgcacacctctcgagtcct gc</td>
<td>333 H. sapiens</td>
<td>714</td>
<td></td>
</tr>
<tr>
<td>231133</td>
<td>4</td>
<td>554</td>
<td>cacogttctgtccagttg</td>
<td>336 H. sapiens</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>231135</td>
<td>4</td>
<td>499</td>
<td>taccacgagcacaactcctc</td>
<td>338 H. sapiens</td>
<td>716</td>
<td></td>
</tr>
<tr>
<td>231136</td>
<td>4</td>
<td>1164</td>
<td>cccagatgacgactggtcgg</td>
<td>339 H. sapiens</td>
<td>717</td>
<td></td>
</tr>
<tr>
<td>231138</td>
<td>4</td>
<td>1064</td>
<td>ttcttcagctctgagccttc</td>
<td>341 H. sapiens</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>231139</td>
<td>4</td>
<td>1163</td>
<td>accagcaatgacgactggtc</td>
<td>342 H. sapiens</td>
<td>719</td>
<td></td>
</tr>
<tr>
<td>231140</td>
<td>4</td>
<td>547</td>
<td>agtcacacgagccttcag</td>
<td>343 H. sapiens</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>231141</td>
<td>4</td>
<td>408</td>
<td>caccaacgacgactggtc</td>
<td>344 H. sapiens</td>
<td>721</td>
<td></td>
</tr>
<tr>
<td>231143</td>
<td>4</td>
<td>1020</td>
<td>acctgacacgacgactggtc</td>
<td>346 H. sapiens</td>
<td>722</td>
<td></td>
</tr>
<tr>
<td>231145</td>
<td>4</td>
<td>562</td>
<td>cgyttcagatcgcgagttgg</td>
<td>348 H. sapiens</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>231146</td>
<td>4</td>
<td>1418</td>
<td>aagttctctctgcaccttc</td>
<td>349 H. sapiens</td>
<td>724</td>
<td></td>
</tr>
<tr>
<td>231148</td>
<td>4</td>
<td>557</td>
<td>cctttctgtcagctcagcg</td>
<td>351 H. sapiens</td>
<td>725</td>
<td></td>
</tr>
<tr>
<td>231150</td>
<td>4</td>
<td>1155</td>
<td>agtcagtgagcagccttcag</td>
<td>353 H. sapiens</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>231151</td>
<td>4</td>
<td>566</td>
<td>ttacagagctcagcgagcacttc</td>
<td>354 H. sapiens</td>
<td>727</td>
<td></td>
</tr>
<tr>
<td>231152</td>
<td>4</td>
<td>721</td>
<td>atacagctccagcttc</td>
<td>355 H. sapiens</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>231154</td>
<td>4</td>
<td>1162</td>
<td>ggacacgctagcactcagcttc</td>
<td>356 H. sapiens</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td>231155</td>
<td>4</td>
<td>549</td>
<td>tgcacacgagccttcag</td>
<td>358 H. sapiens</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>231156</td>
<td>4</td>
<td>1159</td>
<td>tggcagcactgcacgagtgc</td>
<td>360 H. sapiens</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>231157</td>
<td>4</td>
<td>457</td>
<td>acatctccagctcagcttc</td>
<td>361 H. sapiens</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>231160</td>
<td>4</td>
<td>546</td>
<td>aactgtacagacaacttc</td>
<td>365 H. sapiens</td>
<td>733</td>
<td></td>
</tr>
<tr>
<td>110306</td>
<td>4</td>
<td>721</td>
<td>atacagctccagcttc</td>
<td>355 H. sapiens</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>231154</td>
<td>4</td>
<td>549</td>
<td>tgcacacgagccttcag</td>
<td>358 H. sapiens</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>231155</td>
<td>4</td>
<td>1159</td>
<td>tggcagcactgcacgagtgc</td>
<td>360 H. sapiens</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>231156</td>
<td>4</td>
<td>457</td>
<td>acatctccagctcagcttc</td>
<td>361 H. sapiens</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>231160</td>
<td>4</td>
<td>546</td>
<td>aactgtacagacaacttc</td>
<td>365 H. sapiens</td>
<td>733</td>
<td></td>
</tr>
<tr>
<td>231162</td>
<td>4</td>
<td>260</td>
<td>agctactgccccagcagcttc</td>
<td>367 H. sapiens</td>
<td>734</td>
<td></td>
</tr>
<tr>
<td>231163</td>
<td>4</td>
<td>690</td>
<td>acagctaagcctccagttgtg</td>
<td>368 H. sapiens</td>
<td>735</td>
<td></td>
</tr>
<tr>
<td>231165</td>
<td>4</td>
<td>558</td>
<td>gttctctcttcaacgaggcttc</td>
<td>370 H. sapiens</td>
<td>736</td>
<td></td>
</tr>
<tr>
<td>231166</td>
<td>4</td>
<td>958</td>
<td>cgcttggtctaatgagaacttcag</td>
<td>371 H. sapiens</td>
<td>737</td>
<td></td>
</tr>
<tr>
<td>231168</td>
<td>4</td>
<td>867</td>
<td>tggccagtccagcagcttcag</td>
<td>373 H. sapiens</td>
<td>738</td>
<td></td>
</tr>
<tr>
<td>231169</td>
<td>4</td>
<td>865</td>
<td>gtgcgtggagcagcttcag</td>
<td>374 H. sapiens</td>
<td>739</td>
<td></td>
</tr>
<tr>
<td>231171</td>
<td>4</td>
<td>692</td>
<td>agacaggtcagcttcagcttc</td>
<td>376 H. sapiens</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>231172</td>
<td>4</td>
<td>1181</td>
<td>gttctctctttggtctcagcttgg</td>
<td>377 H. sapiens</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>231174</td>
<td>4</td>
<td>1057</td>
<td>gaggagcccttctcagcttc</td>
<td>379 H. sapiens</td>
<td>742</td>
<td></td>
</tr>
<tr>
<td>231175</td>
<td>4</td>
<td>1211</td>
<td>ttctttcgcactcctgatcc</td>
<td>390 H. sapiens</td>
<td>743</td>
<td></td>
</tr>
<tr>
<td>231176</td>
<td>4</td>
<td>541</td>
<td>ccacacaggtcagcagcttcag</td>
<td>391 H. sapiens</td>
<td>744</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-continued

Sequence and position of preferred target segments identified in glucagon receptor.

<table>
<thead>
<tr>
<th>TARGET SEQ</th>
<th>REV COMP OF SEQ ID</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE ID</td>
<td>NO</td>
<td>SITE SEQ ID</td>
<td>ID ACTIVE IN</td>
</tr>
</tbody>
</table>

<p>| 231177 | 4 | 319 | gctgctgctggcctgccagc | 302 | N. sapiens | 745 |
| 231178 | 4 | 545 | aaagtgcaacacgcttgcg | 303 | N. sapiens | 746 |
| 231179 | 4 | 952 | tggtggcgcggtggttcctgc | 304 | N. sapiens | 747 |
| 231180 | 4 | 1180 | gggcttcctgtggtacctgc | 306 | N. sapiens | 748 |
| 231181 | 4 | 722 | tacagctgtccctgggyggc | 308 | N. sapiens | 749 |
| 231182 | 4 | 957 | ccgggttgctcattgcaat | 309 | N. sapiens | 750 |
| 231183 | 4 | 459 | cctcggcagacatttccctgc | 391 | N. sapiens | 751 |
| 110293 | 4 | 693 | gcagccttcaggtcgtgac | 392 | N. sapiens | 752 |
| 231184 | 4 | 1153 | cccgtgctggaacagcaattg | 393 | N. sapiens | 753 |
| 110319 | 4 | 551 | ccaccgccgcttcggctgacta | 396 | N. sapiens | 754 |
| 231190 | 4 | 1171 | tgccacaactgggtcttcggt | 397 | N. sapiens | 755 |
| 63771 | 11 | 138 | ccacccttcggcagacgagtcggg | 404 | N. musculus | 756 |
| 63777 | 11 | 274 | ttgggacagtggacgctcctct | 406 | N. musculus | 757 |
| 63778 | 11 | 284 | tgagcttcatacttgacca | 407 | N. musculus | 758 |
| 63780 | 11 | 308 | ccaccacaact cccttcgctgt | 408 | N. musculus | 759 |
| 63784 | 11 | 403 | cactgtaccaccatttcttcgc | 409 | N. musculus | 760 |
| 63787 | 11 | 464 | gttttgccagactgtgcggcc | 410 | N. musculus | 761 |
| 63791 | 11 | 559 | gatctcgagttcagagagaggg | 411 | N. musculus | 762 |
| 63792 | 11 | 619 | gggctcagctcgtgctcctgg | 412 | N. musculus | 763 |
| 63793 | 11 | 670 | gggctcagctcgtgctcact | 413 | N. musculus | 764 |
| 63802 | 11 | 1019 | cccctgctgtgctgctgcaatg | 414 | N. musculus | 765 |
| 63806 | 11 | 1059 | tgcctgacgagctcctgtcag | 416 | N. musculus | 766 |
| 63808 | 11 | 1079 | atggtgacggctggtgcat | 417 | N. musculus | 767 |
| 63811 | 11 | 1220 | gctgagttcctgcagctgacct | 418 | M. inusculus | 768 |
| 95505 | 400 | 14 | gcaacctgcagagagagggca | 424 | N. musculus | 769 |
| 95506 | 400 | 25 | agagtgctgacacactttgag | 425 | N. musculus | 770 |
| 95507 | 400 | 30 | tgccacacacatctggacgctt | 426 | N. musculus | 771 |
| 95508 | 400 | 48 | ctgaggctggcaacacttcgccc | 427 | N. musculus | 772 |
| 95509 | 400 | 80 | tggctaccacaggggtacgccc | 428 | N. musculus | 773 |
| 95510 | 400 | 192 | tggctttgagagctggtgctt | 430 | M. inusculus | 774 |
| 95512 | 400 | 251 | ccacccctgcagcctggtgctt | 431 | N. musculus | 775 |
| 95513 | 400 | 291 | actcgttcgctgctggcagaccc | 432 | M. musculus | 776 |
| 95514 | 400 | 359 | tgcaccacactgcagcctgaggc | 433 | M. musculus | 777 |</p>
<table>
<thead>
<tr>
<th>TARGET SEQ</th>
<th>REV COMP OF SEQ</th>
<th>ID NO</th>
<th>SITE ID</th>
<th>TARGET SEQ ID NO</th>
<th>ACTIVE IN NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>95515</td>
<td>400 371 cagcagaagctagtgttcaag</td>
<td>434</td>
<td>M. musculus 778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95516</td>
<td>400 410 cagtgggtagtgagggccacg</td>
<td>435</td>
<td>M. musculus 779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95517</td>
<td>400 545 agtctgtaactgggggcttt</td>
<td>436</td>
<td>M. musculus 780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95518</td>
<td>400 572 ggcgctgactgtggtg</td>
<td>437</td>
<td>M. musculus 781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95519</td>
<td>400 582 tctggtggccagaag</td>
<td>438</td>
<td>M. musculus 782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95520</td>
<td>400 650 gtcggaagctgtgctg</td>
<td>439</td>
<td>M. musculus 783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95521</td>
<td>400 764 ggcgctgactgtggtg</td>
<td>440</td>
<td>M. musculus 784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95522</td>
<td>400 775 ggcgctgactgtggtg</td>
<td>441</td>
<td>M. musculus 785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95523</td>
<td>400 785 atcaggaagctgtgctg</td>
<td>442</td>
<td>M. musculus 786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95524</td>
<td>400 836 gtcggaagctgtgctg</td>
<td>443</td>
<td>M. musculus 787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95525</td>
<td>400 974 cgctggtggccagaag</td>
<td>444</td>
<td>M. musculus 788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95527</td>
<td>400 1079 cttcttggtggaagctgtg</td>
<td>446</td>
<td>M. musculus 789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95529</td>
<td>400 1100 ggccagaagctgtgctg</td>
<td>448</td>
<td>M. musculus 790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95531</td>
<td>400 1256 tctggtggccagaag</td>
<td>450</td>
<td>M. musculus 791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95532</td>
<td>400 1292 ctctgcttgtctctcagcaag</td>
<td>451</td>
<td>M. musculus 792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95533</td>
<td>400 1349 atgctgatggccagcagcag</td>
<td>452</td>
<td>M. musculus 793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95534</td>
<td>400 1360 caagctgcttgtctctcag</td>
<td>453</td>
<td>M. musculus 794</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95535</td>
<td>400 1380 acgagcgcagcgcagcagcag</td>
<td>454</td>
<td>M. musculus 795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95536</td>
<td>400 1435 tcctgctgagaaactcagc</td>
<td>455</td>
<td>M. musculus 796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95537</td>
<td>400 1450 tcagctttagtgctccagcaag</td>
<td>456</td>
<td>M. musculus 797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95538</td>
<td>400 1470 gcagctttagtgctccagcaag</td>
<td>457</td>
<td>M. musculus 798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95539</td>
<td>400 1512 tcgctggtgagaaactcagc</td>
<td>458</td>
<td>M. musculus 799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95540</td>
<td>400 1544 cccacatgtacatctctg</td>
<td>459</td>
<td>M. musculus 800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95542</td>
<td>400 1575 gtgtgtctctactcagcagacg</td>
<td>461</td>
<td>M. musculus 801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95543</td>
<td>400 1600 agcgtgcgagctgcagctg</td>
<td>462</td>
<td>M. musculus 802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95544</td>
<td>400 1610 agcgtgcgagctgcagctg</td>
<td>463</td>
<td>M. musculus 803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95545</td>
<td>400 1620 gcctggccagagtggaag</td>
<td>464</td>
<td>M. musculus 804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95546</td>
<td>400 1646 cagcacaagcagcagcagcag</td>
<td>465</td>
<td>M. musculus 805</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-continued

<table>
<thead>
<tr>
<th>TARGET SEQ ID</th>
<th>TARGET SITE ID</th>
<th>SEQ OF SEQUENCE</th>
<th>SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>95547 400 1687 gtcctagcttggcgacagccc</td>
<td>466 M. musculus 806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95548 400 1724 gtggatatgatggaagaagc</td>
<td>467 M. musculus 807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95549 400 1750 atctatgaaccttgatgcttg</td>
<td>468 M. musculus 808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95550 400 1756 gactcttgatgctcccctag</td>
<td>469 M. musculus 809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95551 400 1795 tacccagatatgtctcttgag</td>
<td>470 M. musculus 810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95552 401 3953 ctggtctctctctttttctac</td>
<td>471 M. musculus 811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95553 401 7321 acctcagaagagatggtcttgg</td>
<td>473 M. musculus 812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95554 401 7505 cctgcccagctgcaagacagc</td>
<td>474 M. musculus 813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95555 401 8766 gtcctgtgccacatctcttgag</td>
<td>476 M. musculus 814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95560 11 10 tctggtctctgctggcttgg</td>
<td>479 M. musculus 815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95561 11 85 ctcggtctctgctggcttgg</td>
<td>480 M. musculus 816</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0176] As these “preferred target segments” have been found by experimentation to be open to, and accessible for, hybridization with the antisense compounds of the present invention, one of skill in the art will recognize or be able to ascertain, using no more than routine experimentation, further embodiments of the invention that encompass other compounds that specifically hybridize to these preferred target segments and consequently inhibit the expression of glucagon receptor.

[0177] According to the present invention, antisense compounds include antisense oligomeric compounds, antisense oligonucleotides, ribozymes, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other short oligomeric compounds which hybridize to at least a portion of the target nucleic acid.

Example 18
Effects of Antisense Inhibition of Glucagon Receptor in Mice on Plasma Glucose Levels and Glucagon Receptor mRNA Reduction: Lean Animals, db/db Mice and ob/ob Mice

[0179] In accordance with the present invention, two antisense oligonucleotides targeted to the mouse glucagon receptor, ISIS 148359 (agagcattacgaattgatgagg, SEQ ID NO: 408) and ISIS 180475 (gagagatttctctgattgct, SEQ ID NO: 452), were evaluated for therapeutic efficacy in art-accepted mouse models of obesity and diabetes. Ob/ob mice have mutations in the leptin gene and are leptin-deficient, while db/db mice have mutations in the leptin receptor gene. The two strains exhibit obesity and diabetes strongly resembling Type 2 diabetes in humans. Tsang, S. H., 1998, P & S Medical Review, Vol. 5, No. 1.

[0180] Db/db and ob/ob mice were evaluated over the course of 4 weeks for the effects of ISIS 148359 and ISIS 180475 on serum glucose levels and glucagon receptor mRNA levels, while normoglycemic mice were evaluated for 2 weeks. Control animals received saline treatment (50 mg/kg). The normoglycemic mice were dosed subcutaneously twice a week for 2 weeks with 50 mg/kg of ISIS 148359, ISIS 180475 or saline. The db/db and ob/ob mice were dosed subcutaneously twice a week for 6 weeks with 25 mg/kg of ISIS 148359, ISIS 180475, saline, the positive control oligonucleotide ISIS 116847 (ctctctgcttctttgctctt, SEQ ID NO: 817) or the negative control oligonucleotide ISIS 141923 (ctctctctctctctctctct, SEQ ID NO: 818). The mice were monitored weekly for fed or fasted plasma glucose levels (fasted glucose measured 16 hr after last feeding) and upon termination of the experiment the level of glucagon receptor mRNA in the liver was determined. The data are summarized in Table 4.
These data demonstrate that the antisense oligonucleotides ISIS 148359 and ISIS 180475 targeted to glucagon receptor mRNA are capable of decreasing levels of glucagon receptor mRNA in mouse liver. These data further demonstrate that reduction of glucagon receptor expression is accompanied by a decrease in plasma glucose levels in normoglycemic mice, db/db mice and ob/ob mice. It is important to note that the treated mice become normoglycemic and do not become hypoglycemic. Antisense inhibitors of glucagon receptor are thus believed to be useful therapeutic modalities for treatment of hyperglycemia.

Example 19

Glucagon Receptor Antisense Oligonucleotides Lower Plasma Glucose in ob/ob Diabetic Mice — 4 Week Study

C57Bl/6OlaHsd-Lepr^{ob} (ob/ob) male mice were purchased from Harlan (Indianapolis, Ind., USA). Animals were acclimated for one week prior to study initiation. Mice were housed five per cage in polycarbonate cages with filter tops. Animals were maintained on a 12:12 hr light-dark cycle (lights on at 6:00 AM) at 21° C. All animals received de-ionized water ad libitum. ob/ob mice received Purina Diet 5015 ad libitum. Antisense compounds were prepared in normal saline, and the solution was sterilized through a 0.2 μm filter. Animals were dosed with antisense compound solutions or vehicle (saline) twice per week (separated by 3.5 days) via subcutaneous injection. Before the initiation of each study and once weekly during the study, blood was collected by tail clip without anesthesia into EDTA plasma tubes containing trasyloL (Serologicals Proteins, Kankakee, Ill., USA) and dipeptidyl peptidase (DPP)-IV inhibitor (Linco Diagnostic Services, St. Charles, Mo., USA). Food intake and body weights were measured weekly. Plasma levels of glucose and triglycerides were determined on the Hitachi 912 clinical chemistry analyzer (Roche, Indianapolis, Ind., USA).

To test the efficacy of antisense inhibitors of glucagon receptor to treat hyperglycemia, 7-8 week-old ob/ob mice were dosed two times per week with antisense inhibitors of glucagon receptor [ISIS 148359 (SEQ ID NO: 408) or ISIS 180475 (SEQ ID NO: 452)], a generic control oligonucleotide (ISIS 141923; SEQ ID NO: 818) whose sequence does not match any known transcripts in the mouse or rat genomes, a mismatch oligonucleotide (ISIS 298682; GGGATTCTCCGTTTGGACCT; SEQ ID NO: 819) whose sequence is identical to ISIS 180475 except for 7 internal bases, or saline twice a week (every 3.5 days) for 4 weeks. All oligonucleotides were administered at 25 mg/kg. Data are the mean values (±SEM where shown) of 8 mice per treatment group. Plasma glucose levels in all mice were approximately 330-370 mg/dl day zero. Whereas hyperglycemia worsened over time in saline- and control oligonucleotide-treated ob/ob mice, animals treated with glucagon receptor antisense compounds showed a dramatic reduction in plasma glucose. At day 12, plasma glucose levels in ob/ob mice treated with control oligonucleotide (ISIS 141923) and saline were approximately 472 and 425 mg/dl, respectively. Plasma glucose levels in mice treated with antisense oligonucleotides ISIS 148359 and ISIS 180475 were 240 and 180 mg/dl, respectively. At day 27, plasma glucose levels in ob/ob mice treated with control oligonucleotide (ISIS 141923) and saline were approximately 435 and 390 mg/dl, respectively. Plasma glucose levels in mice treated with antisense oligonucleotides ISIS 148359 and ISIS 180475 were 165 and 130 mg/dl, respectively. The latter is in the normal range.

A separate study, also using ob/ob mice (as well as db/db mice, lean mice, ZDF rats and lean rats) was also performed in which animals were also dosed subcutaneously every 3.5 days for a total of 9 doses of glucagon receptor antisense compound ISIS 180475 and one or more controls (unrelated control oligonucleotide ISIS 141923, mismatch

<table>
<thead>
<tr>
<th>Biological Marker</th>
<th>Measured</th>
<th>mice (time of course of study)</th>
<th>day of treatment</th>
<th>ISIS #</th>
<th>Antisense Oligonucleotides</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>148359</td>
<td>180475</td>
<td>saline</td>
</tr>
<tr>
<td>fed</td>
<td>lean mice</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plasma</td>
<td>db/db mice</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glucose</td>
<td>ob/ob mice</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl.</td>
<td>end</td>
<td>82</td>
<td></td>
<td></td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
control oligonucleotide ISIS 298682, and/or saline). The results of this study are shown in Table 5.

[0185] At the end of the 4-week treatment period, liver glucagon receptor mRNA was measured (normalized to total RNA in the same samples using Ribogreen) and was found to be reduced by 85-95%. Data are mean values of four mice per treatment group (P<0.05 using Student’s t-test).

TABLE 5

<table>
<thead>
<tr>
<th></th>
<th>db/db mice</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plasma Glucose (mg/dl)</td>
<td>Plasma Triglycerides (mg/dl)</td>
<td>Plasma Insulin (ng/ml)</td>
<td>Plasma Glucagon (pg/ml)</td>
</tr>
<tr>
<td>Saline</td>
<td>56.5 ± 1.5</td>
<td>564 ± 118</td>
<td>163 ± 25</td>
<td>35.9 ± 13.8</td>
<td>n.d.</td>
</tr>
<tr>
<td>ISIS 180475</td>
<td>54.1 ± 1.6</td>
<td>122 ± 6*</td>
<td>129 ± 7</td>
<td>19.8 ± 9.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>db/db mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIS 141923</td>
<td>46.0 ± 0.7</td>
<td>571 ± 29</td>
<td>412 ± 33</td>
<td>n.d.</td>
<td>117 ± 12</td>
</tr>
<tr>
<td>ISIS 298682</td>
<td>43.9 ± 1.3</td>
<td>577 ± 65</td>
<td>448 ± 40</td>
<td>n.d.</td>
<td>131 ± 20</td>
</tr>
<tr>
<td>ISIS 180475</td>
<td>45.6 ± 0.6</td>
<td>241 ± 37*</td>
<td>121 ± 12*</td>
<td>n.d.</td>
<td>3765 ± 952*</td>
</tr>
<tr>
<td>db/+ lean mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIS 141923</td>
<td>28.0 ± 1.0</td>
<td>196 ± 12</td>
<td>121 ± 7</td>
<td>n.d.</td>
<td>80 ± 1</td>
</tr>
<tr>
<td>ISIS 180475</td>
<td>27.6 ± 1.0</td>
<td>164 ± 4*</td>
<td>85 ± 6*</td>
<td>n.d.</td>
<td>362 ± 40*</td>
</tr>
<tr>
<td>ZDF rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIS 141923</td>
<td>403 ± 12</td>
<td>417 ± 38</td>
<td>640 ± 105</td>
<td>5.0 ± 1.9</td>
<td>136 ± 7</td>
</tr>
<tr>
<td>ISIS 180475</td>
<td>404 ± 8</td>
<td>143 ± 15*</td>
<td>250 ± 25*</td>
<td>4.4 ± 0.5</td>
<td>548 ± 20*</td>
</tr>
<tr>
<td>SD lean rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>344 ± 4</td>
<td>116 ± 3</td>
<td>106 ± 26</td>
<td>2.7 ± 0.3</td>
<td>56 ± 11</td>
</tr>
<tr>
<td>ISIS 180475</td>
<td>327 ± 5</td>
<td>104 ± 7</td>
<td>130 ± 58</td>
<td>1.3 ± 0.2*</td>
<td>855 ± 122*</td>
</tr>
</tbody>
</table>

*P < 0.05.
n.d., not determined

Example 20

Glucagon Receptor Antisense Oligonucleotides Lower Plasma Glucose in db/db Diabetic Mice — 4 Week Study

[0186] C57Bl/KsOla1Isd-Lepob (db/db) and lean (db/+) male mice were purchased from Harlan (Indianapolis, Ind., USA). Animals were acclimated for one week prior to study initiation. Mice were housed five per cage in polycarbonate cages with filter tops. Animals were maintained on a 12:12 hr light-dark cycle (lights on at 6:00 AM) at 21°C. All animals received de-ionized water ad libitum. db/db mice received Purina Diet 5008 ad libitum. Antisense compounds were prepared in normal saline, and the solution was sterilized through a 0.2 µm filter. Animals were dosed with antisense compound solutions or saline (vehicle) twice per week (separated by 3.5 days) via subcutaneous injection. Before the initiation of each study and once weekly during the study, blood was collected by tail clip without anesthesia into EDTA plasma tubes containing trasylosl (Serologicals Proteins, Kankakee, Ill., USA) and dipeptidyl peptidase (DPP)-IV inhibitor (Linco Diagnostic Services, St. Charles, Mo., USA). Food intake and body weights were measured weekly. Plasma levels of glucose and triglycerides were determined on the Hitachi 912 clinical chemistry analyzer (Roche, Indianapolis, Ind., USA).

[0187] To test the efficacy of antisense inhibitors of glucagon receptor to treat hyperglycemia, 7-8 week-old db/db mice were dosed two times per week with antisense inhibitors of glucagon receptor [ISIS 148359 (SEQ ID NO: 408) or ISIS 180475 (SEQ ID NO: 452)], a generic control oligonucleotide (ISIS 141923) whose sequence does not match any known transcripts in the mouse or rat genomes, a mismatch oligonucleotide (ISIS 298682; SEQ ID NO: 819) whose sequence is identical to ISIS 180475 except for 7 internal bases, or saline for 4 weeks.

[0188] Glucose lowering efficacy and target reduction in db/db mice undergoing glucagon receptor antisense treatment were similar to those observed in similarly treated ob/ob mice; furthermore, plasma triglycerides were lowered from 412±33 to 121±12 mg/dl following glucagon receptor antisense treatment (Table 5). These results in db/db mice are similar to those reported in preliminary studies testing glucagon receptor antisense compound ISIS 148359 for 3 weeks [Osborne et al., 2003, Diabetes 52, A129 (abstract)].

Example 21

Glucagon Receptor Antisense Oligonucleotides Lower Plasma Glucose in ZDF Rats

[0189] ZDF/GmiCrl-fa/fal (ZDF) male rats were purchased from Charles River Laboratories (Wilmington, Mass., USA). Animals were acclimated for one week prior to study initiation. Rats were housed one per cage in polycarbonate cages with filter tops. Animals were maintained on a 12:12 hr light-dark cycle (lights on at 6:00 AM) at 21°C. All animals received de-ionized water ad libitum. ZDF rats received Purina Diet 5008 ad libitum. Antisense compounds
were prepared in normal saline, and the solution was sterilized through a 0.2 μm filter. Seven-week old animals were dosed with antisense compound solutions or vehicle (saline) twice per week (separated by 3.5 days) via subcutaneous injection, for a total of 9 doses (last treatment on day 28), followed by a washout period of equal duration. Oligonucleotide concentration was 25 mg/kg of either glucagon receptor antisense oligonucleotide ISIS 180475 (SEQ ID NO: 452) or negative control oligonucleotide ISIS 141923 (SEQ ID NO: 815). Before the initiation of each study and once weekly during the study, blood was collected by tail clip without anesthesia into EDTA plasma tubes containing trisylol (Sero logicals Proteins, Kankakee, Ill., USA) and dipeptidyl peptidase (DPP)-IV inhibitor (Lincor Diagnostic Services, St. Charles, Mo., USA). Food intake and body weights were measured weekly. Glucagon receptor mRNA (target) was measured by real-time quantitative RT-PCR from livers of five animals removed from the study at each time point. Rat 36B4 ribosomal phosphoprotein mRNA ("18S RNA") was measured and used to normalize RNA input. Data are the mean values of five rats per treatment group. In overall comparisons during the treatment period, target reduction by glucagon receptor antisense compound ISIS 180475 was significantly different when compared to control oligonucleotide-treated animals (P<0.05 adjusted using the Tukey method). Liver glucagon receptor mRNA decreased dramatically to 50% of controls within 24 hours after the first dose of ISIS 180475 and to 30% of controls 48 hr following the seventh dose.

For non-fasted plasma glucose levels, rats were treated as described above. Data are the mean values of five rats per treatment group. In overall comparisons during the treatment period, glucose lowering by the glucagon receptor antisense compound ISIS 180475 showed significant difference when compared to control oligonucleotide-treated animals. (P<0.05 adjusted using the Tukey method). The drop in plasma glucose paralleled the drop in glucagon receptor mRNA levels; there was a significant drop in plasma glucose within 48 hours after the initial glucagon receptor antisense dose. After 9 doses, the control oligonucleotide (ISIS 141923) treated rats had plasma glucose levels averaging approximately 417 mg/dl and antisense (ISIS 180475) treated rats had plasma glucose levels averaging approximately 143 mg/dl.

During the washout phase, hyperglycemia and glucagon receptor expression in liver began to rebound within 10 days, but even one month after the final dose, efficacy was still observed as plasma glucose and target mRNA levels in washout animals remained below pre-treatment levels. Glucose lowering achieved by the twice per week dosing schedule and the gradual rebound of glucagon receptor mRNA during the washout period are both consistent with the extended half lives of 2-methoxyethoxy modified phosphorothioate oligonucleotides (typically ranging from 9 to 19 days according to published reports).

Non-fasted plasma insulin levels were also determined for rats treated as described above. Data are the mean values of five rats per treatment group. No significant changes were observed during the treatment period; however, individual comparisons between glucagon receptor antisense and control oligonucleotide treated animals on day 38 and 56 (washout period) were significant (P<0.05). Plasma insulin levels declined during the treatment phase in both control oligonucleotide and antisense-treated animals. During the washout phase of the control oligonucleotide treated group, insulin levels continued to decline as hyperglycemia progressed. This result is expected since beta-cell failure typically occurs in ZDF rats between 8 and 12 weeks of age. Interestingly, the mild elevation of glucose in glucagon receptor antisense-treated animals during the washout period resulted in a robust rise in plasma insulin to levels nearly as high as at start of study. This is consistent with evidence of preserved beta-cell function.

Example 22

Glucagon Receptor Antisense Oligonucleotides do not cause Hyperglycemia or Hypoglycemia, in spite of Hyperglycagonemia

In addition to effects on blood glucose, treatment with the antisense inhibitor of glucagon receptor (ISIS 180475; SEQ ID NO: 452) resulted in marked (and reversible) hyperglycagonemia in both normal and diabetic rodents (Table 5). This level of hyperglycagonemia is similar to that observed in glucagon receptor knockout mice (Parker et al., 2002, Biochem Biophys Res Commun. 290, 839-843; Gelling et al., 2003, Proc. Natl. Acad. Sci. U.S.A. 100, 1438-1443). Because of these high levels of serum glucagon, it was important to determine whether the antisense inhibitors of glucagon receptor might induce hyperglycagonemia, particularly as hepatic glucagon receptor levels gradually return to normal following treatment withdrawal. It is therefore significant that at no time during the treatment or washout periods did animals with hyperglycagonemia exhibit hyperglycemia. In fact, glucagon receptor antisense-treated animals showed a moderate decrease in fed plasma glucose at all time points tested.

Example 23

Glucagon Receptor mRNA is Reduced in Islets of Antisense-Treated db/db Mice

Pancreatic islets were isolated from 12-week-old male db/db mice (n=5-6 per treatment group) that had been treated twice per week (every 3.5 days) by subcutaneous injection with saline or glucagon receptor antisense oligonucleotide ISIS 180475 (SEQ ID NO: 452) at 25 mg/kg for a total of 9 doses. Mice were sacrificed by cervical dislocation. The common bile duct was cannulated with a 27-gauge needle and the pancreas was distended with 3 ml of Hank's buffer (Sigma, Taufkirchen, Germany) containing 2% bovine serum albumin (Applichem, Darmstadt, Germany) and 1 mg/ml collagenase (Serva, Heidelberg, Germany). Subsequently, the pancreas was removed and digested in Hank's buffer at 37° C. Islets were purified on a Histopaque-1077™ (Sigma) gradient for 15 min at 750g.
Islets were cultured overnight in RPMI-1640 medium containing 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin (Invitrogen, Karlsruhe, Germany). 200 islets from 3 individuals were pooled to give one sample for RNA extraction. Real-time quantitative RT-PCR was used to profile gene expression. Islet glucagon receptor mRNA levels were decreased by approximately 75% in antisense-treated animals compared to saline-treated controls. It should be noted that, in addition to pharmacologic effect of the antisense compound, a compensatory response to hyper-glucagonemia or the increased alpha-cell populations in treated animals could contribute to the results observed.

Example 24

Glucagon Receptor Antisense Oligonucleotides Decrease the Number of Functional Glucagon Receptors

[0196] To assess whether the reduction in glucagon receptor mRNA correlates with a reduction in functional glucagon receptor number, a homologous competition assay was performed using hepatocyte membranes prepared from mice treated with control or glucagon receptor antisense compounds. 125I-glucagon binding was effectively competed by increasing concentrations of unlabeled glucagon in control membrane samples. 15-20 µg of membrane from control oligonucleotide- or glucagon receptor oligonucleotide (ISIS 180475; SEQ ID NO: 452)-treated db/db mice were incubated with 0.1 nM 125I-glucagon (2000 Ci/mmol, PerkinElmer, Boston, Mass., USA) and the indicated concentrations of unlabeled glucagon (Eli Lilly and Company, Indianapolis, Ind., USA) in buffer containing 50 mM Hapes, 1 mM MgCl2, 5 mM EGTA, 0.005% Tween 20, 0.1% BSA, and EDTA-free protease inhibitor cocktail (Roche). Assays were performed under steady state conditions in the presence of excess labeled ligand on 96-well MultiScreen-HV 0.45 µm filter plates (Millipore, Bedford, Mass., USA). Following incubation for 2 hrs at room temperature, plates were rapidly washed by filtration with ice-cold buffer (20 mM Tris, pH 7.4) and dried for 45 min at 50°C. Following the addition of Optiphase Supermix (PerkinElmer), plates were counted on a Wallac Microbeta scintillation counter. Data analyses were performed using GraphPad Prism software and expressed as mean+/−SEM. Data obtained for samples from animals treated with glucagon receptor oligonucleotide near the limits of detection for the assay and curve-fitting parameters. In order to derive a numerical value for apparent Bmax, the Kd was fixed at the average value (0.69+/−0.2 nM) obtained from the samples from the control antisense-treated animals.

[0197] Functional GCGR expression was found to be decreased approximately 85% by glucagon receptor antisense treatment and is in accord with quantitative RT-PCR results.

Example 25

Antisense Inhibitors of Human and Monkey Glucagon Receptor—Dose Response

[0198] Based on the screen in Example 15 above, a subset of human glucagon receptor antisense oligonucleotides were chosen for further study. Dose-response studies were conducted for ISIS 315166, 310457, 315324, 315278, 315181, 315297, 315163 and 310456 in both human HepG2 cell cultures and in cynomolgus monkey primary hepatocytes. These six compounds are homologous to both human and cynomolgus monkey glucagon receptor nucleic acid targets. The universal control ISIS 29848 (NNNNNNNNNNNNNNNNNN; SEQ ID NO: 820, where N is an equimolar mixture of A, C, G and T, a chimeric 2’ MOE gapmer with a phosphorothiate backbone and with MOEs at positions 1-5 & 16-20) was used as negative control.

[0199] The human hepatoblastoma cell line HepG2 was obtained from the American Type Culture Collection (Manassas, Va.). HepG2 cells are routinely cultured in Eagle’s MEM supplemented with 10% fetal calf serum, non-essential amino acids, and 1 mM sodium pyruvate (Gibco/Life Technologies, Gaithersburg, Md.). Cells are routinely passaged by trypsinization and dilution when they reach 90% confluence.

[0200] Primary cynomolgus monkey hepatocytes were obtained from CellzDirect (Los Angeles) and plated onto collagen-coated 24-well plates (Costar) at a density of 75,000 cells/well. The culturing medium for these hepatocytes was Williams’ E media (Invitrogen) supplemented with 10% FBS (Invitrogen). Cells were allowed to attach overnight and were then treated with oligonucleotide-Lipofectin mixture for 4 hours. The oligonucleotide-Lipofectin mixture was washed off and then cells were incubated in normal medium.

[0201] Cells were treated with oligonucleotide for 20 hours at doses of 1, 5, 10, 25, 50, 100 nM for HepG2 cells and 5, 10, 25, 50, 100 and 200 nM for primary monkey hepatocytes (n=5). RNA was analyzed by RT-PCR to determine percent inhibition of glucagon receptor expression compared to control (ISIS 29848), at each oligonucleotide concentration. The results were plotted to give the IC50, the dose of oligonucleotide which results in 50% reduction of glucagon receptor mRNA levels. Results are shown in Table 6.

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>SEQ ID NO:</th>
<th>IC50 in human HepG2 cells (nM)</th>
<th>IC50 in monkey hepatocytes (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>315180</td>
<td>254</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>310457</td>
<td>184</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>315324</td>
<td>392</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>315278</td>
<td>346</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>315181</td>
<td>184</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>315297</td>
<td>365</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>315163</td>
<td>231</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>310456</td>
<td>183</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Based on these results, three compounds (ISIS 315297, 310457 and 315163) were chosen for study in monkeys.

Example 26

Dose-Ranging Study of Antisense Inhibition of Glucagon Receptor Expression in Cynomolgus Monkeys

[0202] A monkey study was performed at SNBL USA, Ltd., Everett, Wash. Forty mature (6-8 years old) male Macaca fascicularis (purpose-bred cynomolgus monkeys)
weighing approximately 5-10 kg at the initiation of dosing were used. The animals were individually housed in primary climate-controlled enclosures conforming to the Animal Welfare Act. Animals were offered Purina Mills Laboratory Profiled Fiber Plus® Monkey Diet (Animal Specialties, Hubbard, Oreg.). Occasional fresh fruit and vegetable treats were also offered. Fresh drinking water was available to all animals, ad libitum. Before fasting measurements, food was removed from enclosures between 1630 and 1700 on the afternoon before the scheduled blood draw. After the animals were fasted for at least 16 hours, blood samples for plasma analysis were collected BEFORE dosing or feeding. For fasting analysis, approximately 2.3-2.5 mL of blood was drawn from a peripherel vein. Approximately 1.8 to 2.0 mL was be deposited into a K2-EDTA tube containing DPP-IV inhibitor at 10 μL/mL of blood and trasylool at 250 KIU/mL of blood. Approximately 0.5 mL was deposited into a lithium heparin tube. Once the blood had been deposited into the EDTA plus additives tube, it was inverted to mix and placed on ice within 5 minutes. The blood in the lithium heparin tube was also placed on ice within 5 minutes. Blood samples were centrifuged (2000xg, 15 minutes at 4 °C) to obtain plasma within 30 minutes of sample collection. The plasma was frozen at or below -70°C. Samples were shipped on dry ice via overnight courier as described below for subsequent analysis. For non-fasted analysis, the animals were given their AM feeding (between 0830 and 0930) on the day of the blood draw. Ninety minutes after feeding, blood was drawn. The number of biscuits remaining was counted at the time of the blood draw. Samples are prepared and shipped as above.

Monkeys were dosed subcutaneously for 10 weeks with ISIS 315297, ISIS 310457 or ISIS 315163 at three concentrations. In week 1, oligonucleotides were given at 2.0, 5.0 and 20 mg/kg/dose (Day 1, 3 and 5); in week 2 through 10, oligonucleotides were given at 1.0, 2.5 and 10 mg/kg/dose (twice weekly starting at Day 8). The larger dose (6.5 or 60 mg/kg/week, i.e. 3 injections of 2, 5 or 20 mg/kg) was given in week 1 in order to rapidly achieve the desired steady state oligonucleotide concentration. In week 1, compounds were administered 3 times, every other day; for weeks 2-10, compounds were administered twice per week, with at least 2 days between dosings.

Oligonucleotides were given by subcutaneous (SC) injection, using volumes of 0.1-0.5 mL/kg. For each dosing of each animal, the appropriate volume of the relevant ASO solution or of the control vehicle was administered subcutaneously using a syringe and needle (27G). The total volume of the relevant dosing solution or the control solution was calculated on the basis of the animal’s most recent body weight. Multiple injection sites on the upper back (intrascapular region) of each monkey were employed. During acclimation the skin of the upper back was shaved and a clock-like grid (points at 12, 3, 6, and 9 o'clock) was tattooed on each animal. Injection points were a minimum of 5 cm apart. The injection site was rotated so that each site was used for fourth dose, starting with 12 o'clock and rotating clockwise. The needle was inserted away from the dot and angled so that the dose was deposited underneath the dot.

After the 10 week study (approx. 2 days after last dose), animals were euthanized and three 1 to 4 gram samples of liver tissue were removed and individually snap frozen over liquid nitrogen; alternatively, biopsies could be taken from living animals and frozen. Frozen tissues were homogenized in 4M guanidinium isothiocyanate solution and subjected to CsCl centrifugation (150,000g for 16 hr at 18 °C). The supernatant was removed and the RNA pellet was resuspended in water, following which it was applied to RNEASY mini columns (Qiagen, Valencia Calif.). After purification and quantitation, the tissues were subjected to RT-PCR analysis as described in previous examples using the following primers and probe:

<table>
<thead>
<tr>
<th>Forward primer -</th>
<th>(SEQ ID NO:821)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTGCACCCGCAAGGC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reverse primer -</th>
<th>(SEQ ID NO:822)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACGGAGCTGGCCTTCAG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe -</th>
<th>(SEQ ID NO:823)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCCACCGGAACCTGTGGTGGTCCTT</td>
<td></td>
</tr>
</tbody>
</table>

RNA amounts were normalized to 18S RNA levels in the tissue. Results are shown in Table 7, as percent reduction in glucagon receptor mRNA in antisense-treated monkeys compared to saline-treated monkeys.

Glucagon receptor mRNA reduction in monkey liver after treatment with antisense inhibitors of glucagon receptor - RT-PCR expr 1				
ISIS #	SEQ ID NO:	% reduction at 2 mg/kg	% reduction at 5 mg/kg	% reduction at 20 mg/kg
310457	184	17	31	64
315297	365	2	21	49
315163	231	22	18	47

RNA analysis of the same tissue samples by RT-PCR was repeated independently using the same primer-probe set as above. Results are shown in Table 8 as percent reduction in glucagon receptor mRNA in antisense-treated monkeys compared to saline-treated monkeys.

Glucagon receptor mRNA reduction in monkey liver after treatment with antisense inhibitors of glucagon receptor - RT-PCR expr 2				
ISIS #	SEQ ID NO:	% reduction at 2 mg/kg	% reduction at 5 mg/kg	% reduction at 20 mg/kg
310457	184	25	23	63
315297	365	18	21	56
315163	231	25	29	44

The results obtained by RT-PCR were confirmed by Northern blot analysis according to standard methods (Example 14). The cDNA probe that was used for northern blots was a 900-base fragment of monkey GCGR generated by RT-PCR from cynomolgus monkey liver. Results are shown in Table 9.
TABLE 9
Glucagon receptor mRNA reduction in monkey liver after treatment with antisense inhibitors of glucagon receptor - Northern blot

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>SEQ ID NO:</th>
<th>% reduction at 2 mg/kg</th>
<th>% reduction at 5 mg/kg</th>
<th>% reduction at 20 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>310457</td>
<td>184</td>
<td>8</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>315297</td>
<td>365</td>
<td>0</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>315163</td>
<td>231</td>
<td>8</td>
<td>30</td>
<td>27</td>
</tr>
</tbody>
</table>

[0209] Blood glucose levels were measured in monkeys after treatment with antisense inhibitors of glucagon receptor. Glucose readings were performed using a drop of blood from the blood samples collected as above and read on a One Touch Profile® (LifeScan Inc., a Johnson and Johnson Company). Because normoglycemic (nondiabetic) monkeys were used in this study, no significant changes in blood glucose levels were expected or observed. At no point did animals become hypoglycemic after antisense treatment.

[0210] Glucagon levels were measured in plasma of fasted monkeys before (baseline) and after treatment for 5 weeks or 10 weeks with antisense inhibitors of glucagon receptor. Monkeys were anesthetized prior to blood collection to avoid artifacts due to stress. Glucagon levels were determined by radioimmunoassay, ELISA and/or Luminex immunoassay by contract laboratory (Linco, St. Charles Mo.). Results are shown in Table 10.

TABLE 10
Fasted glucagon levels in monkey liver after treatment with antisense inhibitors of glucagon receptor

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>SEQ ID NO:</th>
<th>Glucagon (pg/ml) Baseline</th>
<th>Glucagon (pg/ml) Week 5</th>
<th>Glucagon (pg/ml) Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>155 ± 31</td>
<td>150 ± 19</td>
<td>250 ± 141</td>
<td></td>
</tr>
<tr>
<td>310457</td>
<td>2</td>
<td>487 ± 123</td>
<td>278 ± 54</td>
<td>189 ± 36</td>
</tr>
<tr>
<td>5</td>
<td>211 ± 25</td>
<td>179 ± 55</td>
<td>169 ± 26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>308 ± 77</td>
<td>580 ± 247</td>
<td>1247 ± 451</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>SEQ ID NO:</th>
<th>Glucagon (pg/ml) Baseline</th>
<th>Glucagon (pg/ml) Week 5</th>
<th>Glucagon (pg/ml) Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>4 ± 2</td>
<td>4 ± 1</td>
<td>5 ± 1</td>
<td></td>
</tr>
<tr>
<td>310457</td>
<td>2</td>
<td>4 ± 1</td>
<td>3 ± 1</td>
<td>3 ± 41</td>
</tr>
<tr>
<td>5</td>
<td>4 ± 1</td>
<td>4 ± 48</td>
<td>3 ± 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8 ± 3</td>
<td>17 ± 6</td>
<td>30 ± 15</td>
<td></td>
</tr>
<tr>
<td>315297</td>
<td>365</td>
<td>3 ± 1</td>
<td>3 ± 1</td>
<td>3 ± 29</td>
</tr>
<tr>
<td>5</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
<td>4 ± 2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11 ± 8</td>
<td>9 ± 4</td>
<td>7 ± 5</td>
<td></td>
</tr>
<tr>
<td>315163</td>
<td>231</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>5</td>
<td>3 ± 1</td>
<td>5 ± 2</td>
<td>3 ± 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2 ± 0</td>
<td>4 ± 48</td>
<td>5 ± 1</td>
<td></td>
</tr>
</tbody>
</table>

[0211] Glucagon-like peptide 1 (GLP-1) levels were measured in plasma of fasted monkeys before (baseline) and after treatment for 5 weeks or 10 weeks with antisense inhibitors of glucagon receptor. Monkeys were anesthetized prior to blood collection to avoid artifacts due to stress. GLP-1 levels were determined by radioimmunoassay, ELISA and/or Luminex immunoassay by contract laboratory (Linco, St. Charles Mo.). Results are shown in Table 11.

TABLE 11
Fasted GLP-1 levels in monkey liver after treatment with antisense inhibitors of glucagon receptor

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>SEQ ID NO:</th>
<th>GLP-1 (pM) Baseline</th>
<th>GLP-1 (pM) Week 5</th>
<th>GLP-1 (pM) Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>4 ± 2</td>
<td>4 ± 1</td>
<td>5 ± 1</td>
<td></td>
</tr>
<tr>
<td>310457</td>
<td>2</td>
<td>4 ± 1</td>
<td>3 ± 1</td>
<td>3 ± 41</td>
</tr>
<tr>
<td>5</td>
<td>4 ± 1</td>
<td>4 ± 48</td>
<td>3 ± 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8 ± 3</td>
<td>17 ± 6</td>
<td>30 ± 15</td>
<td></td>
</tr>
<tr>
<td>315297</td>
<td>365</td>
<td>3 ± 1</td>
<td>3 ± 1</td>
<td>3 ± 29</td>
</tr>
<tr>
<td>5</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
<td>4 ± 2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11 ± 8</td>
<td>9 ± 4</td>
<td>7 ± 5</td>
<td></td>
</tr>
<tr>
<td>315163</td>
<td>231</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>5</td>
<td>3 ± 1</td>
<td>5 ± 2</td>
<td>3 ± 1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2 ± 0</td>
<td>4 ± 48</td>
<td>5 ± 1</td>
<td></td>
</tr>
</tbody>
</table>

[0212]
<220>FEATURE:
<223>OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 2

gtgcgcggaga gcggaaatc

<210>SEQ ID NO 3
<211>LENGTH: 20
<212>TYPE: DNA
<213>ORGANISM: Artificial Sequence
<220>FEATURE:
<223>OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 3

atgcaattcg ccoccaagga

<210>SEQ ID NO 4
<211>LENGTH: 2034
<212>TYPE: DNA
<213>ORGANISM: H. sapiens
<220>FEATURE:
<221>NAME/KEY: CDS
<222>LOCATION: (278)...(1711)

<400>SEQUENCE: 4

60
60
120
180
240
295

343
391
439
487
535
583
631
679
727
<table>
<thead>
<tr>
<th>Ala</th>
<th>Lys</th>
<th>Met</th>
<th>Tyr</th>
<th>Ser</th>
<th>Ser</th>
<th>Phe</th>
<th>Gln</th>
<th>Val</th>
<th>Met</th>
<th>Tyr</th>
<th>Thr</th>
<th>Val</th>
<th>Gly</th>
<th>Tyr</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>140</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>ctg</td>
<td>tcc</td>
<td>tgg</td>
<td>ggc</td>
<td>goc</td>
<td>gtc</td>
<td>ctc</td>
<td>gtc</td>
<td>gtc</td>
<td>gtc</td>
<td>atc</td>
<td>gtc</td>
<td>ggc</td>
<td>gtc</td>
<td>ctc</td>
<td>gtc</td>
</tr>
<tr>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
</tr>
<tr>
<td>agc</td>
<td>aag</td>
<td>ctc</td>
<td>cgc</td>
<td>tgc</td>
<td>acc</td>
<td>ggc</td>
<td>tgc</td>
<td>acc</td>
<td>cac</td>
<td>ggc</td>
<td>aac</td>
<td>ctc</td>
<td>tgg</td>
<td>ttc</td>
<td>ggc</td>
</tr>
<tr>
<td>823</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>His</td>
<td>Cys</td>
<td>Thr</td>
<td>Arg</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
<td>Ala</td>
<td>Arg</td>
<td>Ala</td>
<td>Leu</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>180</td>
</tr>
<tr>
<td>tcc</td>
<td>ttc</td>
<td>gtc</td>
<td>ctg</td>
<td>aaa</td>
<td>ggc</td>
<td>aag</td>
<td>ttc</td>
<td>gtc</td>
<td>gtc</td>
<td>att</td>
<td>gat</td>
<td>ggg</td>
<td>ctg</td>
<td>tcc</td>
<td></td>
</tr>
<tr>
<td>871</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Lys</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
<td>Ile</td>
<td>Arg</td>
<td>Ala</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>185</td>
</tr>
<tr>
<td>agg</td>
<td>acc</td>
<td>cgc</td>
<td>tgc</td>
<td>aag</td>
<td>cac</td>
<td>aag</td>
<td>att</td>
<td>ggc</td>
<td>gac</td>
<td>gac</td>
<td>ctc</td>
<td>aag</td>
<td>gtc</td>
<td>agt</td>
<td>aag</td>
</tr>
<tr>
<td>919</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Arg</td>
<td>Tyr</td>
<td>Ser</td>
<td>Gln</td>
<td>Ile</td>
<td>Gly</td>
<td>Arg</td>
<td>Asp</td>
<td>Leu</td>
<td>Ser</td>
<td>Val</td>
<td>Ser</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td>tgg</td>
<td>ctc</td>
<td>gtc</td>
<td>gat</td>
<td>gaa</td>
<td>ggc</td>
<td>goc</td>
<td>gtc</td>
<td>gtt</td>
<td>gac</td>
<td>goc</td>
<td>gtc</td>
<td>ggc</td>
<td>gtt</td>
<td>gtc</td>
<td>ttc</td>
</tr>
<tr>
<td>967</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Leu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Ala</td>
<td>Gly</td>
<td>Ala</td>
<td>Gly</td>
<td>Cys</td>
<td>Arg</td>
<td>Val</td>
<td>Ala</td>
<td>Ala</td>
<td>Val</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>215</td>
</tr>
<tr>
<td>atg</td>
<td>caa</td>
<td>tat</td>
<td>ggc</td>
<td>aco</td>
<td>tac</td>
<td>tgc</td>
<td>tgg</td>
<td>ctg</td>
<td>tgg</td>
<td>ctg</td>
<td>gtc</td>
<td>gac</td>
<td>ggc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1015</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Gin</td>
<td>Lys</td>
<td>Tyr</td>
<td>Gly</td>
<td>Val</td>
<td>Ala</td>
<td>Tyr</td>
<td>Arg</td>
<td>Ala</td>
<td>Val</td>
<td>Met</td>
<td>Gly</td>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>235</td>
</tr>
<tr>
<td>ctg</td>
<td>tac</td>
<td>tct</td>
<td>cac</td>
<td>aac</td>
<td>ctc</td>
<td>gtc</td>
<td>ggc</td>
<td>goc</td>
<td>aco</td>
<td>ctc</td>
<td>ctc</td>
<td>ccc</td>
<td>gag</td>
<td>agg</td>
<td>aag</td>
</tr>
<tr>
<td>1063</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Tyr</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Gin</td>
<td>Arg</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td>ttc</td>
<td>ttc</td>
<td>agc</td>
<td>ctc</td>
<td>tcc</td>
<td>tgg</td>
<td>aco</td>
<td>cac</td>
<td>ctg</td>
<td>ggc</td>
<td>tgg</td>
<td>ggt</td>
<td>gcc</td>
<td>ccc</td>
<td>atg</td>
<td>cgg</td>
</tr>
<tr>
<td>1111</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Gly</td>
<td>Ile</td>
<td>Gly</td>
<td>Trp</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Met</td>
<td>Leu</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>265</td>
</tr>
<tr>
<td>gtc</td>
<td>gtc</td>
<td>ccc</td>
<td>tgg</td>
<td>gca</td>
<td>gtc</td>
<td>aag</td>
<td>ctc</td>
<td>tgg</td>
<td>gat</td>
<td>gtc</td>
<td>tgg</td>
<td>gac</td>
<td>aag</td>
<td>gag</td>
<td>tgc</td>
</tr>
<tr>
<td>1159</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Pro</td>
<td>Ala</td>
<td>Val</td>
<td>Val</td>
<td>Lys</td>
<td>Cys</td>
<td>Leu</td>
<td>Phe</td>
<td>Asp</td>
<td>Ala</td>
<td>Val</td>
<td>Gin</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>280</td>
</tr>
<tr>
<td>tgg</td>
<td>acc</td>
<td>agc</td>
<td>aat</td>
<td>gag</td>
<td>aac</td>
<td>tgc</td>
<td>tgg</td>
<td>act</td>
<td>ggc</td>
<td>ttc</td>
<td>gtc</td>
<td>gtt</td>
<td>gcc</td>
<td>ccc</td>
<td>agt</td>
</tr>
<tr>
<td>1207</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Arg</td>
<td>Asp</td>
<td>Ala</td>
<td>Met</td>
<td>Gly</td>
<td>Phe</td>
<td>Phe</td>
<td>Thr</td>
<td>Thr</td>
<td>Trp</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>295</td>
</tr>
<tr>
<td>gtc</td>
<td>ttc</td>
<td>cgg</td>
<td>gtc</td>
<td>ata</td>
<td>ctc</td>
<td>gac</td>
<td>tgg</td>
<td>agc</td>
<td>ata</td>
<td>cgg</td>
<td>atg</td>
<td>cac</td>
<td>cac</td>
<td>cca</td>
<td>aac</td>
</tr>
<tr>
<td>1255</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Ala</td>
<td>Ile</td>
<td>Arg</td>
<td>Ala</td>
<td>Pro</td>
<td>Phe</td>
<td>Ile</td>
<td>Phe</td>
<td>Val</td>
<td>Arg</td>
<td>Ile</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>315</td>
</tr>
<tr>
<td>cag</td>
<td>ctg</td>
<td>ctc</td>
<td>gtc</td>
<td>ggg</td>
<td>aag</td>
<td>ctg</td>
<td>cgg</td>
<td>gaa</td>
<td>cgg</td>
<td>cag</td>
<td>atg</td>
<td>cac</td>
<td>cac</td>
<td>cac</td>
<td>aca</td>
</tr>
<tr>
<td>1303</td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>Leu</td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
<td>Ala</td>
<td>Arg</td>
<td>Gin</td>
<td>Met</td>
<td>His</td>
<td>Thr</td>
<td>Arg</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>330</td>
</tr>
<tr>
<td>tac</td>
<td>aag</td>
<td>ctg</td>
<td>tgg</td>
<td>ggc</td>
<td>aag</td>
<td>tgg</td>
<td>ggg</td>
<td>aag</td>
<td>cgg</td>
<td>aag</td>
<td>cgg</td>
<td>aag</td>
<td>tgg</td>
<td>tgg</td>
<td>aag</td>
</tr>
<tr>
<td>1351</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Lys</td>
<td>Phe</td>
<td>Arg</td>
<td>Leu</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>345</td>
</tr>
<tr>
<td>ggc</td>
<td>tgc</td>
<td>cac</td>
<td>gaa</td>
<td>tgc</td>
<td>tgg</td>
<td>gtc</td>
<td>tgg</td>
<td>ggg</td>
<td>gac</td>
<td>gag</td>
<td>gag</td>
<td>cac</td>
<td>gcc</td>
<td>cag</td>
<td>Gly</td>
</tr>
<tr>
<td>1399</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>His</td>
<td>Gin</td>
<td>Val</td>
<td>Val</td>
<td>Phe</td>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Thr</td>
<td>Asp</td>
<td>Glu</td>
<td>His</td>
<td>Ala</td>
<td>Gin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
</tr>
<tr>
<td>ggc</td>
<td>gcc</td>
<td>ctg</td>
<td>cgg</td>
<td>tgc</td>
<td>tgg</td>
<td>gtc</td>
<td>tgg</td>
<td>ggg</td>
<td>gag</td>
<td>gac</td>
<td>gag</td>
<td>cac</td>
<td>gcc</td>
<td>cag</td>
<td>Gly</td>
</tr>
<tr>
<td>1447</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>375</td>
</tr>
<tr>
<td>tcc</td>
<td>gag</td>
<td>ggc</td>
<td>ctg</td>
<td>cgg</td>
<td>cgt</td>
<td>gcc</td>
<td>tgc</td>
<td>ctc</td>
<td>ggc</td>
<td>cgg</td>
<td>ctg</td>
<td>ggc</td>
<td>cgg</td>
<td>Val</td>
<td>Gln</td>
</tr>
<tr>
<td>1495</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Gin</td>
<td>Leu</td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td>Cys</td>
<td>Phe</td>
<td>Leu</td>
<td>Arg</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>395</td>
</tr>
<tr>
<td>gta</td>
<td>cag</td>
<td>ggc</td>
<td>ctg</td>
<td>ctg</td>
<td>gtc</td>
<td>cgg</td>
<td>tgg</td>
<td>cac</td>
<td>cgc</td>
<td>tgg</td>
<td>cgg</td>
<td>ctg</td>
<td>ggc</td>
<td>Val</td>
<td>Gin</td>
</tr>
<tr>
<td>1543</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Arg</td>
<td>Arg</td>
<td>Arg</td>
<td>Arg</td>
<td>Ser</td>
<td>Arg</td>
<td>Trp</td>
<td>Arg</td>
<td>Arg</td>
<td>Leu</td>
<td>Gly</td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410</td>
</tr>
<tr>
<td>gta</td>
<td>cta</td>
<td>ggg</td>
<td>gag</td>
<td>ggc</td>
<td>aac</td>
<td>aag</td>
<td>cac</td>
<td>gac</td>
<td>gac</td>
<td>aag</td>
<td>ggc</td>
<td>tcc</td>
<td>tct</td>
<td>tcc</td>
<td>Val</td>
</tr>
<tr>
<td>1591</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Trp</td>
<td>Glu</td>
<td>Arg</td>
<td>Asn</td>
<td>Ser</td>
<td>Ser</td>
<td>Arg</td>
<td>Asn</td>
<td>Arg</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>425</td>
</tr>
<tr>
<td>ccg</td>
<td>gcc</td>
<td>cac</td>
<td>ggc</td>
<td>cct</td>
<td>ccc</td>
<td>aag</td>
<td>gag</td>
<td>ctg</td>
<td>cag</td>
<td>ctg</td>
<td>tgg</td>
<td>ggg</td>
<td>agg</td>
<td>ggt</td>
<td>ggt</td>
</tr>
<tr>
<td>1639</td>
<td></td>
</tr>
</tbody>
</table>
Pro Gly His Gly Pro Pro Ser Lys Leu Glu Gin Phe Gly Arg Gly Gly
440
445
450

ggc agc cag gat tca ttc gcg gac acg ccc ttg gct ggt ggc ctc cct
GLY Ser Gln Asp Ser Ser Ala Glu Thr Pro Leu Ala Gly Gly Leu Pro
455
460
465
470

aga ttg gct ggg agc ccc ttc acctgcttg gaccccagct aggggtgagc
Arg Leu Ala Glu Ser Pro Phe
475
tctgccaccc agggggtcgct cgccacaccc cagaaactggag ccggcaaggtg aggtggggg
1687
cggggagccc caaggccgccc ccacctgccccc cccacccccct agtggggtgct tctcgagat
1741
tggtgcctct ttcgcctgcct ctgccttgcctcggtgcag cagggagcag agggacccag
1801
tggggtctct ctcgcctgcct cttggtgcag cagggagcag agggacccag
1861
tggtgcctct ctcgcctgcct cttggtgcag cagggagccag agggacccag
1921
tggtgcctct ctcgcctgcct cttggtgcag cagggagcag agggacccag
1981
tggtgcctct ctcgcctgcct cttggtgcag cagggagcag agggacccag
2034

<210> SEQ ID NO 5
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 5

gacacccccc gcaatacc
18

<210> SEQ ID NO 6
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 6

cctgatcctct gcacagcc
20

<210> SEQ ID NO 7
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe
<400> SEQUENCE: 7

tgggccaccc caaagt
15

<210> SEQ ID NO 8
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 8
gaaaggtgagag tggagagtc
19

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 9

gaaatgtgt atgggatgcc 20

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe

<400> SEQUENCE: 10
caggttcct ccctgcagcc 20

<210> SEQ ID NO 11
<211> LENGTH: 1944
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<223> FEATURE: NAME/KEY: CDS LOCATION: 1944

<400> SEQUENCE: 11
caggttccc ctgcacact gcagagct gtcaacaccc tgaactgtc ggtgtcac 60
cctgccag tgggggggt ggctacccag aagc atg ccc ctc acc cac cac
Arg Lys Leu His Cys Thr Arg Asn Tyr Ile His Gly Asn Leu Phe Ala

-continued

toc ttt gta ctc aag gct ggc tct gta gtc atg tgg ctc gct gta gtc
Ser Phe Val Leu Lys Ala Gly Ser Val Leu Val Ile Asp Trp Leu Leu

170 175 180

sev aca cgg tea agc aag att ggc gat gac ctc aat gtt gac gtc
Lys Thr Arg Tyr Ser Gly Lys Ile Gly Asp Leu Ser Val Ser Val
c

185 190 195

ttg ctc atg gac ggg cgg att ggc ggc tgg aag gta ggc cca gtc
Trp Leu Ser Gly Ala Met Ala Gly Cys Arg Val Ala Thr Val Ile

200 205 210

215

atg cag tac ggc tct atc ata ccc aac tat tgg ttc gta gac ggc
Met Gin Tyr Gly Ile Ile Pro Asn Tyr Cys Trp Leu Leu Val Glu Gly

220 225 230

235

240

245

gtg tac ctc gct gac tct gct gtc att gcc acc ttc tct gac agg aeg
Val Tyr Tyr Ser Leu Leu Leu Ser Ala Thr Phe Ser Glu Arg Ser

250 255 260

265

270

931

979

1027

1075

1123

1171

1219

1267

1315

1363

1411

1459

1507

1552
-continued

Ser Leu Ala Ser Ser Leu Pro Arg Leu Ala Asp Ser Pro Thr
475 480 485

atcctctcg ggcctcttaa cagttgtgt tacagaaagg gctctcagagg ccaaccaca 1612
gcgagatgct gggcacaagtt tgaagagca aacacgcaag acacagatggt gtaactgtgca 1672
cactcctctg aactcgtcctt gctgcgacca ggcgcacgttg accagaattg ggtttgctat 1732
gatgagatg gcatcctatc tataactct tagtggtcccc atgtgtgcttg atctgctcct 1792
tgtaacagc tataccttct cgaaaaaagc tcaagttgagg ctcgttgcaca ctctgtgacc 1852
agcatgttgg aagcccaccag ggaacggtggt cggaggtgag cggatgagca gcacactcag 1912
cagttgagtc gctgtgacac cccagagag aag 1944

<210> SEQ ID NO 12
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 12

atcctctcg gctggtaacct 20

<210> SEQ ID NO 13
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 13

gggcacaagc cctttg 17

<210> SEQ ID NO 14
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe

<400> SEQUENCE: 14

cacaagagtg caacacogcc tatagt 26

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 15

ggcacattc cagggcactg 20

<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 16

ggttcctcgct cctgaaagat 20
<210> SEQ ID NO 17
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe

<400> SEQUENCE: 17
agaagccgaga atgggaagct tgtcactc 27

<210> SEQ ID NO 18
<211> LENGTH: 25138
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 4663-4752
<223> OTHER INFORMATION: n = A, T, C or G

<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 9698
<223> OTHER INFORMATION: n = A, T, C or G

<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 15586-15997
<223> OTHER INFORMATION: n = A, T, C or G

<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 16227
<223> OTHER INFORMATION: n = A, T, C or G

<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 16250
<223> OTHER INFORMATION: n = A, T, C or G

<400> SEQUENCE: 18
gaattcagc gcccagagct cggctatgccc ggggtacgag ggcctcccct cgacagggtgg 60
gcagacccg agctgctgcgg gacgctgagc ggaggcgggcc gggaccctc cggtgctgat 120
ccgccgccgg ggggcccgc ccagcccgc cctcgcgcgg cgcctcgccg ctgtcgccgg 180
cggtaatct tgcacccagc cgcagtattgc aggcgacggca aagcagcgag ttacgggggg 240
cgcacccag gcggcccgcag gcaccgggag gccgcaacct gcacccggag cgcggggggc 300
gctgtagccc tggcgcgcgg gacctcgggg gacggttgaggt aagttaacgg cttggggacag 360
agacccgggg ggaggcgccgg ggggccccgg gcggggggag gcggggggcc gggccggggc 420
ttcgccggtt cggcggctgt gcgcctctca gtcgcgtcag aaaccgccct tcacacccct 480
ggtccgaccc acacccgcc tccgacccgc gcgggaagctt agggttcaca gcacccctcc 540
cgtcccggcg ctcggtggtgg ggcggcggtgc cgcgtctgcgc ctcggtgcttg 600
cgggccgaacc tgcagcggg gccacactcgc cacctgggct ccggggccgg gcggctgctgg 660
ggagccgcac aagcggccgg gcagcgttcgg gcggggcgct ggctcaccgc acgtgtctcc 720
cgcacggctgc cggagctgcccc gtcgcaacgg gcggccaggg atgggtgcaag 780
ggtgcgtcgg cgcttcgctg ctcgctcttc gcggccacac ctcgcaactt gcacgggaag 840
cgcctaacg gcgcctgctgc gcgggccccc gcgcggccac ctcgccgctgc gcgccggcag 900
gctttatgcct gcgcctgcttc gcggcccccgc gcggcccccgc cgcgagccgc ctgctcacaag 960
ggccgcggg gcgtctctgc tgcgctgtgt atggggcaca ctcggtgctgg ggggttgtgg 1020
tgcacccagc ctcgcccgcgg ccacccgggg tatgaggggc gttgctcaaca 1080

-continued
-continued

gccttgtgcc cctgtacctc cccgctgccc ctgacctctc actactctct tgttttcac 1140
eaaaacttc cggctcact cccggagcct cccaagcgt ctgagagcct ccttgccgac 1200
gccttgagag cccgctgccc ttcctgacag aqgtggcact cccacacact tggggcaca 1260
gttgtctgc tggcggcccc tsgaggggaa ctggtgtgag ctgacgtccg 1320
caggagccgc aacaggtcag gttttgtgcc agggagagca tggacagag aacaggggtc 1380
cacccctgca aacggcggc ggcagcggag ctcaggtggc otcacgcccc ctgtgtggtg 1440
ggtgtgtgcc ggccagcagc tggggtgaggg aggaagggggttgagctgccc tggggtctca 1500
gagagcggcc gacggcgacc ctgaggggca cccatgggcc acoscgcggga acocccacac 1560
ctggggacac tgggagaggg cccatggtgg aocctcggag acocccacac tgggacaccc 1620
gggacacccc gctgttgcag cctcggagac cctcagcttg ggcaactcgg gaacccaccc 1680
ctggggacac tgggagaggg cccatggtgg aocctcggag acocccacac tgggacaccc 1740
tggggacac tgggagaggg cccatggtgg aocctcggag acocccacac tgggacaccc 1800
ccacgcggt gggtgtgtggt ggtggtgtgc ctcaaat tggagcagtc otcacgcccc ctgtgtggtg 1860
cggcggcgc atacgcgagc ctgtggggcc cggagcccc cggagcgcag ctcacagcag ctgagctgtg 1920
gccttgctgt tcctcaagtc acatctgttgcc atgggcaaat tggggttgg gcggcagggg 1980
ggtgtgtgtg ttcctttcag gggagcggcc cttggtggca tcaactcggag aocctcgggt ctgggtgtgtg 2040
cctcgcggt gcgtgtggtgc aocctcgggt atgggcaaat tggggttgg gcggcagggg 2100
atcgtgtgtgcc gcgtgtggtgc aocctcgggt atgggcaaat tggggttgg gcggcagggg 2160
tatgtgtgtgcc gcgtgtggtgc aocctcgggt atgggcaaat tggggttgg gcggcagggg 2220
ggcgcgggcc gtacgtgggg ctgggtgtgtg ggtggtgtgtg atgggttgtgc ctcaaat tggagcagtc 2280
cagtgcgcgg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2340
ctccgtgtcgc ctgacgcggc ggtggtgtgtg ggtggtgtgtg atgggttgtgc ctcaaat tggagcagtc 2400
cccgcgcgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2460
cctccgtgtcgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2520
ttggccgcc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2580
ccgggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2640
cattgtgtcgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2700
cctggttggtg ggtggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2760
tccggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2820
cctccgtgtcgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2880
ctccgtgtcgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 2940
ccgggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3000
ttcgtcgctcc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3060
ttcggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3120
ttcggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3180
ttcggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3240
ttcggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3300
ttcggtgtgtg gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc gcgtgtgtgtgc 3360
aaggtcctgcg tgggagact ctcttagcgt ctgtgacgca ggtgcctgtc cctgtcattc 3420
aaggtacaac actctgggg catcotaagc cccctagaag ggggccotgy ggttygactt 3480
gcctgcagcg ggtcaacaca gcgtcactct ggagttgcgt aaatacagg ctgtcctgg 3540
gcgcacgcgc gtcgaacgct gccggggacac ctcctctttg aagtcgaccgc ttcgcaccac 3600
tcttgcocoo tctcccocggt tcctgctcct gctgctttcg cagctgggtgc gctcctcaco 3660
tgcctgaccc tctcatacct cccttgggct tgggcaaaag aagagccctg 3720
aaccgccgg gcggctcaag cccacacactc gcgggacccc gcacatgccac tgggcacccac 3780
agggagcccc ctctgctcct tccccacaga ttcagttgcg aagagacactg ggtctgctag 3840
cacgaaaggg gctttgaattg tattgcttgc ccacccgaacg ttcacaagctc gatgtgctt 3900
gtggcatggt gcgggctagg gcgtgcacgg tgcacgttccc acagacgcttgg cagcgcaccag 3960
cctccctcccg tggcctcgcct ggtcttcact gcagctgccg ccgctgctgg 4020
taacctccag gcgtcatgcc gcgggcctgt gggggcctcc gggtggcaggg ggggggtgct 4080
gacgcttcca gcgggtaccc gcgggccact gcggccctgc ctgtcccctgg ggcccgcaca 4140
tgcagccagc accaccgcaggt gttggccca accacctggc ctgggacagg tgcacgccag 4200
cgccagactc ttcgctctgt ggcagatctgg gcolaaagcg gatggctcaca ggcacccgca 4260
cctccctccct tgtccacattgc gtcgacgtgc gcgctccagg ccacgttcccacc gggggtctg 4320
gaatggtgcg ggtggactgg ggaagggcgct gtttgctgctgc acacgtggag aggggtccag 4380
atctggggat gttgggctac accaaagact atggcctccc tggaccacag atgggctgaa 4440
cagcatacg agcgggttcg tcagcctcag atgctgtggca ggacagcttg tggctgggct 4500
atctgtgggt ctctctctata ggtctcttttt ttttttttttt tggacagtct catcgctaca 4560
tggactgtc gtctgccccg tcctacttcgc agctccctgc ttcgcgggctta 4620
agggggtata aagcagagaat ctgtactttttttt tt
aattagccg gggtggccc tggctgtaat ttcagcatac caagagctg agggccataa 5700
atctgggaag cccccgagg ccagggcgc atgtgccta ggaggtgag acatgcccc tggctggtag 5760
cctaggttcg aagcagaaaa tcctgcttca aaaaaacgcc aggcaagctg actatgtcct 5820
gtactccccg caacttgag gcaccagcgc ggcagctcag ctgaggtcag gacttgaaga 5880
cagagttggc caaacagctt cctactaaaa atacaaaaat tagotgggca 5940
tgatgaacc cagctgtcct cccagctact cgggggccct agggagaaga atcactgtaa 6000
cctggggaac aagaggtcgc atgagcccaag tggctactag cctggtgctac 6060
agcggaacag tccctcccaac aaaaaatatt aaaaaaatag aaaaaaagag gaaacccctaa 6120
gcggcccaga ccaacatgaa ccgacccctgt cttggcccag gggacccgag aaacotgtgaa 6180
agtaggtggc ctgggctatgg cttggctggga gcacagacac atotgcagca cctotcttcttt 6240
aagggataaa cagaaagcct ccccttccaa agaccccctg ggtgctatct gacatcagc 6300
aaactcgggg ccgggtcttt cctotggcctg tttccttaca aaaaaccocca ggtatcttct 6360
gatgagaaag cccagccacc cggaggtgtct tggacagcgt aggggttttcg tggccagctc 6420
tctctgtcct ctgattgtcc atttatatt taatttacttt attaactttt ttgtacagca 6480
caggggtccg ccctgcttgc cccggtgatacg cccatcattct cccggcagcg aacctccgoc 6540
cctgcaagcg ccaagtctgta gcggccacag cttgacggcc ctgcgtcacc 6600
tctgatcct gcaggccaaat tttcctttcc cggccgctgc tggctgtcgg atttttgtgc 6660
catagacggc gtagaagagc agagagctca actggtgtgca cagttctctc ttcctgaaata 6720
cctgtgcctg ctgggctccag ctattatgtgc gctgtgtgca gcaacccccat cttggytgat 6780
tcctgtgttt atcttctctt ctcttgaagtt gctgttccc aggtttgtcc gggaggggca 6840
acctgcaacg cttggtattg gcacccctga ccgctgtgcaag cccggtgtata gaaaatccag 6900
ctcttctctcc aaccaatagc acccagcttc tcattgcaag acagacacgt gagaaggatg 6960
gtctgtacg cttgagcagcag gggccagcgc ccccttggcga tcacggagac acgctgtcgg 7020
atctttaagt gcgtcagacc tcaaggtgaa gcctggtaat actgtgagct actttcccccct 7080
agagaactcgg cccgagacag gctctgttac gcaggctgcc caagcgccagc agggcaagct 7140
cctgctccct gcccagcttg ttggcagcag atctagttaa acaacagctg ttcagggggag 7200
gcgagccgct tcctctctcc gcataagtaa cttgggaggg ccaagccagg ggtaccccaag 7260
ggggtgtgcg cttagcagct cctgcggcat gtggagcgtt cccatcttca atctgaaata 7320
aagaaaaaag ggtgtggtgt gcagagagcc gcctagtctt ctaaaatat 7380
aagagatttg aggtgtggtgc cccgctctttt ccccctcgtg cccacaagac 7440
cctcaggcgt ccggagctgg acggagaccc gtcgaaaaa gcaagasgac 7500
ccagaaagaagagagtgctttgctcag ctgtggtgag cccttctcag 7560
tcctataaag cctgcctggc tgggtgcttg atccggtctt ggctagacag tcaagagcg 7620
tcctcttggc aaccaatagc cccacagcct ggctagcgtg actttccccc gcccagtggc 7740
tccgagccgg ctgtggagtt ttgggtgctt ctcacccatg ggcgggaggg gcggggtcgg 7800
tccgagccgg ccagctggtc ctggtcagtc ctctctctct gcctttctct 7860
tagggatgt gcctccattg atgtgtatt gcctttctttt ctttctctctc 7920
-continued

taacttcact gacaaaggttc ttcttgagac acagagaaaa caggaaaaag cccaaagaaa 7980
tgggagcccg aggccagctgc ggcocacacgc ccacagacgc tgggagccct gagaagctgg 8040
aaagccagg agggatttcct cctaggacga tttgaagaga gtgcgtctcg ccagggcctt 8100
gggtctcccg agtggcaggt gatatatgta cggcttttaaa ccacccgtggc gcttcttccaa 8160
gtggagacga gtagtttcag gggccagggg cccagatata ctcagacctc gtcgcttgacg 8220
tggagcaaa cctcttcagc taatattcaac agggattgaa gtcctgcccc gcggacagtgt 8280
cctcagac gttggggtctg acctagaaag tcgtaanactc tcgagttgca acgggtggcg 8340
ggcgccagtt ggcggctcag ccaagggcag tctggtccccg gttgggcttc ggtggctcgc 8400
ccagggcggc cocagacacg gacgacacactc tggagggccc atgagttcag ccaagagcct 8460
cctcagcaca tcctctccac cttctccaca tcctctccat tgtgtaggaa 8520
agctcactgt gaaggccctggc tcgcatccagcac ccctcggggc ggcctctctc agagagccct 8580
ggcggcttcct tcatactccct taagagctca acgtggtttt caactggtc tctaacagcta 8640
ccccctctgt ctggagcccag tctggtccac tcgctggtact ggcctgaccc cctggtggccc 8700
tttttttttt tcagtttttt aagctttttt gcctggttct cggctttttt tttttagtttc 8760
ccaggggccc ccaggttcggc cccaggtctgc ggtgggttcct cctggggggc cggaggggct 8820
ttcctcccag ccgccctgct gggctgatct ggtgggttcct cctggggggc cggaggggct 8880
ttcctcccag ccgccctgct gggctgatct ggtgggttcct cctggggggc cggaggggct 8940
tttttttttt tcagtttttt aagctttttt gcctggttct cggctttttt tttttagtttc 9000
gtcctgctg agtcgttccc cagatgcctc tccctctctc gtcctggtctct ctctctctgta 9060
gctcggagct gggccggtcc cccacagcgc ggtgggtggc agcagtttgg agttgggtttg 9120
agccggggtt ccgcctctttt agcgaggttt gtcctgtgct ttgcacccct ctgacccaccc 9180
gccgcaactg ccctcaggtgc tgggttatgg agggctgagcc ccaacgagcc agcaaaactc 9240
tttactatc atggtgctgc tccctcaggc ccaagcgcgg ggcagttctc tttttttttt tttttagtttc 9300
goacacactgc ctctacgcgc cccagccgg gcctgctcgc acgtggtgagcc ccaacgagcc agcaaaactc 9360
gtcctgcgggg gcgggccggc atggggctgg ccctcctcct cctcgccctc cctccctcctc 9420
ggcggcttcct aggggcttcag tgggctcccc ccctgctccb gcggggtggt gcggggtggt 9480
cgggacgctg cgggccaggt ccgctgctgg ccgctgctgg ccgctgctgg ccgctgctgg 9540
gacccccgggg aacccagggagg cggccaggt gcggggtggc aagggggtgg gcggggtggc 9600
aggg agggtgcct gcagagctgct gcctcctcct cccagccgaa ccggagggcg gacgagcttg 9660
ggaggccgtt cgggctgcgg cccgcccgg gcctgctggtt gcggggtggc gcggggtggt 9720
gccctgcggc cagagctgct gcctcctcct cccagccgaa ccggagggcg gacgagcttg 9780
ccagcagcggg cccgggaggg cccccctgc gcgctcctgc gcggggtggc gcggggtggt 9840
acgccggcc cggccaggtt ccctcctcct cccagccgaa ccggagggcg gacgagcttg 9900
cggcaggggg gcggggggccg ccgctggggcg cccctcctgc gcggggtggc gcggggtggt 9960
ccacggccgggccggcc cccgggaggg cccccctgc gcgctcctgc gcggggtggc gcggggtggt 10020
gtcgcttcct gcgggtggtt ccagggctgc cgggtgggtgc cggggtgggc gcggggtggt 10080
gggtgggggg ccgggctgcgg cccgcccgg gcctgctggtt gcggggtggc gcggggtggt 10140
gtcgcttcct gcgggtggtt ccagggctgc cgggtgggtgc cggggtgggc gcggggtggt 10200
cgacootccc ggttctcttc actcaccacg tgtagctctc ttctgtccca ccctgtccctg 10260
tgtagctctc ccocctctct agctttatgtt ttggygcagtt occcccccccc cttacggtat 10320
cocctctcctg ttggtgacg ctggcgccctc actgtagacc ttgattctttt ctatctaaaa 10380
tggatagcaca gcctctccgct ggcagtggct gctgctgttct ccctttacacc ttagggttagg 10440
aaagcgccgaaacggttccc agaacgcttgcc ggtagagcggaa ctctgtctcct ccacggagctc 10500
cctcgcgacc aacagcacttc aagcgacttcc ccagcaacacc catgtcgaggg agggycttgg 10560
tggcagcagcc accagaaact ccctgctcggca gcacccgcag cagggaaagc accggtgctcc 10620
accaggtcgc ggttctctccag aagcgctgcc gcctgcttcct gcctggtcgtg aagtctgctta 10680
gtcaccgacag cctggtccac cctccttgcct cctgctgtgct ctctctgctgga 10740
goctgagtcct cggcagcccttt gttggtctct cctcctgctggtct 10800
ctcttggttt ggcagcttcag cccagtgagg gggagcttgct gcaggtgaccata 10860
gactactctcc ccacgaggtgg ggttgcgacat accagccac ccagcagcttg cagctcgccct 10920
tgtagctaa aggacatctgg catgctggttt gtttgctctc ctctctgctggtct accatccact 10980
gtcacccacacc accgctgctgac ttgtgaaacc aagcgcacata tttgctactgg ggagaaaaac 11040
gggagcaac ccaagttctgac catgctgctc cctcctgctgga gggagctggc aagcgcacata ctttctcgatgg 11100
ccacgctgag cccagttctgac aagcgcacata cttttctcgtgc ttttctcgatgg gggagctggc aagcgcacata ctttctcgatgg 11160
cttttctcgtgc ttttctcgatgg gggagctggc aagcgcacata ctttctcgatgg gggagctggc aagcgcacata ctttctcgatgg 11220
cctttgtggctttatttttt ccctttatttttt cctttatttttt tatttttttttttttt 11280
gccctgcgctt ttttatttttt cctttatttttt tatttttttttttttt 11340
ccttttatttttt cctttatttttt tatttttttttttttt tatttttttttttttt 11400
gccctgcgctt ttttatttttt cctttatttttt tatttttttttttttt 11460
ttttttatttttt cctttatttttt tatttttttttttttt tatttttttttttttt 11520
ttttttatttttt cctttatttttt tatttttttttttttt tatttttttttttttt 11580
ttttttatttttt cctttatttttt tatttttttttttttt tatttttttttttttt 11640
ttttttatttttt cctttatttttt tatttttttttttttt tatttttttttttttt 11700
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11760
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11820
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11880
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 11940
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12000
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12060
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12120
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12180
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12240
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12300
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12360
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12420
aagttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 12480
agggagcgcc ccagccagtg ttctgggcca gggtcaaggg gacgctcaggg ttccagagag 14820
agggagaggg gctgctggag ggacoccttc tcocacgcctg cctgcgctcg gctgctcctg 14880
cctacacota ccctcagagag gacagactgg taaagaagctt cgaactgtcc tctgcagcct 14940
cggsacccac ccgcaaaacg ccgcaacacc ctctctgcgcc ctgcagcctgg cctgcgaccc 15000
acaaagggct caatacaggg gacaactgtg ggggagggcg ggccaggggt gggggtagcc 15060
ccagcctccc ccacaccccc agcagcagaa ccgctgtccg ttccacagag ggtgagtcgca 15120
cggtcagttg ggtcgctggac cccgagggcc ggcgtgcggt gatgtccttc ccgtgcagat 15180
ggatggcgcg gaaattgagg ttcaggtcag ggctggccag cggcggcggg tgggcttgga 15240
tgatgacaagag catggagggcg gtcctgtgctg gttccaaagg cattgtcaact gcgagagaga 15300
ggggtccaaag atgtcaagcc gttcctaggt gatttacaca gttgggtcaca gttcctgccc 15360
aggccagctgc ctctcgccttg ggcctgctct gggcaggtta gttgacagct ccggacgcgg 15420
cgaggccgag ggcaaggccg agggggcggc agcctggctg gtcagtgctc gtcacacgcag 15480
tcagcagctc ccgcaagcgc cattcagccag cgttgtgttg ggtgccctcc ggtgcacacc 15540
gtcagcgtct ggctatgttg ggtgtgcata ccagcagcag aaaaattgcg aatcctctat 15600
acacagtttg gattgcagct ctcagtgatg gttgagcccc ctcagcgccg ctcacagcag 15660
tggttggctc ggcggcagcc aggtggccag tgggtgatct acattgcaat ctatcagcggg 15720
tggttgggtc gtttgcagcc ggcggcagcc aaggtggcct ttcacactc ttttcgctgg 15780
tttttttttt tttttttct tttttttct gggcggccag aaccccaaca aagattttcttg aatotcatat 15840
gttttattttt gttatttttt tttttttttt ttgatagggc gttggagccc gcggagccag ggtgagccnn 15900
nnnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 15960
nnnnnnnnnn nnnnnnnnn nnnnnnnnn aacaactc cacttcgccc 16020
cggccacgag ccggccagat aataaaaaa aacaageta aacaaaaaaa aacataacc 16080
cgctccact gcocactctc caagcggttg cttgtgctcg tgggtggcgg tgggtcttctg 16140
aatagccat ccgtgcaaacac ttcgctgctg ttggctggga ggacgccata ctcgcaaac 16200
ttgctgccgt ccacagccgc cgcagaggag cttctctgag cttcctcctg cttcggttct 16260
gggtgagtc gggtctgtaa gagggtgta aaggggtgta ccagcctttc ggacacaag 16320
cggctccccc ccacagcctgg ccocatctgg ttcgctgctg ctcgggcaag ggtgagcgtg 16380
cggctcagag ccgctcagtg agtatgacgg cttgacacgg ttgggagttg cggggggtcgt 16440
gggggcgcgg gttctgctcg gggcagggga gggcaggggg agagcacccg tggctggtgg 16500
gggggcttt tttttttgtt tttttttttt tttttttttt ttgatagggc gttggagccc gcggagccnn 16560
ctgggagggg gttctgctcg gggcagggga gggcaggggg agagcacccg tggctggtgg 16620
ctggtgcaag ccggctcagtg agtatgacgg cttgacacgg ttgggagttg cggggggtcgt 16680
cggctccccc ccacagcctgg ccocatctgg ttcgctgctg ctcgggcaag ggtgagcgtg 16740
ttcocctctg ggttctgctg gttgcccagag gacacgcagc ctctctctct gggagcgtcg 16800
gggggggtag gggccagggg cgggagggg gacgctcaggg ttccagagag 16860
ccagctctgc ctcctctttct gtgtggtgac ccgccccggc gctatgcgct ccagggccct 16920
tttttctgcc ccagccttcc ccagggggtg cgggggtgct ccctgaagcc cccagacgctg 16980
cttcagcttg ggtgagcttg gttgcccagag gacacgcagc ctctctctct gggagcgtcg 17040
cttcgtacgc atgccttacgc tgctcgtggc caaagtctggc gcaagcgcaga tgaacacaca 17100
agacatacag gccgcttggg tgcggcggca gctgcctgct cgyagacactt gagaacctcag 17160
ggacagaggg cagctgctggt tggggaactcc aagctocacg tggagttgctc gggcggaggg 17220
tggggccgct ggggctgccta gggtgcgtct ctgcagctgct gcgaaggtcaca cgctgcaccc 17280
catccctcgct cgggctgcc acagaaggtgct ctgcgccttc ggtgacggac gcgaagggcca 17340
ggacacgttg cggctggccaa agtctotctt cggctcttct ccagctctct ctcaggtgcc 17400
cgccgacgccc cggcccggcgc cggcccggg gcggtgtgcc accocctgcac accocctgcct 17460
tccaggctct gcgtggctgct gcgcctcctac gcgcctcctaa caagagaggtaca cgggtgagttg 17520
ggggaatctag agacatacag cactgccgcg gggggtcagcg gcaagagagga gcaagaggg 17580
tggccggcggc aaccctgcgc ggggtgtgga acagtctggg cccagcgcctt tccctctccc 17640
tgcgtttattt gcggccagct gcctgggcgc gcgtggctgagacggccagc gcgttgggcc 17700
toacccagcat cgtcaggtgct ccacgctggct gcgtggccgct gcgtgctcagct gcgtgctcct 17760
gtggaggtgc tggggctgat agtgcctgcc acggtcgcggg ctggtgcgtct ctgcgccccc 17820
caggggagag acggctaatg gccatgaggg ccacagacag cgtccagctgg ggggtgcaggg 17880
cagccgcgggg ccctggcactc gcgcctgccg cccccctccc ccctgctcgc ggacggtggc 17940
ggggctggcg ccccccgtgga cggcccggg cggcccgggg ggggggctgggg ggacagaggg 18000
ccccggcccctgcccctgc cccccctccc ccctgctcgc gcggcccggc ggggctgggg 18060
gggatatgtgc gactcccttc ccaagcagag aagcctccttg ggtgtggccgg ccctccattt 18120
ggtgctgagcc cgggctgctcc gcggggtgagacggccagc gcgttgggcc 18180
gaggagcgtcg ccggacaccc cgaactggga cggcccgggg cggcccgggg ggggggctgggg 18240
agggacgagc cccccccctc cccccccccc cccccccccc ccccccccc ccctgctcgc gcggcccggc 18300
cctcgtgcac ctgcgttcgg cgccgctgcag gggctgcagc aggctgccag gcggcccggg 18360
ggggctgcag gcgtgcgctgc gcggcccggc gcggcccggc gggggtgagacggccagc gcgttgggcc 18420
tggaaaaagt tcctccacctt ccaagctgcag aggctgcagc aggctgccag gcggcccggg 18480
ggtgtgaaatt ggtgctgagcc cgggctgctcc gcggggtgagacggccagc gcgttgggcc 18540
gtgtcgcgttc ggtgctgagcc cgggctgctcc gcggggtgagacggccagc gcgttgggcc 18600
caggggctggtc cgggctgctcc gcggggtgagacggccagc gcgttgggcc 18660
atcctggttc gggggtgcag tccctcttcga cgcttggcgc cccagagagtt ccacattcacc 18720
cggccagagc gttgagcgcgc cgttgctcag gccggtgtact ccacgtcagc tccctcttcg 18780
gaccccatga gcctgctattt cccgccgaggg cctcctttcgg ccgctgcagcc ggggggctgggg 18840
gggagagtgc gcgtgcgctgc gcggcccggc gggggtgagacggccagc gcgttgggcc 18900
tccagccctcc gcagccgccctgc tggacaggttg aagcagaggg aatgggcttc gggccctgccct 18960
gacctccgct gcgtgcttgc gcggcccggg ggcggccgtgct gcggcccggc gcggcccggg gcggcccggg 19020
ccggggctgc ccccccccag ccccccccag ccccccccag ccccccccag ccccccccag ccccccccag ccccccccag 19080
gggctgcagc gcgtgcgctgc gcggcccggc gggggtgagacggccagc gcgttgggcc 19140
caggggctggtc cgggctgctcc gcggggtgagacggccagc gcgttgggcc 19200
cagccagagc gcggcccggg gcggcccggg gcggcccggg gcggcccggg gcggcccggg gcggcccggg 19260
gcgctgcagc gcgtgcgctgc gcggcccggg gcggcccggg gcggcccggg gcggcccggg gcggcccggg 19320
-continued

tagtagtagct ccttggtgct ggaacacagga ggtgttcag ggtgggtct ccacattgtct 19380

agggccacaac ctggagcttaa gggccacagg accaacacag ggggtgtag gacaaaaatcag 19440

aggtagaagct gtggagggcccc ttgggggtcag cccccggggag gtcctctgag cagagacactgt 19500

gacaccctgttg aggctgtggct cacggggtgag ggaagagaccc acctcagttgc ccctctctctg 19560

agggaggtgct ggagaggtct gcctgggctcct gggggagggag ggtgtcagac cccctgcctcg 19620

agggaggtgct ggttcgagct gctggagcctg cctcagcaga ggcgagacta tggggaacac tggagggaca 19680

gagctctgtcc gggggaagtt aattagatttt actaacccgag cagagacttg ggcctcttcg 19740

agggggccttc ccccccttca ccaccccacag gctgggtcag tcggagggag gataggtcag 19800

tgtagttgca aaggctggcct ccttctggtct ccttggttttt ctggagagag gcctgcacc 19860

tccatgagag ccctgtctctgc tggagagcttc cttacttcgta cctgaaaggt 19920

toaagcagcg ttaacccgct ccttcgcttc cctggggtcttc ccctgtctctg 19980

cctggctgcg cctggggtatttactcag caagaggaatc acctatcctc 20040

tccctgctcg ctgggtgtgaag ctgggctggct tggagggctcct cctccttctg 20100

tccctgctcag cccccctcct cctctgtcct gttctcttttt cccctctcttc 20160

cgggctctttt cctctgtctct ggtgggggtt cccccctcct cccctctcttct 20220

gcctggtcag ctgctgtcag gacacacacg gacagcctct cctcggctcct 20280

gaggtaggggg gtcacacacg ggaacacacg acctagccagtt cctcgtcgcc 20340

ttggagagag agaggggtgag tttttttttt ggtgggtgacgt ggtgggtgag ttggagagag 20400

ttcctgctcg cctggggtatg aagaggtgcttt ctggagagag agaggggtgag 20460

ttttctgctg cttttttttttttttttttttt gacacacaggtcct cctgtctctg ctttctgctg 20520

tggctgctg ctgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20580

ttggagagag agaggggtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20640

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20700

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20760

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20820

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20880

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 20940

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21000

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21060

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21120

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21180

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21240

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21300

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21360

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21420

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21480

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21540

agccctggctttagagc cttacagcagctg tgggtgtgag ctgctgtgctg ctgggtgtgag ctgctgtgctg 21600
-continued

ggctcagcgc tggattccca gcactctggg aggctgaggg gggcggtatca caaggcacag 21660
agtttgagac ctctcgggtc aaccaagagaa aacccactct ctctctaaaaa ttgccagcgc 21720
ggtggtgttg ggcccttaga tccacgatct tccggaggtct gaggccaggag aatggygcttg 21780
acccgaggcc cgccggtcgcc agtgcgccgca gctgcctcaca ctgctctcaca gctggggcaca 21840
cagacggta ccacgcctca aacaaacaca aacaaacaca aaaaacaaag tgggctcacca 21900
taggcaagyt gggtgggaga tggctagggg tggccgctca tctcagttgc agtgcgaaccgc 21960
taccccaaga acacgccccgc tcaagcagcc cggygtcgctc ccgccgctact ccaaggtcgc 22020
cgggctccct tgtcgcctca tggctccctct ggtcttcgccct cctgcatcaccct tgtggtctcc 22080
gtctctccct ctgctccttc ctgctccctcta ctgctcctccg cctggtggcgc gtcctgaccc 22140
cctcctcgtt ggcgctgaacc cccgcaaccc cctctatcttc ctctgtgctct accctttaaas 22200
acccgagcctg cgcctcctac ctctctgacta ctctctcaccg ccctgggggct ctcctgacaac 22260
agogtttaga cccagcttccc agctcgctgat gtaagtgtccg atgcccaccc cgagtcgctc 22320
acccctgccc cagctctttt ctcctcttgct ccctcgagcc aaggctcctaa caggaccccct 22380
gctggtacc cggacccgct aacccatccc ccaacacagcc ccagatgctgt tgcacacccga 22440
agttctctat ggtacctccg agcgtctgcga acacacacct atttcctaga aagctcccgctg 22500
aaacggggtg ctgttcagac ccaacagatgc cagctcgccg ccgagcagat gttgggacca 22560
gctccgcaac cgcctcaagcc aacgcggagc cctccgctac ccgtgggtgaa agagcggggtc 22620
tggaggtcgc ggacacactg gggcggcctt ccaagttgct gcagaaccca ccaagacacot 22680
attaattcag tcctggggtg aagttggagt ggttatctag gctatagagc aatgctctact 22740
jgcacacaaag ttaattcata aatattccata aagagtttac cccctcctgga gaggctcactg 22800
tttccctcaacttgtaagcctcagc tctgccccttc gggagtctgc gacgcggtctgt agttggctg 22860
tgtggtgcga ccaacacactg aacagccagat cattgacatga ttggtgcaag cccacacacac 22920
acccagata gctgacctgtgc ctggctggcc acacacactgg gcagtgctgc ccgtggctgc 22980
ccacacactg aacagccagat cgtctgacag tggatgacgc caacacactgg acacgagaagct 23040
gctggtcgc cgccgctcaac cactacacag cagatagttgc aagctggtctgc cgccgacaca 23100
cctaacagc gcatagttgc tcctgtgcaag ccaactacag gaaagtggcct tgggtgtgcg 23160
acggccaccc taccagccag atagtgactct tggggtctgc gcaactacactc cggcagcatg 23220
agtcactctg tgtgcgtggc ccaacactgc cggacagctg ttgcttggct gcgtctctgc 23280
acacactacgc gcaagcatctg aacctttcgt gcagcagcacta gcatcagtgc gcagcactac 23340
tgggtgtgcg cccgacacac acagctcagt gtagttgcgc gcgtgcagcgc 23400
cacgccagat agtcactctg tgtgcgtggc ccaacactgc cagcagatct gcagcagcactc 23460
gtcgagctgc acacacacag gcaagcatctg aacctttcgt gcagcagcacta gcatcagtgc 23520
aatgacactg gctggtggcc gccacactga cagcagatct gcagcagcactc gcatcagtgc 23580
ccagctcaca cagcagatct gcagcagcacta gcatcagtgc gcagcagcactc gcatcagtgc 23640
agtgtttgct gcacacacac acacacacag gcaagcatctg aacctttcgt gcagcagcactc 23700
ccagctcaca cagcagatct gcagcagcacta gcatcagtgc gcagcagcactc gcatcagtgc 23760
gtgcgcacac acacacacag gcaagcatctg aacctttcgt gcagcagcacta gcatcagtgc 23820
gcctggtcag gcaacacacag tggcagacag aggcgtggtgc ggaggacccg 23880
-continued

cacocctctg ggtcgaggcc ccacgtcaag ttcgctgcc cagggagaag gtgcocsctc 23940
tgaacccct ttatgtgctc tctcagctga aagtaggacg ccccgtttgtg gatcagttg 24000
agttotcaac ccatattgagg aatggcggg gtaaggcccc cctgttgccct cttgacagct 24060
gacccaccgg ggtgtgcacc cgagaagggg atggaagggg acgttctgct cagggctaga 24120
ggtcgcgctcg ggtgctgcact gctccgacg acctcgcagtt gttggccttc cctctccgct 24180
tcccttcctcgctccagct ccagcctact ccgcccgctcg gtgcatgggg cgaaggggtg 24240
gggcctcgcc ccacgctctg ggctcgaggg tcctcggcag ctctgcctct cctctccgct 24300
atgtgctctga ccagcggcgg ccccctctct gcgggtcttc tggcgataag cttcccctct 24360
tgaagatttga tgggtgctgg gcccagctct cttggggtgac tccacccccg cttcccccct 24420
agttgtagtag ggtttcctgg cgattaccag gcgcccctct gatgtgcacc ccgggcggcc 24480
aaataggtgg cctcctttctg ccaagcggc ggtcacgcct cttggggctt gatggacgag 24540
ggtgctggc gcccctcaggg ggagggccct tttugtgctcc acagggggca cttctgctctg 24600
agggcataagc ctactgtctgg cctgtgttctt agcaatccct ttcttttttt ttctctctct 24660
cctctctctctccttttttttt tgggctttgg tctgtgtctt cttgcccccg cggaggtgct 24720
tggcgccttc tgctgcctcg gcccctcggc cttccccggtt tcaagtctgt ctcctcgtctc 24780
agttgcgctag tggagtcctgc tgtctcggcg cttgcaccct acaccgctat ttttttgtttg 24840
tttagtttagg acgctggcct aacgcgtagt cctcactcct ctttccttgc aagctcttgg 24900
atccacccgg ccacgttcct gtaagcctgt gttgggctcttg ccctggcgcgt ccgggcttca 24960
cccttcttttag tggatggccg gttctcctac cttgggctcttg ccgtctgtcc 25020
actctgtgaca ggtccctcag ctcgcccttg gctgtgaatt acaggctgtg 25080
acccgcctctg cttgccccct tttctttata antttcttta aaaaaaagggg ccgaggggca 25138

<210> SEQ ID NO 19
<211> LENGTH: 2378
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (2370) ... (2378)

<400> SEQUENCE: 19

cctctgaggtt cacacgagga ggctgtccttt cttgtgccag aatggggccc 60
agagcccgcc ttgtggcctag tgggtcttctt gggctgcag ggtcgcgcgt 120
ggcggggttc ccctggcacc gggttcctcg ccctgccccct ccgtgtcgcag ccgtgtcgcag 180
cgggggaag accgctcct ccgctgctcc cttgccccct ggtcgcgcggt 240
cctcctgcct gcacgtcatg ccgccgttcc cttgccccct cggccgcat 300
ttcctctgct caccccgtgtg cttgccccct aacgctgcgtg ccgctgccgt 360
ggttcggggct ccccagcgcgg ggagggcccgt ccctgccccct ccgctgccgt 420
ggttcggggct ccccagcgcgg ggagggccct ccctgccccct ccgctgccgt 480
ggcggggttc ccctggcacc gggttcctcg ccctgccccct ccgctgccgt 540
cgggggaag accgctcct ccgctgctcc cttgccccct ggtcgcgcggt 600
caccgacggtt ggtcgaggcc ccacgtcaag ttcgctgcc cagggagaag gtgcocsctc 660
gctccacctc gcggccctgct cggccagcgg ggtcagtggc gctgagttgg aagtttttg 720
catctgtcgc gccccttgcc tgcctccttg acctcgttct ccaactgcct ggggactctc 780
agcgcgggt ggccccgct gcccgtggcg aatcggccgg aagggcggct ccccgacg 840
tccttttact cccgcttctc cttgcgcgcc cagagcttcac gggctgcgcc 900
gaaacacttc gctccagtgc cagcctcctc gcctgtcctc gcctgctccc tgggtttccc 960
cctgtgcacg ccctcactgc ggctgcocct cagctgccgc ggcctctccc cccctctcctt 1020
tattccccct ggcggtgccct ccacccaccc cccgcctgcct cctttccct cctttcctttt 1080
cactgcggcc acccagcctc tgcagcgctcc cccgccagcc gactccctct gctctccca 1140
cagactccag tgtctgacgc ccctgccttc gttgctgcag aagggcaccgt cccgcctttc 1200
gttgccccc gcctgacctc gcctccatgc tcgggtaccc atgccgggacc gggggtcgag 1260
cctcaccggc cctggcagcc acacaagggt gcctctcacc cccgacttcgc cccgctc 1320
gggcagctgc ttctccacct gcggccctgc gttgatccgg ctccagctcc gcctgctcc 1380
cctttttggt gccaggtgct ccacccaccc cccgcctgcct cttcccagcc cccgctcc 1440
aacgtgcgct ccgcggtggt gcggggcggc cacagaaggt cgcggcagcc gcctctccgt 1500
ccccacccgc tgcagcgcc gcctgctgcag ccctctctcc tggggagggt gcctctccgt 1560
cctgcacgct gcctcgcctc ttccgacggcc gcctgcagct gccttgcagc 1620
gttggtgac ccctgccttc gcctccagtc ctggctgtggc gccctccggc gcctgctcc 1680
aagcgagcgg ggctggacgc acttggagga ggcgtgccct ctgggtgctgg ccctgctcc 1740
cacactgctc gcggggtggt gcgtccgccc gcctgcagct gcgggctctc 1800
ggcacccgtc gcggggtggt gcgtccgccc gcctgcagct gcgggctctc 1860
tcctctctcg ctcctgtctc cc
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 21

ttgagccctgc gggccgagcgc 20

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 22
gtctccctc gttasggcgc 20

<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 23
gagtgccgag gtcgagagac 20

<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 24
tgtgtgtgtc ggtctctcgc 20

<210> SEQ ID NO 25
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 25
tcctgtgtgtc tgtctagcgt 20

<210> SEQ ID NO 26
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 26
tcgagccgagt tgtctgtgtg 20

<210> SEQ ID NO 27
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 27
cgggcagct aagtgcctcc

<210> SEQ ID NO 28
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 28
ggacgtcgct tgggcagcta

<210> SEQ ID NO 29
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 29
cagcagga taacttgagta

<210> SEQ ID NO 30
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 30
ggacotgtgg tgggcaggcc

<210> SEQ ID NO 31
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 31
aasttcataca aatggagogga

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 32	tctcaasag gaasttcatac

<210> SEQ ID NO 33
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 33	cactttcct caccaggaagt
SEQ ID NO 34
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 34
cactgtcac cgtagagctt

SEQ ID NO 35
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 35
ggtgacactg gtcaagctag

SEQ ID NO 36
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 36
cacaccagct cgtggggag

SEQ ID NO 37
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 37
aagttctgtg gacacacagc

SEQ ID NO 38
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 38
ataccttgctg aagttctgctg

SEQ ID NO 39
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 39
cggtgtagc ctttgtgtgtg

SEQ ID NO 40
LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 40
cctggcgaga cagcgcggca

20

<210> SEQ ID NO 41
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 41
cttgaacarg asgcggttgtt

20

<210> SEQ ID NO 42
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 42
gggcccgcat ctttgacga

20

<210> SEQ ID NO 43
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 43
cttcctgacag ttacagtggc

20

<210> SEQ ID NO 44
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 44
ctgacctca atctcctcgc

20

<210> SEQ ID NO 45
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 45
tctttctgga cctcactcgc

20

<210> SEQ ID NO 46
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<210> SEQ ID NO 47
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 47

ggcaacctct tctggaacct

<210> SEQ ID NO 48
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 48
gaatgtctg tctcctttgg

<210> SEQ ID NO 49
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 49
ccccaggtt ggcaagcgct

<210> SEQ ID NO 50
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 50
agggcttctcttcttcacc

<210> SEQ ID NO 51
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 51
ctgtagcggg tctgagcag

<210> SEQ ID NO 52
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 52
ttctggtgt aggggtcct
<210> SEQ ID NO 53
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 53
<500> gccaattttc tggctgtagc

<210> SEQ ID NO 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 54
tgagtcgac gccaattttc

<210> SEQ ID NO 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 55
tggtgacact gaggctgctg

<210> SEQ ID NO 56
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 56
gccaggtgct gacaatgagg

<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 57
cagatgaccc tatggtatga

<210> SEQ ID NO 58
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 58
gtgccacagc caagcaggtt

<210> SEQ ID NO 59
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 59

cagacaattg accactgccc

<210> SEQ ID NO 60
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 60

ccgccggatc caccgagagc

<210> SEQ ID NO 61
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 61
tgatcagat gcgccggagagc

<210> SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 62
ggagagagat gaaagagttg

<210> SEQ ID NO 63
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 63
cgagattttg ccgagagcaag

<210> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 64
tgcstctgcc gtgccgcagcag

<210> SEQ ID NO 65
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 65
acttgtagtc tgtgttggtc

<210> SEQ ID NO 66
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 66
asgtcgaga aagcgctttgac

<210> SEQ ID NO 67
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 67
gcactttttg ccagggcccg

<210> SEQ ID NO 68
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 68
cctcctcctl agcactttttgc

<210> SEQ ID NO 69
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 69
aactgcaag ctcttttgtgg

<210> SEQ ID NO 70
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 70
atgactctg gtgccacca

<210> SEQ ID NO 71
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 71
ctagggagc caccagccaa
<210> SEQ ID NO 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 72
	ttctagccaa ttctaggagqg

<210> SEQ ID NO 73
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 73
ttccagcagg ttccagaggqg

<210> SEQ ID NO 74
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 74
ttctgcaagg ttgcagcaag

<210> SEQ ID NO 75
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 75
ttctgcaqac aggcaactqg

<210> SEQ ID NO 76
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 76
agaaggagcc caatctcgca

<210> SEQ ID NO 77
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 77
tgcccacagg acaagcagg

<210> SEQ ID NO 78
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 78

tggactctc tgccacccc

<210> SEQ ID NO: 79
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 79

tggacrcaac tgtccgacac

<210> SEQ ID NO: 80
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 80

acatggacat tgcgcacata

<210> SEQ ID NO: 81
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 81

tttccatgc acatgggagt

<210> SEQ ID NO: 82
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 82

gttgaggac atttccatgc

<210> SEQ ID NO: 83
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 83

cacggtgcc acatggagtc

<210> SEQ ID NO: 84
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 84
agatgtctgc gtttgctagc
20

<210> SEQ ID NO 85
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 85
tataacttt ttagagagtg
20

<210> SEQ ID NO 86
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 86	tacaagtgg tctgggctg
20

<210> SEQ ID NO 87
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 87 agctotgtag ttcagttacc
20

<210> SEQ ID NO 88
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 88
gttcagttgcttggctg
20

<210> SEQ ID NO 89
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 89
cagcaaccgc tgggtacagg
20

<210> SEQ ID NO 90
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 90 agaaqgtgtgctggtgaga
20
<210> SEQ ID NO 91
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 91
cagacoagccttgagagac

<210> SEQ ID NO 92
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 92
cctttgagctcgggcgctg

<210> SEQ ID NO 93
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 93
gccttctgggtgactacgtgg

<210> SEQ ID NO 94
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 94
agcttgagtggcagacgacg

<210> SEQ ID NO 95
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 95
gcagctgagtgacagctgcagag

<210> SEQ ID NO 96
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 96
tgctggtacgtccttccgacag

<210> SEQ ID NO 97
<211> LENGTH: 20
-continued

<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>

<SEQUENCE: 97>
ggtgtgtgtg tacgtcctcc

<SEQ ID NO 98>
<LENGTH: 20>
<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>

<SEQUENCE: 98>
ctgtgtgtgtg tgtacgtcctcc

<SEQ ID NO 99>
<LENGTH: 20>
<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>

<SEQUENCE: 99>
gggcaatgca gtctctgtgtg

<SEQ ID NO 100>
<LENGTH: 20>
<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>

<SEQUENCE: 100>
citagctgct cccacatctg

<SEQ ID NO 101>
<LENGTH: 20>
<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>

<SEQUENCE: 101>
cagctagctg cctccccacat

<SEQ ID NO 102>
<LENGTH: 20>
<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>

<SEQUENCE: 102>
cctctgggca gctagctggcc

<SEQ ID NO 103>
<LENGTH: 20>
<TYPE DNA>
<ORGANISM: Artificial Sequence>
<FEATURE: OTHER INFORMATION: Antisense Oligonucleotide>
<400> SEQUENCE: 103
gcatgcctg gggcagctag

<210> SEQ ID NO 104
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 104
cctggtgctg gcagggccgc

<210> SEQ ID NO 105
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 105
tttcaactt ccaacagga

<210> SEQ ID NO 106
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 106
gttcaacct ccaacaggg

<210> SEQ ID NO 107
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 107
gtagagtc cacttctca

<210> SEQ ID NO 108
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 108
cgttagctc ccacttctca

<210> SEQ ID NO 109
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 109
ttgtggtgac actggtcacc
<210> SEQ ID NO 110
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 110
agcaggtctg ggtgtggtg<20

<210> SEQ ID NO 111
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 111
ttgcactttg tggtgcaag<20

<210> SEQ ID NO 112
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 112
gttgcaacct tgtggtgcaaa<20

<210> SEQ ID NO 113
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 113
tgtgcaacct tgtggtgcaaa<20

<210> SEQ ID NO 114
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 114
gttgtgcact tgtggtgcca<20

<210> SEQ ID NO 115
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 115
ggcccgcgctc tcttgascac<20

<210> SEQ ID NO 116
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 116
ggtgtgcaaco tcttgascac<20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 116

gtgacyccgt cactctttga

<210> SEQ ID NO 117
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 117
tggyacgccgt cagccacaag

<210> SEQ ID NO 118
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 118
catacggctac tgyacgccgt

<210> SEQ ID NO 119
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 119
ctggyacaaco tccatttgga

<210> SEQ ID NO 120
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 120
tacactttgg caacctcttt

<210> SEQ ID NO 121
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 121
cctggacgct gcctcacttc

<210> SEQ ID NO 122
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 122
attgcgttg atggcatattgc

<210> SEQ ID NO 123
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 123
agccccatca tgcaccagcac

<210> SEQ ID NO 124
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 124
gcgggtctctg agccgcoccaat

<210> SEQ ID NO 125
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 125
gtgctgctgc aatctttcttg

<210> SEQ ID NO 126
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 126
acactgaggt cttgctgcaat

<210> SEQ ID NO 127
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 127
gtgctgaca ctggagctgt

<210> SEQ ID NO 128
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 129
atgccatatt gcgtgascac
<210> SEQ ID NO 129
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 129

gagggtgcc aggccagca

<210> SEQ ID NO 130
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 130

aacagacact tgaccactgc

<210> SEQ ID NO 131
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 131

gaacagaca tgaccactg

<210> SEQ ID NO 132
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 132

gttgctattg ttgctcaagc

<210> SEQ ID NO 133
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 133

agaagccccct gttgctattg

<210> SEQ ID NO 134
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 134

ggsaccgca ggtcscocca

<210> SEQ ID NO 135
<211> LENGTH: 20

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 135

gggacccgca ggtacccgca
<210> SEQ ID NO 135
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 135

gccgacgaag atgaagaagt

<210> SEQ ID NO 136
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 136

agatgaatcc toggctgccac

<210> SEQ ID NO 137
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 137

ccagagtcca gcc ctagotg

<210> SEQ ID NO 138
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 138

gggtgccaga gtc.cagoc ct

<210> SEQ ID NO 139
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 139

tctgggtgcc agagtc.ca.gc

<210> SEQ ID NO 140
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 140

tctgggtgc cagatccagc

<210> SEQ ID NO 141
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
cctctggtgcagagtc

tgcaggagaagccCag

tggcagcagctgctg

gagcacaactgcaagacg

gagcccaagctcagaca

ggagaggagcccactctcg

tgcagggagaaggcccaaa
<210> SEQ ID NO 148
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 148

tctgacaaccag ggaacaagga

<210> SEQ ID NO 149
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 149

tgctcaactct gcacacaggg

<210> SEQ ID NO 150
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 150

tctgctacacct gcacacacag

<210> SEQ ID NO 151
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 151

gacctctctg ctcacctcttg

<210> SEQ ID NO 152
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 152

gccttgacact cctgctgtcag

<210> SEQ ID NO 153
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 153

gcttctacag gcacagccccc

<210> SEQ ID NO 154
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 154

gcttctacag gcacagccccc
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 154

cgcagtccac ggcacagccc 20

<210> SEQ ID NO 155
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 155
ggacactgg cagcagtttc 20

<210> SEQ ID NO 156
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 156
gcacatgga cgtcgccgaca 20

<210> SEQ ID NO 157
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 157
agacatcttc cagcagcagt 20

<210> SEQ ID NO 158
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 158
gagagccatt tcaccggsca 20

<210> SEQ ID NO 159
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 159
gctctttatt tgtggaggac 20

<210> SEQ ID NO 160
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 160

gagctcttta tgttgagsgg 20

<210> SEQ ID NO 161
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 161

accaccttgac ctctttatttg 20

<210> SEQ ID NO 162
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 162

ggcagtttttg ggcctccccag 20

<210> SEQ ID NO 163
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 163

gagttcccttg cttcttccacg 20

<210> SEQ ID NO 164
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 164

ggatatggcgt gctgcgtota 20

<210> SEQ ID NO 165
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 165

tctctgctc cgatttccttt 20

<210> SEQ ID NO 166
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 166

acccagctc tgcaggttag 20
<210> SEQ ID NO 167
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 167
cacctcttotttgcagtttac 20

<210> SEQ ID NO 168
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 168
gcctctggcagctagctgca 20

<210> SEQ ID NO 169
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 169
tgagagcagcagcagcagca 20

<210> SEQ ID NO 170
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 170
tgctgtgcagcagcagcagca 20

<210> SEQ ID NO 171
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 171
tcccttcacctgagcagagg 20

<210> SEQ ID NO 172
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 172
gagcttccttcacctgaggg 20

<210> SEQ ID NO 173
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 173
gacgtccttcacctgaggg 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 173
acggaagtc ctccacgtga

SEQ ID NO: 174
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 174
cacctctcag acggaagtc

SEQ ID NO: 175
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 175
tgacctggt caccgtagag

SEQ ID NO: 176
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 176
tgtgtgcac tcgtcaacgt

SEQ ID NO: 177
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 177
ggtgtgtggt acactggtca

SEQ ID NO: 178
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 178
ggtcaggttt tgtgtgcac
-continued

<400> SEQUENCE: 179

\texttt{tacctgtcga\ asytttgttt}

20

<210> SEQ ID NO 180
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 180

caggaattct\ tgcg\ agagtt

20

<210> SEQ ID NO 181
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 181

tgttggccc\ ggtattgccc

20

<210> SEQ ID NO 182
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 182

gagatgttg\ cgg\ gtatttt

20

<210> SEQ ID NO 183
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 183

cagagatgt\ tgccc\ tgttt

20

<210> SEQ ID NO 184
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 184

gacttttgg\ gcc\ cagggc

20

<210> SEQ ID NO 185
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 185

gcgtggc\ acctt\tgttt

20
<210> SEQ ID NO 186
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 186

cgaagcytg ttcasctttg

<210> SEQ ID NO 187
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 187

aacacaagc gyytgcac

<210> SEQ ID NO 188
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 188

atottcgaa caacgaagc

<210> SEQ ID NO 189
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 189

gggtcaga gaccacgtac

<210> SEQ ID NO 190
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 190

acgcaagc tggcccggc

<210> SEQ ID NO 191
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 191

caacctccttc tggacctcaac

<210> SEQ ID NO 192
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 192

caacctcctcc tggaccccaa
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 192

tggagctgc tgtcactctt

<210> SEQ ID NO 193
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 193
cacctggtaag tgtcgtgaca

<210> SEQ ID NO 194
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 194
acatccctgt gaagctgctg

<210> SEQ ID NO 195
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 195
gtgcataca cctgggaagct

<210> SEQ ID NO 196
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 196
ccccagggc agctgctgac

<210> SEQ ID NO 197
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 197
gccgcgccag gcagctgctg

<210> SEQ ID NO 198
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 198

```
cgggtctaga gcagccccagc
```

<210> SEQ ID NO 199
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 199

```
gtagcgggtc ctgagccgcagc
```

<210> SEQ ID NO 200
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 200

```
ggtgtagagc ggtcctgagc
```

<210> SEQ ID NO 201
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 201

```
cggtccatc actgagccag
```

<210> SEQ ID NO 202
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 202

```
gcagctggtct ccagctcgag
```

<210> SEQ ID NO 203
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 203

```
catgtaaccc gcggccacac
```

<210> SEQ ID NO 204
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 204

```
attgtccgac cccgccgagc
```
<210> SEQ ID NO 205
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 205
gcctattgca tgaacaccg

<210> SEQ ID NO 206
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 206
cocagcaggt tgtgcaggta

<210> SEQ ID NO 207
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 207
gcagagcoca gcaggttgtg

<210> SEQ ID NO 208
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 208
gtgagccaga cacagcaggt

<210> SEQ ID NO 209
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 209
aggtgaaga agctctcttc

<210> SEQ ID NO 210
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 210
gtaagggctg aagagctcc

<210> SEQ ID NO 211
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 211
gtaagggctg aagagctcc

<210> SEQ ID NO 212
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 212
gtaagggctg aagagctcc
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 211

ccaggtagag gctgaggaag 20

<210> SEQ ID NO 212
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 212
gatgaggag ggctgctaga 20

<210> SEQ ID NO 213
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 213
agcgagtaag caggtagag 20

<210> SEQ ID NO 214
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 214
tgctaggtgt ggtcagagac 20

<210> SEQ ID NO 215
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 215
atgctgatag tctgtgctca 20

<210> SEQ ID NO 216
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 216
gagagccagtg tgtcaggtgc 20

<210> SEQ ID NO 217
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 217
ccaccaga gccccttggtg 20

<210> SEQ ID NO: 218
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 218
gatccaccag aagcccttggtg 20

<210> SEQ ID NO: 219
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 219
gaaccgcag atccaccaga 20

<210> SEQ ID NO: 220
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 220
cagcgtgccc aggaagcagc 20

<210> SEQ ID NO: 221
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 221
gatcaggcgc gcagcagaca 20

<210> SEQ ID NO: 222
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 222
tgaagaaytt gatcaggcgc 20

<210> SEQ ID NO: 223
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 223
tagcagac gttgatcagg 20
<210> SEQ ID NO 224
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 224
gtagtctgtagtctgctct

<210> SEQ ID NO 225
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 225
cctgtattctgttggtgca

<210> SEQ ID NO 226
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 226
gaactttttaggtgtttggt

<210> SEQ ID NO 227
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 227
ggtgaaagaaagctgggct

<210> SEQ ID NO 228
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 228
agagtgctgagagagttg

<210> SEQ ID NO 229
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 229
tgaggaagaggtgagaag
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 230

tagggagggc accagccag
20

<210> SEQ ID NO: 231
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 231

acctggagag tgcgtgctacat
20

<210> SEQ ID NO: 232
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 232

gcacgagct caggtgtgctg
20

<210> SEQ ID NO: 233
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 233

cttggagag agtccgagaa
20

<210> SEQ ID NO: 234
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 234

aggttgttgt gcacactggtc
20

<210> SEQ ID NO: 235
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400>SEQUENCE: 235

gttgatcaggg atggccagga
20

<210> SEQ ID NO: 236
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 236
cagctagag gcagagacGc

<210> SEQ ID NO: 237
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 237
cgctctcttt gcacgcagag

<210> SEQ ID NO: 238
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 239
gagagttgt gcgtctttgt

<210> SEQ ID NO: 239
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 240
tactttgtc gagtctttgt

<210> SEQ ID NO: 240
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 241
ggagacggcc agcaggtttgt

<210> SEQ ID NO: 241
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 241
cgcttgccca ggttagaggtc

<210> SEQ ID NO: 242
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 242
agatgtggcc ggtgtatttg
<210> SEQ ID NO 243
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 243
caggttgtgg tgacagctgtg

<210> SEQ ID NO 244
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 244
ggaagagtc gaagaagaagc

<210> SEQ ID NO 245
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 245
tggtgacact ggtcagcogta

<210> SEQ ID NO 246
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 246
gtctcagttg tggtgacact

<210> SEQ ID NO 247
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 247
tgcaacctgg tgttggcagg

<210> SEQ ID NO 248
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 248
atcagctgg agctgtgtgta

<210> SEQ ID NO 249
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 249
tattgcgtga acgccgcgqgc

<210> SEQ ID NO 250
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 250
atcaggtg gcaggaagac

<210> SEQ ID NO 251
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 251
tctcttgac acaagcctgt

<210> SEQ ID NO 252
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 252
tcttgaacac gacagcctgt

<210> SEQ ID NO 253
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 253
tggccaggcc cgcagcctgt

<210> SEQ ID NO 254
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 254	tctggctgta gcggtccctg

<210> SEQ ID NO 255
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 255

ggsgatgctt gcctgtagtat
20

<210> SEQ ID NO 256
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 256
tgscctctgg gcctagctg
20

<210> SEQ ID NO 257
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 257
tagagctgct acgagctcct
20

<210> SEQ ID NO 258
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 258
gtoccaacg tgcagcggag
20

<210> SEQ ID NO 259
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 259
ascttgtag ctgtgygtg
20

<210> SEQ ID NO 260
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 260
gtccccgcag ggtccgacaag
20

<210> SEQ ID NO 261
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 261
tgcatgaaca ccgcgccacg
<210> SEQ ID NO 262
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 262
ccaggccag caggtggtgc 20

<210> SEQ ID NO 263
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 263
aggtcagagc tgaagaagct 20

<210> SEQ ID NO 264
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 264
cagaagccca tgggtgctatt 20

<210> SEQ ID NO 265
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 265
catggttgca ttgctgcttc 20

<210> SEQ ID NO 266
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 266
ggccagccag gttgtgcaag 20

<210> SEQ ID NO 267
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 267
tcaggttggt gtgacacctgg 20

<210> SEQ ID NO 268
<211> LENGTH: 20
<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>ORGANISM</th>
<th>TYPE</th>
<th>Feature</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>269</td>
<td>20</td>
<td>Artificial Sequence</td>
<td>DNA</td>
<td></td>
<td>Antisense Oligonucleotide</td>
</tr>
<tr>
<td>270</td>
<td>20</td>
<td>Artificial Sequence</td>
<td>DNA</td>
<td></td>
<td>Antisense Oligonucleotide</td>
</tr>
<tr>
<td>271</td>
<td>20</td>
<td>Artificial Sequence</td>
<td>DNA</td>
<td></td>
<td>Antisense Oligonucleotide</td>
</tr>
<tr>
<td>272</td>
<td>20</td>
<td>Artificial Sequence</td>
<td>DNA</td>
<td></td>
<td>Antisense Oligonucleotide</td>
</tr>
<tr>
<td>273</td>
<td>20</td>
<td>Artificial Sequence</td>
<td>DNA</td>
<td></td>
<td>Antisense Oligonucleotide</td>
</tr>
</tbody>
</table>

Sequence:

- `agcccgttgt gtcattgctg` 20
- `cctctcaacc aggaagtcca` 20
- `tctacagcga gcgtgttgc` 20
- `tctacagcga asacaggaag` 20
- `aggaagtcc tcacctgagc` 20
- `gctcgtgccc agttagggc` 20

- `agcccgttgt gtcattgctg` 20
- `cctctcaacc aggaagtcca` 20
- `tctacagcga gcgtgttgc` 20
- `tctacagcga asacaggaag` 20
- `aggaagtcc tcacctgagc` 20
- `gctcgtgccc agttagggc` 20
<400> SEQUENCE: 274

ggacgccag gatccaccag 20

<210> SEQ ID NO 275
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 275

agtcctcsc ctsagcgcag 20

<210> SEQ ID NO 276
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 276

gatgaagag ttgtcagga 20

<210> SEQ ID NO 277
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 277

cagcaggaat actgtcgaas 20

<210> SEQ ID NO 278
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 278

gcagcagga attctgtcga 20

<210> SEQ ID NO 279
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 279

gggtgcagc ccaacgcaag 20

<210> SEQ ID NO 280
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 280

accgcagct ccaccagaga 20
<210> SEQ ID NO 281
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
agcgggtcct ggcagcogc

<210> SEQ ID NO 282
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
cgppocogca tctctgaac

<210> SEQ ID NO 283
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
cggagaacttg agtctggtg

<210> SEQ ID NO 284
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
ggtocacca gaagcccaatg

<210> SEQ ID NO 285
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
ggtocacca ggttccagaa

<210> SEQ ID NO 286
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
asacgcaagggcctcagaa

<210> SEQ ID NO 287
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
agaacgcggta ccacccagaa

<210> SEQ ID NO 288
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
agcggagcct tactgtgaac

<210> SEQ ID NO 289
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
cggagaaccgc aggcgcacag

<210> SEQ ID NO 290
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE:
ggtgccgct gcggcctcg
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 287

ggcgacagc tcaggtgtg 20

<210> SEQ ID NO 288
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 288

gatgttgcgc tgtgtatgtg 20

<210> SEQ ID NO 289
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 289

gastacttgt cgasggttct 20

<210> SEQ ID NO 290
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 290

gasttgagtgc ggasggtgca 20

<210> SEQ ID NO 291
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 291

tcscctggaa gctgctgtac 20

<210> SEQ ID NO 292
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 292

ccctattgca tgsacacgc 20

<210> SEQ ID NO 293
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 293
tcgccggttc tgtgcagccc

<210> SEQ ID NO 294
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 294
tctctgtgcag ctcctgtgcct

<210> SEQ ID NO 295
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 295
tcaccagga agtccatcac

<210> SEQ ID NO 296
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 296
cacacagaag ctgtttggtc

<210> SEQ ID NO 297
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 297
tgtaaatcag ctggagaactg

<210> SEQ ID NO 298
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 298
atgcgtggccg tggatgtgca

<210> SEQ ID NO 299
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 299
cgatgcccac gtagagggtg
<210> SEQ ID NO 300
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 300
agatccacca gcagaagcac
 20

<210> SEQ ID NO 301
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 301
tcaggatgcc cgcgaagac
 20

<210> SEQ ID NO 302
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 302
ggaagttcct cactggaagac
 20

<210> SEQ ID NO 303
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 303
catgctctgc ggagttgac
 20

<210> SEQ ID NO 304
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 304
ccgcgcctct cttgacgcaac
 20

<210> SEQ ID NO 305
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 305
tggctgctggc aggcacaagac
 20

<210> SEQ ID NO 306
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 306
tgtgagcagc aagccagcac
<210> SEQ ID NO 307
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

>caggatacc gcagacacca

<210> SEQ ID NO 308
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

>asagtaac asagtacag

<210> SEQ ID NO 309
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

>ttgtagcttg ttgtagctag

<210> SEQ ID NO 310
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

>gtgctgagca gcagacacgc

<210> SEQ ID NO 311
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

>gtagctcag gtgggtgtaa

<210> SEQ ID NO 312
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
cctgtgtgac cgggtctgac

<210> SEQ ID NO 313
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 313
cctgtgtgac tgcgtgcctc 20

<210> SEQ ID NO 314
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 314
gggcagcagc aagacttytc 20

<210> SEQ ID NO 315
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 315
cctcaacagc agtctcatca 20

<210> SEQ ID NO 316
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 316
ggtaggagct gasgsgcgct 20

<210> SEQ ID NO 317
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 317
gasgsgagc ggcgacgac 20

<210> SEQ ID NO 318
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 319
gaggtcag aagagcgttg 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 325
eggctcagct tgtggtgaca

<210> SEQ ID NO 326
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 326
ggtgttgcac ttggtgtgac

<210> SEQ ID NO 327
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 327
ggacacttga gtctgtgtag

<210> SEQ ID NO 328
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 328
gtgcacactg gcgtcgtcga

<210> SEQ ID NO 329
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 329
ttgcatgacc accgcaacc

<210> SEQ ID NO 330
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 330
cggaagcttc gttgtacatcct

<210> SEQ ID NO 331
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 331
tccacccag gcocatgttg

<210> SEQ ID NO 332
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 332
asggtgtcga gsgtgccacg

<210> SEQ ID NO 333
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 333
cagggcccac aagttgtgcac

<210> SEQ ID NO 334
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 334
ccccgctcct cgctgagcaca

<210> SEQ ID NO 335
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 335
atgaagaat tgctcagagt

<210> SEQ ID NO 336
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 336
cctgtgaca cggagcaggtg

<210> SEQ ID NO 337
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 337
cgtgcaggcc agcagcagca
<210> SEQ ID NO 338
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 338

agagatgtt ggcgggtgta 20

<210> SEQ ID NO 339
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 339

gccagtgtg tcaattgctg 20

<210> SEQ ID NO 340
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 340

aagaagttga tcagagatggc 20

<210> SEQ ID NO 341
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 341

ccagagttga ggtgaaagaa 20

<210> SEQ ID NO 342
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 342

ccagtgggt gcattgtgctt 20

<210> SEQ ID NO 343
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 343

acacgaacg gtgtgcaact 20

<210> SEQ ID NO 344
<211> LENGTH: 20
<400> SEQUENCE: 350

gggcagcag ctcaggttgtg 20

<210> SEQ ID NO 351
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 351
cattctttga aacgcagacg 20

<210> SEQ ID NO 352
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 352
atccaccaga aggccatgttt 20

<210> SEQ ID NO 353
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 353
gtcattgtgt gtccagcact 20

<210> SEQ ID NO 354
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 354
tgggcccgcg atctcttgaa 20

<210> SEQ ID NO 355
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 355
ccccagggc caggcctgtag 20

<210> SEQ ID NO 356
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 356
ccatgttgct attgcttgtc 20
<210> SEQ ID NO 357
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 357

gaggtgaag aagctctct 20

<210> SEQ ID NO 358
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 358

gaacacgaag cgtgttgca 20

<210> SEQ ID NO 359
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 359

tttcaaaaca ggaagtccat 20

<210> SEQ ID NO 360
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 360

tgtgtccat ggtgtgcaag 20

<210> SEQ ID NO 361
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 361

aggaatactt gttgaaagt 20

<210> SEQ ID NO 362
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 362

caggtgcagg tgtgtgtgac 20
-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 363

aggsagagc cgagagagag
 20

<210> SEQ ID NO: 364
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 364

gctgaggaag agtgcgaaga
 20

<210> SEQ ID NO: 365
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 365

cagcgagcgg tgtgcacgtt
 20

<210> SEQ ID NO: 366
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 366

asgcccgtgt tgtcattgct
 20

<210> SEQ ID NO: 367
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 367

atgcctctgg gcaagctagct
 20

<210> SEQ ID NO: 368
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 368

catacctctg gacgctgctgt
 20

<210> SEQ ID NO: 369
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 369
acctotcasa cggaaagtcc

<210> SEQ ID NO 370
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 370
gcatctcttg asacgcagcc

<210> SEQ ID NO 371
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 371
catatgtcat gcacacggcc

<210> SEQ ID NO 372
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 372
cgaaagccc atgtctgtcat

<210> SEQ ID NO 373
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 373
gctctagcgg tggcgtagcga

<210> SEQ ID NO 374
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 374
tgtacggygt cttgacagcc

<210> SEQ ID NO 375
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 375
ggcacacgc agttgtgcag
-continued

<210> SEQ ID NO 376
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 376
tactacacttggaagttgct

<210> SEQ ID NO 377
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 377
cgcagatcc accagaagcc

<210> SEQ ID NO 378
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 378
aaccaggaag tocatacactt

<210> SEQ ID NO 379
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 379
agaggtgaa gaagctcctc

<210> SEQ ID NO 380
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 380
tgtactaga tggccaggaa

<210> SEQ ID NO 381
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 381
agcggtggtg cactttgtgg

<210> SEQ ID NO 382
<211> LENGTH: 20

<210> SEQ ID NO 383
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 382

GCTGGCCGCGC gCGC gCGC gCGC 20

<210> SEQ ID NO: 383
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 383

ACGAACGTT GTGCACTTTT 20

<210> SEQ ID NO: 384
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 384

GCGTGAAC CGGCGCGCA 20

<210> SEQ ID NO: 385
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 385

CAGGAAGTCC ATCACGTGA 20

<210> SEQ ID NO: 386
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 386

GCAGGTGACC CCGAGGGCC 20

<210> SEQ ID NO: 387
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 387

AGTTGATCT CGTGGCCGCG 20

<210> SEQ ID NO: 388
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 388

gccccaggg acaggtgta 20

<210> SEQ ID NO 389
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 389

ascaggaat ccctcaccctg 20

<210> SEQ ID NO 390
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 390

atattgcag ascacccgagg 20

<210> SEQ ID NO 391
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 391

gcaggaatac ttgtagaagg 20

<210> SEQ ID NO 392
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 392

gt catac acc tgaagtgc 20

<210> SEQ ID NO 393
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 393

cattgc gta ccagcactgg 20

<210> SEQ ID NO 394
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 394

cascacgga gtcatacacc 20
<210> SEQ ID NO 395
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 395
aggtggccag gcgcagcag 20
<210> SEQ ID NO 396
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 396
ttgacacgag ggaggttgg 20
<210> SEQ ID NO 397
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 397
tcagtttttggggagct 20
<210> SEQ ID NO 398
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 398
gttggtggtc cactggtcag 20
<210> SEQ ID NO 399
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 399
gtggtggtggtc cactggtcag 20
<210> SEQ ID NO 400
<211> LENGTH: 1633
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 400
gtcggtgtgt tgttggcttgttgga ggctggtgtt gggggagcag gatgtgtgtgt 60
agatttttct cagactcact tattctgtgct ctctgcaagc tggagagagg tgcacgctctc 120
tctgggctct aggtgtgtctact cctctgccac atgtggggcag tggctacccag gggtgcg 180
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCACCCAG CTCACCTGTC CCCCACCTGTG CAGTGCTCTG TGGTGCTGT CTATGCTGCT</td>
<td>240</td>
</tr>
<tr>
<td>AGAGGCACT CGTGCCAC CTAGTCATG TTTTTTAGAG AATGGAATAC TCTATACGGTG</td>
<td>300</td>
</tr>
<tr>
<td>GCCGTTGCA CCGACCAGG GCAGTGCTG CCCCACCTAAG GATGTCGG CTAAGAAGAG</td>
<td>360</td>
</tr>
<tr>
<td>CTCAGCACC TACGCTGTC GGGGCTGGAC CTCAGCAAC GGGCAAGC AAGATCTG</td>
<td>420</td>
</tr>
<tr>
<td>CCCTTGTTGCA ATACGTGGG GCGCAAAAT AGCAAGACGC CTAGTGGTCA AGAGTGGTC</td>
<td>480</td>
</tr>
<tr>
<td>GGGCCAGCAG ATGTTGGG ACCGGGCAA CAGGGCAGGA CAGGGGCGA GTGGCGCAAG CTCCTCAAG</td>
<td>540</td>
</tr>
<tr>
<td>TCAGTTGCTG GTGGAAGACA TCTAGTCCAG GAAGGGGCTG GCAGAAAGAT TATGCAAGGA</td>
<td>600</td>
</tr>
<tr>
<td>GCCAGTTATG TACACGCTG GCTACAGCT GCTGCTCGGG GCGCTCTGGC TCTGCTGCTG</td>
<td>660</td>
</tr>
<tr>
<td>CATCCTGCTG GGCTCTAGGA AGTGCAGCT GGGCAAGAAA TACATCGAG GGAACCTTG</td>
<td>720</td>
</tr>
<tr>
<td>TCGCTGGTCT GCTGCTGGAG CTTGCTTGGT GTGCGTCTAG GATGCGCTGC TGAAGACAG</td>
<td>780</td>
</tr>
<tr>
<td>GTGAGCAGG AGAGAAAGGC ATGAACCTAG TGAGCGCTG TCTGCGAGTC AAGGGGCGAT</td>
<td>840</td>
</tr>
<tr>
<td>GGGCGTCTGC AGAGTTGGCA CGTATCGCT GCTGCACGG AGCTCAACCA ACTATGCTG</td>
<td>900</td>
</tr>
<tr>
<td>GTGTTGCTGA GAGGGGCTG ACCGTGACG CTCTGTCAG GCTGTGACAG CTGTGACAG</td>
<td>960</td>
</tr>
<tr>
<td>GAGGGTTT TACCTGGACC TGGCCATGG CCGGCGTGGC CGCTGCTGGT TCTGGCTCCG</td>
<td>1020</td>
</tr>
<tr>
<td>CTTGGTGGTG GCTAAGTGG TCTGAGGAA TCTTCCATG GCTGCCAGCA AGCAGACACAT</td>
<td>1080</td>
</tr>
<tr>
<td>GGAGATGGTG CTTAAGGCAG CTCTGTCCTG TTGCTCGGCG GCCATCGA TCTCTTGCAT</td>
<td>1140</td>
</tr>
<tr>
<td>CTGTGCACA ATCATCAAC TCTGCTGGG CAGCGCTGG GCGAGCTCGA TGACTATGC</td>
<td>1200</td>
</tr>
<tr>
<td>TGTTCTGAC TCCGCGCTG CAGAGTGCCAC GTCACCTCTG ATCCCTCTG CTTGGCTGCC</td>
<td>1260</td>
</tr>
<tr>
<td>CGAGGTTGTC TGGCTTTGG TTTGCTGCA GCTGCCCCA GGGCCTGGC GCTGCCCCCA</td>
<td>1320</td>
</tr>
<tr>
<td>GGCCCTTTTT GACGCTGCTT CAATGCTTT CACTGGCTG CTGGCTGGTG TCTGCTACTG</td>
<td>1380</td>
</tr>
<tr>
<td>TTTCCACCA ACCGGGTCAG AGCAGCAGCGT GCAGCGCTG TCTGACGTAG GCGAAGACCC</td>
<td>1440</td>
</tr>
<tr>
<td>CAAAGCTCT CCAGGAGGAA GCTCGCGAG CAGCGATCG AGCGCAAGGG CCCCCGGAAG</td>
<td>1500</td>
</tr>
<tr>
<td>GGGCGTCTGC GGTGGGACCT CTGCGAACAT TCCAGCTAG AGCGCGCGG AGCGAAGTG</td>
<td>1560</td>
</tr>
<tr>
<td>GAGTGGGCTG GTGCGCTTCA TGCTGACCT CAGGGCGCT AGTCTCCCCG GGGCTGCTG</td>
<td>1620</td>
</tr>
<tr>
<td>CGCCACCCAG TGA</td>
<td>1633</td>
</tr>
</tbody>
</table>

<210> SEQ_ID: NO 401
<211> LENGTH: 10362
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 401

agctttctgt tctgctgcc ctcctcccaq tctgctcaca agaaaaacag gtcgggggta 60
agctttctgt gaaaggaag aacctatatg tcaaggagg taacattttag gttcaggaag 120
ccagcagctc ccacccagcc taccacagag ccactcgaga ccagtgctgc tctccacctct 180
gcttcgcca ccctatgtggc agcaacccaa cccccgagcg cactatgtgc agtctctgcc 240
accctttcct ctcagctgcc ataccagggt cccagagggc ccaaccttgg cgctggygca 300
cacctgcc gctgcgtgac cccggagatg aaagagggcag tgtatatctg ctcagctcct 360
gccagacgg ccccacccgag ggcggggaaa cccacaggtc tttggcttct aacccctgcc 420
tctgctgcc gctcttgctc aacacggaag accggactc cttctggagaa tttctgttg 480
actcttctg agataggggc acagagagaa ggcgcgcggg gatgatctct gtcggcaaat 540
cctggcagg gcttctcttg gatottatat agcatgttcaaa aagcagggtct gccatacgaat 600
cactgyaggg tgggcccaagt cacgcttgag ggaaccacac gttgggggca caagatccaa 660
tgtccccatt atagctagtct agtoctcaaggg aagcaacaa acactgaacag gaactgacccc 720
aagggcattgg gctgtctctca ggaagggcgg gttgggacag aagaaacacac acatggttcc 780
cagatgcaag aagctggtgct tggactggaat toccctaggg ggtcttgagct ctttactaga 840
tgatctgcag gtatgaggtg gaggagagga cccagactata ggaacacttg ggcgcagagg 900
actgctctgg gctgaggaaga tggggagggga ggtggtgagt accctattctg aaagccacag 960
ttacagggag acctttcttc ggaccacacat ggcctctcca cggagtgtgg aagaacccaga 1020
gaaagtggag cccaaacaa ccacccagag tttctgatcc cagagttcct gggcagaggg 1080
ggagtggac gccaacaaaaa cttgctcaaggg agtctaatgt ggggagggg gttgggagaag 1140
gtctctcaca gggctgagtct tggagcgaa aagagccttt gttggcagca acccttctgct 1200
cagaaagag aggtaactca aaaaagcttg tgtcagcaata gaataatgggg aacaattagtgg 1260
atttctaatc gagttgagtct cttttgagcc tttttgacac ggcctctcttg cggccaccc 1320
ggggtgtaacc cttgagaggg ttttagaggg aacctttagag gctacacttt tgtgaacact 1380
gcagtagggtt cccagatctgc tgaatcttcc cccaccaagg gtcagttgcag ccaggtcact 1440
cctccagcaca gcggccagat tgtgytaagt agggcactta gtctctctag aagactcaaga 1500
cggcacaact gmccacagsag atgaacaccc aagcactcgag accttgagaag aaacaggcgc 1560
ggtctgtgct actttattgt tttctggaga actacagacg acctgtgctg tgatgaactct 1620
ggctcagcct gggctcgggt gggtcctgga acctggcaggttt tcagcttgcgg gatccctctc 1680
ggttcgcggta cactcctgtga ggggtctctgg aagggaccgg tagggcctgag tcaggyctcg 1740
gggtctctcc tgtggtcgcag agggagggcg aagggagacc gcgggtatcc gaggcttcacc 1800
gcagcgcgag gcagcgtggag ttagctggga acagggagct gcggtctctgg gcggtctcgc 1860
agttccgctg cactaagcgg cggcgcgag tccgctctcttcccccccc cgggcgagcg 1920
cctcgcccc caacccctcc cctctgcccgc gcggcagcctg aagggggtgga aaggcttgaa 1980
gggtgctgcg cggtgcggct gccaccgcgc gtaacagcgcc gcggcggacgc aagagctgccc 2040
ggggccagag ttaaggacgc gtcagagacg cagcggtacg ccgcggacgc 2100
gacagcgacg aagcaggtgg ctggcgcgctc aggatggttc cagagcctgtg tgtgggggtcc 2160
tgagccagca ggtgctcctg gggcgcacgg aagggggcag gggaggtcg ggctcggccc 2220
tggagcttac ccaagctcggt cttgggggttt gggtgctggct gtctctgctgc cgggtatcaca 2280
ctctttccaa aacggggaaat tgtctctct tatctcagtt taagcgcggt aagccaccttg attccaaacc 2340
tgctcggca ggtcctggttt ttcgctacag cttggagggc gcaatcggcg 2400
aaggtggaggg aaggtggagtt cagacgagga tcggctgtcg cccattgaaag cccacacac 2460
tacagcctacg aacgtgtcggatt ccaacaaagag ctggtacctg ggtcatcgtt 2520
ccctctctac tgtgctcctg attcctcaga attcctcagca gttgctctagt ctggctgggtt 2580
agagtagtgg gcagcgcgag cctgaggggt tttttcctc gcacgtccta gctactgctg 2640
cgcaggagcc acctacccac ttcgacgacc cgaagtttttc tttggacgac agactgtactcc 2700
cctctctctc aacgttgcctgc ttcgctgagg ttagcaccgc cattttttct tgtctctcttctg 2760
tttggaggct atagaggggg gaactgtgcac ttcocgcgggg ccctgggtat ccctcgccct 2820
tttcaagggga ggaaccgaga aactaggctt gtgcacgcct gttgcccttg atctgtgcc 2880
tggcataaga ctaggacgct gctcagtttc tgtgtttttg caaataacc acctaacttg 2940
atatotctgg ggtattctaa gtaaacaatt gttgatactg tggcttttaa ggaaccaga 3000
ggatcccccc ccocccctct ctctgctgct ccttttttgg atcggggtgc ccacactaca 3060
cotctcggca cctgagagga aatctgtaaa ccacactgca aacccacoacg tggcttcttg 3120
cctgctctgg gctgctggaa gctgctgtgg gatgggcaaa ttgcacgcct aagttgctgt 3180
gtgctgctgg gctgacgaca tgcacgcctc agtgcctggt gtcgcaagta tggcttcttg 3240
agaacggggga ggtgattgac taaagaggca aacccacoacg atcttgagga ttagcctgat 3300
catctcctgc attcccagca cagcttggtc ttcagcgata tggcttcttg 3360
tcaagacgg gagaaggttg agttcctgtg tcatctgcct cttattgctt atcttccctg 3420
acagggaggg taataagtg gaaagggca gacaactgca gtcacgcct caggtgagac 3480
agccgctgtg gcaccacgct ctgctgtgca cctcaggatt tgcacgcct caggtgagac 3540
tgtcgagctg ttcagctgggg ccacccggtcg ggcacacagc cacccgctgca aagttgccag 3600
attcaaggtc tattctctgtg aagacagata ctctctctt cagcttggaag gaaaggggc 3660
cgtcgctgct tcacactacc gttctcttctg taaagggcag acgtttttctt ccagcagcgg 3720
agacgttcca ttcacgagggt ctgagctgac cctagcctgc ctgctgtgac aaatcccccac 3780
tgcttacagc atcagcctac accccccccc cctttgtgcac tttggttttg 3840
gagacaggtc ttagagctac tgaacocca ggtgacgcag cttgagtggt ttggagctca 3900
ccacgcttgg ttcagccgct aaccccgttg tggagggaca ttcocgccct gttcttctctg 3960
cgoccttggc aatctttggtt atttatttatt ttttgatttt ttttttttttt ttttttttt 4020
tgttattttg tgtgattttg ccagctttgtt ttcgcttggag tgtggtttcg accgagctta 4080
ctctgctac cgggtgactc ccacaacctg aagctcctct gttctctgtct ccggagtctg 4140
ggattaaggg gttgtgccac cccatcctgg ccctctctct gttttttttt caggtaggcc 4200
aactgggctc taaagccaat ttcoccccaac gttctctgtg ttcaccccgg cggagtctg 4260
ggacccctcc cccccccccc cttccccccc cttccccccc ccccccccct ccccccccct 4320
ggctacccgcc atcagccttc gcacccctgc ttcctccccc ccccccccct ccccccccct 4380
cagcgccttc cagcgccttc ctttctctct gttgaggggg caaatccttg ttcggagcc 4440
gttctctctg tttgcctttcc ccacccctg cccacccatc atccctgagc ttttatcgac 4500
atagagaggt ccacaccacct tggctagccag aaggtctgtc tctctttttc 4560
tccacacct gttctgctgc cccctcccaag cagagccctt ctctctctgt 4620
ctgctgtgc agagacgttc aatcctctct gttctctctgt gcacacctgc gttgcgaaga 4680
ggttgggtct caggtgccct tgcagagctg tgaaccgatg gttgctttctt 4740
tggaggtct caggggctct gcctgctcct cttctctctg 4800
ttccagcagg ggtgacgcct cttcccccac cgggtctttgcttctctctg cttctctct 4860
cccocccctgc ccccccctgc cccccaccct tgggctgctc cttcccccac cgggtactttg 4920
ctggtgagtc cctggtgtca ttaggttgat gttgctgctc cttcccccac cgggtctttg 4980
tccgctgctg ttcctttgcc ctttttggtttg gcacagccag cccctcccaac cccccacct 5040
tagcagagct cttttttccg ccacccctgc cttcccccac cgggtctttgcttctctctg 5100
gaatocatca gacctgtcctt agttgggtt ttactgtcgt gacacagcac catggcccaag 5160
gacgtotat tgaagctgac atttaaaggc ggctgctttga caggttctcga ggtctacgcc 5220
attatatca aggcaagaac atggccagct cccggccagg acctgctgag agggatctag 5280
agttcccatt ccctgcttctg ccctgcttctag ccagagcttg ctttccaccgc ttcagcaccg 5340
agatattaa agccacatgc cacaatcaga gcgcttatcc cacaagggcaga cattcctttaa 5400
tgctgacact tctctggcca aagacactata aacatcatata gagcccaaaa aagggctgtgtg 5460
gtgcagagag ggctgctgtga ccctgctgta ttaccctctga tgaatccctag ttcattcagaa 5520
aacacctgcag aggcttgccc ctcctctgtgg cctggctctcg gcagctgagtc ggaattggag 5580
ccaaagtggag atgctgctcg gtaaccaacc ctaactctct ctacccaggg gcaagtgctgc 5640
tagctagttg gtttccctcctg gggcttaaga atagttggag atgctcctag gcagctcacta 5700
tagctagttg gtttccctcctg gtttccctcctg gtttccctcctg gtttccctcctg 5760
tctcctgcaga ccaccacatag taggggaaac aacagagcagc atagctccat cctctctctatt 5820
aggccatcctg agccacatgc gctctctctct gctctctctct gctctctctct gctctctctct 5880
ctggtgctctg gggctgctgtg accccaggtgc atggccaggtc cctggccccc ctttccccc 5940
tgctgctctg gggctgctgtg ggtcgtctgt cttggctgta cgtgcacgag cccgctctcc 6000
gcctgtcagt cggctgctgtg accccaggtgc atggccaggtc cctggccccc ctttccccc 6060
tctggtgctctg gggctgctgtg ggtcgtctgt cttggctgta cgtgcacgag cccgctctcc 6120
catggagagt tgctgctctgc ttacccacag ctgctgacagc tcctgctctgc ttgtgacac 6180
ccctgctttcc ggggggaggg accctgtgccc cgaaaatctgg acacctgttgg ttgagaattg 6240
aagctatata gttgacaccag ccaccacatag taggggaaac aacagagcagc atagctccat cctctctctatt 6300
ctaaaccacag ccaccacatag taggggaaac aacagagcagc atagctccat cctctctctatt 6360
aggagcctgt gggagagtag actgaagggt tttataagg tcggccacag gcgggacttc 6420
cagggggcag gcgtcagccc cagagggctt ggtgctctac agtccagttt ccagcagaga 6480
gcgcgctgctg cctgctgctg cctgctgctg cctgctgctg cctgctgctg cctgctgctg 6540
ccctgctgtg gggctgctgtg ggtcgtctgt cttggctgta cgtgcacgag cccgctctcc 6600
cctctgctgt gcccctctGC aacgggcaca acgtggcaag cggagagagt gggtgcaaga 6660
agatggaggt ctactattag gggagagtag actgaagggt tttataagg tcggccacag gcgggacttc 6720
ggggagaggt tggcggagtt atggctgtggc ctgaggaagaa tttcacaacc gcttgagagc 6780
aaccctctca aagagacagc toccacagct gggccgctc gttctgcctc gcgaatgcctc 6840
tggtggattc cggctggctg ccctggccct ccaccagagtt taaacaccag aataaggattcc 6900
tggaagacctc cttctgcttc tatataagg ttcggctgtcc gcggccgctc gcgaatgcctc 6960
caccagtagc caccacaccc cattcactta acaacagcaca aaccattagct aatctagtaaa 7020
aatatatcag atatatatat aatatatatag aaccagagac gagggacaaca aatctatggctt 7080
gggtgagcaatt gctacagatg ctgctgtttaa aagagagagt gctggcccacc aacacagttgt 7140
tgctgctctgc cggagagagt actgaagggt cagatcactc gcggaggtctg tggctgtggc 7200
tggctggcatt gcggagagagt gctggcccacc aacacagttgt 7260
gggagagagt gctggcccacc aacacagttgt 7320
acccctctcc aagagagagt actgaagggt ttcggctgtcc gcggccgctc gcgaatgcctc 7380
-continued

ccccocaacc cccctgocaa cattctctgc cccctgtctc cacoctgctg cccaccaagt 7440
aaccgtggaag ggcctggaag gctaaagggg tytgaacttc gatggcccag caccaggctt 7500
g cacccatcc caagtcggac acgcctgtgg gtctcagagg tgggctgcac nggaggcgag 7560
ggtctgagg cccgccagg agccttgccg caagccgctc ccactgtcatc ttgctgatga 7620
agagatcgag gtccaggtca gctotgagg gggtggggttg gtgcacacgc ggggctgttg 7680
ggggcgagg gatagcygac tgcocacgcc caagtagctc tgggttgtga gaaaggggtg 7740
ggcacacgtg atacacagcaca gcacagcata tccacagctg gtctacggtc gtccttgggg 7800
ggtcctgccc ttgctgcttc catcccctgc ggctccaggt acatgggtgg tgggtcttctc 7860
catataacoca gttggctgcc ggaggttataag acagggccag gaaggtggtgc gataactgtg 7920
ccatagagac gttccagtcag accocaaact acacacaggg gacacccttttg gcccctcttg 7980
tgctgacggo gttcctcttg cgggtccttc agttgcccgt gagaacacgg tacaacaga 8040
agatggcagc gtcacccgag cgggtgctggt gcggctctga gggggtgcag ccagatatcg 8100
tgctccocca gccgctgagg ggccctgggggt gtcgctgcac ccacacatcag ctaacacctc 8160
tcaggggtag ggcggccgca gaatggcactc agatgctcac cagtaaagga gtaataccca 8220
catatgctgg ttgctgctag aggctgtgta ccctgcctac gttcgccagc gttgaccctt 8280
cctgataggg agcttccctt cccctctctc ggggatgctg ttggggctgg agtctctcgg 8340
gggggtgggg ggaagggggg tgcggagggc tggaggtac gctagttcct gtcgcacaca 8400
tggggctgggg ggaggagggag ggctggagag tggcactcccc cacaagagagt gagagacctt 8460
taaccttccag gttgcctgac gcaaacagga acaggtggatt ctgggtggtc atctgttatc 8520
cgcgggctg ggggggaggg ggggggaggg ggcgggaggg ggctggagag tggcactcccc 8580
tgcagttgga acctgcttgc cgggctgcgc tggcctgac ggggctggtc cgggctgcgc 8640
cctgcttctc ggtcactgct gttgaggagaac aggggctgcg tgcacactgc akgagggag 8700
cocoactctg cctgtgtctc ctggccctcct cctcgcccaag gggacctagt atgcggtgggctt 8760
ttgaggtgtag gtgccacoac cttggtggaa taagctgctgg cccacccgaag ctgtataaccg 8820
gtacacgtgg ccggaggagg cactgtcagt aagggggtgg aaggccatag ggagacctag 8880
gagagtttgg gcgggtgttg ccaggttggt ggtgggtggg gggggtgggg gggggtgggg 8940
cttttcgca cctacttccct tgggtcgcgc akgagggagc cggcactgat gcacctatcgt 9000
gattacactg tggggttggtt aaggggaggg ggcggggggc ccacagagag acaaacagag 9060
gggggaggg ccagggggag acacacagag caggggaggg cgggagtggg ctttaactcctt 9120
tccocctcaca gttgggagcc gtagcttcgg ccctcctcct cgggctgctc cgggggaggg 9180
ggtgggttgc cccctgcggg gcagctgtgc cggcgcaccg cccgcctcct cgggggaggg 9240
tttttggacc cctgttcag ccttcttcag gtggcttcag atcataccac acocctgtggc 9300
cctacagctg gttggcagtg cctctctctg cccgggagtt cgggctgtgg cgggctgctc 9360
tggtgggttc ccaggggctt cgggagtggg gggggcggc tcagcgcagc ggctgcttgag 9420
gggggaggg cccaggggg gggtgggtgg gggggcggc tcagcgcagc ggctgcttgag 9480
agatgctcag ccocctcaggg cctcaggggg tttcggtgat gaaaggggac ttttctctcc 9540
tgcctgacacg ggctggccgc cgggctggtc cttgctctgg gttgggtgggc 9600
ataggggtgc gcggccttcag ccaggggagc agaaacagag ccccagcttc gcgggggttg 9660
tagcctacc cctgtgtcct ctaggctcag gcagagctga tgggccgttg gaggcctatg
9720
cagaaagcga aagccttcca gggagaaggg tgggcctgca gcccagctgg ccacatgccc
9780
cccaagggg cctctccatct tgaactgtgt gagaacacttc agctatttgc tgcacggacc
9840
agcaagttgc cttggccgact gccatcttag gcggcctcgcc tggcccttag tctccactgg
9900
ttgggtgaca gcccatcct gcctgccatc ttgagcttgag gaaagctgtg ttccagaaag
9960
gggtgtcagc gccaccccag agccagatgg ccggccaggg ggacagcggc aagccgcaag
10020
gacagtactgct cggtacgtgc aaccttccct acacctctct acggtgccac aagccccatc
10080
gacagagtc gggtgtgcat tggatggagaa gcagcgttctt cttgtgcttc tgaagtttcc
10140
cagtgtcttg gcacattgtgcc cgtatnocag atatctcctc cagtaaagac ctcgagtggg
10200
gctgtggacc agctctggtg cagcagcttt gcagcccccc gggcgggggt tggggggccg
10260
gggtgatagg gcacactacgc gagaagctgcc gcgtattgcc aacacagaaa gaactgctctc
10320
taacaggtgt tgtctgtggt gccagccagc tctctcaagg tc
10362

<210> SEQ ID NO: 402
<211> LENGTH: 1670
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 402

gtttgctgcag ggttgtggcg gacggtgccc gaccacccgtca cagagcgagc cggagggagc 60
cagctgcgag ggcggagctgt ggaagtttc gaggacgcag gaggacgcag gcctgagccc 120
cggcgactga gccacactgag gcaggggtcg acacacctctg aggaacttgag cttggaacct 180
tcattgttag gaggcctggcc tctaccccaag gcctacccct acacactgcc cactgtcccc 240
aacagctgct gtttgtggtct tgtgtctgt ctggcgcaaga ggacctccct cocagctatt 300
tgacacttcttt gtttgaagtc tgaagctctc atagtgacca agctcactca aaacctgcac 360
tgtgctcccc aacctgctag cttgctctgt gacacactct cggccactctg cocctgctgc 420
tcgacacca tccacacccaa cctgcacacc tttcctgcccc ctgtaactca cctccggtggc 480
acaaagtgca gcaacggctta gtttgaaacc gcgtggcggcc cggaggtgca gttggtttgag 540
ggcggaggg gcgtctggtt cggacgctt ccagaatgtcag gttgtagagc gaaacagctg 600
agcctgcaga cgggcggggt cagctgtattata gcgcctggaca cgggtatggac aatctggctt 660
aacagctgct gcttgggggctc ttgtgctttcg cgttgctctgcct cttgagtcggg ctcagggac 720
tgcctgatac cctacatcgg aagctggcttgc tggctatcct gttggcctaatcagagtg 780
ggttgtggt gacactgtcag cccacagttc agacacttgc gcagggcacg aatggcagggt 840
acagctgttg gcagctggtg ccctgtgccc gcggcctgagc gttgctcctgt ctggcccaagc 900
tgatccatac gttggctagtc cttggaacttc atacgcctcag gggctttgtcg ggactgttgtc 960
tgacccactg gcagacgctctt ccagcttcccc ctctcccttc gttggctagag gcctggtgctc 1020
gcagcctgag ggtgtggggc cttgctttgt cttcctccct gcgtgtggcc aaggtgtgtgt 1080
tagagaagg ttcagctggtg accacggagatgcactgtgggc acctgggtgtgta 1140
ttctctgctt cttgcgttcccc ttcacactct cttctcccttc tcctcccatttc tgccaacactcct 1200
tttggccagag cctcgctgcc cttcctagcag aactgtgtg ttcacacttc cgggtgctgcag 1260
-continued

ggtcacaagt gaccctcaac cctctgtcgg ggtcacaeg ggtgtgtttt gcttttgtag 1320
cctgagagcg tgcgccaaggg acocgtgagc ccacacagct tctttttagc cttgtcctca 1380
gtcocctccg ggtgctgtcg gtgtctgtctt tctactgttct cctcacaacag gaggtgcaagg 1440
cagatgtgtc ggccagtgcc aggcaatggc aagaggggca aagcttctcag ggggaaaggt 1500
tgcgcaaggg cccatgcaggc cacctgccac cagccagggc ttcctactggt gatocctgtg 1560
agaaacctca gtttctgtcg ggcggccagca gcagttctgac ttggttgtgtg cccttctgtg 1620
agactcctg ggcacagcgt ctcccaaggt tgtgctgacag ccoccaacctga 1670

<210> SEQ ID NO: 403
<211> LENGTH: 540
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 403

acccgaagaa gctacacaga cagagatgct agcaattaacg agtggagggag aggacccctag 60
agataaaagca cgcggcgccag ctctgtatat cgcaccctgtg gggagaggct caccacccctga 120
ggcctaggt gttcagcttc tgcagaggt ttggggctggg cccccagaggg ccggccctctca 180
ccacgtcttc ccgtcccccag ctggttgtcttg tggcggatatg ccctcaggccag 240
ggctctgcgc cagagactag acctttttggt tggagaggttg gagaatctata gttgaccaaatg 300
ccaccaacag ctaacgtgctg tcgcctcccc gctctagacctg gttctgtgacca gaaacccctga 360
cagcatcctc tgggtgcctgt gaaaacctgc ccacacacatt gcgaaacattt cctgagccct 420
ggactctccat cttgtgacac aaggtgcctgg tgtgctgacag gtgtgggtggg ccctctcttg 480
cggaggtct tgggtgctaga gggccaggg ggccagccgag ggcgacacgag gaaaaaatggc 540

<210> SEQ ID NO: 404
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 404

coccaacagtt gcacagacgtg 20

<210> SEQ ID NO: 405
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 405

ttoacaca aaaggctcat 20

<210> SEQ ID NO: 405
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 406

agagctccca cttctcaaac 20
<210> SEQ ID NO 407
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 407
tggtcaacta agagcttcca

<210> SEQ ID NO 408
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 408
agcaggctta gttggtggtg

<210> SEQ ID NO 409
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 409
ggcaggaaat gtggaggtg

<210> SEQ ID NO 410
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 410
ggcgccaccc ttgtgaacac

<210> SEQ ID NO 411
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 411
cccctctgag acctcgatct

<210> SEQ ID NO 412
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 412
ccagggacag acgtgagccc

<210> SEQ ID NO 413
<211> LENGTH: 20

ccagggacag acgtgagccc
-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 413

agtcacgcttcctgagggccc 20

<210> SEQ ID NO 414
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 414

catgcaccacccccaggg 20

<210> SEQ ID NO 415
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 415

tcaaacacacctgccacc 20

<210> SEQ ID NO 416
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 416

ttgcattgcgttcagca 20

<210> SEQ ID NO 417
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 417

aggtccacctagacctccc 20

<210> SEQ ID NO 418
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 418

aggttcagcttgacctgagc 20

<210> SEQ ID NO 419
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 419
aagagcttgc tggagcagcag 20

<210> SEQ ID NO: 420
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 420
tagagaacag ccaccaagcag 20

<210> SEQ ID NO: 421
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 421
ggasacagt gaagacgacc 20

<210> SEQ ID NO: 422
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 422
cacctctcttg tggagaacagc 20

<210> SEQ ID NO: 423
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 423
cctctcaggt tgcasgggag 20

<210> SEQ ID NO: 424
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 424
tgcacccctc ctgcaggttgc 20

<210> SEQ ID NO: 425
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 425
tctcagacgtgt tgcacccctc 20
<210> SEQ ID NO 426
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 426
aggtctcag aagtgtgca

<210> SEQ ID NO 427
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 427
ggcagagtt gcacacctag

<210> SEQ ID NO 428
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 428
ggcatgcttc tggtagcaca

<210> SEQ ID NO 429
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 429
tgcagacat gacagacaca

<210> SEQ ID NO 430
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 430
gagcttcccac tctcasaaca

<210> SEQ ID NO 431
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 431
cagacagct cagtaggtgg

<210> SEQ ID NO 432
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 432
cagacagct cagtaggtgg
<210> TYPE: DNA
<211> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 432

gggtgcagc cagcagagtc

<210> SEQ ID NO 433
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 433
cgtgcgctca ctttctggtca

<210> SEQ ID NO 434
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 434

ttgactacta ggcggctgctg

<210> SEQ ID NO 435
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 435
cgtgacccct gcacagcttg

<210> SEQ ID NO 436
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 436

agagccccca cgacagactg

<210> SEQ ID NO 437
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 437
cgcagcagagc tgcaccagagc

<210> SEQ ID NO 438
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 438
ctctotgagg cccagcagga

<210> SEQ ID NO 439
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 439
acagagccag cctgtgagcc

<210> SEQ ID NO 440
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 440
actgtgggca ctctgaggcc

<210> SEQ ID NO 441
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 441
actgcatgtactggtggcc

<210> SEQ ID NO 442
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 442
atgagctgactgcatgt

<210> SEQ ID NO 443
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 443
agcaggctgt acaggtcacac

<210> SEQ ID NO 444
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 444
tcattgctgg tccagcactg
<210> SEQ ID NO 445
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 445

gacaggaata cgcaagatcc

<210> SEQ ID NO 446
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 446
cgcagcttg gcacaagag

<210> SEQ ID NO 447
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 447
tctgatgggc aocagcttg

<210> SEQ ID NO 448
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 448
gcatatgca tctgatgggc

<210> SEQ ID NO 449
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 449
cctgtaatca gcatatgca

<210> SEQ ID NO 450
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 450
cctggaggg agctgagga
<210> SEQ ID NO 452
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 452

ttgttgagga ascagttagag

<210> SEQ ID NO 453
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 453

gagctttgcc ttcctgcacat

<210> SEQ ID NO 454
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 454

tttctctcctg asgagcttttg

<210> SEQ ID NO 455
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 455

gctgaagttt ctcacaggga

<210> SEQ ID NO 456
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 456

tgcttgcact ctaagctgca
<400> SEQUENCE: 457
acagocaytc ccactgtgctc

<210> SEQ ID NO 458
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 459
ccttgggag cttcaggtggg

<210> SEQ ID NO 459
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 460
ttgasacac gctgcotaggg

<210> SEQ ID NO 460
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 461
gcccttttgc gasacacaacc

<210> SEQ ID NO 461
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 462
atctggctct ggtyggctct

<210> SEQ ID NO 462
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 463
ttgccgagc acctggtcct
ctttcaacc tggccggggc

acagctgtgc tgcttctgtg

agacctgtgcc aggtcaggac

gtttctcaat ctcatacaac

aacatacga gttcattagat

ctggaacta ctcagacgtc

ctgggaacca ctcagagttc
-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 470

cgtgagcaca tttctgagta

<210> SEQ ID NO 471
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 471

gtacaaaggg cagacacaaag

<210> SEQ ID NO 472
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 472

gagaaagtgc caccaggtagg

<210> SEQ ID NO 473
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 473

cagacagct cttgtgaaggt

<210> SEQ ID NO 474
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 474

cggtgctgca ctgqgcatgg

<210> SEQ ID NO 475
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 475

cggtgctgca cctgqtcactg

<210> SEQ ID NO 476
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 476

cosagatgy gycagagagc

20

<210> SEQ ID NO 477
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 477

ccttaccac gggaccttgt

20

<210> SEQ ID NO 478
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 478

ccttcctcta ggtgtgtctca

20

<210> SEQ ID NO 479
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 479

cosacocca gycctcatgca

20

<210> SEQ ID NO 480
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 480

cctcaggctgc acaggaccag

20

<210> SEQ ID NO 481
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 481

tagstcttt cctcctactc

20

<210> SEQ ID NO 482
<220> FEATURE:

<400> SEQUENCE: 482

000

<210> SEQ ID NO 483
<220> FEATURE:
<400> SEQUENCE: 483

000

<210> SEQ ID NO 484
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 484
gcgcggccc tgggctcaca 20

<210> SEQ ID NO 485
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 485
gcagctcag ggggagacac 20

<210> SEQ ID NO 486
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 486
gggagagcg tacacacaca 20

<210> SEQ ID NO 487
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 487
gagctacaca cacaccagga 20

<210> SEQ ID NO 488
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 488	tagtgtgcca gggcatgccc 20

<210> SEQ ID NO 489
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 489
tcgaaagta ttcctgctg 20

<210> SEQ ID NO 490
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 490

ggctgcccc cccaggtgcc

<210> SEQ ID NO 491
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 491

cctaggtgac cagtgacacc

<210> SEQ ID NO 492
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 492

gctggtgtgc aascacacct

<210> SEQ ID NO 493
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 493

cacccaccag tgcacaccacg

<210> SEQ ID NO 494
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 494

tgcgcgtgct cctgccaggg

<210> SEQ ID NO 495
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 495

cacccacgctt cgtttcacaag

<210> SEQ ID NO 496
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 496

tgttaacagag atgcgaggccc

<210> SEQ ID NO 497
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 497

gccagctgtaa ttcgcagaaag 20

<210> SEQ ID NO 498
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 498

gcgagagat gtagctccag 20

<210> SEQ ID NO 499
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 499

gagttcagaa ggaggtggcc 20

<210> SEQ ID NO 500
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 500

ccagatgta cagacgttcc 20

<210> SEQ ID NO 501
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 501

cgccttggycc atcctggggyg 20

<210> SEQ ID NO 502
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 502

gtcgcagaaag ccagctccggt 20

<210> SEQ ID NO 503
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 503

cgtgacagaa ccgctgagga 20

<210> SEQ ID NO 504
<211> LENGTH: 20
<212> TYPE: DNA
<213> OGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 504

ctgctcagaa cccgctacag 20
-continued

<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 504

aggaaccgt acagcagaa

<210> SEQ ID NO 505
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 505

gctaacgca gaaatgtggc

<210> SEQ ID NO 506
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 506

gaaatgtggc gacgactca

<210> SEQ ID NO 507
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 507

cgagacactc aytgtcagca

<210> SEQ ID NO 508
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 508

cctcagtcg agcaccttgcc

<210> SEQ ID NO 509
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 509

tcagcaata tggcatcgtg

<210> SEQ ID NO 510
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 510

aaacctgcag gctgtgcccc

<210> SEQ ID NO 511
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 511

ggcagtggt cagtggtcttg

<210> SEQ ID NO 512
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 512
gcttcotgtyc gtccotgycgg

<210> SEQ ID NO 513
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 513
ccttcotgyc gcotgycgatca

<210> SEQ ID NO 514
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 514
cacaccttcg acotctcgtc

<210> SEQ ID NO 515
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 515
cctgggggcac ggcaagatgca

<210> SEQ ID NO 516
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 516
cctggggcggt gcgaaagtgc

<210> SEQ ID NO 517
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 517
gcagagtgc atggaggag
<210> SEQ ID NO: 518
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 518

cagacaagga gctgcaggttt
20

<210> SEQ ID NO: 519
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 519
tgggtgcagc caggtacct
20

<210> SEQ ID NO: 520
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 520
tgggtgtgct gcctccctag
20

<210> SEQ ID NO: 521
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 521
cctccctaga tgggtgtgag
20

<210> SEQ ID NO: 522
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 522
cattggctc cgtgcagga
20

<210> SEQ ID NO: 523
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 523
caggtgtgc tgcctgagga
20

<210> SEQ ID NO: 524
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

400> SEQUENCE: 524
tgcagatgt gcctctctct
20
<210> SEQ ID NO 525
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 525

gaggtgcgtc gagagtc

20

<210> SEQ ID NO 526
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 526

gtgcgcgtgaa ctcgtgcgca

20

<210> SEQ ID NO 527
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 527
	atgtgcgca cgtcccatgt

20

<210> SEQ ID NO 528
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 528
	acgtccatg tgcgtggaas

20

<210> SEQ ID NO 529
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 529

gcatggaaat gtcctcccaac

20

<210> SEQ ID NO 530
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 530

ggtactgag ccacagac

20

<210> SEQ ID NO 531
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 531

tgtgccag caagctgcaac

20
<210> SEQ ID NO 532
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 532
cctgtaacct ggtttgtctg

<210> SEQ ID NO 533
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 533
gtototcaag ggctgtcttg

<210> SEQ ID NO 534
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 534
cgggocctga ggctcaaggg

<210> SEQ ID NO 535
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 535
tgctgctctg ccacctagct

<210> SEQ ID NO 536
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 536
cgtgtctgcc actcagctgc

<210> SEQ ID NO 537
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 537
cctggagagg gttcaacaca

<210> SEQ ID NO 538
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 538
gaggagcgtg clacacaccc
20

<210> SEQ ID NO 539
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 539

gaggagcgtaca clacacacca
20

<210> SEQ ID NO 540
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 540

accaccggy cgtcattgccc
20

<210> SEQ ID NO 541
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 541
cagatgtggg agggcagctag
20

<210> SEQ ID NO 542
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 542

atgtgggag gagctagctag
20

<210> SEQ ID NO 543
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 543
ggcagcctgc tgcctagaggg
20

<210> SEQ ID NO 544
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 544
cagctagcag cagagcatgc
20

<210> SEQ ID NO 545
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 545
-continued

gctggcctgc cagccacagc 20

<210> SEQ ID NO 546
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 546

cccttttgtg aagtgaagctgc 20

<210> SEQ ID NO 547
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 547
ttgagaatgc gaagctctac 20

<210> SEQ ID NO 548
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 548
caccacaccc tgcgcctgct 20

<210> SEQ ID NO 549
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 549
cattgcaacc caaagtcgaa 20

<210> SEQ ID NO 550
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 550
ttgcaaccac caaagtcgac 20

<210> SEQ ID NO 551
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 551
tggcaccacca aagtgcacac 20

<210> SEQ ID NO 552
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 552

ggcaocaa a tgtcaaacac 20

<210> SEQ ID NO: 553
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 553

gtgtcaaga gtsccgggc 20

<210> SEQ ID NO: 554
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 554
tcaagatg cggcccgac 20

<210> SEQ ID NO: 555
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 555
cotggcgtg atgcctccca 20

<210> SEQ ID NO: 556
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 556
atgcctccca gttccagatg 20

<210> SEQ ID NO: 557
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 557
tccgagaag ggtgccaaag 20

<210> SEQ ID NO: 558
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 558
gatgtacacg agttccccag 20

<210> SEQ ID NO: 559
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 559

gcactgccat ccacgggaat

<210> SEQ ID NO: 560
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 560
atgggtgct ccagacccqc

<210> SEQ ID NO: 561
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 561
ccagaaatt gcggagcacc

<210> SEQ ID NO: 562
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 562
agcactcag tgtcagccac

<210> SEQ ID NO: 563
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 563
tgctgggtct ggcacacctc

<210> SEQ ID NO: 564
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 564
gctggcaccg caatgacaac

<210> SEQ ID NO: 565
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 565
caatgacaac atgggttctc

<210> SEQ ID NO: 566
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 566

tggtgatcc tgccgttcc

<210> SEQ ID NO: 567
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 567

actttctct cttcgcttcc

<210> SEQ ID NO: 568
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 568

gtggcagcca ggattcatct

<210> SEQ ID NO: 569
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 569

cagctagggc tggtctcttg

<210> SEQ ID NO: 570
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 570
	agggctggcc tctggcaacc

<210> SEQ ID NO: 571
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 571

gctggactct ggcaccaga

<210> SEQ ID NO: 572
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:

<400> SEQUENCE: 572

cgagctcttg gcccagcag

<210> SEQ ID NO: 573
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 573

tgacacttg cacccagagg 20

<210> SEQ ID NO 574
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 574

taxcttgccac cccagagcgct 20

<210> SEQ ID NO 575
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 575
cgttggacac cccagaactg 20

<210> SEQ ID NO 576
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 576
cgtctgccga gatgtgaggct 20

<210> SEQ ID NO 577
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 577
tgtctgcgag attggggcctc 20

<210> SEQ ID NO 578
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 578
cagagattgct cactctcctc 20

<210> SEQ ID NO 579
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 579
tggggcactc ttcctctgca 20

<210> SEQ ID NO 580
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 580

tgctttgctc ctgctgcaga 20

<210> SEQ ID NO 581
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 581

tcctggtgca gaggtgagca 20

<210> SEQ ID NO 582
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 582

tgacaaggg gtagccagggc 20

<210> SEQ ID NO 583
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 583

gggcttgtgc cgtgaactgc 20

<210> SEQ ID NO 584
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 584

gaaaatgtgc caagtgtccc 20

<210> SEQ ID NO 585
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 585

tgctggcaacg toccatgtgc 20

<210> SEQ ID NO 586
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 586

catgtgcctc gaaatgtctt 20

<210> SEQ ID NO 587
continued

<210> LENGTH: 20
<211> TYPE: DNA
<212> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 587

tgtgcatgag astgtctctcc 20

<210> SEQ ID NO 589
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 588

gttcttcacat aaagaagc 20

<210> SEQ ID NO 589
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 589

cctcctaacat taaagaagtc 20

<210> SEQ ID NO 590
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 590

cataaagag actaagtgtg 20

<210> SEQ ID NO 591
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 591

cgtggaagct caaaaagcc 20

<210> SEQ ID NO 592
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 592

tagacaagca catcttatcc 20

<210> SEQ ID NO 593
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 593

cCACCTGCA GAGTGTTG 20
<210> SEQ ID NO: 594
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 594> SEQUENCE: 594

gccgctagct gccagagggc

<210> SEQ ID NO: 595
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 595> SEQUENCE: 595

tgcgctgctgc tgcctgcca

<210> SEQ ID NO: 596
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 596> SEQUENCE: 596

tgcgctgctgc tgcctgcca

<210> SEQ ID NO: 597
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 597> SEQUENCE: 597

cctccgctgc agtgatagaa

<210> SEQ ID NO: 598
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 598> SEQUENCE: 598

gacctctagt ttgacagtgtg

<210> SEQ ID NO: 599
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 599> SEQUENCE: 599

tgaccagtgt caccaaaccc

<210> SEQ ID NO: 600
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<junction 600> SEQUENCE: 600

gtgcacccc acscctgagcc
<210> SEQ ID NO 601
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 601

aacagacct cgcgccagta

<210> SEQ ID NO 602
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 602

acctttgaca agtattctctg

<210> SEQ ID NO 603
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 603

cggcaatacc acggccaca

<210> SEQ ID NO 604
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 604

aataccacgg ccacacatctc

<210> SEQ ID NO 605
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 605

accaaggcga acatctctctg

<210> SEQ ID NO 606
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 606

gccttgccac cccacaatgac

<210> SEQ ID NO 607
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 607

acccaaagt gcaacacgagc
<210> SEQ ID NO 608
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 608

casagtcac caccgttccq 20

<210> SEQ ID NO 609
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 609

gtgcacaccg gttctgttt 20

<210> SEQ ID NO 610
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 610

cctctctgtg ttcasaggst 20

<210> SEQ ID NO 611
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 611

gtcagtggt ggtgccacc 20

<210> SEQ ID NO 612
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 612

cocggggycg gctttsgcg 20

<210> SEQ ID NO 613
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 613
	aagatgtaca gcaagttca 20

<210> SEQ ID NO 614
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 614
gtcagggacc ggtcagggcc

<210> SEQ ID NO: 622
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 622

cctgctcagt gatggagcgg

<210> SEQ ID NO: 623
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 623

ctcagttgatg gacgctgctgc

<210> SEQ ID NO: 624
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 624

gtgtggccgc gttgcttcatg

<210> SEQ ID NO: 625
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 625

ggcccgcttg tcctgcaaat

<210> SEQ ID NO: 626
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 626

cggttctcat gcaatagggc

<210> SEQ ID NO: 627
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 627

taacctgcacac cctgcttgggg

<210> SEQ ID NO: 628
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 628

-continued
<400> SEQUENCE: 628

cacaacctgc tggtgctggc

<210> SEQ ID NO 629
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 629

acgtgctggg cctgcccacc

<210> SEQ ID NO 630
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 630

gagaggagct ttcttagcct

<210> SEQ ID NO 631
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 631

ggagtttttt cagcttctac

<210> SEQ ID NO 632
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 632

tcagcttctt cctgccccatc

<210> SEQ ID NO 633
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 633

ccccctacctg ggctagcctg

<210> SEQ ID NO 634
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 634

gtctggacc agcattgacc

<210> SEQ ID NO 635
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 635
tggaccagca atgacaacat 20

<210> SEQ ID NO: 636
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 636
gcagtgacca ctagggccttc 20

<210> SEQ ID NO: 637
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 637
acacatggg cttctgtgag 20

<210> SEQ ID NO: 638
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 638
acatgggctt ctagtgggatc 20

<210> SEQ ID NO: 639
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 639
tctgtggtat cttgagtgttc 20

<210> SEQ ID NO: 640
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 640
tctctagtgc cattctgtatc 20

<210> SEQ ID NO: 641
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 641
tgcacacacg agactacaaag 20

<210> SEQ ID NO: 642
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 642

gctcaagtc ttcttcgacc

<210> SEQ ID NO: 643
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 643

cctggctggt ggcctcctct

<210> SEQ ID NO: 644
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 644

atgtacagca gcttccaggt

<210> SEQ ID NO: 645
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 645

ttttcgacc ttcttccctcag

<210> SEQ ID NO: 646
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 646

tctggyccat cctgatcacc

<210> SEQ ID NO: 647
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 647

gcttctccag ccttacccctg

<210> SEQ ID NO: 648
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 648

cctcgtgttc aagagatgcag

<210> SEQ ID NO: 649
<211> LENGTH: 20
<212> TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 649
acaaagtgca acaccgacct
 20

SEQ ID NO 650
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 650
acacacctgct gggctgggcc
 20

SEQ ID NO 651
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 651
agccctcacc tgggcctogg
 20

SEQ ID NO 652
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 652
caataccacg gccacaacct
 20

SEQ ID NO 653
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 653
accaggtgca ccacacacctg
 20

SEQ ID NO 654
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 654
tacggtgac agtgtcaacca
 20

SEQ ID NO 655
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens
FEATURE:

SEQUENCE: 655
agtgtcaacca caacctgagc
 20

SEQ ID NO 656
LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 656

cacctggac o caacacgtgca 20

<210> SEQ ID NO 657
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 657
tccagcgct tccagcttgat 20

<210> SEQ ID NO 658
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 658
gcgacggtg t cactgcaata 20

<210> SEQ ID NO 659
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 659
acagggcgtg gtcaagaga 20

<210> SEQ ID NO 660
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 660
aacaggttc gttgtaaga 20

<210> SEQ ID NO 661
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 661
cacaggtgt ggcctgggca 20

<210> SEQ ID NO 662
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 662
cagaccgcg tacacccaga 20

<210> SEQ ID NO 663
-continued

LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 663
ataccagcgc cagactctcc

SEQ ID NO 664
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 664
cagctagctg cccagagcga

SEQ ID NO 665
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 665
tagggcttct tcagctctta

SEQ ID NO 666
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 666
cctcgctcc ggtcgatcgc

SEQ ID NO 667
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 667
gtgccggcgg tgytctgca

SEQ ID NO 668
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 668
gcacacactg ctggcoccg

SEQ ID NO 669
LENGTH: 20
TYPE: DNA
ORGANISM: H. sapiens

SEQUENCE: 669
aggtctttca gctctacct
<210> SEQ ID NO 670
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 670

aatgacaaca tgggctctcgq 20

<210> SEQ ID NO 671
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 671
cctgacaacc ctgctgtgccc 20

<210> SEQ ID NO 672
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 672
ccaaagtcac gcacaacotga 20

<210> SEQ ID NO 673
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 673
cacgcaatgc acactgggct 20

<210> SEQ ID NO 674
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 674
tgacctctct gtttgagagag 20

<210> SEQ ID NO 675
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 675
gcaacaacc gcctgtgtcca 20

<210> SEQ ID NO 676
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 676
cctcctgttt gsgaagtgga 20
<210> SEQ ID NO 677
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 677
gcagttacct gggtgtgccc 20

<210> SEQ ID NO 678
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 678
cctggtcag gttgatggact 20

<210> SEQ ID NO 679
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 679
cgaccaagtat tctgtgctgcc 20

<210> SEQ ID NO 680
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 680
cctggtcag gctgccaagcc 20

<210> SEQ ID NO 681
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 681
cctcctgtgat atcctgctggt 20

<210> SEQ ID NO 682
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 682
tgggtgcttc aggacccgct 20

<210> SEQ ID NO 683
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 683
gttcaagaga tgcggcccgc 20
<210> SEQ ID NO 684
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 684

catggtgtct tgtgggtcct 20

<210> SEQ ID NO 685
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 685
tctcgtgtga toctgcggtt 20

<210> SEQ ID NO 686
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 686
cacacactga gctgcgtgcc 20

<210> SEQ ID NO 687
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 687
cactactcag gggccacactc 20

<210> SEQ ID NO 688
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 688
gtacagcagc ttccaggtga 20

<210> SEQ ID NO 689
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 689
gggctgctca gacccgctca 20

<210> SEQ ID NO 690
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 690
cagcttcgggtgtgtaca

<210> SEQ ID NO 691
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 691
gccatatcaggtgcaacat

atggctttctgtggtatcc
cagtcttccgctccatcga

cagtctttcgtggtggttcg

cgctctggtcagggtgttc
gctagctgccasaggccatg
tcgtttcaccagatgcgggg
-continued

cctgcctgcctgcccagcaca 20

<210> SEQ ID NO: 698
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 698
tgcctgcctg cccagcacaag 20

<210> SEQ ID NO: 699
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 699
tgggattctg sgattctctg 20

<210> SEQ ID NO: 700
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 700
atggcagcaca gcaagcatac 20

<210> SEQ ID NO: 701
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 701
gcgtggcgc cggcgcacgc 20

<210> SEQ ID NO: 702
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 702
tccacacac agcgcagctgc 20

<210> SEQ ID NO: 703
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 703
tcagcagcag ctcagcagcag 20

<210> SEQ ID NO: 704
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 704
gacaagattt cctgctgcc 20

<210> SEQ ID NO: 705
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 705
gagttcttc agcctctacc 20

<210> SEQ ID NO: 706
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 706
tctcttgc tctcttctc 20

<210> SEQ ID NO: 707
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 707
cacaaga tgc aacaccgott 20

<210> SEQ ID NO: 708
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 708
gagccttgc caaagt ttc 20

<210> SEQ ID NO: 709
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 709
tgc cacaca acctgagcct 20

<210> SEQ ID NO: 710
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 710
gcaccacasa gtgcac acc 20

<210> SEQ ID NO: 711
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 711

tgccgcgtcttgcatcgaatat

<210> SEQ ID NO 712
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 712

agatgtacagcagcttcacag

<210> SEQ ID NO 713
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 713

tgaccatccatcttgcccttt

<210> SEQ ID NO 714
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 714

tgcacactcttcgctggtcgtg

<210> SEQ ID NO 715
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 715

caggctttcgctgtccagagat

<210> SEQ ID NO 716
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 716

taccacggctcctgccatctcct

<210> SEQ ID NO 717
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 717

cacagatgacacatgggctg

<210> SEQ ID NO 718
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
---continued

<tr><td><pre><220> FEATURE:
<400> SEQUENCE: 718

tttttcgcc ttcacctggg 20

<210> SEQ ID NO 719
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 719

acacgcaatg acacacatggg 20

<210> SEQ ID NO 720
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 720

agtcgaacac cgttcctgtg 20

<210> SEQ ID NO 721
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 721

acacacaacct ggcctcctgtg 20

<210> SEQ ID NO 722
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 722

acccgaacac ccgcctcctgggc 20

<210> SEQ ID NO 723
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 723

cgcttcacag aagtcgggggc 20

<210> SEQ ID NO 724
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
<400> SEQUENCE: 724

aagcttctct tgcacctcttt 20

<210> SEQ ID NO 725
<211> LENGTH: 20
<212> TYPE: DNA
</pre></td></tr>
---continued---

<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 725

cgttcgtgt tcaagagatg

<210> SEQ ID NO 726
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 726

aagtgtggcc cagcaatgac

<210> SEQ ID NO 727
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 727

ttcaagagat gcggggccgga

<210> SEQ ID NO 728
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 728

cctacagcctg tccctggggg

<210> SEQ ID NO 729
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 729

gaccagcgt gacsacatgg

<210> SEQ ID NO 730
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 730

tgcaacaccg ttcgtgttc

<210> SEQ ID NO 731
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 731

ctgaccaccg astgacacaca

<210> SEQ ID NO 732
<211> LENGTH: 20

--END OF TEXT--
<210> SEQ ID NO 733
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
 <400> SEQUENCE: 733
 aagtgcaaca cagcttgtg
 20

<210> SEQ ID NO 734
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
 <400> SEQUENCE: 734
 agctagctg ccaagggcat
 20

<210> SEQ ID NO 735
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
 <400> SEQUENCE: 735
 acagcagtt ccaaggtgatg
 20

<210> SEQ ID NO 736
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
 <400> SEQUENCE: 736
 gcttgctgtt caagagatgc
 20

<210> SEQ ID NO 737
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
 <400> SEQUENCE: 737
 cgccggtgtc atgcaatag
 20

<210> SEQ ID NO 738
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:
 <400> SEQUENCE: 738
 tgtctagag acgctcaagc
 20

<210> SEQ ID NO 739
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 739

gctgctcagc accgcttaca

<210> SEQ ID NO 740
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 740

agccagttcc agctgatgta

<210> SEQ ID NO 741
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 741

ggtcttgtg gatctctgagc

<210> SEQ ID NO 742
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 742

gagggcctt ccagctcctc

<210> SEQ ID NO 743
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 743

ttccttgcca toctgatcaaa

<210> SEQ ID NO 744
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 744

ccaaagctg caacacagct

<210> SEQ ID NO 745
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 745

gctgctgcctg gctgccagc
<210> SEQ ID NO 746
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 746
aaatgcaac accgcctctgt

<210> SEQ ID NO 747
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 747
tgtgccgcgc tgttccccatgc

<210> SEQ ID NO 748
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 748
gggctcttg tggatccctgc

<210> SEQ ID NO 749
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 749
tacagccctg cccctggggc

<210> SEQ ID NO 750
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 750
cggcggttgt cctgcactat

<210> SEQ ID NO 751
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 751
cctgcacac gtattctctgc

<210> SEQ ID NO 752
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 752
gcgctttcga ggtgatgtac
<210> SEQ ID NO: 753
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 753
ccagtctgg accgcaatg

<210> SEQ ID NO: 754
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 754
cacacagct tgtgttcaaa

<210> SEQ ID NO: 755
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<220> FEATURE:

<400> SEQUENCE: 755
tgacaacatg gatttttctgt

<210> SEQ ID NO: 756
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 756
cacacotctgc cagatgtggg

<210> SEQ ID NO: 757
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 757
gtttgaasag tggasgctct

<210> SEQ ID NO: 758
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 758
tggasgctct atagtgacca

<210> SEQ ID NO: 759
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 759
cacccacaac caagctgctg
<210> SEQ ID NO 760
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 760

cagtgccac atttctgtgcc

20

<210> SEQ ID NO 761
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 761

gttgtaaaga ggttgtggtgcc

20

<210> SEQ ID NO 762
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 762

gagagagagt ccagagggg

20

<210> SEQ ID NO 763
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 763

ggttacagt ctgttcctgg

20

<210> SEQ ID NO 764
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 764

ggctctagag aagctgcact

20

<210> SEQ ID NO 765
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 765

cctgctgtgg tgttcaagtg

20

<210> SEQ ID NO 766
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 766
-continued

tgccgacca gcacgacac
 20

<210> SEQ ID NO 767
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 767
atggattcat ggtggatcct
 20

<210> SEQ ID NO 768
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 768
gccaggtcct cgtgcacct
 20

<210> SEQ ID NO 769
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 769
gcaacgtgag gagaggtgcag
 20

<210> SEQ ID NO 770
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 770
agaggtgac acacccctgag
 20

<210> SEQ ID NO 771
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 771
tgcacacact ctgaggacct
 20

<210> SEQ ID NO 772
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 772
tcaggtgtgc asacctctgccc
 20

<210> SEQ ID NO 773
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 773
tggctacccagggcatgcc

<210> SEQ ID NO 774
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 774

tggttgagagtggaagctc

<210> SEQ ID NO 775
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 775

cacotactgagctgagctc

<210> SEQ ID NO 776
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 776

actctotctcgccctgacc

<210> SEQ ID NO 777
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 777

tgcgcaaaagtgcgacacg

<210> SEQ ID NO 778
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 778

cacgacacgctagtttcaca

<210> SEQ ID NO 779
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 779

cagttggttcgagggccacg

<210> SEQ ID NO 780
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<210> SEQ ID NO 780
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 780

tgcgtgccc ggctggcttt

<210> SEQ ID NO 781
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 781
gcgcgtgcta tctgcgtgg

<210> SEQ ID NO 782
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 782
tctgcgtgg cctcaggag

<210> SEQ ID NO 783
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 783
gtcgtcaagg cttgctctgt

<210> SEQ ID NO 784
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 784
gggtgcaagg tgtcaccagt

<210> SEQ ID NO 785
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 785
gtoccaagt gtcacagt

<210> SEQ ID NO 786
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 786
tgcacagt gcgccatac

<210> SEQ ID NO 787
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<400> SEQUENCE: 787

gtgaacctgt acaagcctgct 20

<210> SEQ ID NO 788
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 788

cagtgctgga ccaagcaatga 20

<210> SEQ ID NO 789
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 789

cctcttgttg ccaagctgcg 20

<210> SEQ ID NO 790
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 790

gcgcataaga tcgactatgc 20

<210> SEQ ID NO 791
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 791
	ttcctcagct cttccaggg 20

<210> SEQ ID NO 792
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 792
	ctctactgtt totccasaca 20

<210> SEQ ID NO 793
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 793
	atggoagga ggcaagatgc 20

<210> SEQ ID NO 794
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<FEATURE/>

<SEQUENCE: 794>
casagcttt csgagggaaa

<SEQ ID NO: 795>
<LENGTH: 20>
<TYPE: DNA>
<ORGANISM: M. musculus>

<FEATURE/>

<SEQUENCE: 795>
agcagcctag gcagccacat

<SEQ ID NO: 796>
<LENGTH: 20>
<TYPE: DNA>
<ORGANISM: M. musculus>

<FEATURE/>

<SEQUENCE: 796>
tcccttgtgag aacctttcaac

<SEQ ID NO: 797>
<LENGTH: 20>
<TYPE: DNA>
<ORGANISM: M. musculus>

<FEATURE/>

<SEQUENCE: 797>
tccagttatg aagtgcagcca

<SEQ ID NO: 798>
<LENGTH: 20>
<TYPE: DNA>
<ORGANISM: M. musculus>

<FEATURE/>

<SEQUENCE: 799>
gcagcagtgg gcagcgtgtg

<SEQ ID NO: 800>
<LENGTH: 20>
<TYPE: DNA>
<ORGANISM: M. musculus>

<FEATURE/>

<SEQUENCE: 800>
tggccagtag tcctccgagg

<SEQ ID NO: 801>
<LENGTH: 20>
<TYPE: DNA>
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 801

gtgtgtgttc aagaaagggc
 20

<210> SEQ ID NO 802
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 802

aggccaccag aggcccagat
 20

<210> SEQ ID NO 803
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 803

agagccagat gccggccaa
 20

<210> SEQ ID NO 804
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 804

gccggccaa gttggaagag
 20

<210> SEQ ID NO 805
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 805

cagcagaca gcscttgtga
 20

<210> SEQ ID NO 806
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 806

gtttagcct ggcacagggc
 20

<210> SEQ ID NO 807
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 807

gttgatagc atggagagmc
 20

<210> SEQ ID NO 808
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 808

atotagac tctgagcgtt 20

<210> SEQ ID NO 809
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 809

gaaccttgag tgtcttcgatg 20

<210> SEQ ID NO 810
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 810

taccagata tgtcttcgatg 20

<210> SEQ ID NO 811
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 811

ccttgctctcg ctttggttac 20

<210> SEQ ID NO 812
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 812

caccttcag agtctgtctcg 20

<210> SEQ ID NO 813
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 813

catggccag tgcagcagcg 20

<210> SEQ ID NO 814
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: M. musculus
<220> FEATURE:

<400> SEQUENCE: 814

gtcaggtgcttaac 20

<210> SEQ ID NO 815

-continued

LENGTH: 20
TYPE: DNA
ORGANISM: M. musculus
FEATURE:

SEQUENCE: 815

tcatgagccc tgggcttgg

SEQ ID NO 816
LENGTH: 20
TYPE: DNA
ORGANISM: M. musculus
FEATURE:

SEQUENCE: 816
cgtgcctctc gcgccctgag

SEQ ID NO 817
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 817
cgtcagccc tctgggtttga

SEQ ID NO 818
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 819
cctttctgta gctttctctc

SEQ ID NO 819
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 819
gcgtttccos gttttgacct

SEQ ID NO 820
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
NAME/KEY: unsure
LOCATION: (i) ...(20)
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 820

nnnnnnnnnn nnnnnnnnnn

SEQ ID NO 821
LENGTH: 16
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
-continued

400> SEQUENCE: 821
 acgacaacgc caacgc 16
 cacgagctg gcctcag 18

400> SEQUENCE: 823
 atcacgaaca acgtgtgtg gccttt 26

400> SEQUENCE: 824
 cgagagccgc agggaccg 19

400> SEQUENCE: 825
 cgagagccgc agggaccctt 21

400> SEQUENCE: 826
 cgacccguc acgcuucqctt 21

400> SEQUENCE: 827

What is claimed is:

1. A compound comprising 8 to 80 nucleobases targeted to the region comprising nucleotides 951 to 985 of SEQ ID NO: 4.
2. The compound of claim 1 which comprises at least an 8-nucleobase portion of SEQ ID NO: 203, 384, 261, 329, 204, 249, 390, 371, 292, 205, 128, 57.
3. The compound of claim 1 which consists of SEQ ID NO: 203, 384, 261, 329, 204, 249, 390, 371, 292, 205, 128, 57.
4. The compound of claim 1 which is at least 70% complementary to SEQ ID NO: 4.
5. The compound of claim 1 which is at least 80% complementary to SEQ ID NO: 4.
6. The compound of claim 1 which is at least 90% complementary to SEQ ID NO: 4.
7. The compound of claim 1 which is at least 95% complementary to SEQ ID NO: 4.
8. The compound of claim 1 which is 12 to 50 nucleobases in length.
9. The compound of claim 1 which is 15 to 30 nucleobases in length.
10. The compound of claim 1 which is 20 nucleobases in length.
11. The compound of claim 1 comprising an oligonucleotide.
12. The compound of claim 11, wherein the oligonucleotide is DNA.
13. The compound of claim 11, wherein the oligonucleotide is RNA.
14. The compound of claim 11, wherein the oligonucleotide is chimeric.
15. The compound of claim 11, wherein at least a portion of said compound hybridizes with RNA to form an oligonucleotide-RNA duplex.
16. The compound of claim 11, wherein the oligonucleotide is single-stranded.
17. The compound of claim 1 comprising at least one chemical modification.
18. The compound of claim 17 comprising at least one modified internucleoside linkage, sugar moiety, or nucleobase.
19. The compound of claim 17 comprising at least one 2′-O-methoxyethyl sugar moiety.
20. The compound of claim 17 comprising at least one phosphorothiate internucleoside linkage.
21. The compound of claim 17 comprising at least one 5-methylcytosine.
22. The compound of claim 14, wherein every internucleoside linkage is a phosphorothiate linkage, nucleobases 1-5 and 16-20 comprise a 2′-O-methoxyethyl modification and every cytidine residue comprises a 5-methyl modification.
23. The compound of claim 1, wherein the compound is a sodium salt.
24. A pharmaceutical composition comprising the compound of claim 1 and a pharmaceutical carrier, diluent or excipient.
25. The composition of claim 24 comprising a colloidal dispersion system.
26. A kit or assay device comprising the compound of claim 1.
27. A method of inhibiting the expression of human glucagon receptor in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of human glucagon receptor is inhibited.
28. A method of treating or delaying the onset of a disease or condition associated with glucagon receptor in a human comprising administering to said human a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of human glucagon receptor is inhibited.
29. The method of claim 28 wherein the disease or condition is a metabolic disease or condition.
30. The method of claim 29, wherein the disease or condition is diabetes, obesity or hyperglycemia.
31. The method of claim 30 wherein the blood glucose levels are plasma glucose levels.
32. The method of claim 29, wherein the disease or condition is Type 2 diabetes.
33. A method of decreasing blood glucose levels in a human comprising administering to said human the compound of claim 1.
34. The method of claim 31 wherein the blood glucose levels are plasma glucose levels.
35. The method of claim 31 wherein the human has diabetes or is obese.
36. A method of preventing or delaying the onset of an increase in blood glucose levels in a human comprising administering to said human the compound of claim 1.
37. The method of claim 33 wherein the human suffers from diabetes, obesity or insulin resistance.
38. The method of claim 33 wherein the blood glucose levels are plasma glucose levels.

* * * * *