Apparatus and method for the continuous application of a repetitive adhesive pattern onto a stretch fabric

An apparatus (10) and method is provided for the continuous application of a repetitive adhesive pattern (44) onto a stretch fabric (11). The apparatus includes a rotary printing member (40) having the regularly repeated pattern over its circumference to provide a rotary printing surface. An adhesive source means (60, 62) supplies adhesive to the circumferential printing surface of the rotary printing member (42). A tensionless feed means (22) is provided intermediate the stretch fabric source means (15) and the rotary printing member (40) for maintaining the stretch fabric (40) in a tensionless condition as it is presented to the rotary printing surface. The resultant fabric is then laminated to another stretch fabric, and the laminate suitably die cut, to be employed as the reinforcement panel of clothing, particularly underwear and the like.
Description

The present invention relates to an apparatus and process for the continuous application of a repetitive adhesive pattern onto a stretch fabric with a high degree of accuracy. The stretch fabric produced in accordance with the present apparatus and process has found particular utility in providing additional reinforcement at desired areas of a woman's undergarment, such as panties, brassieres and pantyhose. Such additional reinforcement, or enhanced figure shaping, may typically be provided by restricting the ability of the garment to stretch at the stomach, buttocks or thigh regions of a panty or pantyhose, as well as the undercup and/or side panels of a brassiere. It is well known to provide such support by additional panels which are sewn to the main body fabric of the garment. Such sewing disadvantageously adds to the cost, stiffness and overall bulk of the garment, often times presenting the consumer with a garment, of undesirable heaviness.

Recognizing the disadvantages of such supplemental sewn panels, applicant has developed highly desirable products in which the additional support is provided by an adhesively secured panel. Advantageously, the pattern of the adhesive is of a desired configuration and orientation such that it offers different magnitudes of resistance to stretch in its various directions. Hence, the characteristics, configuration, and orientation of the adhesive pattern will act in conjunction with the stretch characteristics of the fabrics to determine the additional support, for the figure shaping provided by the resultant garment. Such additional support is typically provided at the stomach region of a panty with the adhesive layer, as well as its laminate, offering greater resistance to stretch in the horizontal direction (around the body) than in the vertical direction.

One such arrangement for utilizing the characteristics and configuration of the adhesive layer as a factor in determining the laminate support is the subject of applicant's European patent specification 0255101B1 published November 18, 1993 in the name of Prunest, et al and entitled "Method and Apparatus For Providing Additional Support To Selected Portions Of A Garment And Garment Produced Thereby", in which the additional support panel is adhesively secured to the main body panel. The adhesive securement is obtained by applying a desired pattern of a hot melt adhesive powder to the fabric of the support panel through a silk screen. The support panel is then heat cured and cut to its desired shape. The panel is then laminated to the main body fabric, with the powder adhesive being fused to and substantially confined between the two fabric layers so as to interconnect the fabric layers. The additional support provided by the reinforcement panel is predeterminately controlled by the selected shape and configuration of the pattern and thickness of the adhesive layer in conjunction with the stretch characteristics of the fabrics.

Advantageously the fabrics can be selected such that the pattern of the adhesive layer is visible through at least one of the fabrics (e.g. the reinforcement panel). Accordingly, the pattern of the adhesive layer, in addition to contributing to the requisite additional support, can be selected to provide a pleasing aesthetic presentation, which is imparted and delineated to the outer layer of one of the fabrics (without adhesive being present on the outer fabric layer) so as to provide further consumer enhancement of the product.

The product produced by the European Patent Specification 0255101B1 process has achieved substantial consumer acceptance and utility. However, the utilization of the silk screen for applying the powdered adhesive pattern limits the manufacturing speed, accuracy and overall efficiencies in the fabrication of the laminate and the resultant undergarments. It has also been experienced that the uniformity of the pattern applied through the silk screen is subject to variation, dependent upon such factors as humidity, particle size of the adhesive particles and the practical difficulty in repeatedly applying uniform pressure over the full extent of the silk screen. Further, this is a discontinuous process in which the textile fabric is stationary while the silk screen applies the adhesive powder thereto. Variations in the tensions of the fabric during subsequent applications of the adhesive screen will result in corresponding variations in the pattern. This can be particularly problematic where the pattern is in the form of the desired shape of the stomach panel, and must thereafter be die cut from the expanse of fabric. Slight variations in the tension of the fabric during the application of the adhesive pattern through the silk screen will result in corresponding variations in the size of the resultant pattern as the fabric is relaxed, and hence, lack of repeatability in subsequently die cut reinforcement panels.

Several of the potential problems and costs associated with the silk screen application of powdered adhesive at discrete and separated portions of the support fabric may be alleviated according to applicant's PCT Publication WO 94/23601 of October 27, 1994, in the name of Smith et al, and entitled "Fabric Laminate And Garments Incorporating Same." As disclosed therein, the support panel is adhesively secured to the body by an integral adhesive web. The web, while not having a definitive pattern, is characterized as offering different magnitudes of resistance to elongation when subjected to distortion in its different directions. The adhesive web is predeterminately oriented within the laminate in accordance with its differential elongation characteristics such that the additional support provided by the support panel and the adhesive web is combinedly determined by the differential stretch characteristics of the adhesive web, the stretch characteristics of the fabrics, and their relative orientation. The adhesive web is in the form of a net-like film which may be readily cut to conform to the shape of the reinforcement panel, keeping in mind only its differential elongation characteristics so as to maintain the desired orientation with respect to the fabric layers. Inasmuch as the reinforcement layers
are separately cut from their fabric yard goods, this process does not require the separation of discrete panels on the reinforcement fabric, prior to cutting into individual panels, nor the high degree of accuracy previously demanded in cutting out the individual and separated panels of European Patent Specification 02550181 which had been silk screened on the support fabric. While increasing the manufacturing efficiency, a disadvantage of this process is that the adhesive web, while exhibiting differential stretch characteristics, does not have the ability to provide the more substantial variations in support which can be achieved by the design and thickness of the specific pattern of the silk screen adhesive applique. That is, where the pattern had been applied through the silk screen, the design of the pattern may be changed to adjust the degree of control which is to be contributed by the adhesive layer. For example, where a higher degree of control is required, the pattern would be modified to provide a greater concentration of adhesive while still maintaining the requisite soft feel or "hand" of the fabric. Likewise different product applications of the support panel (as between a panty, pantyhose, or a brassiere) would typically require different degrees of support. This can be achieved by the selection of the reinforcement fabric in conjunction with varying the pattern and characteristics of the adhesive selected for the adhesive layer. Further, the adhesive web of this process does not present the enhanced aesthetics of a pattern visible at the outer surface of at least one of the laminate fabrics.

The apparatus and process in accordance with the present invention advantageously permits the higher manufacturing speeds and efficiency of a continuous process, while readily permitting substantial variation in the characteristics and pattern of the adhesive reinforcement pattern applied to the stretch fabric in a highly accurate and repetitive manner. A particularly unique aspect of the present invention is the maintenance of the stretch fabric in a tensionless condition while the adhesive pattern is continually applied thereto, from about the outer circumferential surface of a seamless rotary printing member. The rotary printing member is advantageously a cylindrical screen, which has the desired regularly repeated pattern over its circumference. A liquid thermoplastic adhesive is continually supplied to the interior of the cylindrical screen and urged outward through the perforations of the screen, at a desired rate by an interior doctor blade. As the screen rotates the stretch fabric, traverses its outer printing surface after exiting from a tensionless feed. The tensionless feed, which is provided intermediate the stretch fabric source and the rotating printing member may typically be in the form of a J-frame scray or an endless belt, which will continuously store a desired length of the fabric in a non-taut, slack condition prior to being presented to the rotary printing surface of the screen cylinder. After application of the adhesive pattern, the stretch fabric will typically pass through an oven to dry the adhesive. After exiting the oven, the stretch fabric with the adhesive layer may then be wound on a storage roll, for subsequent transfer to the manufacturing location for forming the individual reinforcement panels, and fusing same to the body fabric of the garment. If desired, a tensionless feed may be interposed between the oven exit and the storage roll.

In accordance with a modified embodiment of our invention, after the adhesive pattern has been applied to the stretch fabric, a second stretch fabric (e.g. typically the main body fabric of the under garment) will be presented against the exposed surface of the adhesive layer prior to presentation to the oven. In this embodiment, the oven will be at a higher temperature so as to fuse the layers together, instead of just merely drying the adhesive. The second fabric will likewise pass through a tensionless feed means prior to lamination, with the resultant laminate may also pass through a tensionless feed means before the laminate is wound on a roll. Although various alternative tensionless feed means may be employed, a J-frame scray may be used at all three locations.

The adhesive pattern applied through the rotary screen may be readily changed by substituting different rotary screen within the rotary printing apparatus. One such screen, for which the present invention provides particular manufacturing efficiencies, includes individual and definitive areas of predetermined shape (e.g. the front reinforcement panel of the panty), which are separated by relatively open areas. The maintenance of the stretch fabric in a tensionless state while this repetitive pattern is applied to the stretch fabric will enhance the uniformity, shape and spacing of the definitive areas. These definitive areas will then subsequently be die cut from the expanse of the fabric and fused to the main body fabric of the resultant garment.

To further enhance the cost saving attendant to the present manufacturing apparatus and method, the adhesive pattern may be an all-over pattern over the expanse of the stretch fabric, without any intermediate open areas between definitive reinforcement areas, such as is the subject of applicant's European Patent application 95302138.3 filed on March 30, 1995 and entitled Laminated Fabric With Uniform Pattern of Adhesive Securement and Garments Made Therefrom. In either the all-over pattern, or the separated definitive patterns, the adhesive layer will advantageously be designed to have differential elongation, characterized as offering different magnitudes of resistance to elongation when the fabric laminate is subjected to distortion in selected differential directions. Hence, with the adhesive securement layer being predetermined in accordance with its differential elongation and the stretch characteristics of the fabrics, the resistance to elongation offered by the fabric laminate will be determined by the pattern and orientation of the intermediate adhesive layer in conjunction with the stretch characteristics of the fabrics.

The adhesive is preferably a thermoplastic such that when the support panel is applied to the body fabric
of the garment, the adhesive will, upon suitable temperature, be reactivated to securely adhere the support panel to the body fabric, to form a laminate. The adhesive will be confined to between the fabric layers so as to neither a) adversely affect the hand of the laminate, nor b) lock itself around the yarn of the fabric.

Advantageously, the degree of additional reinforcement, and hence figure control, provided by the adhesive securement layer can be suitably adjusted by making variations in the pattern, the selection of the particular liquid adhesive, and the doctor blade pressure against the interior of the circumferential screen. The prior art, in addition to applicant’s aforementioned EPO Publication 025510-B1, PCT Publication WO 94/23601 and EPA application 95302138.3 have suggested various other arrangements for applying a patterned layer to a substrate. However, such prior constructions do not disclose the inclusion of a tensionless feed for insuring that should a stretch fabric is used, the adhesive pattern will be accurately and repetitively applied as a continuous pattern. For example, Byrne U.S. Patent 3,228,408 applied a plastic reinforcement material to the fabric through a silk screen as a flowable paste which is intended to enter the fabric and embed the individual threads forming the fabric. Utilization of the silk screen naturally requires a discontinuous process.

Adachi U.S. Patent 3,497,415 forms a laminate including fabrics of different elasticity secured together with a conventional adhesive, such that the laminate characteristics are primarily determined by the elasticity of the two fabric layers.

Backes U.S. Patent 4,135,025 varies the stretch characteristics of a fabric by the selective insertion of different warp and weft threads into the fabric.

Various other apparatus and methods for continuously applying a layer of material to a substrate are disclosed in Ludwig U.S. patents 4,999,212 and 5,196,063; Billeter U.S. patent 4,671,205 and 5,053,254; Hallworth U.S. patent 4,978,402; Mitter U.S. patent 4,612,874; Duchenaud U.S. patent 4,050,409 and Smith et al U.S. patent 4,379,185, none of which have the ability to accurately apply a repetitive adhesive pattern onto a stretch fabric as is the subject matter of the instant invention.

According to the present invention, there is provided an apparatus for the continuous application of a repetitive adhesive pattern onto a stretch fabric as set out in claims 1-21.

According to a further aspect of the invention, there is provided a process for the continuous application of a repetitive adhesive pattern onto a stretch fabric as set out in claims 22-25.

To this end the apparatus and process presents the stretch fabric to the printing surface of a rotary printing member while the stretch fabric is in a tensionless state. The tensionless presentation of the stretch fabric is achieved by interposing a tensionless feed means intermediate the stretch fabric source and the rotary printing member. The rotary printing member advantageously is in the form of a hollow cylindrical printing surface, with the pattern provided by a circumferential screen. A thermoplastic adhesive may be continuously pumped into the interior of the hollow cylindrical printing screen, and forced through its screen pattern, against the stretch fabric, by an interior doctor blade. The adhesive pattern is determined by the screen configuration, with the amount and cross section of the adhesive applied to the stretch pattern, and hence the peel strength of the laminate, further controlled by the selection of the adhesive and adjustment of the doctor blade force. Various forms of the tensionless feed means are disclosed, such as a J-frame scray or endless belt. If desired, the apparatus of the present invention may also include means for laminating an additional stretch fabric to the opposed surface of the just applied adhesive, with the additional stretch fabric also being presented to the laminating rolls in a tensionless state. This insures a smooth laminate, devoid of wrinkles or bubbles, which might otherwise be present if either of the fabrics were processed while under tension.

Embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which:

Figure 1 is a side view of a diagrammatic representation of a preferred form of the apparatus in accordance with the present invention.

Figure 2 is a perspective view of a portion of the apparatus shown in Figure 1, and more particularly, the tensionless presentation of the stretch fabric from its supply roll to the rotary printing member.

Figure 3 shows one form of the rotary printing screen which may be used in accordance with the apparatus of the present invention.

Figure 4 shows in plan view, the stretch fabric which has had the adhesive pattern applied thereto from the particular rotary screen printing member of Figure 3.

Figure 5 is a front view of a panty in which the stomach panel is reinforced utilizing the reinforcement panel fabricated on the apparatus shown in figures 1-4.

Figure 6 generally corresponds to Figure 2, but shows the utilization of a different pattern about the circumference of the rotary screen printer.

Figure 7 is a diagrammatic view of a modified apparatus, generally corresponding to that shown in Fig-
Figure 7, but showing the addition of a second stretch fabric in the tensionless state to form a laminate. Figure 8 is an elevation view of the layers forming the laminate formed in accordance with the instant invention and utilizing the rotary screen printer of Figure 6, with the body fabric being partially broken away to reveal the underlining support panel and applied adhesive securement layer. Figure 9 is a cross sectional view of the laminate forming the layers shown in Figure 10 along the arrows 9-9.

Figure 10 is an elevation view of the laminate with the reinforcement panel including the adhesive of the all-over pattern of Figure 8, shown reduced and indicating the manner in which the individual stomach support panels may be cut out from the expanse of the laminate. Figure 11 is an enlargement of a portion of Figure 10, showing the particular pattern of that adhesive layer in greater detail. Figure 12 is an enlargement of a cross section of the stretch fabric (prior to the application of the additional stretch fabric to form the laminate) in which the adhesive has been applied, with a particular adjustment of the doctor blade force. Figure 13 corresponds to Figure 12, with the doctor blade force varied, all other conditions being the same.

Figure 14 is a front view of a panty in which the laminate of Figure 11 forms the stomach panel. Figure 15 is a view corresponding to a portion of Figure 11 but showing a variation in the pattern of the adhesive securement layer. Figures 16-20 depict further variations in the pattern of the adhesive securement layer. Figure 21 is a front view of a pair of pantyhose which includes a stomach panel fabricated in accordance with the present invention. Figure 22 is a front view of a brassiere which includes an undercup support panel fabricated in accordance with the present invention. Figure 23 is an elevation view of the lower cup section of the brassiere shown in Figure 22. Figure 24 is modification of the apparatus shown in Figure 1, which utilizes an alternative form of the tensionless feed means at the input, and has dispensed with the output tensionless feed means. Figure 25 shows in diagrammatic form, an alternative tensionless feed means which may be used in conjunction with the apparatus of the instant invention.

Examples

Referring initially to Figures 1 and 2, the apparatus 10 includes a supply roll 15 of stretch fabric 11 which is on axial reel 12, supported on fixture 13. The stretch fabric 11 will, after suitable application of an adhesive pattern thereto be laminated to the elastomeric main body fabric in the garment to provide selective reinforcement. Typically, this main body fabric will include an elastomeric yarn, such as Lycra to provide a desired degree of resistance to elongation. The magnitude of its resistance to elongation, which can be controlled by several factors, including the characteristics of the elastomeric yarn, is referred to as the modulus of the fabric. Stretch fabric 11 may also include an elastomeric yarn. However, for cost saving, fabric 11 may preferably be a non-elastomeric stretch fabric, wherein the stretch is achieved by the construction of the fabric as by a circular knit. Alternatively, fabric 12 could be woven with its yarn placed at an angle (e.g., 45°) with respect to the anticipated distorting force. This is referred to as bias stretch which occurs from the ability of the fabric construction to distort and permit elongation without the use of elastomeric yarn. Fabric 11 when it is assembled within the garment will have its primary direction of stretch in a desired direction.

A drive roller 14, actuated by a suitable motor (not shown) will unwind the fabric 11, in conjunction with backup roller 17, from supply roll 15 at a desired rate. While the fabric is being unwound, biased arm 16 extends across the surface of the fabric to provide a smooth and continuous unwinding of the stretch fabric.

Most importantly in accordance with the present invention, after the stretch fabric 11 is unwound by drive roller 14 and its complimentary back-up roller 17, the stretch fabric enters a tensionless feed means 20.

In the embodiment shown in this figure, the tensionless feed means 20 is in the form of a J-frame scray 22. Upon the initial feeding of the stretch fabric 11 from supply roll 15 a desired amount of fabric is loosely deposited within the J-frame 22, as shown by 11-1, such that the fabric 11 at the exit 24 of the J-frame will be in a tensionless state. A driven roller 30 which will be removing fabric 11 from the J-frame 22, at the same speed that roller 14 deposits the fabric therein is provided at the exit 24 of the J-frame. The stretch fabric 11 will then be in a tensionless state, as it is then presented to the rotary printing station 40.

Rotary printing station 40 includes a hollow rotary screen printer 42 and a backup roller 44 through which the fabric will pass for application of the desired adhesive pattern. The circumference of rotary screen printer 42 includes a substantial number of perforations over its circumference, arrayed to form the desired pattern. The particular pattern, as shown in greater detail in Figures 2-4 may include definitive first areas 44, of a generally all-over triangular configuration, which are separated by generally opened second areas 46. The generally triangular areas are configured to form the front panel of a panty, as typically shown in Figure 5. Alternatively, as shown in conjunction with Figures 6 and 8-20 a uniform all-over pattern may be formed over the circumference of the cylinder, in which the individual elements will be arranged in successive generally horizontally and vertically extending rows.

A doctor blade 50 extends along the axis 52 of the
rotating hollow printing screen cylinder 42 with its end 54 being applied against the interior surface of the cylinder 40. The pressure between end 54 and the interior circumference of the cylinder 40 may be predeterminedly adjusted. A source of liquid thermoplastic adhesive 60 pumps the adhesive through conduit 62 to the interior of printing cylinder 42, to form a continuous pool 64 of the liquid adhesive. Accordingly, as cylinder 42 rotates and the stretch fabric (which will be in a tensionless state) moves between its outer circumferential surface and backup roller 44, the perforate pattern about the cylinder circumference will deposit the corresponding pattern of adhesive on fabric 11 (as shown in Figure 6) as the doctor blade 50 forces the adhesive through the screen cylinder, in accordance with the controlled force of the doctor blade pressure.

The rotary printing assembly, utilizing the cylindrical screen printer 42 may be the Stork PD-III-c textile screen coater apparatus manufactured Stork Brabant BV of Boxmeer, Holland. Alternatively, the rotary printer may be a solid cylinder with the pattern engraved into its outer surface, as generally shown in applicant's Kasper, U.S. Patent Number 3,605,191. The thermoplastic adhesive applied from source 60 is a preferably fast-drying adhesive, such as the 2P2 polyamide adhesive available from EMS GmbH Domat-EMS, Switzerland.

Fabric 11, in which the triangular areas 44 will ultimately form the reinforcement panel of a panty, as shown in Figure 5, may typically be a non-elastomeric circular knit 85/1Nm 100% cotton fabric. It is naturally understood however, that other adhesives and fabrics may be utilized, according to the desired configuration of the adhesive pattern applied to fabric 11, the associated fabric forming the laminate and the ultimate end product use.

The fabric 11 emerging from the rotary printing assembly 40 will then be transposed by roller assembly 66-68 to oven station 70. Rollers 66-68 are suitably constructed so as not to disrupt the adhesive pattern applied to fabric 11, which may still be in a tacky state. Oven 70, which may typically be at about 360°F, dries the adhesive, after which the fabric will be rolled on storage roll 72, which rotates about its reel 74 and is supported on frame 76.

Advantageously, a tensionless feed, such as 80, is located between the exit end 71 of the oven and storage roller 72, to further insure that the fabric will be presented to roller 72 in a tensionless state, so as to maintain the accuracy of the pattern applied thereto with a high degree of repeatability.

The applied adhesive pattern, of in Figures 2-4, comprises individually spaced reinforcement panels 44 for subsequent bonding to the main body fabric of the panty. These individual panels must be die cut exactly about their perimeter, as shown by the dash lines 45 in Figure 4. Inasmuch as fabric 11 is a stretch fabric, any variation in the tension forces of the fabric between the application of the adhesive and its relaxed condition, as the stretch fabric 11 is passed through the printing station 40 will result in a variation in the pattern of the adhesive configuration applied thereto. Hence, when the fabric subsequently relaxes there will be an inexact duplication of the adhesive pattern, resulting in variations in the die cut product. Further, if the stretch fabric 11 is under tension as the adhesive pattern is applied thereto, the subsequent relaxation thereof can result in undesirable wrinkles or bubbles in the resultant fabric. Further, this could result in variation of the amount of adhesive being applied, resulting in inconsistent modulus, flex cracking, and an improper fit of the ultimate garment.

Accordingly, in order to maintain a high degree of accuracy and repeatability in the application of the adhesive pattern to the stretch fabric utilizing a continuous process with a rotary printing member such as rotary screen 42, it is important that the stretch fabric 11 be maintained in a tensionless state, as is provided by the instant invention. Any elongation of the stretch fabric 11 during the application of the adhesive pattern through screen 42 will disadvantageously affect the accuracy of the pattern.

The particular pattern 44 as shown in the screen configuration of Figures 2-4 will then be applied to the front panel 72 of panty 70 as shown in Figure 5. The reinforcement panel 44 is appropriately fused to the fabric 72 in a fusing station, which may include a fusing press of the general type described in aforementioned EPO Publication 0255101B1, in which the adhesive 44 is suitably thermally activated to provide a secure attachment between stretch fabric 11 of the reinforcement panel and stretch front panel 72 of the panty. Advantageously, the adhesive is confined between the textile fabrics without flowing into either the fabric and adversely affecting the fabric hand. As is well known in the art, the fusing dwell time, temperature and pressure will depend upon the fabrics, thickness of the adhesive, and the amount of resultant control being provided. The fabric forming front panel 72 of the panty may typically be a four bar Raschell-knit comprising 80% cotton 120/1Nm, 17% Lycra, 140 denier and 3% nylon (with the nylon being provided for the aesthetics of a spaced dot configuration over the surface of the fabric). The elastomorphic properties and modulus of this fabric will naturally be obtained by its Lycra content. Advantageously, textile fabric 11, and/or the fabric of front panel 72 are selected such that the adhesive pattern 44 will be imparted and delineated to the outer layer of at least one of these fabrics (without the adhesive being present on the outer fabric layer) so as to provide a pleasing aesthetic presentation and further consumer enhancement of the product.

The pattern 44 of the applied adhesive is intentionally designed to have substantially less elongation in the horizontal direction, (e.g. around the body). Further, by virtue of the greater concentration of adhesive material at the central-most portion of pattern 42, its maximum resistance to stretch, and hence abdominal support, is preferably provided at the inner most section 44-1 of the
pattern.

Panty 70 will typically also include side panels 74 and 76, and a back panel 78. However, panels 74, 76 and 78 may be combined into a single fabric piece which, for aesthetic reasons, may be formed of the same textile as front panel 72. A crotch section 80 is typically provided at the lower most portion of the garment. An elastic waistband 82 extends along the top of the garment. Another elastic band 84 sewn around the garment. Another elastic band 84 serves to join the fabrics together in their tensionless state, while maintaining the integrity of the adhesive pattern and not forcing the adhesive into either fabric. The laminate is then passed to oven 124, which will be at a suitable temperature for curing the adhesive. The laminate 130 exiting oven 124 is then advantageously presented to another J-frame scray 126, after which it is wound on roll 128. The laminate 130 thus formed, and utilizing the all-over adhesive pattern of rotary printing screen 42-1 as shown in Figure 6, is shown in Figures 8 and 9.

The fabric laminate 130 includes the main, or body, fabric layer 102 of the garment. Fabric layer 102 is typically an elastomeric fabric including Lycra yarn to provide a desired degree of resistance to stretch, or modulus. If the laminate 130 forms a portion of the stomach panel of a panty, fabric layer 102 will have its primary elongation and modulus in the generally horizontal direction, as shown by the arrows 103.

The reinforcement panel is provided by the stretch fabric 11 upon which the adhesive securement layer 105 has been applied over its entire surface. While layer 11 may also be an elastomeric fabric, for cost saving, fabric 11 may be a non-elastomeric stretch fabric, wherein the stretch is achieved by the construction of the fabric as by circular knit. Stretch fabric 11, whether or not it includes elastomeric yarn will have primary elongation in one direction as shown by the arrows 11-1 of Figure 8, with there being a lesser degree of elongation, or give, in the direction orthogonal to that shown by those arrows.

The all-over pattern of the adhesive layer applied to the fabric of reinforcement panel 11 is, as shown in greater detail in Figures 10 and 11, in the form of a regularly repeated pattern generally coextensive with and uniformly presented over substantially the full extent of the fabric. The individual front stomach panels to be cut through the extent of the pattern. The width of the sides 136 forming the diamond is greater than 138. The width of the sides 136 forming the diamond is greater than the lesser horizontal length 140. By virtue of the diamond pattern being ori-
ented within the laminate such that the longer dimension 138 of the diamond is in the generally vertical direction the resistance to elongation offered by the diamond pattern of the adhesive securement layer will have a differential characteristic, exhibiting greater resistance to elongation in the horizontal direction than in the vertical direction.

The pattern of the adhesive securement layer also includes an array of closely-spaced discrete dots 142 of adhesive within each of the diamonds 134. These adhesive dots 142 provide enhanced securement of reinforcement layer 11 to the fabric 102. Further, the inclusion of such a closely-spaced array of adhesive elements 142 within the larger diamonds 134 precludes the laminate 130 from forming bubbles as it is stretched and released. This serves to maintain a smooth transition from the laminate's relaxed condition to its tensioned state without any unsightly bubble-type discontinuities in the smooth presentation of the laminated reinforcement panel.

Accordingly, when the laminated fabric panel of Figure 8 is subjected to distorting forces it will offer greater resistance to stretch in the horizontal direction than in the vertical direction, with the modulus, the forces urging the panel towards its relaxed position, being obtained from the body fabric layer 102 and pattern of the adhesive securement layer. If desired, a further reduction in laminate elongation characteristics can be achieved if layer 11, which forms the control panel, is oriented 90° with respect to that shown in Figure 8.

Figures 12 and 13, which are an enlargement of a portion of the cross sectional view shown in Figure 9, but prior to the laminating of layer 102, depict the manner in which the strength of the laminate may be varied. The cross sectional configuration of the individual adhesive element forming the sides 136 and individual dots 142 of the pattern may be varied by suitable adjustment of the characteristics of the adhesives and force of doctor blade 150. Where the tops of the individual elements are essentially flat, as shown in Figure 12, there will be a greater force of adhesion to the additional fabric layer 102, than where the tops are somewhat arched, as shown in Figure 13. Hence, the laminate formed from the layers shown in Figure 12 will, all other conditions remaining the same, have a greater peel strength than that formed from Figure 13.

Reference is now made to Figure 14 which shows the front and rear views of a typical women's panty utilizing the laminate of Figures 8-11 for stomach control. The panty 150 is formed of a main body fabric panel which encircles the wearer's torso. This main body panel typically includes several fabric pieces, which are sewn together. Panty 150 includes a front panel 152, frontal side panels 154 and transitional lace panels 156. Side seams 158 connect panels 154 to a rear panel 160. A crotch section 162 is typically provided at the lowermost portion of the garment. An elastic waist band 164 extends along the top of the garment. Another elastic band 166 is sewn around the edges of panels 154 to provide the frontal portion of the leg cut-out, which is continued along the sides of the crotch piece 162 and lower edge of the rear panel 160. In the particular panty 150, fabric panels 154 and 160 are a single layer preferably formed of an elastomeric fabric which, as heretofore discussed, may include Lycra yarn. The front panel 152 is formed of the laminate 130 shown in Figures 8-11. Its outer layer corresponds to layer 102 of the laminate, and will typically be of the same fabric as panels 154 and 160, for appropriate aesthetic coordination. The laminate of front panel 152 has significantly less horizontal elongation than the single layer panels 154 and 160. That is, the placement of the laminate at the stomach panel provides the well-known type of stomach control to flatten the wearer's stomach and hence provide figure enhancement.

Figures 15-20 show various modifications that can be made to the pattern of the adhesive to appropriately adjust the resistance of the laminate to elongation, and hence the degree of control provided by the reinforcement panel, such as 152. In Figure 15 the generally uniform size and density of the dots 142 (as for example as shown in Figure 11) has been modified in that larger dots 142-1 extend across the horizontally displaced corners 136-1, 136-2 of each of the diamond shaped adhesive elements. As shown in Figure 15 there is a gradual reduction in the size of the adhesive dots and increase in the spacing between their horizontally adjacent rows, as shown by dots 142-2, 142-3, etc. displaced from the mid-section of the diamond. Alternatively, except for the enlarged dots of adhesive 142-1 across the horizontally opposed corners 136-1 and 136-2 of the diamond, all of the other adhesive dots within the diamond, while smaller than the dots 136-1, can be of uniform size. The increased amount of adhesive provided by enlarged adhesive dots 136-1 will further increase the resistance of the adhesive pattern shown in Figure 17 to horizontal elongation, thereby providing somewhat greater horizontal control. Such a pattern could be used where it is desired that the reinforcement panel provide increased control while still utilizing the same fabrics for the garment, size of reinforcement panel and adhesive thickness.

Figure 16 shows another variation in which horizontally extending lines 139 of adhesive extend from the opposed horizontal corners 136-1 and 136-2 of the diamond, towards the center of the diamond. Advantageously a gap X is provided at the central portion thereof. The horizontal lines of adhesive will likewise increase the resistance to horizontal stretch as provided by the adhesive pattern, thereby providing additional control. It has been determined that the inclusion of the gap X at the central portion of the horizontal adhesive lines prevents a bubbling of the fabric which, might otherwise occur if the stretch of the pattern is restrained across the entire span between corners 136-1 and 136-2, with respect to the remaining area of the diamond. The size of the diamond in Figure 16 is also shown as somewhat larger than the diamond in the pattern of Fig-
would otherwise form the diamond. As in the other all-
tional adhesive, as shown in Figures 16 or 17, could be
the individual elements 156 in order to provide a smooth
full extent of the reinforcement panel forming the fabric
which, like the prior patterns, will generally be coexten-
dimensional shape of its diamonds 150 has been modified so that there is less of a variation between the vertical dimen-
sion 151 and horizontal dimension 152. However, the horizontal dimension is still less than the vertical dimen-
sion, such that the pattern shown in Figure 17 will still be
categorized as having a differential elongation which offers greater resistance to stretch in the horizontal
direction than in the vertical direction. In addition, solid adhesive lines 154 extend across diametrically opposed horizontal corners of the diamonds 151. The tendency of this pattern to permit bubbling in the laminate panel would depend on several factors, including the stretch characteristics of the fabrics forming the laminate. Should bubbling occur, a gap may advantageously be included at the enter of horizontal connecting bars 154, as typically shown by gap X of Figure 16. Discrete dots of adhesive, such as 142 of Figure 11, may also be included.

Figure 18 is still another configuration of the adhe-

tive securement layer. It is a regularly repeated pattern
which, like the prior patterns, will generally be coexten-
sive with and uniformly presented over substantially the full extent of the reinforcement panel forming the fabric laminate. The array of aligned adhesive elements 156, rather than being diamond shaped, included elongate sides 157 between the upper and lower peaks 158 that would otherwise form the diamond. As in the other all-over patterns, the greater elongation of the individual elements 156 in the vertical direction would result in there being a differential elongation, with the pattern offering greater resistance to stretch in the horizontal than in the vertical direction. This pattern may also advantageously include discrete dots within each of the individual elements 156 in order to provide a smooth and secure laminate. If desired, horizontal bars of additional adhesive, as shown in Figures 16 or 17, could be added.

Figure 19 shows still another arrangement of the individual elements forming the adhesive pattern. The individual elements are totally comprised of circular dots 160. They are arrayed such that the horizontal displacement 160-1 between adjacent circular dots 160 is less than the vertical displacement 160-2. Thus, the successive generally horizontally and vertically extending rows are established with there being greater spacing between the horizontal rows than the vertical rows. Hence, the pattern will offer greater resistance to stretch in the horizontal direction. While not shown, if desired, additional smaller discrete dots of adhesive can be added throughout the pattern to insure a smooth lami-

Figure 20 shows still another variation of the pattern. For increased control, a second diamond adhesive element 136-3, is placed within each of the sides 136 of the diamonds, of the pattern typically shown in Figures 11 or 16.

It should however be understood that by changing the pattern about the circumference of cylinder 42-1 numerous other variations of patterns can be repeatedly applied over the extent of fabric 11 with a high degree of accuracy.

Figure 21 shows the manner in which the fabric produced by the present invention may be employed in conjunction with a pair of pantyhose 160. The pantyhose 160 comprises a panty portion 162, a pair of legs 164 integrally formed with the panty portion and depending therefrom, and a crotch piece 166. The yarn forming the panty 162 and leg sections 164 must have sufficient stretch properties in order that the garment may be expanded to closely conform to the user's body conforming abilities and provide a desired degree of fig-
ure control. For enhanced figure control an additional stomach support panel 168 is provided. Stomach panel 168 may be comprised of a non-elastomeric stretch fabric onto which a pattern of adhesive has been applied consistent with the teachings of the present invention. The selection of the fabric for the reinforcement panel, as well as the adhesive pattern may be suitably varied, from that employed for the panty of Figures 5 or 14, in order to properly allow for the necessary initial stretch of the fabric forming the panty and leg sections 162 and 164, as well as the desired degree of body-conforming stretch and constraint. In particular, in order for the pan-
tyhose to initially conforming stretch and constraint. In particular, in order for the pantyhose to initially conform to the user's body, the fabrics utilized and the adhesive pattern applied to the reinforcement panel 166 will have to permit a greater degree of initial vertical stretch than would be required in the panties typically shown in Fig-
ures 5 or 14.

Reference is now made to Figure 22 which shows a brassiere 170 which utilizes the laminate produced by the present invention as an undercup support. Brassiere 170 includes a pair of cups 172 which are inwardly connected by a central platform 173. The outer sides of the cups are connected to side panels 174 which are typically connected to each other by closure means 175 and 176, which are commonly referred to as a hook and eye, and shoulder straps 177. Cups 172 shown in this particular brassiere are formed of two fabric pieces 178 and 179 which are seamed together at 171. Alternatively, the cups could each be moulded from a single piece of fabric, as is well known in the art. Figure 23 shows lower section 178, which includes the laminate produced by the present invention applied to its inside. Surface prior to assembly into brassiere 170. Lower cup section 178 includes the main fabric panel 183 to which the support panel 181 is laminated over at least a por-
tion of its surface utilizing the adhesive securement layer produced in accordance with the present inven-

tion. Both fabrics 181 and 183 may be stretch fabrics. However, main fabric panel 183 of the brassiere cup 172 would typically not include elastomeric yarn. Fabrics 181 and 183 are suitably oriented within the brassiere 170, in conjunction with the orientation of the adhesive pattern used to secure the fabrics together, so that there is a sufficient restriction of the stretch of cup 172 along the portion of undercup section 178 which includes support panel 181. This is designed to provide the desired degree of underbust support. Advantageously, fabric 183 which forms the outer surface of cup section 178 is the same as the fabric which forms the upper cup section 179. For aesthetic purposes this may also be the same fabric used for side panels 174, except in those instances where it is desired that side panels 174 include an elastomeric yarn.

The laminate of the present invention may also be used for laminating a supportive control panel to other locations within a brassiere (not shown) such as the side panel 174 or underarm.

Reference is now made to Figure 24, which generally corresponds to Figure 1, but depicts a different embodiment of the tensionless feed. In Figure 24 components corresponding to that shown in Figure 1 are designated by the same reference numerals. The stretch fabric 11 emerging from its storage roll 15 is presented to a tensionless feed 190 which includes an endless belt 192. Belt 192 is driven by rollers 194, 196 at a speed suitably synchronized to the unwinding of the supply roll and rotary printing station 40, such that after a desired initial length of the fabric is placed on belt 192 in a loose, non-taut condition, substantially the same length will remain thereon as stretch fabric 11 is continuously withdrawn from the exit end 195 of tensionless feed 190 to rotary printing station 40. Depending on the particular stretch fabric employed, and the production rate, the tensionless feed means at the exit end of the oven 70 (such as is shown as 80 in Figure 1) may be dispensed with.

Figure 25 shows in diagrammatic form still another form of the tensionless feed means that can be provided intermediate the fabric source 15 and rotary printing station 40 so as to present the stretch fabric 11 in a tensionless condition between rotary screen 42 and its back up roll 44. Fabric supply roll 15 is on spool 12 which is a positive driver. The stretch fabric 11 as it emerges from supply roll 15 moves vertically upward and passes over a positive driver 200 which preferably broadens the stretch fabric 11 to remove wrinkles. Stretch fabric 11 is then presented to a subsequent positive driver 202 which changes the direction of fabric movement, with the stretch fabric then moving vertically downward. The stretch fabric then passes over a floating, or dancer, roller 204 before again changing direction of movement over positive driver 206. The dancer roller 24, is of a conventional type which will automatically move up or down to smooth out variations in the stretch fabric passing over its circumference. Fabric then passes over idler rollers 208 and 210 as it is driven by roller 212. As the stretch fabric 11 moves between rollers 210 and 212 its tension is measured by sensor 214. Feedback is provided by sensor 214 to the prior positive drives so as to appropriately adjust their speed if the fabric tension is incorrect. Before the fabric 11 is presented to the rotary printing station 40, it will pass by another tension measuring sensor 216, which typically is more sensitive than sensor 214, to appropriately fine tune adjust the speeds of the various drives, so as to insure that the fabric is presented to the adhesive printing station in a tensionless condition.

It should naturally be understood that various other tensionless drive assemblies may be utilized, dependent upon the particular stretch fabrics employed, characteristics of the rotary printing station, adhesive pattern and production speed. Accordingly, while the present invention is disclosed with reference to specific embodiments and particulars thereof, it is not intended that these be construed as limiting the scope of the invention, which is defined by the following claims:

Claims

1. Apparatus for the continuous application of a repetitive adhesive pattern onto a stretch fabric, comprising in combination:

 a rotary printing member having a regularly repeated pattern over its circumference to provide a rotary printing surface;
 an adhesive source means for supplying adhesive to said rotary printing member;
 a stretch fabric source means for continuously supplying stretch fabric to said rotary printing surface;
 adhesive application means for transferring the adhesive which is supplied to said rotary printing member to the stretch fabric, as a regularly repeated and continuous pattern over the surface of the stretch fabric as it contacts said rotary printing surface; and
 tensionless feed means intermediate said stretch fabric source means and said rotary printing member for maintaining the stretch fabric in a tensionless condition as it is presented to said rotary printing surface.

2. The apparatus of claim 1, wherein said rotary member is in the form of a circumferential screen about an open cylinder, with said regularly repeated pattern provided by openings extending through said screen;

 said rotary printing surface extending over the exterior circumference of said cylinder; and
 said adhesive source means supplies the adhesive to the open interior of said cylinder.

3. The apparatus of claim 1, wherein:
4. The apparatus of claim 2 wherein said adhesive application means is a doctor blade extending along the axis, and within the interior, of said cylinder; the stretch fabric being continuously presented against the exterior rotary printing surface of said circumferential screen; and said doctor blade predeterminedly positioned to uniformly apply adhesive to the stretch fabric through the pattern of openings of said circumferential screen.

5. The apparatus of any one of claims 1 to 4, wherein said regularly repeated pattern is in the form of an array of aligned elements arranged in successive generally axially and circumferentially extending rows.

6. The apparatus of claim 5 wherein said array comprises successive geometrically shaped areas, connected at their common sides to form generally axially and circumferentially extending rows of interconnected diamond shaped areas.

7. The apparatus of claim 6, wherein said array further includes a plurality of discrete dots within each of said diamond shaped areas.

8. The apparatus of any one of claims 1 to 4 wherein said regularly repeated pattern is in the form of individual and definitive first areas of predetermined shape, and open second areas intermediate and separating said individual first areas, whereby the maintenance of the stretch fabric in a tensionless state while the repetitive adhesive pattern is applied provides accurate uniformity of the shape and spacing of said areas.

9. The apparatus of any one of claims 1 to 8, wherein said adhesive application means provides a liquid adhesive to said rotary printing member.

10. The apparatus of claim 9 wherein said adhesive is a polyamide adhesive.

11. The apparatus of any one of claims 1 to 10 wherein said adhesive application means includes means for predeterminedly varying the thickness of adhesive applied to the surface of the stretch fabric.

12. The apparatus of any one of claims 3, 4, or 11 wherein, said adhesive is a liquid thermoplastic; and said adhesive application means includes means to adjust the force at which the doctor blade applies the liquid adhesive to the stretch fabric.

13. The apparatus of any one of claims 1 to 12, wherein said adhesive application means includes means for predeterminedly varying the thickness of adhesive applied to the surface of the stretch fabric; and further including means for varying the cross section of at least a portion of the adhesive transferred to the stretch fabric.

14. The apparatus of any one of claims 1 to 13, wherein said fabric source means including a drive for continuously unwinding a roll of stretch fabric in a first direction, and presenting same to said tensionless feed means; said tensionless feed means positioned along said first direction, between said stretch fabric source means and rotary printing member; said tensionless feed means including a fabric storage fixture to provide a fabric storage area surface extending in said first direction; and said fabric storage area adapted to continuously retain a length of stretch fabric extending in said first direction which exceeds the length in said first direction of said fabric storage area, whereby the stretch fabric will be retained in said fabric storage area in a non-taut, slack condition prior to being applied to said rotary printing surface.

15. The apparatus of claim 14, wherein said fabric storage fixture is a scray.
16. The apparatus of claim 15, wherein said scray is a J-Frame.

17. The apparatus of claim 14 wherein said fabric storage fixture includes an endless belt.

18. The apparatus of any one of claims 1, 2 or 4-13, wherein said fabric source means includes a first drive for continuously unwinding a roll of stretch fabric in a first direction, and presenting same to said tensionless feed means;

said tensionless feed means positioned along said first direction, between said stretch fabric source means and said rotary printing member;

said tensionless feed means including a second drive, a fabric tension sensor, and a feedback between said fabric tension sensor and at least are of said drives for adjusting the speed of the movement of said fabric in said first direction in response to the fabric tension at the input to said rotary printing member.

19. The apparatus of claim 18, wherein said tensionless feed, further includes smoothing means for smoothing out wrinkles in the stretch fabric prior to presenting the stretch fabric to said rotary printing member.

20. The apparatus of any one of claims 1 to 19, further including;

a second stretch fabric source means for providing a source of laminate stretch fabric;

a laminating means for continuously receiving i) the stretch fabric from said rotary printing with the repetitive adhesive pattern applied thereto, and ii) the second stretch fabric, and laminating the stretch fabrics together; and

a second tensionless feed means intermediate second stretch fabric source means and laminating means for maintaining the second stretch fabric in a tensionless condition as it is presented to said laminating means.

21. The apparatus of any one of claims 1 to 20 further including an oven to cure the repetitive adhesive pattern applied to the stretch fabric.

22. A process for the continuous application of a repetitive adhesive pattern onto a stretch fabric, including the steps of:

providing a perforate hollow cylinder having the regularly repeated pattern forming a screen about its circumference;

applying a liquid adhesive to the interior of the hollow cylinder;

urging the adhesive outward of the screen to be uniformly present at a printing area of the outer cylindrical screen surface; and

presenting the stretch fabric in a tensionless condition against the printing area of the outer cylindrical surface as the cylinder is rotated and the stretch fabric moved in a first direction at a speed corresponding to the circumferential movement of the cylinder.

23. The process of claim 22, wherein the presentation of the stretch fabric in a tensionless state includes the step of passing the stretch fabric through a scray prior to being presented to the printing area of the outer cylindrical surface.

24. A process for making a stretch fabric laminate utilizing the adhesive pattern applied to the stretch fabric in accordance with any one of claims 22 or 23, including the further step of:

presenting the stretch fabric after the repetitive adhesive pattern has been applied thereto to a fabric laminator, simultaneously presenting a second stretch fabric to the fabric laminator; and

laminating the stretch fabrics together over their opposed surfaces.

25. The process for making a stretch fabric laminate in accordance with claim 24, wherein the second stretch fabric is presented to the laminator in a tensionless condition.
FIG. 17
European Search Report

Documents Considered to Be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>Classification of the Application (Int.Cl.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE-A-25 37 708 (ZIMMER JOHANNES) 25 March 1976</td>
<td>1,2,9,</td>
<td>B05C1/10</td>
</tr>
<tr>
<td></td>
<td>* page 1, paragraph 1 - page 2, paragraph 2 *</td>
<td>14-16,</td>
<td>D06B1/16</td>
</tr>
<tr>
<td></td>
<td>* page 6, paragraph 2 - page 7; figure 3 *</td>
<td>18,22,23</td>
<td>B41F15/00</td>
</tr>
<tr>
<td>X</td>
<td>DE-A-23 13 971 (VEPA AG) 26 September 1974</td>
<td>1-5,9,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 2, last paragraph - page 3, paragraph 2; figures *</td>
<td>14,22</td>
<td></td>
</tr>
<tr>
<td>A,D</td>
<td>US-A-3 383 263 (M. STORTI)</td>
<td>1-5,20,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* the whole document *</td>
<td>22,23</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE-B-10 75 933 (W. M. SCHOLL)</td>
<td>1,21,22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 1, line 1 - line 10 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 5, line 43 - line 57; figures *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US-A-4 622 728 (BUMUELLER LOTHAR ET AL) 18 November 1986</td>
<td>1,14-16,22</td>
<td>B05C</td>
</tr>
<tr>
<td></td>
<td>* abstract; figures *</td>
<td></td>
<td>D06B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B41F</td>
</tr>
<tr>
<td>A</td>
<td>GB-A-987 957 (THE BOWATER RESEARCH & DEVELOPMENT CO. LTD)</td>
<td>12,20,24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 2, line 69 - line 95; figures *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB-A-1 446 812 (CLUETT PEABODY & CO INC) 18 August 1976</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 2, line 74 - line 92; figure 1 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 6, line 23 - line 34; figure 1 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE-A-23 05 889 (BISCHOF & KLEIN) 8 August 1974</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Fields Searched (Int.Cl.6):
- B05C
- D06B
- B41F

The present search report has been drawn up for all claims.

Place of Search: THE HAGUE
Date of Completion of the Search: 9 July 1996
Examiner: Brévier, F
Documents Considered to Be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>Classification of the Application (Int.Cl.6)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE HAGUE</td>
<td>9 July 1996</td>
<td>Brévier, F</td>
</tr>
</tbody>
</table>

Category of Cited Documents

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **I**: document cited for other reasons
- **&**: member of the same patent family, corresponding document
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document