
100
(19) United States
(12) Patent Application Publication

KYAW et al .

US 20210365300A9

(10) Pub . No .: US 2021/0365300 A9
(48) Pub . Date : Nov. 25 , 2021

CORRECTED PUBLICATION

(54) SYSTEMS AND METHODS FOR DYNAMIC
PARTITIONING IN DISTRIBUTED
ENVIRONMENTS

Related U.S. Application Data
(63) Continuation of application No. 15 / 189,158 , filed on

Jun . 22 , 2016 , now Pat . No. 10,162,830 .
Publication Classification (71) Applicants : Thu R. KYAW , Reston , VA (US) ;

Jonathan JI , Aldie , VA (US) ; Saad
MUFTI , Fairfax , VA (US) ; Sudhir
ACHUTHAN , Vienna , VA (US) ; Sang
Chul SONG , Aldie , VA (US)

(72) Inventors : Thu R. KYAW , Reston , VA (US) ;
Jonathan JI , Aldie , VA (US) ; Saad
MUFTI , Fairfax , VA (US) ; Sudhir
ACHUTHAN , Vienna , VA (US) ; Sang
Chul SONG , Aldie , VA (US)

(51) Int . Ci .
GO6F 9/50 (2006.01)
G06F 1730 (2006.01)

(52) U.S. CI .
CPC GO6F 9/5077 (2013.01) ; G06F 17/30598

(2013.01) ; G06F 9/5083 (2013.01)
(57) ABSTRACT
Methods , systems , and computer - readable media are dis
closed for dynamic partitioning in distributed computing
environments . One method includes : receiving a first data
set and a second data set ; mapping the first data set into a
first set of key - value pairs ; mapping the second data set into
a second set of key - value pairs ; estimating , using a sketch ,
a frequency count for each key based on the first set of
key - value pairs and the second set of key - value pairs ;
determining whether the estimated frequency count for each
key is greater than or equal to a predetermined threshold ;
and partitioning the key when the estimated frequency count
for the key is greater than or equal to the predetermined
threshold .

(21) Appl . No .: 16 / 198,133

(22) Filed : Nov. 21 , 2018

Prior Publication Data
(15) Correction of US 2020/0159594 A1 May 21 , 2020

See (63) Related U.S. Application Data .

(65) US 2020/0159594 A1 May 21 , 2020

100 MASTER NODE
102

SLAVE NODE
104

MAP TASK
106

SLAVE NODE
104

REDUCE TASK
108

SLAVE NODE
104

TASK N

FREQUENCY
COUNTER

FREQUENCY
COUNTER

FREQUENCY
COUNTER

SLAVE NODE SLAVE NODE
104

MAP TASK

SLAVE NODE
104

TASKN
110

REDUCE TASK
108

int

FREQUENCY
COUNTER

114

FREQUENCY
COUNTER

FREQUENCY
COUNTER

114 wwwww

SLAVE NODE SLAVE NODE SLAVE NODE
104

TASKN
110

MAP TASK REDUCE TASK
108

MUUN

FREQUENCY
COUNTER

114

FREQUENCY
COUNTER

FREQUENCY
COUNTER

ARKLEY

112

MASTER NODE 102

SLAVE NODE 104 MAP TASK 106

SLAVE NODE 104 REDUCE TASK 108

SLAVE NODE 104 TASKN 110

Patent Application Publication

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

SLAVE NODE 104 MAP TASK 106

SLAVE NODE 104 REDUCE TASK 108

SLAVE NODE 104 TASKN 110

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

Nov. 25 , 2021 Sheet 1 of 8

XX SOFA SLAVE NODE 104 MAP TASK 106

SLAVE NODE 104 REDUCE TASK 108

SLAVE NODE 104 TASK N 110

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

Bobodo

US 2021/0365300 A9

FIG . 1

112

GROUP BY KEY

REDUCE

204A

202A

PAIR

B

A 1

V4 , W | V1 , W2 V2 , W1

Patent Application Publication

$

?????

KEY VALUE 1 V4 1 V2 1 V3 2 V4

2

V5
2 V6 3 Vy 3 VA

1 1 2 2 2 3 3

V2 , W2 V? , W1 V3 , W2

1

2048

8

2

202B

V1 , V2 , V3 Wq , W2 V4 , V5 , V6 W3 , W4 V7 , V8 , W5 W6 , W7 , W8 We

PAIR V4 , W3 VAW? V5 , W3 V5 , W4 V6W3 V6 , W4

B

A 1 1

3

$ %

Nov. 25 , 2021 Sheet 2 of 8

2 2 3

204C

KEY VALUE 1 WA 1 W2 2 W3 2 W4 3 W6 3 W6 3 Wy 3 Wg 3 Wo

CON

$$

3 3 3

PAIR V7 , W5 V7 , W6 V7 , W7 V7 , W8 V7 , W. V8 , W5 V3 , W6

FIG . 2

US 2021/0365300 A9

V8 , W7 V3 , W8 | Vg , Wg

MAP

GROUP BY KEY

REDUCE

-304A

PAIR V1 , W1 V1 , W2

302A

Patent Application Publication

B

A 1

KEY VALUE 1A VA 1A V2
1A

18 VA 1B V5 2 VA 3 V7

1

1A

V? , W1 V2 , W2 V2 , W3 V3 , W1 V3 , W2 V3 , W3

1 2 3

V1 , V2 V3 WqW? W? V4 , V5 , W1W2 , W3 V6 W4

1B

304B

302B

A

B

PAIR

2

Nov. 25 , 2021 Sheet 3 of 8

1 mitin

V4 , W2

1

KEY VALUE 1 WA 1 W2

1

2 W4 3 W5 3 Wo

3

V7 W5 , W6 ,

2 3

V4 , W3 V5 , W1 V5 , W2 V5 , W3

31

PREDETERMINE THERSHOLD = 4

304C

PAIR

FIG . 3

V6 , W4

US 2021/0365300 A9

PAIR V7 , W5 V7 , W6

102

MW

MORE

inn
WN

WW
W
Wh

M
MOM

TA

A 9

10

3

MASTER NODE GLOBAL FREQUENCY COUNTER 116

MX

UN

400

W

An

www

3

190

90

10
12

I

M

VW
WA

w

W

51

3

}

3

3

9

31

{

3

Patent Application Publication

3

2

104

104

104

!

2

SLAVE NODE

3

SLAVE NODE REDUCE TASK 108

MAP TASK 106

SLAVE NODE TASKN 110

3

??????

www

3

2920

1

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

REQUENCY COUNTER 114

M

104

104

104

SLAVE NODE MAP TASK 106

SLAVE NODE REDUCE TASK 108

SLAVE NODE TASKN 110

Nov. 25 , 2021 Sheet 4 of 8

3

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114

como Jo0060

104

104

104

SLAVE NODE MAP TASK

SLAVE NODE REDUCE TASK 108

SLAVE NODE TASKN 110

}

1 $

3

WWWMWWW

5

CULIKA

1

3 11

FREQUENCY COUNTER 114

FREQUENCY COUNTER 114
A

12

&

FREQUENCY COUNTER 114

US 2021/0365300 A9

112

FIG . 4

PARAMETERS
DURATION

SAVINGS

AVERAGE MAP TIME

AVERAGE SHUFFLE TIME

AVERAGE MERGE TIME

AVERAGE REDUCE TIME

48 SECONDS

3 SECONDS

750K , BIASED RANDOM ,
5 % , 316R

2 HOURS 22 MINUTES

33 MINUTES , 5 SECONDS

20 MINUTES , 49 SECONDS

Patent Application Publication

% 18 %

59 SECONDS

750K , BIASED RANDOM ,
50 % , 316R

3 SECONDS

2 HOURS
20 MINUTES , 15 SECONDS

20 MINUTES 46 SECONDS

19 MINUTES , 52 SECONDS

11 %

6 SECONDS

750K , BIASED RANDOM ,
75 % , 279R

2 HOURS
30 MINUTES , 31 SECONDS

1 MINS , 6 SECONDS

14 MINUTES , 42 SECONDS

23 MINUTES , 8 SECONDS

11 %

3 SECONDS

750K , BIASED RANDOM ,
100 % , 316R

2 HOURS 32 MINUTES

1 MINS , 12 SECONDS

14 MINUTES , 37 SECONDS

19 MINUTES , 48 SECONDS

150K , BIASED RANDOM ,
100 % , 316R

m200

4 SECONDS

2 HOURS
38 MINUTES , 13 SECONDS

1 MINS , 12 SECONDS

14 MINUTES , 41 SECONDS

19 MINUTES , 5 SECONDS

Nov. 25 , 2021 Sheet 5 of 8

750K , PLAIN INCREMENTAL ,
100 % , 316R

14 %

3 SECONDS

2 HOURS 26 MINUTES 52 SECONDS

1 MINS , 12 SECONDS

15 MINUTES ,
3 SECONDS

20 MINUTES , 11 SECONDS

750K , PLAIN INCREMENTAL , 2 HOURS

18 % 1 MINS

20 MINUTES , 3 SECONDS 18 MINUTES ,

50 % , 316R , S3

19 MINUTES

1 SECONDS 46 SECONDS

34 SECONDS

9 SECONDS

550K , PLAIN INCREMENTAL , 2 HOURS

26 % 1 MINS 21 MINUTES , 3 SECONDS 19 MINUTES ,

50 % , 316R , S3

5 MINUTES ,

2 SECONDS 48 SECONDS

29 SECONDS

44 SECONDS

* PARAMETERS : GROUP SIZE , MODULUS FOR PARTITION , PERCENTAGE OF MAPS BEFORE REDUCES , NUMBER OF REDUCES

US 2021/0365300 A9

FIG . 5

Patent Application Publication Nov. 25 , 2021 Sheet 6 of 8 US 2021/0365300 A9

600

RECEVEA FIRST DATA SET
AND A SECOND DATA SET

602

MAP THE FIRST DATA SET
INTO A FIRST SET OF
KEY - VALUE PAIRS

604

MAP THE SECOND DATA SET
INTO A SECOND SET OF

KEY - VALUE PAIRS
606

ESTIMATE A FREQUENCY COUNT
FOR EACH KEY BASED ON THE
FIRST AND SECOND SET OF

KEY - VALUE PAIRS

608

DETERMINE WHETHER THE
ESTIMATED FREQUENCY COUNT IS
GREATER THAN OR EQUAL TO A
PREDETERMINED THRESHOLD

610

PARTITION THE KEY WHEN THE
ESTIMATED FREQUENCY COUNT

FOR THE KEY IS GREATER
THAN OR EQUAL TO THE

PREDETERMINED THRESHOLD

612

FIG . 6

Patent Application Publication Nov. 25 , 2021 Sheet 7 of 8 US 2021/0365300 A9

RECEIVE A FIRST DATA SET AND
A SECOND DATA SET

702
700

MAP THE FIRST DATA SET INTO A
FIRST SET OF KEY - VALUE PAIRS

MAP THE SECOND DATA SET INTO A
SECOND SET OF KEY - VALUE PAIRS

RETRIEVE , FROM A MASTER NODE .
A GLOBAL FREQUENCY COUNT FOR
EACH KEY OF THE KEY - VALUE PAIRS

ESTIMATE A FREQUENCY COUNT FOR
EACH KEY BASED ON THE FIRST AND
SECOND SET OF KEY - VALUE PAIRS

710

DETERMINE AN UPDATED FREQUENCY
COUNT FOR EACH KEY BASED ON THE
GLOBAL FREQUENCY COUNT FOR EACH
KEY AND THE ESTIMATED FREQUENCY

COUNT FOR EACH KEY

712

DETERMINE WHETHER THE UPDATED
FREQUENCY COUNT IS GREATER

THAN OR EQUAL TO A
PREDETERMINED THRESHOLD

714

PARTITION THE KEY WHEN THE UPDATED
FREQUENCY COUNT FOR THE KEY IS
GREATER THAN OR EQUAL TO THE
PREDETERMINED THRESHOLD

TRANSMIT , TO THE MASTER NODE ,
THE UPDATED FREQUENCY
COUNT FOR EACH KEY

718

FIG . 7

Patent Application Publication Nov. 25 , 2021 Sheet 8 of 8 US 2021/0365300 A9

008

810

840

RAM

COM
830 FIG . 8

860
ROM sng

Oll
820

850
CPU

US 2021/0365300 A9 Nov. 25 , 2021
1

SYSTEMS AND METHODS FOR DYNAMIC
PARTITIONING IN DISTRIBUTED

ENVIRONMENTS
a

TECHNICAL FIELD

[0001] The present disclosure relates to dynamic partition
ing in distributed computing environments . More particu
larly , the present disclosure relates to dynamic partitioning
of keys based on frequency counters maintained locally
and / or global in the distributed computing environment .

BACKGROUND

[0002] The integration of data from a plurality of data
sources may produce large data sets that need to be managed
efficiently and effectively . However , conventional methods
of integrating large data sets have performance barriers
because of the size of the data sets , which leads to relatively
long processing times and relatively large computer resource
use .

[0003] Several newer techniques of integrating data sets
have been proposed to parallelize the integration process and
reduce long processing times based on the MapReduce
framework . In the MapReduce framework , data sets are
partitioned into several blocks of data using keys assigned
by map task operations and allocated in parallel to reduce
task operations .
[0004] A common problem with the MapReduce frame
work is data skew , which occurs when the workload is
non - uniformly distributed . When typical data skew occurs ,
computer resources that process a reduce task receive a
relatively large amount of workload and require a relatively
longer amount of processing time to complete the tasks
compared to other computer resources that process other
reduce tasks , which diminishes the benefits of paralleliza
tion .
[0005] Thus , embodiments of the present disclosure relate
to dynamic partitioning of tasks in a distributed computing
environment to improve data processing speed .

dynamic partitioning in distributed computing environ
ments ; and a processor configured to execute the instructions
to perform a method including : receiving a first data set and
a second data set ; mapping the first data set into a first set of
key - value pairs ; mapping the second data set into a second
set of key - value pairs ; estimating , using a sketch , a fre
quency count for each key based on the first set of key - value
pairs and the second set of key - value pairs ; determining
whether the estimated frequency count for each key is
greater than or equal to a predetermined threshold ; and
partitioning the key when the estimated frequency count for
the key is greater than or equal to the predetermined thresh
old .
[0009] According to embodiments of the present disclo
sure , non - transitory computer - readable media storing
instructions that , when executed by a computer , cause the
computer to perform a method for dynamic partitioning in
distributed computing environments are also disclosed . One
method of the non - transitory computer - readable medium
including : receiving a first data set and a second data set ;
mapping the first data set into a first set of key - value pairs ;
mapping the second data set into a second set of key - value
pairs ; estimating , using a sketch , a frequency count for each
key based on the first set of key - value pairs and the second
set of key - value pairs ; determining whether the estimated
frequency count for each key is greater than or equal to a
predetermined threshold ; and partitioning the key when the
estimated frequency count for the key is greater than or
equal to the predetermined threshold .
[0010] Additional objects and advantages of the disclosed
embodiments will be set forth in part in the description that
follows , and in part will be apparent from the description , or
may be learned by practice of the disclosed embodiments .
The objects and advantages of the disclosed embodiments
will be realized and attained by means of the elements and
combinations particularly pointed out in the appended
claims .
[0011] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the scope of disclosed embodiments , as set forth by the
claims .

SUMMARY OF THE DISCLOSURE

BRIEF DESCRIPTION OF THE DRAWINGS

a

[0006] Embodiments of the present disclosure include
systems , methods , and computer - readable media for
dynamic partitioning in distributed computing environ
ments .

[0007] According to embodiments of the present disclo
sure , computer - implemented methods are disclosed for
dynamic partitioning in distributed computing environ
ments . One method includes : receiving , at a processor , a first
data set and a second data set ; mapping , by the processor , the
first data set into a first set of key - value pairs ; mapping , by
the processor , the second data set into a second set of
key - value pairs ; estimating , by the processor using a sketch ,
a frequency count for each key based on the first set of
key - value pairs and the second set of key - value pairs ;
determining , by the processor , whether the estimated fre
quency count for each key is greater than or equal to a
predetermined threshold ; and partitioning , by the processor ,
the key when the estimated frequency count for the key is
greater than or equal to the predetermined threshold .
[0008] According to embodiments of the present disclo
sure , systems are disclosed for dynamic partitioning in
distributed computing environments . One system includes a
data storage device that stores instructions system for

[0012] The accompanying drawings , which are incorpo
rated in and constitute a part of this specification , illustrate
various exemplary embodiments and together with the
description , serve to explain the principles of the disclosed
embodiments .
[0013] FIG . 1 depicts a system implementing a MapRe
duce framework for dynamic partitioning of in a distributed
environment , according to embodiments of the present dis
closure ;
[0014] FIG . 2 depicts an exemplary blocking - based
records / events linking using the MapReduce framework ,
according to embodiments of the present disclosure ;
[0015) FIG . 3 depicts an exemplary blocking - based
records / events linking using the MapReduce framework that
includes a predetermined threshold when mapping data sets ,
according to embodiments of the present disclosure ;
[0016] FIG . 4 depicts a system implementing a MapRe
duce framework for dynamic partitioning of in a distributed
environment using a global frequency counter , according to
embodiments of the present disclosure ;

US 2021/0365300 A9 Nov. 25 , 2021
2

a

a

a

[0017] FIG . 5 depicts a table of performance results for a
MapReduce framework using a global frequency counter ,
according to embodiments of the present disclosure .
[0018] FIG . 6 depicts a method for dynamic partitioning
of in a distributed environment , according to embodiments
of the present disclosure ;
[0019] FIG . 7 depicts another method for dynamic parti
tioning of in a distributed environment , according to
embodiments of the present disclosure ; and
[0020] FIG . 8 is a simplified functional block diagram of
a computer configured as a device for executing the methods
of FIGS . 6 and 7 , according to exemplary embodiments of
the present disclosure .
[0021] It is to be understood that the figures are not
necessarily drawn to scale , nor are the objects in the figures
necessarily drawn to scale in relationship to one another . The
figures are depictions that are intended to bring clarity and
understanding to various embodiments of apparatuses , sys
tems , and methods disclosed herein . Wherever possible , the
same reference numbers will be used throughout the draw
ings to refer to the same or like parts . Moreover , it should be
appreciated that the drawings are not intended to limit the
scope of the present teachings in any way .

DETAILED DESCRIPTION OF EMBODIMENTS

[0022] The following detailed description refers to the
accompanying drawings . The same reference numbers in
different drawings may identify the same or similar ele
ments .
[0023] A data analysis platform may process relatively
large amounts of data to learn insights from the data . For
example , an advertiser may have a relatively large of amount
of data relating to advertisements and campaigns . To deter
mine the effectiveness and / or improve the effectiveness of
an advertisement and / or campaign , the data may be stored in
a software framework for distributed storage and distributed
processing , such as with Hadoop . In particular , Hadoop may
be utilized for distributed processing of the data , and the
Hadoop distributed file system (“ HDFS ”) may be used for
organizing communications and storage of the data . Clusters
and / or nodes may be generated that also utilize HDFS . For
example , a cluster computing framework , such as Spark ,
may be arranged to further utilize the HDFS of the Hadoop
clusters . A Hadoop cluster may allow for the distributed
processing of large data sets across clusters of computers
using programming models . A Hadoop cluster may
from single servers to thousands of machines , each offering
local computation and storage .
[0024] Accessing and organizing data in a large distrib
uted system may be difficult and require specialized func
tionality for efficient operations . In one example , a MapRe
duce framework may be provided for accessing and
processing data from the distributed computing system .
According to embodiments of the present disclosure , a
MapReduce framework may be used to process records /
events related to a particular unique identifier (e.g. , an
advertiser id and / or a campaign id) in parallel . Thus , the
workload of processing for a large number of records / events
may be divided among a plurality of MapReduce nodes and
divided among a plurality of computers within the MapRe
duce framework .
[0025] FIG . 1 depicts a system implementing a MapRe
duce framework , according to embodiments of the present
disclosure . The system includes a cluster 100 of nodes

working in parallel . Each node may be a computer , a
processor , or a processing . The cluster 100 includes a master
node 102 and a plurality of slave nodes 104 , which performs
MapReduce tasks and / or other tasks . As discussed in more
detail below , MapReduce tasks include map tasks and
reduce tasks . A data set received by the cluster 100 may be
split into independent chunks of data that are processed by
a map tasks in parallel . The map tasks may produce a set of
key - value pairs . The MapReduce framework may group the
outputs of the map tasks by their respective keys , which may
be input into the reduce tasks . The grouping of keys (also
referred to as shuffling) may be a time consuming process
when the number of map task results is relatively large .
Reduce tasks may consolidate the outputs from the map
tasks into final results . The slave nodes 104 may include a
plurality of map task nodes 106 , a plurality of reduce tasks
nodes 108 , and / or a plurality of other tasks N nodes 110. The
master node 102 may divide a data set into smaller data
chunks and distributes the smaller data chunks to the map
task nodes 106. Each reduce task node 108 may combine the
output received from the map tasks nodes 106 into a single
result . Each node in the cluster 100 may be coupled to a
database 112. The results of each stage of the MapReduce
tasks may be stored in the database 112 , and the nodes in the
cluster 100 may obtain the results from the database 112 in
order to perform subsequent processing .
[0026] As discussed above , a data set that is received may
include a set of records / events that relate to a particular
unique identifier (e.g. , an advertiser id and / or a campaign
id) . When the data set is received , a unique key may be
assigned to the data in the data set in order to uniquely
identify the data . Another data set may also be received from
the same data provider and / or different data provider and
include another set of records / events that related to another
particular unique identifier (e.g. , another advertiser id and / or
another campaign id) . A unique key may be assigned to the
second data of the second data set in order to uniquely
identify the second data .
[0027] The set of records / events of the data sets may then
be linked by matching records / events of the data sets . For
example , a record / event of the data set may be assigned with
a first key , and other records / events of the data set with the
same first key may be grouped into a block . The records /
events of the block may be compared with each other to
determine whether the information within the records / events
match or do not match .
[0028] The MapReduce framework may be used to effi
ciently process the linking of records / events of data sets . As
mentioned above , the MapReduce framework includes two
major tasks , i.e. , map and reduce . The map task inputs the
data of the data set , and assigns a key to a record / event . The
reduce task receives all values which have the same key , and
processes these groups . The map and reduce tasks may
simplified by the following algorithmic formulas :

map : :(K1 , 1 , V1) -- > list (K2,12)

scale up

reduce : :(K2 , list (V2)) -- > list (13)
[0029] For example , the map task may output one or more
key - value pairs . The reduce task may receive a list of values
for a particular key , and , after computation , output a new list
of values . Through mapping and reducing , the records /
events included in the data sets may be separated into
smaller units and distributed to different computing
resources that may be run in parallel .

US 2021/0365300 A9 Nov. 25 , 2021
3

[0030] In the map phase , input data may be processed by
map tasks in parallel , the intermediate outputs of the map
tasks may be collected locally and grouped based on their
respective key values . Based on a partition function (such as
a default hashing function and / or a user - defined function) ,
the groups may be allocated to a reduce task depending on
their keys . Upon completion of the map tasks and the
intermediate results being transferred to the respective
reduce task , reduce task operations may begin . The reduce
task operations may also be processed in parallel for each
key group .
[0031] As mentioned above , the data sets may be parti
tioned into several blocks of data using keys by map tasks ,
and assigned in parallel to reduce tasks . FIG . 2 depicts an
exemplary blocking - based records / events linking using the
MapReduce framework , according to embodiments of the
present disclosure . Field A of a data sets 202A and 202 B
may be used as the key , and the records / events B of the
respective data sets 202A and 202B may be mapped , and
then be processed by the same reduce task computing
resources .

W =

a

a

[0032] With the MapReduce framework data skew occurs
when the workload is non - uniformly distributed . When
typical data skew occurs , computer resources that process
reduce tasks may receive a relatively large amount of
key - value pairs , and may require a relatively longer amount
of processing time to complete the reduce tasks compared to
other computer resources that process other reduce tasks .
Such an uneven distribution of key - value pairs may reduce
the benefits of parallelization . For example , as shown in
FIG . 1 , the computing resources needed for reduce task
operations 204A , 204B may compare six record / event pairs ,
but the computing resources need for reduce task operations
204C may compare ten record / event pairs .
[0033] When the block size distribution is skewed , the
MapReduce framework may assign some computing
resources for reduce task operations with a larger workload ,
such as 204C . Data skew occurs because of the imbalanced
distribution of block sizes . To alleviate the imbalanced
distribution of block sizes , each map task operation may
maintain a frequency counter per key . The frequency counter
per key may be used in conjunction with a predetermined
threshold to one or more of split a key , create sub - keys ,
and / or to allocate record / event pairs to particular computing
resources to ensure that a load of the computer resources is
balanced .
[0034] Additionally , to alleviate the imbalanced distribu
tion of block sizes , each reduce task operation and / or each
stage of a MapReduce operation may maintain a frequency
counter per key . The frequency counter per key may be used
in conjunction with an overall predetermined threshold , a
reduce task predetermined threshold , and / or a stage prede
termined threshold to one or more of split a key , create
sub - keys , and / or to allocate record / event pairs to particular
computing resources to ensure that a load of the computer
resources is balanced .
[0035] In order to estimate a frequency count per key , the
data sets may be examined to produce a workload estimation
based on a sketch of the data sets 202A and 202B . The
frequency counter may use various algorithms , such as an
algorithm that uses a lossy count and / or an algorithm that
uses sketches to count the number of values . A sketch may
be a data structure that provides space - efficient summaries
for large and frequently updated data sets . A sketch data

structure may estimate a number of values that have been
assigned to a certain key for the data set . In one embodiment ,
the sketch data structure may be one or more of a count - min
sketch , a hyperloglog , a bloomfilter , a minhash , and / or a
cuckoo filter . In a count - min sketch , hash functions may be
used to map records / events to frequencies . For example , a
slave node 104 that process map tasks 106 may use a
frequency counter 114 to estimate a number of values that
are repeated in over a predetermined fraction of the rows , for
each column of data being processed .
[0036] For example , the frequency counter 114 may use a
sketch when inputting a stream of records / events , one at a
time , of a data set , such as data set 202A and 202B , and the
frequency counter 114 may count a frequency of the differ
ent types of records / events in the stream . The sketch may be
used as an estimated frequency of each record / event type .
The count - min sketch data structure may be a two - dimen
sional array of cells with w columns and d rows . The values
for the parameters w and d may be fixed when the sketch is
created , and may be used to determine time and space needs
and the probability of error when the sketch is queried for a
frequency . Associated with each of the d rows is a separate
and independent hash function . Each hash function h ; maps
a blocking key k into a hashing space of size w . The
parameters w and d may be set with w = fe / ?] and d = [In 1/8] ,
where the error in answering a query is within a factor of ?
with probability d .
[0037] Each cell of the two - dimensional array of a sketch
may include a counter , and initially , all of each counter in the
array may be set to zero . When a new record / event of type
is detected (i.e. , a new key k is detect) , the counters may be
incremented . If a counter of a cell of the two - dimensional
array of the sketch is greater than or equal to a predeter
mined count threshold for the particular key k , then the
individual map task may partition (split) the key into two or
more sub - keys with the map task operation . The predeter
mined count threshold may be a predetermined value and / or
a range of values that may be determined empirically and / or
dynamically . For example , a dynamically predetermined
count threshold may use machine learning to determine a
value or a range of values for the predetermined count
threshold .
[0038] FIG . 3 depicts an exemplary blocking - based
records / events linking using the MapReduce framework that
includes a predetermined threshold when mapping data sets ,
according to embodiments of the present disclosure . Field A
of a data sets 302A and 302 B may be used as the blocking
key , and the records / events B of the respective data sets
302A and 302B may be mapped , and then the key pairs may
be processed by the same reduce task computing resources .
As shown in FIG . 2 , the predetermined threshold for deter
mining whether a mapper should partition (split) a key may
be 4. When the frequency of the key 1 is determined to be
4 , the mapper may split the key 1 into keys 1A and 1B . With
the partitioning (splitting) of the keys , the computing
resources needed for reduce task operations 304A may
compare nine record / event pairs , the computing resources
needed for reduce task operations 304B may compare six
record / event pairs , the computing resources needed for
reduce task operations 304C may compare one record / event
pair , and the computing resources needed for reduce task
operations 304D may compare two record / event pairs . With
out the partitioning of the keys , the computer resources for
reduce task operations 304A and 304B would be combined

US 2021/0365300 A9 Nov. 25 , 2021
4

and may compare fifteen record / event pairs , which is a
relatively larger amount of processing needed to the other
computing resources needed for reduce task operations
304C and 304D .
[0039] As discussed in detail above , each slave node that
processes map tasks may include a frequency counter for
each key using a sketch , and partitions a key when the
frequency counter associated with the key exceeds a prede
termined threshold . The above described frequency counter
may allow for data skew to be mitigated locally at the slave
node . In order to further mitigate data skew , the frequency
counter for each key may be maintained globally .
[0040] As shown FIG . 4 , the master node 102 may also
include a global frequency counter 116 that maintains a
global frequency count for each key . The global frequency
counter 116 may maintain a sketch , such as a count - min
sketch , and the frequency counters 114 of the slave nodes
104 including map tasks 106 , may retrieve the global
frequency count for each key from the global frequency
counter 116 .
[0041] For example , the local frequency counters 114 of
the slave nodes 104 including map tasks 106 may retrieve
the global frequency count for each key from the global
frequency counter 116. Then the slave nodes 104 may
determine an updated frequency count for each key based on
the estimated frequency counts for each key and the
retrieved global frequency count for each key . The map tasks
may then partition (split) their local keys based on the
locally updated frequency counts for each key and the
predetermined threshold . Upon completion of the map tasks ,
the local frequency counters 114 may transmit their local
updated frequency counts for each key to the global fre
quency counter 116 of the master node 102 .
[0042] FIG . 5 depicts a table of performance results for a
MapReduce framework using a global frequency counter ,
according to embodiments of the present disclosure . The
environment includes data from 20,599 files having a total
size of 2.9 terabytes of data . The running environment was
performed with 40,855 total map tasks , with 559 concurrent
map tasks , and 316 total reduce tasks , with 279 concurrent
reduce tasks , running Hadoop 2.7.1 . The sketch used for
frequency counting was a count - min sketch . The various
parameters of each performance result are depicted in the
table of FIG . 5. In another embodiment , the MapReduce
framework may be substituted with a Spark framework , and
an execution time may be reduced from about 2-3 hours to
about 40 minutes . A Spark framework implementation may
be similar to a MapReduce framework implementation . The
Spark framework implementation may differ from the
MapReduce framework implementation in that (i) data may
be processed in a memory to reduce slow down due to disk
input / output , (ii) map and reduce stages may not occur
separately in order to avoid a total replicated disk write and
network transfer , and (iii) a partition / re - partition of sub
keyed data may be done in memory with minimum shuffling .
[0043] FIG . 6 depicts a method for dynamic partitioning
of in a distributed environment , according to embodiments
of the present disclosure . The method 600 may begin at step
602 in which a node , such as the master node 102 and / or
slave node 104 , may receive a first data set and a second data
set . When a master node receives the first data set and the
second data set , the master node may distribute a portion
and / or all of the first data set and the second data set to one
or more of the slave nodes for distributed processing . When

a slave node receives the portion and / or all of the first data
set and the second data set , the slave node may process the
portion and / or all of the first data set and the second data set
according to one or more tasks handled by the slave node .
[0044] At step 604 , the slave node may perform a map task
on the first data set . The map task may map the first data set ,
and may output a first set of key - value pairs based on the first
data set . Additionally , a plurality of slave nodes may perform
map tasks on a plurality of first data sets in parallel , and the
intermediate outputs of the map tasks may be collected
locally at each slave node .
[0045] At step 606 , the slave node may perform a map task
on the second data set . The map task may map the second
data set , and may output a second set of key - value pairs
based on the second data set . Additionally , a plurality of
slave nodes may perform map tasks on a plurality of second
data sets in parallel , and the intermediate outputs of the map
tasks may be collected locally at each slave node .
[0046] At step 608 , each slave node may estimate , using a
sketch , a frequency count for each key based on the first set
of key - value pairs and the second set of key - value pairs . For
example , the first and second data sets may be examined to
produce a workload estimation based on the sketch of the
first and second data sets . A frequency counter , such as
frequency counter 114 of a slave node 104 , may use various
algorithms , such as an algorithm that uses a lossy count
and / or an algorithm that uses sketches to count the number
of distinct values in the first and second set of key - value
pairs . A sketch may be a data structure that provides space
efficient summaries for large and frequently updated data
sets . A sketch data structure may estimate a number of
distinct values that have been assigned to a particular key in
a first and second set of key - value pairs . The frequency
counter may estimate a number of distinct values for each
key in the first and second set of key - value pairs . In one
embodiment , the sketch data structure may be a count - min
sketch .
[0047] Then at step 610 , the slave node may determine
whether the estimated frequency count for each key is
greater than or equal to a predetermined threshold . At step
612 , the slave node may partition a key when the frequency
count associated with the key is greater than or equal to the
predetermined threshold . For example , each slave node that
processes map tasks may include a frequency counter for
each key , and the slave node may partition a key when the
frequency count associated with the key exceeds a prede
termined threshold .
[0048] After step 612 , the process may continue . For
example , the slave node may group the values associated
with the keys based on the key . Then , other slave nodes that
process reduce tasks may receive a list of values for a
particular key , and , after computation , output a new list of
values .
[0049] FIG . 7 depicts another method for dynamic parti
tioning of in a distributed environment , according to
embodiments of the present disclosure . The method 700 may
begin at step 702 in which a node , such as the master node
102 and / or slave node 104 , may receive a first data set and
a second data set . When a master node receives the first data
set and the second data set , the master node may distribute
a portion and / or all of the first data set and the second data
set to one or more of the slave nodes for distributed
processing . When a slave node receives the portion and / or
all of the first data set and the second data set , the slave node

a

a

US 2021/0365300 A9 Nov. 25 , 2021
5

each key , and the slave node may partition a key when the
updated frequency count associated with the key exceeds a
predetermined threshold .
[0056] At step 718 , the slave node may transmit , to the
master node , the updated frequency count for each key .
Accordingly , the master node may update the global fre
quency count with the updated frequency count from each
slave node . After step 718 , the process may continue . For
example , the slave node may group the values associated
with the keys based on the key . Then , other slave nodes that
process reduce tasks may receive a list of values for a
particular key , and , after computation , output a new list of
values .

may process the portion and / or all of the first data set and the
second data set according to one or more tasks handled by
the slave node .

[0050] At step 704 , the slave node may perform a map task
on the first data set . The map task may map the first data set ,
and may output a first set of key - value pairs based on the first
data set . Additionally , a plurality of slave nodes may perform
map tasks on a plurality of first data sets in parallel , and the
intermediate outputs of the map tasks may be collected
locally at each slave node .
[0051] At step 706 , the slave node may perform a . map task
on the second data set . The map task may map the second
data set , and may output a second set of key - value pairs
based on the second data set . Additionally , a plurality of
slave nodes may perform map tasks on a plurality of second
data sets in parallel , and the intermediate outputs of the map
tasks may be collected locally at each slave node .
[0052] At step 708 , the slave node may retrieve , from a
master node , a global frequency count for each key mapped
in the first and second set of key value pairs . The master
node , such as master node 102 , may also include a global
frequency counter , such as global frequency counter 116 ,
that maintains a global frequency count for each key . The
global frequency counter 116 may also maintain a sketch ,
such as a count - min sketch . The frequency counters , such as
frequency counters 114 , of each slave node , may retrieve the
global frequency count for each key from the global fre
quency counter .
[0053] At step 710 , each slave node may estimate , using a
sketch , a frequency count for each key based on the first set
of key - value pairs and the second set of key - value pairs . For
example , the first and second data sets may be examined to
produce a workload estimation based on the sketch of the
first and second data sets . A frequency counter , such as
frequency counter 114 of a slave node 104 , may use various
algorithms , such as an algorithm that uses a lossy count
and / or an algorithm that uses sketches to count the number
of distinct values in the first and second set of key - value
pairs . A sketch may be a data structure that provides space
efficient summaries for large and frequently updated data
sets . A sketch data structure may estimate a number of
distinct values that have been assigned to a particular key in
a first and second set of key - value pairs . The frequency
counter may estimate a number of distinct values for each
key in the first and second set of key - value pairs . In one
embodiment , the sketch data structure may be a count - min
sketch .

[0054] At step 712 , each slave node may determine an
updated frequency count for each key based on the retrieved
global frequency count for each key and the estimated
frequency count for each key . For example , the slave node ,
for each key , may average the global frequency count for a
key and the estimated frequency count for the key , and
generated an updated frequency count for the key based on
the average .
[0055] Then at step 714 , the slave node may determine
whether the updated frequency count for each key is greater
than or equal to a predetermined threshold . At step 716 , the
slave node may partition a key when the updated frequency
count associated with the key is greater than or equal to the
predetermined threshold . For example , each slave node that
processes map tasks may include a frequency counter for

[0057] FIG . 8 is a simplified functional block diagram of
a computer that may be configured as the nodes , computing
device , servers , providers , and / or network elements for
executing the methods , according to exemplary an embodi
ment of the present disclosure . Specifically , in one embodi
ment , any of the nodes , computing device , servers , provid
ers , and / or network may be an assembly of hardware 800
including , for example , a data communication interface 860
for packet data communication . The platform may also
include a central processing unit (“ CPU ”) 820 , in the form
of one or more processors , for executing program instruc
tions . The platform typically includes an internal commu
nication bus 810 , program storage , and data storage for
various data files to be processed and / or communicated by
the platform such as ROM 830 and RAM 840 , although the
system 800 often receives programming and data via net
work communications . The system 800 also may include
input and output ports 850 to connect with input and output
devices such as keyboards , mice , touchscreens , monitors ,
displays , etc. Of course , the various system functions may be
implemented in a distributed fashion on a number of similar
platforms , to distribute the processing load . Alternatively ,
the systems may be implemented by appropriate program
ming of one computer hardware platform .
[0058] Program aspects of the technology may be thought
of as “ products ” or “ articles of manufacture ” typically in the
form of executable code and / or associated data that is
carried on or embodied in a type of machine - readable
medium . “ Storage ” type media include any or all of the
tangible memory of the computers , processors or the like , or
associated modules thereof , such as various semiconductor
memories , tape drives , disk drives and the like , which may
provide non - transitory storage at any time for the software
programming . All or portions of the software may at times
be communicated through the Internet or various other
telecommunication networks . Such communications , for
example , may enable loading of the software from one
computer or processor into another , for example , from a
management server or host computer of the mobile com
munication network into the computer platform of a server
and / or from a server to the mobile device . Thus , another type
of media that may bear the software elements includes
optical , electrical and electromagnetic waves , such as used
across physical interfaces between local devices , through
wired and optical landline networks and over various air
links . The physical elements that carry such waves , such as
wired or wireless links , optical links , or the like , also may be
considered as media bearing the software . As used herein ,
unless restricted to non - transitory , tangible “ storage ” media ,

US 2021/0365300 A9 Nov. 25 , 2021
6

a

a

terms such as computer or machine “ readable medium ” refer
to any medium that participates in providing instructions to
a processor for execution .
[0059] While the presently disclosed methods , devices ,
and systems are described with exemplary reference to
transmitting data , it should be appreciated that the presently
disclosed embodiments may be applicable to any environ
ment , such as a desktop or laptop computer , an automobile
entertainment system , a home entertainment system , etc.
Also , the presently disclosed embodiments may be appli
cable to any type of Internet protocol .
[0060] As will be recognized , the present disclosure is not
limited to these particular embodiments . For instance ,
although described in the context of MapReduce , the present
disclosure may also be used in other distributed computing
environments .
[0061] Other embodiments of the disclosure will be appar
ent to those skilled in the art from consideration of the
specification and practice of the disclosure disclosed herein .
It is intended that the specification and examples be con
sidered as exemplary only , with a true scope and spirit of the
disclosure being indicated by the following claims .

1-20 . (canceled)
21. A computer - implemented method for dynamic parti

tioning in distributed computing environments , the method
comprising :

receiving , at a processor , a first data set and a second data
set ;

mapping , by the processor , the first data set into a first set
of key - value pairs ;

mapping , by the processor , the second data set into a
second set of key - value pairs ;

estimating , by the processor using a sketch , a frequency
count for each key based on the first set of key - value
pairs and the second set of key - value pairs ;

retrieving , by the processor from a master node , a global
frequency count for each key of the key - value pairs ;
and

determining , by the processor , an updated frequency
count for each key based on the global frequency count
for each key and the estimated frequency count for each
key .

22. The method of claim 21 , further comprising :
determining , by the processor , whether the estimated

frequency count for each key is greater than or equal to
a predetermined threshold ; and

partitioning , by the processor , the key when the estimated
frequency count for the key is greater than or equal to
the predetermined threshold .

23. The method of claim 21 , further comprising :
transmitting , by the processor to the master node , the

updated frequency count for each key .
24. The method of claim 22 , wherein determining whether

the frequency count for each key is greater than or equal to
the predetermined threshold is based on the updated fre
quency count for each key .

25. The method of claim 21 , wherein the sketch is one of
a lossy algorithm and a count - min sketch .

26. The method of claim 25 , further comprising :
reducing , by the processor , the values of each set of values

grouped by each key into a set of pairs .

27. The method of claim 21 , further comprising :
grouping , by the processor , the values of the key - value

pairs by the key to form a set of values grouped by each
key .

28. A system for dynamic partitioning in distributed
computing environments , the system including :

a data storage device that stores instructions for dynamic
partitioning in distributed computing environments ;
and

a processor configured to execute the instructions to
perform a method including :
receiving a first data set and a second data set ;
mapping the first data set into a first set of key - value

pairs ;
mapping the second data set into a second set of

key - value pairs ;
estimating , using a sketch , a frequency count for each

key based on the first set of key - value pairs and the
second set of key - value pairs ;

retrieving , from a master node , a global frequency
count for each key of the key - value pairs ; and

determining an updated frequency count for each key
based on the global frequency count for each key and
the estimated frequency count for each key .

29. The system of claim 28 , wherein the processor is
further configured to execute the instructions to perform the
method including :

determining , by the processor , whether the estimated
frequency count for each key is greater than or equal to
a predetermined threshold ; and

partitioning , by the processor , the key when the estimated
frequency count for the key is greater than or equal to
the predetermined threshold .

30. The system of claim 28 , wherein the processor is
further configured to execute the instructions to perform the
method including :

transmitting , to the master node , the updated frequency
count for each key .

31. The system of claim 29 , wherein determining whether
the frequency count for each key is greater than or equal to
the predetermined threshold is based on the updated fre
quency count for each key .

32. The system of claim 28 , wherein the sketch is one of
a lossy algorithm and a count - min sketch .

33. The system of claim 28 , wherein the processor is
further configured to execute the instructions to perform the
method including :

grouping the values of the key - value pairs by the key to
form a set of values grouped by each key .

34. The system of claim 33 , wherein the processor is
further configured to execute the instructions to perform the
method including :

reducing the values of each set of values grouped by each
key into a set of pairs .

35. A non - transitory computer - readable medium storing
instructions that , when executed by a computer , cause the
computer to perform a method for dynamic partitioning in
distributed computing environments , the method including :

receiving a first data set and a second data set ;
mapping the first data set into a first set of key - value pairs ;
mapping the second data set into a second set of key - value

pairs ;

a

US 2021/0365300 A9 Nov. 25 , 2021
7

estimating , using a sketch , a frequency count for each key
based on the first set of key - value pairs and the second
set of key - value pairs ;

retrieving , from a master node , a global frequency count
for each key of the key - value pairs ; and

determining an updated frequency count for each key
based on the global frequency count for each key and
the estimated frequency count for each key .

36. The computer - readable medium of claim 35 , further
comprising :

determining whether the estimated frequency count for
each key is greater than or equal to a predetermined
threshold ; and

partitioning the key when the estimated frequency count
for the key is greater than or equal to the predetermined
threshold .

37. The computer - readable medium of claim 35 , further
comprising :

transmitting , to the master node , the updated frequency
count for each key .

38. The computer - readable medium of claim 36 , wherein
determining whether the frequency count for each key is
greater than or equal to the predetermined threshold is based
on the updated frequency count for each key .

39. The computer - readable medium of claim 35 , wherein
the sketch is one of a lossy algorithm and a count - min
sketch .

40. The computer - readable medium of claim 35 , further
comprising :

grouping the values of the key - value pairs by the key to
form a set of values grouped by each key .

