
100 
( 19 ) United States 
( 12 ) Patent Application Publication 

KYAW et al . 

US 20210365300A9 

( 10 ) Pub . No .: US 2021/0365300 A9 
( 48 ) Pub . Date : Nov. 25 , 2021 

CORRECTED PUBLICATION 

( 54 ) SYSTEMS AND METHODS FOR DYNAMIC 
PARTITIONING IN DISTRIBUTED 
ENVIRONMENTS 

Related U.S. Application Data 
( 63 ) Continuation of application No. 15 / 189,158 , filed on 

Jun . 22 , 2016 , now Pat . No. 10,162,830 . 
Publication Classification ( 71 ) Applicants : Thu R. KYAW , Reston , VA ( US ) ; 

Jonathan JI , Aldie , VA ( US ) ; Saad 
MUFTI , Fairfax , VA ( US ) ; Sudhir 
ACHUTHAN , Vienna , VA ( US ) ; Sang 
Chul SONG , Aldie , VA ( US ) 

( 72 ) Inventors : Thu R. KYAW , Reston , VA ( US ) ; 
Jonathan JI , Aldie , VA ( US ) ; Saad 
MUFTI , Fairfax , VA ( US ) ; Sudhir 
ACHUTHAN , Vienna , VA ( US ) ; Sang 
Chul SONG , Aldie , VA ( US ) 

( 51 ) Int . Ci . 
GO6F 9/50 ( 2006.01 ) 
G06F 1730 ( 2006.01 ) 

( 52 ) U.S. CI . 
CPC GO6F 9/5077 ( 2013.01 ) ; G06F 17/30598 

( 2013.01 ) ; G06F 9/5083 ( 2013.01 ) 
( 57 ) ABSTRACT 
Methods , systems , and computer - readable media are dis 
closed for dynamic partitioning in distributed computing 
environments . One method includes : receiving a first data 
set and a second data set ; mapping the first data set into a 
first set of key - value pairs ; mapping the second data set into 
a second set of key - value pairs ; estimating , using a sketch , 
a frequency count for each key based on the first set of 
key - value pairs and the second set of key - value pairs ; 
determining whether the estimated frequency count for each 
key is greater than or equal to a predetermined threshold ; 
and partitioning the key when the estimated frequency count 
for the key is greater than or equal to the predetermined 
threshold . 

( 21 ) Appl . No .: 16 / 198,133 

( 22 ) Filed : Nov. 21 , 2018 

Prior Publication Data 
( 15 ) Correction of US 2020/0159594 A1 May 21 , 2020 

See ( 63 ) Related U.S. Application Data . 

( 65 ) US 2020/0159594 A1 May 21 , 2020 

100 MASTER NODE 
102 

SLAVE NODE 
104 

MAP TASK 
106 

SLAVE NODE 
104 

REDUCE TASK 
108 

SLAVE NODE 
104 

TASK N 

FREQUENCY 
COUNTER 

FREQUENCY 
COUNTER 

FREQUENCY 
COUNTER 

SLAVE NODE SLAVE NODE 
104 

MAP TASK 

SLAVE NODE 
104 

TASKN 
110 

REDUCE TASK 
108 

int 

FREQUENCY 
COUNTER 

114 

FREQUENCY 
COUNTER 

FREQUENCY 
COUNTER 

114 wwwww 

SLAVE NODE SLAVE NODE SLAVE NODE 
104 

TASKN 
110 

MAP TASK REDUCE TASK 
108 

MUUN 

FREQUENCY 
COUNTER 

114 

FREQUENCY 
COUNTER 

FREQUENCY 
COUNTER 

ARKLEY 

112 



MASTER NODE 102 

SLAVE NODE 104 MAP TASK 106 

SLAVE NODE 104 REDUCE TASK 108 

SLAVE NODE 104 TASKN 110 

Patent Application Publication 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

SLAVE NODE 104 MAP TASK 106 

SLAVE NODE 104 REDUCE TASK 108 

SLAVE NODE 104 TASKN 110 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

Nov. 25 , 2021 Sheet 1 of 8 

XX SOFA SLAVE NODE 104 MAP TASK 106 

SLAVE NODE 104 REDUCE TASK 108 

SLAVE NODE 104 TASK N 110 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

Bobodo 

US 2021/0365300 A9 

FIG . 1 

112 



GROUP BY KEY 

REDUCE 

204A 

202A 

PAIR 

B 

A 1 

V4 , W | V1 , W2 V2 , W1 

Patent Application Publication 

# $ 

????? 

KEY VALUE 1 V4 1 V2 1 V3 2 V4 

2 

V5 
2 V6 3 Vy 3 VA 

1 1 2 2 2 3 3 

V2 , W2 V? , W1 V3 , W2 

1 

2048 

8 

2 

202B 

V1 , V2 , V3 Wq , W2 V4 , V5 , V6 W3 , W4 V7 , V8 , W5 W6 , W7 , W8 We 

PAIR V4 , W3 VAW? V5 , W3 V5 , W4 V6W3 V6 , W4 

B 

A 1 1 

3 

# $ % 

Nov. 25 , 2021 Sheet 2 of 8 

2 2 3 

204C 

KEY VALUE 1 WA 1 W2 2 W3 2 W4 3 W6 3 W6 3 Wy 3 Wg 3 Wo 

CON 

$$ 

3 3 3 

PAIR V7 , W5 V7 , W6 V7 , W7 V7 , W8 V7 , W. V8 , W5 V3 , W6 

FIG . 2 

US 2021/0365300 A9 

V8 , W7 V3 , W8 | Vg , Wg 



MAP 

GROUP BY KEY 

REDUCE 

-304A 

PAIR V1 , W1 V1 , W2 

302A 

Patent Application Publication 

B 

A 1 

KEY VALUE 1A VA 1A V2 
1A 

18 VA 1B V5 2 VA 3 V7 

1 

1A 

V? , W1 V2 , W2 V2 , W3 V3 , W1 V3 , W2 V3 , W3 

1 2 3 

V1 , V2 V3 WqW? W? V4 , V5 , W1W2 , W3 V6 W4 

1B 

304B 

302B 

A 

B 

PAIR 

2 

Nov. 25 , 2021 Sheet 3 of 8 

1 mitin 

V4 , W2 

1 

KEY VALUE 1 WA 1 W2 

1 

2 W4 3 W5 3 Wo 

3 

V7 W5 , W6 , 

2 3 

V4 , W3 V5 , W1 V5 , W2 V5 , W3 

31 

PREDETERMINE THERSHOLD = 4 

304C 

PAIR 

FIG . 3 

V6 , W4 

US 2021/0365300 A9 

PAIR V7 , W5 V7 , W6 



102 

MW 

MORE 

inn 
WN 

WW 
W 
Wh 

M 
MOM 

TA 

A 9 

10 

3 

MASTER NODE GLOBAL FREQUENCY COUNTER 116 

MX 

UN 

400 

W 

An 

www 

3 

190 

90 

10 
12 

I 

M 

VW 
WA 

w 

W 

51 

3 

} 

3 

3 

9 

31 

{ 

3 

Patent Application Publication 

3 

2 

104 

104 

104 

! 

2 

SLAVE NODE 

3 

SLAVE NODE REDUCE TASK 108 

MAP TASK 106 

SLAVE NODE TASKN 110 

3 

?????? 

www 

3 

2920 

1 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

REQUENCY COUNTER 114 

M 

104 

104 

104 

SLAVE NODE MAP TASK 106 

SLAVE NODE REDUCE TASK 108 

SLAVE NODE TASKN 110 

Nov. 25 , 2021 Sheet 4 of 8 

3 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 

como Jo0060 

104 

104 

104 

SLAVE NODE MAP TASK 

SLAVE NODE REDUCE TASK 108 

SLAVE NODE TASKN 110 

} 

1 $ 

3 

WWWMWWW 

5 

CULIKA 

1 

3 11 

FREQUENCY COUNTER 114 

FREQUENCY COUNTER 114 
A 

12 

& 

FREQUENCY COUNTER 114 
# 

US 2021/0365300 A9 

112 

FIG . 4 



PARAMETERS 
DURATION 

SAVINGS 

AVERAGE MAP TIME 

AVERAGE SHUFFLE TIME 

AVERAGE MERGE TIME 

AVERAGE REDUCE TIME 

48 SECONDS 

3 SECONDS 

750K , BIASED RANDOM , 
5 % , 316R 

2 HOURS 22 MINUTES 

33 MINUTES , 5 SECONDS 

20 MINUTES , 49 SECONDS 

Patent Application Publication 

% 18 % 

59 SECONDS 

750K , BIASED RANDOM , 
50 % , 316R 

3 SECONDS 

2 HOURS 
20 MINUTES , 15 SECONDS 

20 MINUTES 46 SECONDS 

19 MINUTES , 52 SECONDS 

11 % 

6 SECONDS 

750K , BIASED RANDOM , 
75 % , 279R 

2 HOURS 
30 MINUTES , 31 SECONDS 

1 MINS , 6 SECONDS 

14 MINUTES , 42 SECONDS 

23 MINUTES , 8 SECONDS 

11 % 

3 SECONDS 

750K , BIASED RANDOM , 
100 % , 316R 

2 HOURS 32 MINUTES 

1 MINS , 12 SECONDS 

14 MINUTES , 37 SECONDS 

19 MINUTES , 48 SECONDS 

150K , BIASED RANDOM , 
100 % , 316R 

m200 

4 SECONDS 

2 HOURS 
38 MINUTES , 13 SECONDS 

1 MINS , 12 SECONDS 

14 MINUTES , 41 SECONDS 

19 MINUTES , 5 SECONDS 

Nov. 25 , 2021 Sheet 5 of 8 

750K , PLAIN INCREMENTAL , 
100 % , 316R 

14 % 

3 SECONDS 

2 HOURS 26 MINUTES 52 SECONDS 

1 MINS , 12 SECONDS 

15 MINUTES , 
3 SECONDS 

20 MINUTES , 11 SECONDS 

750K , PLAIN INCREMENTAL , 2 HOURS 

18 % 1 MINS 

20 MINUTES , 3 SECONDS 18 MINUTES , 

50 % , 316R , S3 

19 MINUTES 

1 SECONDS 46 SECONDS 

34 SECONDS 

9 SECONDS 

550K , PLAIN INCREMENTAL , 2 HOURS 

26 % 1 MINS 21 MINUTES , 3 SECONDS 19 MINUTES , 

50 % , 316R , S3 

5 MINUTES , 

2 SECONDS 48 SECONDS 

29 SECONDS 

44 SECONDS 

* PARAMETERS : GROUP SIZE , MODULUS FOR PARTITION , PERCENTAGE OF MAPS BEFORE REDUCES , NUMBER OF REDUCES 

US 2021/0365300 A9 

FIG . 5 



Patent Application Publication Nov. 25 , 2021 Sheet 6 of 8 US 2021/0365300 A9 

600 

RECEVEA FIRST DATA SET 
AND A SECOND DATA SET 

602 

MAP THE FIRST DATA SET 
INTO A FIRST SET OF 
KEY - VALUE PAIRS 

604 

MAP THE SECOND DATA SET 
INTO A SECOND SET OF 

KEY - VALUE PAIRS 
606 

ESTIMATE A FREQUENCY COUNT 
FOR EACH KEY BASED ON THE 
FIRST AND SECOND SET OF 

KEY - VALUE PAIRS 

608 

DETERMINE WHETHER THE 
ESTIMATED FREQUENCY COUNT IS 
GREATER THAN OR EQUAL TO A 
PREDETERMINED THRESHOLD 

610 

PARTITION THE KEY WHEN THE 
ESTIMATED FREQUENCY COUNT 

FOR THE KEY IS GREATER 
THAN OR EQUAL TO THE 

PREDETERMINED THRESHOLD 

612 

FIG . 6 



Patent Application Publication Nov. 25 , 2021 Sheet 7 of 8 US 2021/0365300 A9 

RECEIVE A FIRST DATA SET AND 
A SECOND DATA SET 

702 
700 

MAP THE FIRST DATA SET INTO A 
FIRST SET OF KEY - VALUE PAIRS 

MAP THE SECOND DATA SET INTO A 
SECOND SET OF KEY - VALUE PAIRS 

RETRIEVE , FROM A MASTER NODE . 
A GLOBAL FREQUENCY COUNT FOR 
EACH KEY OF THE KEY - VALUE PAIRS 

ESTIMATE A FREQUENCY COUNT FOR 
EACH KEY BASED ON THE FIRST AND 
SECOND SET OF KEY - VALUE PAIRS 

710 

DETERMINE AN UPDATED FREQUENCY 
COUNT FOR EACH KEY BASED ON THE 
GLOBAL FREQUENCY COUNT FOR EACH 
KEY AND THE ESTIMATED FREQUENCY 

COUNT FOR EACH KEY 

712 

DETERMINE WHETHER THE UPDATED 
FREQUENCY COUNT IS GREATER 

THAN OR EQUAL TO A 
PREDETERMINED THRESHOLD 

714 

PARTITION THE KEY WHEN THE UPDATED 
FREQUENCY COUNT FOR THE KEY IS 
GREATER THAN OR EQUAL TO THE 
PREDETERMINED THRESHOLD 

TRANSMIT , TO THE MASTER NODE , 
THE UPDATED FREQUENCY 
COUNT FOR EACH KEY 

718 

FIG . 7 



Patent Application Publication Nov. 25 , 2021 Sheet 8 of 8 US 2021/0365300 A9 

008 

810 

840 

RAM 

COM 
830 FIG . 8 

860 
ROM sng 

Oll 
820 

850 
CPU 



US 2021/0365300 A9 Nov. 25 , 2021 
1 

SYSTEMS AND METHODS FOR DYNAMIC 
PARTITIONING IN DISTRIBUTED 

ENVIRONMENTS 
a 

TECHNICAL FIELD 

[ 0001 ] The present disclosure relates to dynamic partition 
ing in distributed computing environments . More particu 
larly , the present disclosure relates to dynamic partitioning 
of keys based on frequency counters maintained locally 
and / or global in the distributed computing environment . 

BACKGROUND 

[ 0002 ] The integration of data from a plurality of data 
sources may produce large data sets that need to be managed 
efficiently and effectively . However , conventional methods 
of integrating large data sets have performance barriers 
because of the size of the data sets , which leads to relatively 
long processing times and relatively large computer resource 
use . 

[ 0003 ] Several newer techniques of integrating data sets 
have been proposed to parallelize the integration process and 
reduce long processing times based on the MapReduce 
framework . In the MapReduce framework , data sets are 
partitioned into several blocks of data using keys assigned 
by map task operations and allocated in parallel to reduce 
task operations . 
[ 0004 ] A common problem with the MapReduce frame 
work is data skew , which occurs when the workload is 
non - uniformly distributed . When typical data skew occurs , 
computer resources that process a reduce task receive a 
relatively large amount of workload and require a relatively 
longer amount of processing time to complete the tasks 
compared to other computer resources that process other 
reduce tasks , which diminishes the benefits of paralleliza 
tion . 
[ 0005 ] Thus , embodiments of the present disclosure relate 
to dynamic partitioning of tasks in a distributed computing 
environment to improve data processing speed . 

dynamic partitioning in distributed computing environ 
ments ; and a processor configured to execute the instructions 
to perform a method including : receiving a first data set and 
a second data set ; mapping the first data set into a first set of 
key - value pairs ; mapping the second data set into a second 
set of key - value pairs ; estimating , using a sketch , a fre 
quency count for each key based on the first set of key - value 
pairs and the second set of key - value pairs ; determining 
whether the estimated frequency count for each key is 
greater than or equal to a predetermined threshold ; and 
partitioning the key when the estimated frequency count for 
the key is greater than or equal to the predetermined thresh 
old . 
[ 0009 ] According to embodiments of the present disclo 
sure , non - transitory computer - readable media storing 
instructions that , when executed by a computer , cause the 
computer to perform a method for dynamic partitioning in 
distributed computing environments are also disclosed . One 
method of the non - transitory computer - readable medium 
including : receiving a first data set and a second data set ; 
mapping the first data set into a first set of key - value pairs ; 
mapping the second data set into a second set of key - value 
pairs ; estimating , using a sketch , a frequency count for each 
key based on the first set of key - value pairs and the second 
set of key - value pairs ; determining whether the estimated 
frequency count for each key is greater than or equal to a 
predetermined threshold ; and partitioning the key when the 
estimated frequency count for the key is greater than or 
equal to the predetermined threshold . 
[ 0010 ] Additional objects and advantages of the disclosed 
embodiments will be set forth in part in the description that 
follows , and in part will be apparent from the description , or 
may be learned by practice of the disclosed embodiments . 
The objects and advantages of the disclosed embodiments 
will be realized and attained by means of the elements and 
combinations particularly pointed out in the appended 
claims . 
[ 0011 ] It is to be understood that both the foregoing 
general description and the following detailed description 
are exemplary and explanatory only and are not restrictive of 
the scope of disclosed embodiments , as set forth by the 
claims . 

SUMMARY OF THE DISCLOSURE 

BRIEF DESCRIPTION OF THE DRAWINGS 

a 

[ 0006 ] Embodiments of the present disclosure include 
systems , methods , and computer - readable media for 
dynamic partitioning in distributed computing environ 
ments . 

[ 0007 ] According to embodiments of the present disclo 
sure , computer - implemented methods are disclosed for 
dynamic partitioning in distributed computing environ 
ments . One method includes : receiving , at a processor , a first 
data set and a second data set ; mapping , by the processor , the 
first data set into a first set of key - value pairs ; mapping , by 
the processor , the second data set into a second set of 
key - value pairs ; estimating , by the processor using a sketch , 
a frequency count for each key based on the first set of 
key - value pairs and the second set of key - value pairs ; 
determining , by the processor , whether the estimated fre 
quency count for each key is greater than or equal to a 
predetermined threshold ; and partitioning , by the processor , 
the key when the estimated frequency count for the key is 
greater than or equal to the predetermined threshold . 
[ 0008 ] According to embodiments of the present disclo 
sure , systems are disclosed for dynamic partitioning in 
distributed computing environments . One system includes a 
data storage device that stores instructions system for 

[ 0012 ] The accompanying drawings , which are incorpo 
rated in and constitute a part of this specification , illustrate 
various exemplary embodiments and together with the 
description , serve to explain the principles of the disclosed 
embodiments . 
[ 0013 ] FIG . 1 depicts a system implementing a MapRe 
duce framework for dynamic partitioning of in a distributed 
environment , according to embodiments of the present dis 
closure ; 
[ 0014 ] FIG . 2 depicts an exemplary blocking - based 
records / events linking using the MapReduce framework , 
according to embodiments of the present disclosure ; 
[ 0015 ) FIG . 3 depicts an exemplary blocking - based 
records / events linking using the MapReduce framework that 
includes a predetermined threshold when mapping data sets , 
according to embodiments of the present disclosure ; 
[ 0016 ] FIG . 4 depicts a system implementing a MapRe 
duce framework for dynamic partitioning of in a distributed 
environment using a global frequency counter , according to 
embodiments of the present disclosure ; 
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a 

[ 0017 ] FIG . 5 depicts a table of performance results for a 
MapReduce framework using a global frequency counter , 
according to embodiments of the present disclosure . 
[ 0018 ] FIG . 6 depicts a method for dynamic partitioning 
of in a distributed environment , according to embodiments 
of the present disclosure ; 
[ 0019 ] FIG . 7 depicts another method for dynamic parti 
tioning of in a distributed environment , according to 
embodiments of the present disclosure ; and 
[ 0020 ] FIG . 8 is a simplified functional block diagram of 
a computer configured as a device for executing the methods 
of FIGS . 6 and 7 , according to exemplary embodiments of 
the present disclosure . 
[ 0021 ] It is to be understood that the figures are not 
necessarily drawn to scale , nor are the objects in the figures 
necessarily drawn to scale in relationship to one another . The 
figures are depictions that are intended to bring clarity and 
understanding to various embodiments of apparatuses , sys 
tems , and methods disclosed herein . Wherever possible , the 
same reference numbers will be used throughout the draw 
ings to refer to the same or like parts . Moreover , it should be 
appreciated that the drawings are not intended to limit the 
scope of the present teachings in any way . 

DETAILED DESCRIPTION OF EMBODIMENTS 

[ 0022 ] The following detailed description refers to the 
accompanying drawings . The same reference numbers in 
different drawings may identify the same or similar ele 
ments . 
[ 0023 ] A data analysis platform may process relatively 
large amounts of data to learn insights from the data . For 
example , an advertiser may have a relatively large of amount 
of data relating to advertisements and campaigns . To deter 
mine the effectiveness and / or improve the effectiveness of 
an advertisement and / or campaign , the data may be stored in 
a software framework for distributed storage and distributed 
processing , such as with Hadoop . In particular , Hadoop may 
be utilized for distributed processing of the data , and the 
Hadoop distributed file system ( “ HDFS ” ) may be used for 
organizing communications and storage of the data . Clusters 
and / or nodes may be generated that also utilize HDFS . For 
example , a cluster computing framework , such as Spark , 
may be arranged to further utilize the HDFS of the Hadoop 
clusters . A Hadoop cluster may allow for the distributed 
processing of large data sets across clusters of computers 
using programming models . A Hadoop cluster may 
from single servers to thousands of machines , each offering 
local computation and storage . 
[ 0024 ] Accessing and organizing data in a large distrib 
uted system may be difficult and require specialized func 
tionality for efficient operations . In one example , a MapRe 
duce framework may be provided for accessing and 
processing data from the distributed computing system . 
According to embodiments of the present disclosure , a 
MapReduce framework may be used to process records / 
events related to a particular unique identifier ( e.g. , an 
advertiser id and / or a campaign id ) in parallel . Thus , the 
workload of processing for a large number of records / events 
may be divided among a plurality of MapReduce nodes and 
divided among a plurality of computers within the MapRe 
duce framework . 
[ 0025 ] FIG . 1 depicts a system implementing a MapRe 
duce framework , according to embodiments of the present 
disclosure . The system includes a cluster 100 of nodes 

working in parallel . Each node may be a computer , a 
processor , or a processing . The cluster 100 includes a master 
node 102 and a plurality of slave nodes 104 , which performs 
MapReduce tasks and / or other tasks . As discussed in more 
detail below , MapReduce tasks include map tasks and 
reduce tasks . A data set received by the cluster 100 may be 
split into independent chunks of data that are processed by 
a map tasks in parallel . The map tasks may produce a set of 
key - value pairs . The MapReduce framework may group the 
outputs of the map tasks by their respective keys , which may 
be input into the reduce tasks . The grouping of keys ( also 
referred to as shuffling ) may be a time consuming process 
when the number of map task results is relatively large . 
Reduce tasks may consolidate the outputs from the map 
tasks into final results . The slave nodes 104 may include a 
plurality of map task nodes 106 , a plurality of reduce tasks 
nodes 108 , and / or a plurality of other tasks N nodes 110. The 
master node 102 may divide a data set into smaller data 
chunks and distributes the smaller data chunks to the map 
task nodes 106. Each reduce task node 108 may combine the 
output received from the map tasks nodes 106 into a single 
result . Each node in the cluster 100 may be coupled to a 
database 112. The results of each stage of the MapReduce 
tasks may be stored in the database 112 , and the nodes in the 
cluster 100 may obtain the results from the database 112 in 
order to perform subsequent processing . 
[ 0026 ] As discussed above , a data set that is received may 
include a set of records / events that relate to a particular 
unique identifier ( e.g. , an advertiser id and / or a campaign 
id ) . When the data set is received , a unique key may be 
assigned to the data in the data set in order to uniquely 
identify the data . Another data set may also be received from 
the same data provider and / or different data provider and 
include another set of records / events that related to another 
particular unique identifier ( e.g. , another advertiser id and / or 
another campaign id ) . A unique key may be assigned to the 
second data of the second data set in order to uniquely 
identify the second data . 
[ 0027 ] The set of records / events of the data sets may then 
be linked by matching records / events of the data sets . For 
example , a record / event of the data set may be assigned with 
a first key , and other records / events of the data set with the 
same first key may be grouped into a block . The records / 
events of the block may be compared with each other to 
determine whether the information within the records / events 
match or do not match . 
[ 0028 ] The MapReduce framework may be used to effi 
ciently process the linking of records / events of data sets . As 
mentioned above , the MapReduce framework includes two 
major tasks , i.e. , map and reduce . The map task inputs the 
data of the data set , and assigns a key to a record / event . The 
reduce task receives all values which have the same key , and 
processes these groups . The map and reduce tasks may 
simplified by the following algorithmic formulas : 

map : :( K1 , 1 , V1 ) -- > list ( K2,12 ) 

scale up 

reduce : :( K2 , list ( V2 ) ) -- > list ( 13 ) 
[ 0029 ] For example , the map task may output one or more 
key - value pairs . The reduce task may receive a list of values 
for a particular key , and , after computation , output a new list 
of values . Through mapping and reducing , the records / 
events included in the data sets may be separated into 
smaller units and distributed to different computing 
resources that may be run in parallel . 
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[ 0030 ] In the map phase , input data may be processed by 
map tasks in parallel , the intermediate outputs of the map 
tasks may be collected locally and grouped based on their 
respective key values . Based on a partition function ( such as 
a default hashing function and / or a user - defined function ) , 
the groups may be allocated to a reduce task depending on 
their keys . Upon completion of the map tasks and the 
intermediate results being transferred to the respective 
reduce task , reduce task operations may begin . The reduce 
task operations may also be processed in parallel for each 
key group . 
[ 0031 ] As mentioned above , the data sets may be parti 
tioned into several blocks of data using keys by map tasks , 
and assigned in parallel to reduce tasks . FIG . 2 depicts an 
exemplary blocking - based records / events linking using the 
MapReduce framework , according to embodiments of the 
present disclosure . Field A of a data sets 202A and 202 B 
may be used as the key , and the records / events B of the 
respective data sets 202A and 202B may be mapped , and 
then be processed by the same reduce task computing 
resources . 

W = 

a 

a 

[ 0032 ] With the MapReduce framework data skew occurs 
when the workload is non - uniformly distributed . When 
typical data skew occurs , computer resources that process 
reduce tasks may receive a relatively large amount of 
key - value pairs , and may require a relatively longer amount 
of processing time to complete the reduce tasks compared to 
other computer resources that process other reduce tasks . 
Such an uneven distribution of key - value pairs may reduce 
the benefits of parallelization . For example , as shown in 
FIG . 1 , the computing resources needed for reduce task 
operations 204A , 204B may compare six record / event pairs , 
but the computing resources need for reduce task operations 
204C may compare ten record / event pairs . 
[ 0033 ] When the block size distribution is skewed , the 
MapReduce framework may assign some computing 
resources for reduce task operations with a larger workload , 
such as 204C . Data skew occurs because of the imbalanced 
distribution of block sizes . To alleviate the imbalanced 
distribution of block sizes , each map task operation may 
maintain a frequency counter per key . The frequency counter 
per key may be used in conjunction with a predetermined 
threshold to one or more of split a key , create sub - keys , 
and / or to allocate record / event pairs to particular computing 
resources to ensure that a load of the computer resources is 
balanced . 
[ 0034 ] Additionally , to alleviate the imbalanced distribu 
tion of block sizes , each reduce task operation and / or each 
stage of a MapReduce operation may maintain a frequency 
counter per key . The frequency counter per key may be used 
in conjunction with an overall predetermined threshold , a 
reduce task predetermined threshold , and / or a stage prede 
termined threshold to one or more of split a key , create 
sub - keys , and / or to allocate record / event pairs to particular 
computing resources to ensure that a load of the computer 
resources is balanced . 
[ 0035 ] In order to estimate a frequency count per key , the 
data sets may be examined to produce a workload estimation 
based on a sketch of the data sets 202A and 202B . The 
frequency counter may use various algorithms , such as an 
algorithm that uses a lossy count and / or an algorithm that 
uses sketches to count the number of values . A sketch may 
be a data structure that provides space - efficient summaries 
for large and frequently updated data sets . A sketch data 

structure may estimate a number of values that have been 
assigned to a certain key for the data set . In one embodiment , 
the sketch data structure may be one or more of a count - min 
sketch , a hyperloglog , a bloomfilter , a minhash , and / or a 
cuckoo filter . In a count - min sketch , hash functions may be 
used to map records / events to frequencies . For example , a 
slave node 104 that process map tasks 106 may use a 
frequency counter 114 to estimate a number of values that 
are repeated in over a predetermined fraction of the rows , for 
each column of data being processed . 
[ 0036 ] For example , the frequency counter 114 may use a 
sketch when inputting a stream of records / events , one at a 
time , of a data set , such as data set 202A and 202B , and the 
frequency counter 114 may count a frequency of the differ 
ent types of records / events in the stream . The sketch may be 
used as an estimated frequency of each record / event type . 
The count - min sketch data structure may be a two - dimen 
sional array of cells with w columns and d rows . The values 
for the parameters w and d may be fixed when the sketch is 
created , and may be used to determine time and space needs 
and the probability of error when the sketch is queried for a 
frequency . Associated with each of the d rows is a separate 
and independent hash function . Each hash function h ; maps 
a blocking key k into a hashing space of size w . The 
parameters w and d may be set with w = fe / ? ] and d = [ In 1/8 ] , 
where the error in answering a query is within a factor of ? 
with probability d . 
[ 0037 ] Each cell of the two - dimensional array of a sketch 
may include a counter , and initially , all of each counter in the 
array may be set to zero . When a new record / event of type 
is detected ( i.e. , a new key k is detect ) , the counters may be 
incremented . If a counter of a cell of the two - dimensional 
array of the sketch is greater than or equal to a predeter 
mined count threshold for the particular key k , then the 
individual map task may partition ( split ) the key into two or 
more sub - keys with the map task operation . The predeter 
mined count threshold may be a predetermined value and / or 
a range of values that may be determined empirically and / or 
dynamically . For example , a dynamically predetermined 
count threshold may use machine learning to determine a 
value or a range of values for the predetermined count 
threshold . 
[ 0038 ] FIG . 3 depicts an exemplary blocking - based 
records / events linking using the MapReduce framework that 
includes a predetermined threshold when mapping data sets , 
according to embodiments of the present disclosure . Field A 
of a data sets 302A and 302 B may be used as the blocking 
key , and the records / events B of the respective data sets 
302A and 302B may be mapped , and then the key pairs may 
be processed by the same reduce task computing resources . 
As shown in FIG . 2 , the predetermined threshold for deter 
mining whether a mapper should partition ( split ) a key may 
be 4. When the frequency of the key 1 is determined to be 
4 , the mapper may split the key 1 into keys 1A and 1B . With 
the partitioning ( splitting ) of the keys , the computing 
resources needed for reduce task operations 304A may 
compare nine record / event pairs , the computing resources 
needed for reduce task operations 304B may compare six 
record / event pairs , the computing resources needed for 
reduce task operations 304C may compare one record / event 
pair , and the computing resources needed for reduce task 
operations 304D may compare two record / event pairs . With 
out the partitioning of the keys , the computer resources for 
reduce task operations 304A and 304B would be combined 
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and may compare fifteen record / event pairs , which is a 
relatively larger amount of processing needed to the other 
computing resources needed for reduce task operations 
304C and 304D . 
[ 0039 ] As discussed in detail above , each slave node that 
processes map tasks may include a frequency counter for 
each key using a sketch , and partitions a key when the 
frequency counter associated with the key exceeds a prede 
termined threshold . The above described frequency counter 
may allow for data skew to be mitigated locally at the slave 
node . In order to further mitigate data skew , the frequency 
counter for each key may be maintained globally . 
[ 0040 ] As shown FIG . 4 , the master node 102 may also 
include a global frequency counter 116 that maintains a 
global frequency count for each key . The global frequency 
counter 116 may maintain a sketch , such as a count - min 
sketch , and the frequency counters 114 of the slave nodes 
104 including map tasks 106 , may retrieve the global 
frequency count for each key from the global frequency 
counter 116 . 
[ 0041 ] For example , the local frequency counters 114 of 
the slave nodes 104 including map tasks 106 may retrieve 
the global frequency count for each key from the global 
frequency counter 116. Then the slave nodes 104 may 
determine an updated frequency count for each key based on 
the estimated frequency counts for each key and the 
retrieved global frequency count for each key . The map tasks 
may then partition ( split ) their local keys based on the 
locally updated frequency counts for each key and the 
predetermined threshold . Upon completion of the map tasks , 
the local frequency counters 114 may transmit their local 
updated frequency counts for each key to the global fre 
quency counter 116 of the master node 102 . 
[ 0042 ] FIG . 5 depicts a table of performance results for a 
MapReduce framework using a global frequency counter , 
according to embodiments of the present disclosure . The 
environment includes data from 20,599 files having a total 
size of 2.9 terabytes of data . The running environment was 
performed with 40,855 total map tasks , with 559 concurrent 
map tasks , and 316 total reduce tasks , with 279 concurrent 
reduce tasks , running Hadoop 2.7.1 . The sketch used for 
frequency counting was a count - min sketch . The various 
parameters of each performance result are depicted in the 
table of FIG . 5. In another embodiment , the MapReduce 
framework may be substituted with a Spark framework , and 
an execution time may be reduced from about 2-3 hours to 
about 40 minutes . A Spark framework implementation may 
be similar to a MapReduce framework implementation . The 
Spark framework implementation may differ from the 
MapReduce framework implementation in that ( i ) data may 
be processed in a memory to reduce slow down due to disk 
input / output , ( ii ) map and reduce stages may not occur 
separately in order to avoid a total replicated disk write and 
network transfer , and ( iii ) a partition / re - partition of sub 
keyed data may be done in memory with minimum shuffling . 
[ 0043 ] FIG . 6 depicts a method for dynamic partitioning 
of in a distributed environment , according to embodiments 
of the present disclosure . The method 600 may begin at step 
602 in which a node , such as the master node 102 and / or 
slave node 104 , may receive a first data set and a second data 
set . When a master node receives the first data set and the 
second data set , the master node may distribute a portion 
and / or all of the first data set and the second data set to one 
or more of the slave nodes for distributed processing . When 

a slave node receives the portion and / or all of the first data 
set and the second data set , the slave node may process the 
portion and / or all of the first data set and the second data set 
according to one or more tasks handled by the slave node . 
[ 0044 ] At step 604 , the slave node may perform a map task 
on the first data set . The map task may map the first data set , 
and may output a first set of key - value pairs based on the first 
data set . Additionally , a plurality of slave nodes may perform 
map tasks on a plurality of first data sets in parallel , and the 
intermediate outputs of the map tasks may be collected 
locally at each slave node . 
[ 0045 ] At step 606 , the slave node may perform a map task 
on the second data set . The map task may map the second 
data set , and may output a second set of key - value pairs 
based on the second data set . Additionally , a plurality of 
slave nodes may perform map tasks on a plurality of second 
data sets in parallel , and the intermediate outputs of the map 
tasks may be collected locally at each slave node . 
[ 0046 ] At step 608 , each slave node may estimate , using a 
sketch , a frequency count for each key based on the first set 
of key - value pairs and the second set of key - value pairs . For 
example , the first and second data sets may be examined to 
produce a workload estimation based on the sketch of the 
first and second data sets . A frequency counter , such as 
frequency counter 114 of a slave node 104 , may use various 
algorithms , such as an algorithm that uses a lossy count 
and / or an algorithm that uses sketches to count the number 
of distinct values in the first and second set of key - value 
pairs . A sketch may be a data structure that provides space 
efficient summaries for large and frequently updated data 
sets . A sketch data structure may estimate a number of 
distinct values that have been assigned to a particular key in 
a first and second set of key - value pairs . The frequency 
counter may estimate a number of distinct values for each 
key in the first and second set of key - value pairs . In one 
embodiment , the sketch data structure may be a count - min 
sketch . 
[ 0047 ] Then at step 610 , the slave node may determine 
whether the estimated frequency count for each key is 
greater than or equal to a predetermined threshold . At step 
612 , the slave node may partition a key when the frequency 
count associated with the key is greater than or equal to the 
predetermined threshold . For example , each slave node that 
processes map tasks may include a frequency counter for 
each key , and the slave node may partition a key when the 
frequency count associated with the key exceeds a prede 
termined threshold . 
[ 0048 ] After step 612 , the process may continue . For 
example , the slave node may group the values associated 
with the keys based on the key . Then , other slave nodes that 
process reduce tasks may receive a list of values for a 
particular key , and , after computation , output a new list of 
values . 
[ 0049 ] FIG . 7 depicts another method for dynamic parti 
tioning of in a distributed environment , according to 
embodiments of the present disclosure . The method 700 may 
begin at step 702 in which a node , such as the master node 
102 and / or slave node 104 , may receive a first data set and 
a second data set . When a master node receives the first data 
set and the second data set , the master node may distribute 
a portion and / or all of the first data set and the second data 
set to one or more of the slave nodes for distributed 
processing . When a slave node receives the portion and / or 
all of the first data set and the second data set , the slave node 
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each key , and the slave node may partition a key when the 
updated frequency count associated with the key exceeds a 
predetermined threshold . 
[ 0056 ] At step 718 , the slave node may transmit , to the 
master node , the updated frequency count for each key . 
Accordingly , the master node may update the global fre 
quency count with the updated frequency count from each 
slave node . After step 718 , the process may continue . For 
example , the slave node may group the values associated 
with the keys based on the key . Then , other slave nodes that 
process reduce tasks may receive a list of values for a 
particular key , and , after computation , output a new list of 
values . 

may process the portion and / or all of the first data set and the 
second data set according to one or more tasks handled by 
the slave node . 

[ 0050 ] At step 704 , the slave node may perform a map task 
on the first data set . The map task may map the first data set , 
and may output a first set of key - value pairs based on the first 
data set . Additionally , a plurality of slave nodes may perform 
map tasks on a plurality of first data sets in parallel , and the 
intermediate outputs of the map tasks may be collected 
locally at each slave node . 
[ 0051 ] At step 706 , the slave node may perform a . map task 
on the second data set . The map task may map the second 
data set , and may output a second set of key - value pairs 
based on the second data set . Additionally , a plurality of 
slave nodes may perform map tasks on a plurality of second 
data sets in parallel , and the intermediate outputs of the map 
tasks may be collected locally at each slave node . 
[ 0052 ] At step 708 , the slave node may retrieve , from a 
master node , a global frequency count for each key mapped 
in the first and second set of key value pairs . The master 
node , such as master node 102 , may also include a global 
frequency counter , such as global frequency counter 116 , 
that maintains a global frequency count for each key . The 
global frequency counter 116 may also maintain a sketch , 
such as a count - min sketch . The frequency counters , such as 
frequency counters 114 , of each slave node , may retrieve the 
global frequency count for each key from the global fre 
quency counter . 
[ 0053 ] At step 710 , each slave node may estimate , using a 
sketch , a frequency count for each key based on the first set 
of key - value pairs and the second set of key - value pairs . For 
example , the first and second data sets may be examined to 
produce a workload estimation based on the sketch of the 
first and second data sets . A frequency counter , such as 
frequency counter 114 of a slave node 104 , may use various 
algorithms , such as an algorithm that uses a lossy count 
and / or an algorithm that uses sketches to count the number 
of distinct values in the first and second set of key - value 
pairs . A sketch may be a data structure that provides space 
efficient summaries for large and frequently updated data 
sets . A sketch data structure may estimate a number of 
distinct values that have been assigned to a particular key in 
a first and second set of key - value pairs . The frequency 
counter may estimate a number of distinct values for each 
key in the first and second set of key - value pairs . In one 
embodiment , the sketch data structure may be a count - min 
sketch . 

[ 0054 ] At step 712 , each slave node may determine an 
updated frequency count for each key based on the retrieved 
global frequency count for each key and the estimated 
frequency count for each key . For example , the slave node , 
for each key , may average the global frequency count for a 
key and the estimated frequency count for the key , and 
generated an updated frequency count for the key based on 
the average . 
[ 0055 ] Then at step 714 , the slave node may determine 
whether the updated frequency count for each key is greater 
than or equal to a predetermined threshold . At step 716 , the 
slave node may partition a key when the updated frequency 
count associated with the key is greater than or equal to the 
predetermined threshold . For example , each slave node that 
processes map tasks may include a frequency counter for 

[ 0057 ] FIG . 8 is a simplified functional block diagram of 
a computer that may be configured as the nodes , computing 
device , servers , providers , and / or network elements for 
executing the methods , according to exemplary an embodi 
ment of the present disclosure . Specifically , in one embodi 
ment , any of the nodes , computing device , servers , provid 
ers , and / or network may be an assembly of hardware 800 
including , for example , a data communication interface 860 
for packet data communication . The platform may also 
include a central processing unit ( “ CPU ” ) 820 , in the form 
of one or more processors , for executing program instruc 
tions . The platform typically includes an internal commu 
nication bus 810 , program storage , and data storage for 
various data files to be processed and / or communicated by 
the platform such as ROM 830 and RAM 840 , although the 
system 800 often receives programming and data via net 
work communications . The system 800 also may include 
input and output ports 850 to connect with input and output 
devices such as keyboards , mice , touchscreens , monitors , 
displays , etc. Of course , the various system functions may be 
implemented in a distributed fashion on a number of similar 
platforms , to distribute the processing load . Alternatively , 
the systems may be implemented by appropriate program 
ming of one computer hardware platform . 
[ 0058 ] Program aspects of the technology may be thought 
of as “ products ” or “ articles of manufacture ” typically in the 
form of executable code and / or associated data that is 
carried on or embodied in a type of machine - readable 
medium . “ Storage ” type media include any or all of the 
tangible memory of the computers , processors or the like , or 
associated modules thereof , such as various semiconductor 
memories , tape drives , disk drives and the like , which may 
provide non - transitory storage at any time for the software 
programming . All or portions of the software may at times 
be communicated through the Internet or various other 
telecommunication networks . Such communications , for 
example , may enable loading of the software from one 
computer or processor into another , for example , from a 
management server or host computer of the mobile com 
munication network into the computer platform of a server 
and / or from a server to the mobile device . Thus , another type 
of media that may bear the software elements includes 
optical , electrical and electromagnetic waves , such as used 
across physical interfaces between local devices , through 
wired and optical landline networks and over various air 
links . The physical elements that carry such waves , such as 
wired or wireless links , optical links , or the like , also may be 
considered as media bearing the software . As used herein , 
unless restricted to non - transitory , tangible “ storage ” media , 
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terms such as computer or machine “ readable medium ” refer 
to any medium that participates in providing instructions to 
a processor for execution . 
[ 0059 ] While the presently disclosed methods , devices , 
and systems are described with exemplary reference to 
transmitting data , it should be appreciated that the presently 
disclosed embodiments may be applicable to any environ 
ment , such as a desktop or laptop computer , an automobile 
entertainment system , a home entertainment system , etc. 
Also , the presently disclosed embodiments may be appli 
cable to any type of Internet protocol . 
[ 0060 ] As will be recognized , the present disclosure is not 
limited to these particular embodiments . For instance , 
although described in the context of MapReduce , the present 
disclosure may also be used in other distributed computing 
environments . 
[ 0061 ] Other embodiments of the disclosure will be appar 
ent to those skilled in the art from consideration of the 
specification and practice of the disclosure disclosed herein . 
It is intended that the specification and examples be con 
sidered as exemplary only , with a true scope and spirit of the 
disclosure being indicated by the following claims . 

1-20 . ( canceled ) 
21. A computer - implemented method for dynamic parti 

tioning in distributed computing environments , the method 
comprising : 

receiving , at a processor , a first data set and a second data 
set ; 

mapping , by the processor , the first data set into a first set 
of key - value pairs ; 

mapping , by the processor , the second data set into a 
second set of key - value pairs ; 

estimating , by the processor using a sketch , a frequency 
count for each key based on the first set of key - value 
pairs and the second set of key - value pairs ; 

retrieving , by the processor from a master node , a global 
frequency count for each key of the key - value pairs ; 
and 

determining , by the processor , an updated frequency 
count for each key based on the global frequency count 
for each key and the estimated frequency count for each 
key . 

22. The method of claim 21 , further comprising : 
determining , by the processor , whether the estimated 

frequency count for each key is greater than or equal to 
a predetermined threshold ; and 

partitioning , by the processor , the key when the estimated 
frequency count for the key is greater than or equal to 
the predetermined threshold . 

23. The method of claim 21 , further comprising : 
transmitting , by the processor to the master node , the 

updated frequency count for each key . 
24. The method of claim 22 , wherein determining whether 

the frequency count for each key is greater than or equal to 
the predetermined threshold is based on the updated fre 
quency count for each key . 

25. The method of claim 21 , wherein the sketch is one of 
a lossy algorithm and a count - min sketch . 

26. The method of claim 25 , further comprising : 
reducing , by the processor , the values of each set of values 

grouped by each key into a set of pairs . 

27. The method of claim 21 , further comprising : 
grouping , by the processor , the values of the key - value 

pairs by the key to form a set of values grouped by each 
key . 

28. A system for dynamic partitioning in distributed 
computing environments , the system including : 

a data storage device that stores instructions for dynamic 
partitioning in distributed computing environments ; 
and 

a processor configured to execute the instructions to 
perform a method including : 
receiving a first data set and a second data set ; 
mapping the first data set into a first set of key - value 

pairs ; 
mapping the second data set into a second set of 

key - value pairs ; 
estimating , using a sketch , a frequency count for each 

key based on the first set of key - value pairs and the 
second set of key - value pairs ; 

retrieving , from a master node , a global frequency 
count for each key of the key - value pairs ; and 

determining an updated frequency count for each key 
based on the global frequency count for each key and 
the estimated frequency count for each key . 

29. The system of claim 28 , wherein the processor is 
further configured to execute the instructions to perform the 
method including : 

determining , by the processor , whether the estimated 
frequency count for each key is greater than or equal to 
a predetermined threshold ; and 

partitioning , by the processor , the key when the estimated 
frequency count for the key is greater than or equal to 
the predetermined threshold . 

30. The system of claim 28 , wherein the processor is 
further configured to execute the instructions to perform the 
method including : 

transmitting , to the master node , the updated frequency 
count for each key . 

31. The system of claim 29 , wherein determining whether 
the frequency count for each key is greater than or equal to 
the predetermined threshold is based on the updated fre 
quency count for each key . 

32. The system of claim 28 , wherein the sketch is one of 
a lossy algorithm and a count - min sketch . 

33. The system of claim 28 , wherein the processor is 
further configured to execute the instructions to perform the 
method including : 

grouping the values of the key - value pairs by the key to 
form a set of values grouped by each key . 

34. The system of claim 33 , wherein the processor is 
further configured to execute the instructions to perform the 
method including : 

reducing the values of each set of values grouped by each 
key into a set of pairs . 

35. A non - transitory computer - readable medium storing 
instructions that , when executed by a computer , cause the 
computer to perform a method for dynamic partitioning in 
distributed computing environments , the method including : 

receiving a first data set and a second data set ; 
mapping the first data set into a first set of key - value pairs ; 
mapping the second data set into a second set of key - value 

pairs ; 
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estimating , using a sketch , a frequency count for each key 
based on the first set of key - value pairs and the second 
set of key - value pairs ; 

retrieving , from a master node , a global frequency count 
for each key of the key - value pairs ; and 

determining an updated frequency count for each key 
based on the global frequency count for each key and 
the estimated frequency count for each key . 

36. The computer - readable medium of claim 35 , further 
comprising : 

determining whether the estimated frequency count for 
each key is greater than or equal to a predetermined 
threshold ; and 

partitioning the key when the estimated frequency count 
for the key is greater than or equal to the predetermined 
threshold . 

37. The computer - readable medium of claim 35 , further 
comprising : 

transmitting , to the master node , the updated frequency 
count for each key . 

38. The computer - readable medium of claim 36 , wherein 
determining whether the frequency count for each key is 
greater than or equal to the predetermined threshold is based 
on the updated frequency count for each key . 

39. The computer - readable medium of claim 35 , wherein 
the sketch is one of a lossy algorithm and a count - min 
sketch . 

40. The computer - readable medium of claim 35 , further 
comprising : 

grouping the values of the key - value pairs by the key to 
form a set of values grouped by each key . 


