发明名称
作为 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/MTOR 通路双重抑制剂的喹唑啉和氮杂喹唑啉

摘要
本申请提供了新型喹唑啉和氮杂喹唑啉及其药学可接受的盐，也提供了用于制备这些化合物的方法。通过向患者施用治疗有效量的一种或多种式 (1) 的化合物（其中本文定义了 X、Y、T 和 R^1 至 R^n），这些化合物在共调控 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 通路上是有用的。通过这样的方法，这些化合物在治疗 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 通路的异常调控有关的疾病上是有效的。使用这些化合物可治疗多种病状，包括以异常细胞增殖为特征的疾病。在一个实施方案中，所述疾病是癌症。
1. 式 (I) 的化合物：

![化学结构式]

其中：
X 是 CH 或 N；
Y 是 H、任选取代的 C_1-C_6烷基、OR^1 或 NR^2R^3；
T 是 H 或 C_1-C_6烷氨基；
R^1 是任选取代的 C_1-C_6烷基、任选取代的 (C_1-C_6烷基) OH、任选取代的 (C_1-C_6烷基) OC_1-C_6烷基、任选取代的 C_3-C_6环烷基、任选取代的 (C_1-C_6烷基) NH_2、任选取代的 (C_1-C_6烷基) COOH 或任选取代的 (C_1-C_6烷基) CONH_2；
R^2 和 R^3 连接以构成任选取代的杂环；
R^4 是任选取代的吗啉；
R^5 是任选取代的芳基或任选取代的杂芳基；
R^6 是任选取代的芳基、任选取代的 C_1-C_6烷基或任选取代的杂芳基；
R^7 是 H 或卤素；并且
R^8 是卤素。

2. 根据权利要求 1 所述的化合物，其中 R^4 是吗啉。
3. 根据权利要求 1 所述的化合物，其中 R^4 是由 C_1-C_6烷基取代的吗啉。
4. 根据权利要求 3 所述的化合物，其中 R^4 是：

![化学结构式]

5. 根据权利要求 1 所述的化合物，其中 R^7 是任选取代的芳基。
6. 根据权利要求 5 所述的化合物，其中 R^7 是由一个或多个卤素取代的苯基。
7. 根据权利要求 6 所述的化合物，其中 R^7 是：

![化学结构式]

8. 根据权利要求 1 所述的化合物，其中 R^7 是任选取代的 C_1-C_6烷基。
9. 根据权利要求 8 所述的化合物，其中 R^7 是任选由一个或多个 F 取代的 C_1-C_6烷基。
10. 根据权利要求 8 所述的化合物，其中 R^7 是异丙基、异丁基、正丙基、乙基、正丁基、
 CH_2CH_2CH_2F 或 CH_3CH_2CF_3。
11. 根据权利要求 1 所述的化合物，其中 R^7 是任选取代的杂芳基。
12. 根据权利要求 11 所述的化合物，其中 R^7 是嘧啶。
13. 根据权利要求 1 所述的化合物，其中 R^8 是：

![化学结构式]
其中：
M 是 N 或 CR^{10}；
Q 是 N 或 CR^{13}；
Z 是 N 或 CR^{14}；
R^{10} 是 H, C_{1-6}烷基、卤素、CN 或 CF_{3}；
R^{12} 至 R^{14} 独立地是 H, 卤素、C_{1-6}烷基或 CF_{3}；
R^{17} 是 NH(C)NHR^{5}, H, C_{1-6}烷基、(C_{1-6}烷基)-NH_{2} 或 (C_{1-6}烷基)-OH、(C_{1-6}烷基)-O-(C_{1-6}烷基)、CO(C_{1-6}烷基) 或 SO_{2}(C_{1-6}烷基)；或
R^{13} 和 R^{17} 或 R^{14} 和 R^{17} 连接以构成任选不饱和的环；并且
R^{8} 是 C_{1-6}烷基、C_{1-6}羟烷基或杂芳基。
14. 根据权利要求 13 所述的化合物，其中 R^{6} 是：

其中：
Z 是 CH 或 N；
R^{8} 是 C_{1-6}烷基、C_{1-6}羟烷基或杂芳基。
15. 根据权利要求 13 所述的化合物，其中 R^{8} 是 CH_{3}、CH_{2}CH_{2}OH 或哌啶-4 基。
16. 根据权利要求 13 所述的化合物，其中 R^{8} 是任选取代的嘧啶、任选取代的吡啶、任选取代的吡咯 [2, 3-b] 吡啶、任选取代的呋喃或任选取代的苯并咪唑。
17. 根据权利要求 13 所述的化合物，其中 R^{6} 是：

其中：
R^{10} 是 H, C_{1-6}烷基或 CF_{3}；并且
R^{17} 是 H, C_{1-6}烷基、(C_{1-6}烷基)-NH_{2} 或 (C_{1-6}烷基)-OH。
18. 根据权利要求 13 所述的化合物，其中 R^{6} 是：

其中：
R^{10}, R^{13} 和 R^{15} 独立地是 H, 卤素、C_{1-6}烷基、CN 或 CF_{3}；并且
R^{17} 是 H, C_{1-6}烷基、(C_{1-6}烷基)-NH_{2} 或 (C_{1-6}烷基)-OH；或
R^{13} 和 R^{17} 连接以构成任选不饱和的 5- 元环。
19. 根据权利要求18所述的化合物，其中R£是:

其中:
R^{10}是H、C_{1}-C_{6}烷基、卤素、CN或CF_{3}；
R^{12}是H或卤素；
R^{13}是H、卤素或C_{1}-C_{6}烷基；并且
R^{17}是H、C_{1}-C_{6}烷基、(C_{1}-C_{6}烷基)-NH_{2}或(C_{1}-C_{6}烷基)-OH；或
R^{13}和R^{17}连接以构成任选不饱和的5-元环。

20. 根据权利要求19所述的化合物，其中R°是:

21. 根据权利要求1所述的化合物，其中R°是:

其中，R^{15}是C_{1}-C_{6}烷基或C_{1}-C_{6}烃烷基。

22. 根据权利要求21所述的化合物，其中R°是:

23. 根据权利要求1所述的化合物，其中R°如下并通过任意碳原子键联:

24. 根据权利要求23所述的化合物，其中R°是:

25. 根据权利要求1所述的化合物，其选自由以下组成的组:
2,6-二氟-N-(2-氟-3-(8-甲氧基-2-(4-(3-甲基苯基)苯基)-4-吗啉代喹唑啉-6-基)苯基)苯磺酰胺；
N-(3-(2-(1H-吲哚-4-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙
烷-1-磺酰胺；
N-(3-(4-(5-(3-氨基吡啶-3-基))-6-甲基-2-氯苯基)-1H-苯并[d]噻唑-1-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)丙烷-1-磺酰胺；
N-(3-(4-(5-(3-氨基吡啶-3-基))-6-甲基-2-氯苯基)-1H-苯并[d]噻唑-1-基)-8-二吗啉代喹唑啉-6-基)-2-氯苯基)丙烷-1-磺酰胺；
N-(3-(4-(5-(3-氨基吡啶-3-基))-6-甲基-2-氯苯基)-1H-苯并[d]噻唑-1-基)-8-二吗啉代喹唑啉-6-基)-2-氯苯基)丙烷-1-磺酰胺。
N-(3-(2-(2-氨基噻啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-2,5-二氯苯磺酰胺；
N-(3-(2-(2-氨基噻啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丁烷-1-磺酰胺；
N-(3-(2-(2-氨基噻啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-2,4-二氟苯磺酰胺；
N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺；
N-(3-(2-(6-氨基-5-甲基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺；
N-(3-(2-(2-氨基噻啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-2-氟苯磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-2-磺酰胺；
N-(3-(2-(氟-3-(8-甲氧基-4-吗啉代喹唑啉-6-基)-1-(3-甲基戊基)苯基)喹唑啉-6-基)苯基)-丙烷-1-磺酰胺；
N-(3-(2-(2-氨基-4-甲基噻啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(1H-吲哚-4-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)喹啉-2-磺酰胺；
N-(3-(2-(氟-3-(8-甲氧基-2-(6-三甲基脲基)吡啶-3-基)-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
N-(3-(2-(氟-3-(8-甲氧基-4-吗啉代喹唑啉-6-基)吲哚-5-基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
(S)-N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-(3-甲基氨基甲基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-N-(3-2-(6-氨基吡啶-3-基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-N-(3-2-(2-氨基喹啶-5-基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-3-氟-N-(2-氟-3-(8-甲氧基-4-(3-甲基吗啉代)-2-(1H-吡咯并[2,3-b]-吡啶-5-基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
(S)-N-(3-2-(2-氨基喹啶-5-基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(6-氨基吡啶-3-基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(2-氨基喹啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-2-氟苯磺酰胺；
N-(3-2-(6-氨基-5-氯代吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(8-甲氧基-4-吗啉代-2-(6-(丙基氨基)吡啶-3-基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(8-甲氧基-2-(6-(甲基氨基)吡啶-3-基)-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(8-甲氧基-2-(2-(甲基氨基)喹啶-5-基)-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺；
N-(3-2-(6-氨基吡啶-3-基)-8-乙氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(6-氨基吡啶-3-基)-8-(环戊氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(2-氨基喹啶-5-基)-8-乙氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(6-氨基吡啶-3-基)-8-异丙氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-8-(2-氨基乙氧基)-2-(6-氨基吡啶-3-基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(6-氨基吡啶-3-基)-8-(环丙基甲氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-2-(6-氨基吡啶-3-基)-8-(2-羟乙氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
2-(2-6-氨基吡啶-3-基)-6-(2-氟-3-(3-氟丙基磺酰胺基)苯基)-4-吗啉代喹唑啉-8-基)氧基)醋酸2,2,2-三氟乙酸酯；
2-(2-6-氨基吡啶-3-基)-6-(2-氟-3-(3-氟丙基磺酰胺基)苯基)-4-吗啉代喹唑啉-8-基)氧基)乙酸酯；
(R)-N-(3-(8-乙氧基-4-(3-甲基吗啉代)-2-(1H-呫咯并[2,3-b]呫咯-5-基)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(R)-N-(3-(2-(6-氨基吡啶-3-基)-8-(环戊氧基)-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(R)-N-(3-(2-(6-氨基吡啶-3-基)-8-异丙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(R)-N-(3-(2-(6-氨基吡啶-5-基)-8-异丙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(S)-N-(3-(2-(6-氨基吡啶-3-基)-8-乙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(S)-N-(3-(2-(6-氨基吡啶-5-基)-8-乙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-8-(2-甲氧基乙氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-5-基)-8-(2-甲氧基乙氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-5-基)-4,8-二吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-4-吗啉代-8-(呫咯烷-1-基)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-5-基)-4-吗啉代-8-(呫咯烷-1-基)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(R)-N-(3-(2-(6-氨基吡啶-3-基)-4-(3-甲基吗啉代)-8-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(R)-N-(3-(2-(6-氨基吡啶-5-基)-4-(3-甲基吗啉代)-8-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

(R)-N-(3-(2-(6-氨基吡啶-3-基)-4-(3-甲基吗啉代)-8-(呫咯烷-1-基)喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氯苯基)丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氯苯基)-2,6-二氯苯磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氯苯基)-2,6-二氯苯磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氯苯基)-2,5-二氯苯磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氯苯基)-3-氟丙烷-1-磺酰胺；

N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-氯代-2-氟
苯基）丙烷-1-碘酸胺；
N-(3-(2((1H-吡啶-4-基))-8-甲氧基-4-吗啉代喹唑啉-6-基))-2,4-二氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(2-氨基吡啶-5-基))-8-甲氧基-4-吗啉代喹唑啉-6-基))-2,4-二氟苯基)-3-氰丙烷-1-碘酸胺；
N-(2,4-二氟-3-(8-甲氧基-4-吗啉代-2-(1H-吡啶并[2,3-b]吡啶-5-基)喹唑啉-6-基)苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基))-8-甲氧基-4-吗啉代喹唑啉-6-基))-2,4-二氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(6-氨基吡啶-3-基))-8-甲氧基-4-吗啉代喹唑啉-6-基))-4-氯代-2-氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(6-氨基吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基）丙烷-1-碘酸胺；
N-(3-(2-(2-氨基吡啶-5-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(6-氨基吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(1H-吡啶-4-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(6-氨基吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氰丙烷-1-碘酸胺；
N-(3-(2-(6-氨基-5-甲基吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氰丙烷-1-碘酸胺；
3-氟-N-(2-氟-3-(4-吗啉代-2-(1H-吡啶并[2,3-b]吡啶-5-基)吡啶并[3,2-d]嘧啶-6-基)苯基）丙烷-1-碘酸胺；
N-(3-(2-(6-氨基吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氟丙烷-5-二氟苯磺酰胺；
N-(3-(2-(2-氨基吡啶-5-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氟丙烷-5-二氟苯磺酰胺；
N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氟丙烷-5-二氟苯磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-2,6-二氟苯磺酰胺；
(R)-N-(3-(2-(6-氨基吡啶-3-基))-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氟丙烷-1-碘酸胺；
(R)-N-(3-(2-(2-氨基吡啶-5-基))-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-3-氟丙烷-1-碘酸胺；
N-(3-(2-(2-氨基吡啶-5-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基))-2-氟苯基)-2,6-二氟苯磺酰胺；
3-氟-N-(2-氟-3-(2-(6-((2-羟乙基)氨基)吡啶-3-基))-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)苯基）丙烷-1-碘酸胺；
N-(3-(2-(2-氮基-4-(三氟甲基) 吡啶-5-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基-4-甲基吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基-5-氟代吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基-5-氟代吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-2,5-二氟苯磺酰胺；
N-(3-(2-(6-氨基-5-氟吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基-5-氟吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-N-(3-(2-(6-氨基-4-(三氟甲基) 吡啶-3-基)-4-(3-甲基吗啉代) 吡啶并[3,2-d] 噁啶-6-基)-2-氟苯磺酰胺；
(S)-N-(3-(2-(6-氨基-4-(三氟甲基) 吡啶-3-基)-4-(3-甲基吗啉代) 吡啶并[3,2-d] 噁啶-6-基)-2-氟苯磺酰胺；
N-(3-(2-(2-氨基-4-甲基嘧啶-5-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(2-(2-(3-羟丙基氨基) 噁啶-5-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基)-2-氟苯基) 丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(2-(3-羟丙基氨基) 吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基) 苯基) 丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(4-吗啉代-2-(2-(丙基氨基) 噁啶-5-基) 吡啶并[3,2-d] 噁啶-6-基) 苯基) 丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(2-(6-(甲基氨基) 吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基) 苯基) 丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(2-(6-(异丙基氨基) 吡啶-3-基)-4-吗啉代吡啶并[3,2-d] 噁啶-6-基) 苯基) 丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(4-吗啉代-2-(6-(丙基氨基) 吡啶-3-基) 吡啶并[3,2-d] 噁啶-6-基) 苯基) 丙烷-1-磺酰胺；
N-(3-(2-(2-氨基嘧啶-5-基)-8-甲基-4-吗啉代喹啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-8-甲基-4-吗啉代喹啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(1H-吲唑-4-基)-8-甲基-4-吗啉代喹啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-N-(3-(2-(2-氨基嘧啶-5-基)-8-乙基-4-(3-甲基吗啉代) 吡啶并-6-基)-2-氟
苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-氨基吡啶-3-基)-7-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
3-氟-N-(2-氟-3-(2-(2-(甲基氨基)嘧啶-5-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)苯基)丙烷-1-磺酰胺；
N-(3-(2-(2-(乙基氨基)嘧啶-5-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(3-(2-(6-(乙基氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
N-(5-(6-(2-(氟-3-(3-氟丙基磺酰胺基)苯基)-8-甲氧基-4-吗啉代噻唑啉-2-基)吡啶-2-基)乙酰胺；
N-(4-(6-(2-(氟-3-(3-氟丙基磺酰胺基)苯基)-8-甲氧基-4-吗啉代噻唑啉-2-基)苯基)乙酰胺；
3-氟-N-(2-氟-3-(8-甲氧基-2-(4-(甲基磺酰胺基)苯基)-4-吗啉代噻唑啉-6-基)苯基)丙烷-1-磺酰胺；
(S)-N-(3-(2-(6-氨基吡啶-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(S)-N-(3-(2-(2-氨基嘧啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(S)-N-(3-(2-(6-氨基-4-氟吡啶-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(S)-N-(3-(2-(6-氨基-4-甲基吡啶-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(S)-N-(3-(2-(2-氨基-4-甲基嘧啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(S)-N-(3-(2-(2-氨基-4-甲基嘧啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)-2,5-二氯苯磺酰胺；
3-氟-N-(2-氟-3-(2-(6-((2-甲氧基乙基)氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)苯基)丙烷-1-磺酰胺；
(R)-N-(3-(2-(6-氨基-5-氟吡啶-3-基)-8-甲氧基-4-(3-甲基吗啉代)噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-N-(3-(2-(6-氨基-4-氟吡啶-3-基)-8-甲氧基-4-(3-甲基吗啉代)噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-3-氟-N-(2-氟-3-(8-甲氧基-2-(2-(甲基氨基)嘧啶-5-基)-4-(3-甲基吗啉代)噻唑啉-6-基)苯基)丙烷-1-磺酰胺；
(R)-N-(3-(2-(2-氨基嘧啶-5-基)-8-乙氧基-4-(3-甲基吗啉代)噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
(R)-N-(3-(8-乙氧基-2-(2-(甲基氨基)嘧啶-5-基)-4-(3-甲基吗啉代)噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺；
3-氟-4-（2-氟-3-（2-（4-（3-甲基苯基）苯基）-4-吗啉代吡啶并[3,2-d]噻啶-6-基）苯基）丙烷-1-磺酰胺；
（R）-N-（3-（2-（6-氨基-4-氟吡啶-3-基）-4-（3-甲基吗啉代）吡啶并[3,2-d]噻啶-6-基）-2-氟苯基）-3-氟丙烷-1-磺酰胺；
（R）-N-（3-（2-（氨基吡啶-5-基）-8-（2-氟乙氧基）-4-（3-甲基吗啉代）喹啉-6-基）-2-氟苯基）-3-氟丙烷-1-磺酰胺；
（R）-N-（3-（2-（6-氨基-5-氟吡啶-3-基）-8-（2-氟乙氧基）-4-（3-甲基吗啉代）喹啉-6-基）-2-氟苯基）-3-氟丙烷-1-磺酰胺；
（R）-N-（3-（2-（5-氨基吡啶-2-基）-8-甲氧基-4-（3-甲基吗啉代）喹啉-6-基）-2-氟苯基）-3-氟丙烷-1-磺酰胺。

26. 根据权利要求1至25中任一项所述的化合物，其是酸或碱的盐。
27. 根据权利要求26所述的化合物，其中所述酸或碱选自由以下组成的组：醋酸的、丙酸的、乳酸的、柠檬酸的、酒石酸的、琥珀酸的、富马酸的、马来酸的、丙二酸的、苦味酸的、苹果酸的、邻苯二甲酸的、苯酸的、氢溴酸的、磷酸的、硝酸的、硫酸的、甲基磺酸的、苯磺酸的、甲苯磺酸的、三氟乙酸的和氟硼酸的盐。
28. 根据权利要求26所述的化合物，其中所述酸或碱选自由以下组成的组：钠、锂、钾、单甲基铵、二甲基胺、三甲基胺、单乙基胺、二乙基胺、三乙基胺、单丙基胺、二丙基胺、三丙基胺、乙基二甲基胺、苯基二甲基胺、环己基胺、苯基胺、二苯基胺、味啶铵、吗啉铵、呫喃烷铵、嘌呤铵、1-甲基哌啶铵、4-乙基吗啉铵、1-异丙基呫喃烷铵、1,4-二甲基哌啶铵、1-正丁基哌啶铵、2-甲基哌啶铵、1-乙基-2-甲基哌啶铵、单-、二-和三乙醇胺、乙基二乙醇胺、正丁基单乙醇胺、三（羟甲基）甲胺和苯基单乙醇胺。
29. 包含权利要求1至28中任一项所述化合物和药学可接受载体的组合物。
30. 包含权利要求1至28中任一项所述化合物的制剂盒。
31. 根据权利要求30所述的制剂盒，进一步包括化学治疗剂。
32. 用于共-调控RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR的方法，所述方法包括向有需要的患者施用治疗有有效量的根据权利要求1至28中任一项所述的化合物。
33. 根据权利要求32所述的方法，其中所述共-调控包含RAS/RAF/MEK/ERK通路的抑制。
34. 根据权利要求32所述的方法，其中所述共-调控包含PI3K/AKT/PTEN/mTOR通路的抑制。
35. 根据权利要求32所述的方法，其中所述共-调控包含RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路的抑制。
36. 用于治疗通过抑制RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路可治疗的病状的方法，所述方法包括向有需要的患者施用治疗有效量的根据权利要求1至28中任一项所述的化合物。
37. 用于治疗以源于正常调控的RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路的异常
细胞增殖为特征的疾病的方法，所述方法包括向有需要的患者施用治疗有效量的根据权利要求 1 至 28 中任一项所述的化合物。

38. 根据权利要求 37 所述的方法，其中所述疾病是癌症。
39. 根据权利要求 38 所述的方法，其中所述癌症是前列腺、头部、眼、口腔、咽喉、食管、支气管、喉、胸、骨、肺、结肠、直肠、胃、膀胱、子宫、子宫颈、乳腺、卵巢、阴道、睾丸、皮肤、甲状腺、血液、淋巴结、肾、肝、肠、胰腺、脑、中枢神经系统、肾上腺、皮肤的癌症或白血病或淋巴瘤。
40. 根据权利要求 39 所述的方法，其中所述患者具有至少一种实体肿瘤。
41. 根据权利要求 39 所述的方法，其所述方法包括
向患者施用首次剂量的量的至少一种根据权利要求 1 至 28 中任一项所述的化合物；

检验来自于患者的样品，随后是施用所述化合物以确定 (a) pERK、(b) pS6RP 或 pS6K 或 (c) pAKT 或其组合的活性水平与未治疗患者中的活性相比，是否已降低了预设的活性水平；以及

施用第二剂量的量的所述化合物。
42. 根据权利要求 41 所述的方法，其中所述检测步骤测量 (a) pERK 和 (b) pS6RP 或 pS6K 的活性。
43. 根据权利要求 41 所述的方法，其中所述检测步骤测量 (a) pERK 和 (c) pAKT 的活性。
44. 根据权利要求 41 所述的方法，其中所述检测步骤测量 (a) pERK、(b) pS6RP 或 pS6K 和 (c) pAKT 的活性。
45. 根据权利要求 41 所述的方法，其中 (a) pERK 降低了的所述预设的活性水平为至少约 80%。
46. 根据权利要求 41 所述的方法，其中 (b) pS6RP 或 pS6K 降低了的所述预设的活性水平为至少约 50%。
47. 根据权利要求 41 所述的方法，其中 (c) pAKT 降低了的所述预设的活性水平为至少约 50%。
48. 用于治疗通过抑制 Ras/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 通路可治疗的病状的方法，包括：

向患者施用首次剂量的量的根据权利要求 1 至 28 中任一项所述的化合物；

检验来自于患者的样品，随后是施用所述化合物以确定 (a) pERK、(b) pS6RP 或 pS6K 或 (c) pAKT 或其组合的活性水平与未治疗患者中的活性相比，是否已降低了预设的活性水平；以及

向患者施用第二剂量的量的根据权利要求 1 至 28 中任一项所述的化合物。
49. 根据权利要求 48 所述的方法，其中所述检测步骤测量 (a) pERK 和 (b) pS6RP 或 pS6K 的活性。
50. 根据权利要求 48 所述的方法，其中所述检测步骤测量 (a) pERK 和 (c) pAKT 的活性。
51. 根据权利要求 48 所述的方法，其中所述检测步骤测量 (a) pERK、(b) pS6RP 或 pS6K 和 (c) pAKT 的活性。
52. 根据权利要求 48 所述的方法，其中 (a) pERK 降低了的所述预设的活性水平为至少约 80%。
53. 根据权利要求 48 所述的方法，其中 (b)pS6RP 或 pS6K 降低了的所述预设的活性水平为至少约 50%。

54. 根据权利要求 47 所述的方法，其中 (c)pAKT 降低于的所述预设的活性水平为至少约 50%。

55. 根据权利要求 48 所述的方法，其中所述病状是癌症。

56. 根据权利要求 55 所述的方法，其中所述癌症是前列腺、头、颈、眼、口腔、咽喉、食管、支气管、喉、咽、胸、骨、肺、结肠、直肠、胃、膀胱、子宫、子宫颈、乳腺、卵巢、阴道、睾丸、皮肤、甲状腺、血液、淋巴结、肾、肝、肠、胰腺、脑、中枢神经系统、肾上腺、皮肤的癌症或白血病或淋巴瘤。

57. 根据权利要求 55 所述的方法，其中所述患者具有至少一种实体肿瘤。

58. 用于对有需要的患者治疗通过抑制 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 通路可治疗的病状的方法，包括：
 检验来自于患者的样品以确定 B-RAF、PI3K 或 PTEN 突变或其组合的存在；以及
 向由所述检验步骤确定的具有 B-RAF、PI3K 或 PTEN 突变的患者施用治疗有效量的根据权利要求 1 至 28 中任一项所述的化合物。

59. 根据权利要求 59 所述的方法，其中所述疾病是癌症。

60. 根据权利要求 59 所述的方法，其中所述癌症是前列腺、头、颈、眼、口腔、咽喉、食管、支气管、喉、咽、胸、骨、肺、结肠、直肠、胃、膀胱、子宫、子宫颈、乳腺、卵巢、阴道、睾丸、皮肤、甲状腺、血液、淋巴结、肾、肝、肠、胰腺、脑、中枢神经系统、肾上腺、皮肤的癌症或白血病或淋巴瘤。

61. 根据权利要求 60 所述的方法，其中所述患者具有至少一种实体肿瘤。

62. 根据权利要求 58 所述的方法，其中所述患者具有 B-RAF 和 mTOR 突变。

63. 根据权利要求 58 所述的方法，其中所述患者具有 B-RAF 和 PI3K 突变。

64. 根据权利要求 58 所述的方法，其中所述患者具有 B-RAF 突变、mTOR 和 PI3K 突变。
作为RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路双重抑制剂的唑唑啉和氯杂唑唑啉

[0001] 本申请涉及并要求于2013年4月12日提交的名为“唑唑啉和氯杂唑唑啉”的美国临时申请第61/811,408号的权益，其内容以引用方式并入。

背景技术

[0002] 理解靶点分子机制方面的最新进展引领了以重要信号通路为靶点的抗癌治疗剂的发现与开发。这些药剂与传统的细胞毒素剂相比，通常为患者提供具有更小毒性的更大治疗利益。但是，患者常面对不可避免的现实：由于对靶向治疗剂的获得性抗性的癌症复发，对于预先制止或处理这样的对症治疗的获得性抗性存在巨大的未满足的医疗需求。

[0003] 两个通路，RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR在肿瘤的始发和进展中起重要作用。近期，以这二种通路为靶点的新药剂的发现与开发已极其活跃。已知RAS/RAF/MEK/ERK通路通过RAS、RAF或MEK基因中的基因突变被异常调控，其导致增加的细胞增殖和血管生成。已在多种肿瘤中发现了这些突变。任意这些靶点的抑制被发现在临床前模型中对人体中有效地抑制肿瘤的生长。近期，已发现几种选择性抑制这些靶点之一：RAF激酶的抑制剂包括威罗菲尼（vemurafenib）、达拉菲尼（dabrafenib）、XL-281、LGX-816、CEP-32496和ARQ-736。目前威罗菲尼是FDA批准的用于治疗转移性黑素瘤患者的药物。其他的化合物处于临床开发的不同阶段，包括MEK-162、司美替尼（selumetinib）、refametinib、E-6201、pimasertib、WX-554和GDC-0973。尽管已确认了多种以RAS蛋白为靶点的化合物，但是到目前为止它们未被FDA批准。

[0004] 与RAS通路相类似的，PI3K/AKT/mTOR通路也在肿瘤中，尤其在促进肿瘤细胞存活和增殖中起重要作用。这条通路通过PI3K/AKT和PTEN基因中的基因改变被异常调控。药物开发已致力于这条通路中的几种蛋白，引起许多针对PI3K、AKT和mTOR蛋白的抑制剂的识别，并且这些抑制剂（例如坦西莫司（temsirolimus）和依维莫司（everolimus））中的一些已被FDA批准用于多种适应症。其他PI3K通路的抑制剂处于临床开发的不同阶段，包括PI3K抑制剂GDC-0941、PX-866、XL-147、BKM-120和BAY 80-6946、mTOR抑制剂地磷莫司（deforolimus）、OSI-027和AZD8055、PI3K/mTOR双重抑制剂BEZ-235、XL-765、GDC-0980、GSK-2126458、PKI-587和PF-04691502以及AKT抑制剂MK-206、GDC-0068、GSK2636771、afuresertib、rigosertib和CLR-1401。

[0005] 尽管在人体中已产生一些具有前景的初步结果，但是几个上述化合物不能提供持久的应答，归因于由目标癌细胞中交替通路的激活造成的获得性耐药性。例如，使用药剂（例如坦西莫司）对PI3K通路的抑制引起RAS通路随后激活，产生不对这种药剂应答的肿瘤。相反地，RAS通路的抑制引起PI3K通路的激活。临床前数据已证明两种通路的组合抑制同时产生更强和更持续的肿瘤生长抑制功效。这种发现清楚地表明对组合治疗的需求，以克服对于单一通路抑制剂的获得性临床耐药性。已经开始了以两种药剂不同组合进行的几种临床试验，所述两种药剂中每一种抑制两条通路中的一条。最具进展的组合临床试验处于II期（使用AZD6244（MEK抑制剂）和MK2206（AKT抑制剂））。但是，以这种方式组
合两种不同的药剂可造成明显增加的毒性和更低的成本的不利因素。

因此，对于确定对两种通路具有双重抑活性的化合物存在大的未满足的医疗需求。

附图简要说明

图1是显示通过本文所述化合物在小鼠异种移植RKO肿瘤细胞裂解液中pERK、pS6RP、pAKT-S473和pAKT-T308的抑制的蛋白质印迹(Western blot)。

发明概述

本发明提供式(I)的化合物，其中本文定义了X、Y、T、R'和R''至R^，还提供了包含式(I)的化合物的组合物和包含式(I)的化合物的试剂盒。

图

也提供的是用于共-调控RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR的方法，包括向患者施用治疗有效量的化合物。在一个实施方案中，共-调控包括抑制RAS/RAF/MEK/ERK通路。在另一个实施方案中，共调控包括抑制PI3K/AKT/PTEN/mTOR通路。在进一步的实施方案中，共调控包括抑制RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路。

进一步提供了用于治疗通过抑制RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路可治疗的病症的方法。这种方法包括向患者施用治疗有效量的式(I)的化合物。

进一步提供的是用于治疗以由异常调控的RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路造成的异常细胞增殖为特征的疾病的疗法。所述方法包括向患者施用治疗有效量的式(I)的化合物。在一个实施方案中，疾病是癌症。

通过以下本发明的详细描述，本发明的其他方面和优势将是显而易见的。

发明详述

本发明因此提供了抑制RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR两种通路的化合物。在一个实施方案中，化合物以B-RAF和mTOR为靶点。在另一个实施方案中，化合物以B-RAF和PI3K为靶点。在进一步的实施方案中，化合物以B-RAF、mTOR和PI3K为靶点。这样的在本文中有用的化合物由式(I)涵盖：

图

在该结构中，X是CH或N，Y是H、任选取代的C_{1-6}烷基、OR^或NR^R^，以及T是H或C_{1-6}烷氧基。

R'是任选取代的C_{1-6}烷基、任选取代的(C_{1-6}烷基)0H、任选取代的(C_{1-6}烷基)0C_{1-6}烷基、任选取代的C_{3-8}环烷基，任选取代的(C_{1-6}烷基)NH_{2}，任选取代的(C_{1-6}烷基)
基\(\text{CO}_2\text{H}\)或任选取代的\((\text{C}_1-\text{C}_6\text{烷基})\text{CONH}_2\)。

[0021] R\(^3\)和R\(^4\)连接以构成任选取代的杂环。

[0022] R\(^4\)是任选取代的吗啉。在一个实施方案中，R\(^4\)是吗啉。在另一各实施方案中，R\(^4\)是取代的吗啉。在进一步的实施方案中，R\(^4\)是由C\(_1\)-C\(_6\)烷基取代的吗啉。在又另一个实施方案中，R\(^4\)是：

[0023] R\(^4\)是任选取代的芳基，任选取代的C\(_1\)-C\(_6\)烷基或任选取代的杂芳基；R\(^8\)是卤素；R\(^8\)是卤素。在一个实施方案中，R\(^7\)是任选取代的芳基。在另一个实施方案中，R\(^7\)是由一个或多个卤素取代的苯基。在进一步的实施方案中，R\(^7\)是

或

在又另一个实施方案中，R\(^7\)是任选取代的C\(_1\)-C\(_6\)烷基。在又进一步的实施方案中，R\(^7\)是由一个或多个F任选取代的C\(_1\)-C\(_6\)烷基。在另一个实施方案中，R\(^7\)是异丙基、异丁基、正丙基、乙基、正丁基、CH\(_2\text{CH}_2\text{CH}_2\text{F}\)或CH\(_2\text{CH}_2\text{CF}_3\)。在还进一步的实施方案中，R\(^7\)是任选取代的杂芳基。在另一个实施方案中，R\(^7\)是噻吩。

[0024] 式（I）中的R\(^6\)是任选取代的芳基或任选取代的杂芳基。在一个实施方案中，R\(^6\)是

其中M是H、C\(_1\)-C\(_6\)烷基、卤素、CN或CF\(_3\)；R\(^1\)至R\(^4\)独立地是H、卤素、C\(_1\)-C\(_6\)烷基或CF\(_3\); R\(^7\)是NH\(_2\)、NHR\(^9\)、H、C\(_1\)-C\(_6\)烷基、C\(_1\)-C\(_6\)烷基-NH\(_2\)、C\(_1\)-C\(_6\)烷基-OH或C\(_1\)-C\(_6\)烷基-N(CH\(_3\))\(_2\)或SO\(_2\)C\(_1\)-C\(_6\)烷基；或R\(^1\)至R\(^4\)或R\(^7\)连接以构成任选地饱和环；并且R\(^8\)是C\(_1\)-C\(_6\)烷基、C\(_1\)-C\(_6\)烃烷基或杂芳基。在另一个实施方案中，R\(^6\)是

其中Z是CH或N；并且R\(^6\)是C\(_1\)-C\(_6\)烷基、C\(_1\)-C\(_6\)烃烷基或杂芳基。R\(^8\)可以是CH\(_3\)、CH\(_2\text{CH}_2\text{OH}\)或吡啶-4-基等。在进一步的实施方案中，R\(^6\)是任选取代的嘧啶、任选取代的吡啶、任选取代的吲哚[2,3-b]吲哚、任选取代的喹唑或任选取代的苯并咪唑。在还另一个实施方案中，R\(^6\)是

其中R\(^6\)是H、C\(_1\)-C\(_6\)烷基或三氟甲基；并且R\(^7\)是H、C\(_1\)-C\(_6\)烷基、C\(_1\)-C\(_6\)烷基-NH\(_2\)或C\(_1\)-C\(_6\)烷基-N(CH\(_3\))\(_2\)。
基）-OH。在又另一个实施方案中，R^8是

其中 R^{10}, R^{12} 和 R^{13} 独立地是 H、卤素、C_{1-6}烷基、CN 或 CF_{3}; 并且 R^{17} 是 H、C_{1-6}烷基、（C_{1-6}烷基）-NH_2 或 (C_{1-6}烷基)-OH；

或者 R^{13} 和 R^{17} 连接以构成任选地不饱和环。在另一个实施方案中，R^6

其中 R^{10} 是 H、C_{1-6}烷基、卤素、CN 或 CF_{3}; R^{12} 是 H 或者卤素；R^{13} 是 H、卤素或者 C_{1-6}烷基；

并且 R^{17} 是 H、C_{1-6}烷基、（C_{1-6}烷基）-NH_2 或 (C_{1-6}烷基)-OH；或者 R^{13} 和 R^{17} 连接以构成任选地不饱和 5-元环。在还进一步的实施方案中，R^6

在又进一步的实施方案中，R^6 是

其中 R^{15} 是 C_{1-6}氟烷基或者 C_{1-6}羟烷基。在另一个实施方案中，R^6 是

在还进一步的实施方案中，R^6 是

并且通过任意碳原子键联。在又另一个实施方案中，R^6 是

[0026] 代表性的“药学可接受的盐”包括但不限于水溶的和水不溶的盐。在一个实施方案中，盐是碱的盐。所述盐可以选取自以下碱的盐：例如，碱金属盐的碱如钠、锂或者钾和有机碱，如胺、单 -、二和三甲基胺、单 -、二 - 和三乙基胺、单 -、二 - 和三丙基胺、乙烯二甲基胺、苄基二甲基胺、环己基胺、苄基胺、二茂基胺、哌啶铵、吗啉铵、吲哚铵、哌嗪铵、1- 甲基吲哚铵、4- 乙基吗啉铵、1- 异 - 丙基吲哚铵、1, 4- 二甲基哌嗪铵、1- 正 - 丁基哌嗪铵、2- 甲基 - 哌嗪铵、1- 乙基 -2- 甲基哌嗪铵、单 -、二 - 和三乙醇胺、乙基二乙醇胺、正 - 丁基单乙醇胺、三（羟甲基）甲基胺、苯基单乙醇胺等。

[0027] 在另一个实施方案中，盐是酸的盐。所述盐可以选取自以下酸的盐：例如，在醋酸、丙酸、乳酸、柠檬酸、酒石酸、琥珀酸、富马酸、马来酸、草酸、丙二酸、苦杏仁酸、苹果酸、邻苯二甲酸、盐酸、氢溴酸、磺酸、硝酸、硫酸、甲基磺酸、苯磺酸、甲苯磺酸、三氯醋酸和松香磺酸中的盐。任选地，本发明的组合物可以包含本发明化合物的药学可接受的盐和游离碱形式。

[0028] 在进一步的实施方案中，本发明的化合物可以是溶剂合物。如本文所使用的，溶剂合物不显著改变化合物的生理活性或毒性。就这样而言可作为本发明非溶剂合物化合物的药理学等同物。本文使用的术语“溶剂合物”是本发明化合物与溶剂分子的组合。
和/或溶剂化作用。这种物理结合涉及不同程度的离子和共价键，包括氢键。在某些实例中，可孤立溶剂合物，例如当一个或多个溶剂分子被掺入结晶固体的晶格中时。因此，“溶剂合物”涵盖溶液相和孤立的溶剂合物。

[0029] 本发明中的一些化合物拥有一个或多个手性中心，并且本发明包括这样的化合物的每个单独的对映异构体以及对映异构体的混合物。在本发明的化合物中存在多个手性中心时，本发明包括化合物内手性中心的每个可能的组合，及其所有可能的对映异构体混合物。除非特别指出明确的立体化学或同分异构体形式，意在涵盖结构所有的手性、非对映异构和消旋的形式。本领域熟知的是如何制备光学活性形式，例如通过消旋形式的拆分制备或通过从光学活性初始材料合成制备。

[0030] 以下定义被用于与本发明所述的化合物结合使用。通常，存在于给定基团的碳原子数目被指定为“C_x至C_y”，其中x和y分别是下限和上限。本文定义中所用的碳数数指碳主链和碳支链，但不包括取代基的碳原子，例如烷氧基取代基等。除非另外指定，本文未明确指出的取代基的命名的确定是通过从左至右命名端部的官能团接着最后相邻的官能团。在此所使用的，“任选取代的”表示任选取代的基团的至少1个氢原子被替代。

[0031] “烷基”指可以是直链或支链的烃链，或指由环烷基组成或包含环烷基的烃基。在一个实施方案中，烷基包含1至6个（包括）碳原子或介于之间的整数或范围（2,3,4或5）。在一个实施方案中，烷基包含1至5个（包括）碳原子或介于之间的范围。在进一步的实施方案中，烷基包含1至4个（包括）碳原子。在又一个实施方案中，烷基包含1至3个（包括）碳原子。在又一个实施方案中，烷基包含1或2个碳原子。烷基的链是烷基的实例包括但不限于C_1至C_8烷烃、C_1至C_6烷基。由烷基组成或包含环烷基的烷基团的实例包括但不限于环丙基、环丁基、环戊基、环己基等。烷基可以是未被取代的或是由一个或多个基团取代的，所述基团包括但不限于卤素、OH、NH₂、N(C至C烷烃)C(O)C(C至C烷烃)、NH(C至C烷烃)、N(H至C烷烃)、C(O)NH(C至C烷烃)、C(O)N(C至C烷烃)、C(O)NH(C至C烷烃)、N(C至C烷烃)、C(O)NH(C至C烷烃)、C(O)NH(C至C烷烃)、C(O)O(C至C烷烃)、C(O)O(C至C烷烃)、C(O)O(C至C烷烃)、C(O)O(C至C烷烃)、C(O)O(C至C烷烃)、C(O)O(C至C烷烃)。

[0032] “烷氧基”指(O烷烃)O，其中烷烃是任选取代的，并如上文所定义。在一个实施方案中，烷氧基包含1至6个（包括）碳原子或介于之间的整数或范围（2,3,4或5）。在一个实施方案中，烷氧基包含1至5个（包括）碳原子或介于之间的范围。在进一步的实施方案中，烷氧基包含1至4个（包括）碳原子。在又一个实施方案中，烷氧基包含1至3个（包括）碳原子。在又一个实施方案中，烷氧基包含1或2个碳原子。烷氧基的实例包括但不限于C_1至C_8烷烃。烷氧基的实例包括但不限于C_1至C_8烷烃。如上文对“烷基”的定义，烷氧基团的烷基可以是未取代的或取代的。

[0033] “羟烷基”指(O烷烃)OH，其中烷烃是任选取代的并如上文所定义。羟烷基的OH部分可结合至任意的碳原子，例如碳氢烷烃的任意内部碳原子或末端碳原子。在一个实施方案中，羟烷基包含1至6个（包括）碳原子或介于之间的整数或范围（2,3,4或5）。在一个实施方案中，羟烷基包含1至5个（包括）碳原子或介于之间的范围。在进一步的实施方案中，羟烷基包含1至4个（包括）碳原子。在又一个实施方案中，羟烷基包含1
至3个（包括）碳原子。在还进一步的实施方案中，烃烷基包含1或2个碳原子。烃烷基的实例包括但不限于：Cl, OH, CH₃, CH₂CH₂OH, CH₂CH₂(OH)CH₃, CH(OH)CH₂CH₃, C(OH)(CH₃)₂, C₂H₅, C₃H₇OH, 烃烷基-环戊基，(3-烃基)-环丁基等。

[0034] “芳基”指包含碳原子的芳族烃基团。在一个实施方案中，芳基包含6-10个碳原子，且为苯基或为芳族或部分芳族的双环基团。在另一个实施方案中，芳基为苯基基团。在另一个实施方案中，芳基是苯基（例如 α-苯基或 β-苯基）1, 2, 3, 4-四氢苯基或苯并基。芳基基团可以是未取代的或由一个或多个苯基取代的，所述苯基包括但不限于：卤素、OH、NH₃、N(C₃H₇)₃、C(O)₃(OH)₂、NH(C₃H₇)₃、H₃C₆H₅、C(OH)(C₃H₇)₂、C₃H₇OH、C₆H₅Cl、C₆H₅Br 和 N₃。在另一个实施方案中，芳基由一个或多个以下团基取代：卤素、OH、CN、NH₂、C₆H₅、C₆H₄Cl、C₆H₄(NO₂)₂、C₆H₄(OH)₂、C₆H₄(NH₂)₂、C₆H₄(C₆H₅)₂、C₆H₄(C₃H₇)₂、C₆H₄(C₃H₇)₃、C₆H₄(C₃H₇)₄、C₆H₄(C₃H₇)₅、C₆H₄(C₃H₇)₆、C₆H₄(C₃H₇)₇、C₆H₄(C₃H₇)₈、C₆H₄(C₃H₇)₉、C₆H₄(C₃H₇)₁₀。在另一个实施方案中，芳基由一个以下团基取代：卤素、OH、CN、N(CH₃)₂、CH₃OH、OCH₃、OCF₃、CF₃、SO₂CH₃、NHOCH₂C₆H₄或NHOCH₂C₆H₄。在另一个实施方案中，苯基由一个以下团基取代：卤素、OH、CN、NH₂、C₆H₅、C₆H₄Cl、C₆H₄(NO₂)₂、C₆H₄(OH)₂、C₆H₄(NH₂)₂、C₆H₄(C₆H₅)₂、C₆H₄(C₃H₇)₂、C₆H₄(C₃H₇)₃、C₆H₄(C₃H₇)₄、C₆H₄(C₃H₇)₅、C₆H₄(C₃H₇)₆、C₆H₄(C₃H₇)₇、C₆H₄(C₃H₇)₈、C₆H₄(C₃H₇)₉、C₆H₄(C₃H₇)₁₀。在另一个实施方案中，苯基由一个以下团基取代：卤素、OH、CN、N(CH₃)₂、CH₃OH、OCH₃、OCF₃、CF₃、SO₂CH₃、NHOCH₂C₆H₄或NHOCH₂C₆H₄。在另一个实施方案中，苯基由一个以下团基取代：卤素、OH、CN、NH₂、C₆H₅、C₆H₄Cl、C₆H₄(NO₂)₂、C₆H₄(OH)₂、C₆H₄(NH₂)₂、C₆H₄(C₆H₅)₂、C₆H₄(C₃H₇)₂、C₆H₄(C₃H₇)₃、C₆H₄(C₃H₇)₄、C₆H₄(C₃H₇)₅、C₆H₄(C₃H₇)₆、C₆H₄(C₃H₇)₇、C₆H₄(C₃H₇)₈、C₆H₄(C₃H₇)₉、C₆H₄(C₃H₇)₁₀。
C₆₉烷基）₂]，C(O)NH[-(C₁至C₆烷基)-NH(C₁至C₆烷基)]，C(O)N(C₁至C₆烷基)⁻(C₁至C₆烷基)⁻N(C₁至C₆烷基)₂]和N₂O₅。在一个实施方案中，杂芳基由一个或多个以下基团取代：卤素、OH、CN、NH₂、C₁至C₆烷基、以OH取代的C₁至C₆烷基、C₁至C₆烷氧基、C₁至C₆卤代烷基、OF₃、SO₂(C₁至C₆烷基)、NHOCH₃或NHSO₃(C₁至C₆烷基)。在另一个实施方案中，杂芳基由以下一个基团取代：卤素、OH、CN、N(CH₃)₂、CH₂OH、OCH₃、OF₃、CF₃、SO₂CH₃、NHOCH₃或NHSO₃CH₃。

[0038] “杂环”指至少一个环原子是杂原子的单环或多环基团。杂环可以是饱和的或部分饱和的。在一个实施方案中，杂环包含3至7个碳原子（包括）或介于之间的整数或范围（4.5至6）。在另一个实施方案中，杂环包含4至6个碳原子（包括）。在还进一步的实施方案中，杂环包含5或6个碳原子（包括）。杂环的实例包括但不限于：氮杂环丙烷、环氧乙烷、环硫乙烷、吗啉、硫代吗啉、吡咯啉、吡咯烷、氮杂环庚烷、二氢呋喃、二氢噻吩、二氢噻吩、二硫杂环戊烷、哌啶、1,2,3,6-四氢吲哚-1-基、四氢吡喃、吡喃、硫环戊烷(thiane)、thiine、哌嗪、高哌嗪、噻嗪、氮杂环癸烷(azepane)、二氢噻吩、全氢异唑环5,6-二氢-4H-1,3-噻嗪-2-基、2,5-二氮杂双环[2.2.1]庚烷、2,5-二氮杂双环[2.2.2]辛烷、3,6-二氮杂双环[3.1.1]庚烷、3,8-二氮杂双环[3.2.1]辛烷、6-氧杂-3,8-二氮杂双环[3.2.1]辛烷、7-氧杂-2,5-二氮杂双环[2.2.2]辛烷、2,7-二氮杂-5-氮杂双环[2.2.2]辛烷、2-氧杂-5-氮杂双环[2.2.2]辛烷、5-氧杂-2-氮杂双环[2.2.2]辛烷、3,6-二氮杂双环[3.1.1]庚烷、3-氧杂-8-氮杂双环[3.2.1]辛-8-基、5,7-二氧杂-2-氮杂双环[2.2.2]辛烷、8-氧杂-3-氮杂双环[3.2.1]辛烷、6-氧杂-3-氮杂双环[3.1.1]庚烷、8-氧杂-3-氮杂双环[3.2.1]辛-3-基、2,5-二氮杂双环[2.2.1]庚烷、5-氧杂-2-氮杂双环[3.2.1]辛-6-基、8-氮杂双环[3.2.1]辛-8-基、3-氧杂-7-氮杂双环[3.1.1]壬-9-基、9-氧杂-3-氮杂双环[3.1.1]壬-3-基、3-氧杂-9-氮杂双环[3.3.1]壬-9-基、3,7-二氧杂-9-氮杂双环[3.3.1]壬-9-基、3,4-二氮-2H-1-苯并噻嗪-7-基、噻嗪、二噻唑和二氧六环。在另一个实施方案中，杂环包含1或2个氮原子。在进一步的实施方案中，杂环包含1或2个氮原子和3至6个碳原子。在另一个实施方案中，杂环包含1或2个氮原子和3至6个碳原子和1个氧原子。在还进一步的实施方案中，杂环是环烷的。在一个实施方案中，杂环是环烷并且由一个或多个C₁至C₆烷基取代。在另一个实施方案中，杂环是环烷，且所述杂环的2个碳原子链接以构成4或5-元环。杂环可以是未被取代的或由一个或多个以下基团取代的，所述基团包括但不限于：卤素、C₁至C₆烷基、OH、NH₂、N(C₁至C₆烷基)⁻C(O)(C₁至C₆烷基)⁻NHC(O)(C₁至C₆烷基)⁻NHC(O)H⁻C(O)NH(C₁至C₆烷基)⁻C(O)N(C₁至C₆烷基)⁻CN⁺、C₁至C₆烷氧基、C(O)O(C₁至C₆烷基)⁻C(O)(C₁至C₆烷基)⁻芳基、杂芳基、NH(C₁至C₆烷基)⁻N(C₁至C₆烷基)⁻C(O)(C₁至C₆烷基)⁻OC(O)(C₁至C₆烷基)⁻NH(C₁至C₆烷基)⁻N(C₁至C₆烷基)⁻C(O)NH[-(C₁至C₆烷基)-N(C₁至C₆烷基)₂]⁻C(O)NH[-(C₁至C₆烷基)-NH(C₁至C₆烷基)]⁻C(O)N(C₁至C₆烷基)[-C(O)N(C₁至C₆烷基)-N(C₁至C₆烷基)₂]⁻H⁻N₂O₅。在一个实施方案中，杂环由一个或多个以下基团取代：卤素、OH、CN、NH₂、C₁至C₆烷氧基、以OH取代的C₁至C₆烷基、C₁至C₆卤代烷基、OF₃、SO₂(C₁至C₆烷基)⁻NHOCH₃或NHSO₃(C₁至C₆烷基)。在另一个实施方案中，杂环由以下一个基团取代：F、OH、CN、NH₂、N(CH₃)₂、CH₂OH、OCH₃、OF₃、CF₃、SO₂CH₃、NHOCH₃或NHSO₃CH₃。
CN 105283454 A

说明书

8/96 页

CF₃, SO₂CH₃, NHCOCOCH₃或 NHSO₂CH₃。

[0039] “任选地 - 取代的 -CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂- 或 -CH₃CH₂CH₂CH₂-”指 -CH₂CH₂CH₂-,

-C₆H₅CH₂CH₂- 或 -CH₂CH₂CH₂CH₂- 其中 1 或 2 个氢原子由 OH, NH, NH₂, N(CH₃)₂, 芳环, 烷氧基, CF₃, OC₂H₅或 CN 替换。

[0040] “C₁至 C₆卤代烷基”指如上文定义的 C₁至 C₆烷基基团，其中一个或多个 C₁至 C₆烷基基团的氢原子被 F, Cl, Br 或 I 替换。每个取代基可独立地选自 F, Cl, Br 或 I。C₁至 C₆卤代烷基的代表性实例包括但不限于; CH₃F, CF₃, CH₂CF₃等。

[0041] “烷基磺酰基”指 (烷基)SO₂基团，它通过 SO₂部分结合。烷基如上文所定义并任选取代。烷基磺酰基的实例包括但不限于: CH₃SO₂, CH₃CH₂CH₂SO₂, CH₃CH(CH₃)SO₂, CH₃CH₂CH(CH₃)SO₂, (CH₃)₂CSO₂等。

[0042] “烷基氨基”指 NH 或 N 基团，所述基团的氮原子分别连接至 1 或 2 个烷基取代基，其中烷基如上文所定义。烷基氨基通过基团的氮原子结合。在一个实施方案中，烷基氨基指 (烷基)NH₂基团。在另一个实施方案中，烷基氨基指 (烷基)(烷基)N₂基团，即，二烷基氨基。当氮原子结合至 2 个烷基时，各烷基基团可以独立地选择。在另一个实施方案中，氮原子上的两个烷基基团可以连同其所连接至的氨一起形成 3 至 7 元的含氮杂环，其中杂环的多达 2 个碳原子可由 N(H), N(C₁至 C₆烷基), N(芳基), N(杂芳基), O, S, S(O) 或 S(O)₂替换。

烷基氨基的实例包括但不限于: CH₂NH, CH₂CH₂NH, CH₂CH₂CH₂NH, (CH₃)₂CHNH, (CH₃)₂CH₂CHNH, (CH₃)₂CH₂CH₂(CH₃)₂NH, (CH₃)₂CNH, N(CH₃)₂, N(CH₂)₂, N(CH₃CH₂)₂, N(CH₂CH₃)₂, N(CH₂)(CH₃)₂等。

[0043] “氨基烷基”指具有 NH取代基的烷基基团。氨基烷基通过基团的一个碳原子结合。即，氨基烷基指 (烷基)NH₂基团。氨基烷基的实例包括但不限于: CH₂NH, CH₂CH₂NH, CH₂CH₂CH₂NH, C(CH₃)₂NH, C(CH₃)₂等。

[0044] “烷基磺酰氨基”指 (烷基)C(0)NH₂基团，其通过氧原子结合。烷基基团如上文所定义的定义和任选取代。烷基磺酰氨基的实例包括但不限于: CH₃CONH, CH₃CH₂CONH, CH₃CH₂CH₂CONH, CH₃CH₂CH₂CH₂CONH 等。

[0045] “烷基磺酰氨基”指 (烷基)SO₂NH₂基团，其通过氮原子结合。烷基基团如上文所定义的定义和任选取代。烷基磺酰氨基的实例包括但不限于: CH₃SO₂NH, CH₃CH₂SO₂NH, CH₃CH₂SO₂NH, CH₃CH₂(CH₃)SO₂NH 等。

[0046] “烷基氨基甲基”指 (烷基)NH(C0)基团，其通过氨基甲基部分结合。烷基基团如上文所定义的定义和任选取代。烷基氨基甲基的实例包括但不限于: CH₃NHCO, CH₃CH₂NHCO, CH₃CH₂NHCO, CH₃CH₂NHCO 等。

[0047] “患者”或“个体”为哺乳动物，例如：人类或兽医患者或个体，例如：小鼠、大鼠、豚鼠、狗、猫、马、奶牛、猪或非人类灵长类动物，诸如猴、黑猩猩、狒狒或大猩猩。

[0048] 术语“治疗”(treating 和 treatment) 意在涵盖为了改善疾病或紊乱的一种或多种症状（包括姑息治疗）的目的，向个体施用本发明的化合物。“治疗有效的量”指影响治疗的活性化合物的最小量。

[0049] 本文中使用以下缩写，并且具有指明的意思：ACN 是乙腈，concent. 是浓缩的，DMF 是二甲基亚砜，DCM 是二氯甲烷，DIMEA 是二甲丙基乙胺，DME 是 N,N-二甲基甲酰胺，dppe 是 1,1'- 双（二苯基膦）茂铁，EDTA 是乙二胺四乙酸，EGTA 是乙二醇四乙酸，ELISA 是酶联
说明书

免疫吸附分析 : ESI 是电喷雾电离 ; EI 是电子轰击电离 ; HEPES 是 (4- (2- 羟乙基) -1- 普 喀乙烷磺酸 ; HPLC 是高效液相色谱 ; Hz 是赫兹 ; KOAc 是醋酸钾 ; LC 液相色谱 ; MS 质谱 ; MeOH 是 甲醇 ; MHz 是兆赫 ; mM 是毫摩尔浓度 ; mL 是毫升 ; min 是分钟 ; mol 是摩尔 ; M' 分子离子 ; \([M+H]^+\) 是质子化的分子离子 ; N 是当量浓度 ; NMR 核磁共振 ; PIP2 是 5- 二磷酸 ; PBS 是磷酸盐缓冲液水 ; PH 是普列克水蛋白 (pleckstrin) 同源性 ; PPh3 是三苯基膦 ; psi 是磅每平方英寸 ; ppm 是百万分率 ; rt 是室温 ; TLC 是薄层色谱 ; TEA 是三乙胺 ; THF 是四氢呋喃 ; XTT 是 2, 3, - 双 (2- 甲氧基 -4- 硝基 -5- 磺苯基) -5-[(苯氨基) - 羧基] -2H- 四唑鎓钠内盐。

[0050] 词语“包含 (comprise/comprises/comprising)”解释为包括而非排除。词语“由 ... 组成 (consist/consisting)”及其变化形式解释为排除而非包括。

[0051] 除另有说明,否则如本文所使用的,术语“约”意指,从给定参考 10% 的变化。

[0052] 适用于制备式 (I) 的化合物的方法在下文实施例中陈述并概括于方案 1-16 中。本 领域普通技术人员将认识到方案 1-16 可适用于生产其他根据本发明所述的式 (I) 的化合 物和式 (I) 的化合物的药学可接受的盐。

[0053] 以下方法描述了式 (I) 的化合物的合成。以下实施例的存在用于说明本发明的某些 实施方案,但不应解释为限制本发明的范围。

[0054] 方案 1

[0055]

[0056] 方案 1 涉及了硼酸频哪醇酯中间体 [1A] 的合成。在一个实施方案中,溴取代的 苯甲酸 [A1] 被转化为相应的苯胺 [B1]。在一个实施方案中,苯甲酸与叠氮化磷酸二苯酯 (DPPA) 反应。然后苯胺可转化为相应的磺酰胺 [C1]。在一个实施方案中,苯胺与磺酰氯 反应。在另一个实施方案中,反应在碱 (例如吡啶) 的存在下进行。而后再通过反应磺酰胺 和二硼试剂,形成中间体磷酸频哪醇酯 [1A]。在一个实施方案中,磺酰胺与双 (频哪醇合) 二硼反应。

[0057] 方案 1A

[0058]
方案 1A 描绘了硼酸频哪醇酯中间体 [1] 的合成。使用 DPPA, 3-溴 -2-氟代苯甲酸被转化为相应的苯胺 [B]。然后在二氯甲烷中使用磺酰氯和吡啶将苯胺转化为相应的磺酰胺。通过反应磺酰胺和双（频哪醇合）二硼形成中间体硼酸频哪醇酯 [1]。

方案 2

方案 3

方案 3 描绘了磺酰频哪醇酯中间体 [2A] 的合成。取代的溴苯 [H] 被转化为相应的硝基化合物 [J]。在一个实施方案中，在硫酸中使用硝酸制备所述硝基化合物。然后硝基化合物被还原为相应的苯胺 [K]。在一个实施方案中，使用 SnCl_2、2H_2O 进行还原。然后如方案 1 所述，使用 R"SO_3Cl 将苯胺 [K] 转化为相应的磺酰胺中间体 [2A]。在一个实施方案中，在碱（例如 DMAP 和吡啶）中进行反应。

方案 3A

方案5

方案5A

实施方案5A 提供了中间体[4]的制备。具体地，在二异丙基乙胺的存在下将溴吡啶-2-胺与苯基氯甲酸酯反应。在密封管内将生成的苯基（5-溴吡啶-2-基）氨基甲酸酯、
甲醇加热至高温。然后将 1-(5-溴吡啶-2-基)-3-甲基尿素与双（频哪醇酯）二硼反应以产生中间体化合物 [4]。

[0081] 方案 6

[0082]

[P1] → [Q1] → [5A]

[0083] 方案 6A

[0084]

[P] → [Q] → [5]

[0085] 方案 6B

[0086]

[P2] → [Q2] → [5B]

方案 6B 描述了硼酸频哪醇酯中间体 [5B] 的合成。在一个实施例中，化合物 [P2] 被溴化为 5-溴代化合物 [Q2]。在一个实施例中，使用 N-溴代琥珀酰亚胺进行溴化。然后将 5-溴代化合物 [Q2] 转化为相应的硼酸频哪醇酯中间体 [5B]。在一个实施例中，使用双（频哪醇酯）二硼进行反应。

[0087] 方案 7

[0088]

方案 7A

方案 8
[0098] 方案 8 详细给出了二氯甲基苯并咪唑中间体 [7] 的制备。在这条路径中，使用二
氯醋酸将邻苯二胺 [V] 转化为二氯甲基苯并咪唑中间体 [7]。

[0099] 方案 9

[0100]

[0101] 方案 9 提供了由式 (I) 涵盖的化合物的合成。具体地，使用强碱将化合物 [X1] 转
化为化合物 [Y1]。在一个实施例中，强碱是氢氧化钾。然后化合物 [Y1] 由 R'取代。在
一个实施例中，使用烷烃基试剂进行 R'取代。然后将生成的化合物 [Z1] 还原为相应的
醇胺 [AA1]。然后化合物 [AA1] 被溴化以形成相应的溴代化合物 [BB1]。在一个实施例中，使用溴进行溴化。然后使用尿素将溴代化合物 [BB1] 转化为相应的喹啉二酮 [CC1]。
然后将喹啉二酮的 2 位和 4 位氯代以产生化合物 [DD1]。在一个实施例中，使用氯化试剂 (例如 POCl3) 进行氯化。然后通过与硝基反应，喹啉 [DD1] 的 4 位被取代。然后将喹
啉化合物 [EE1] 的 6 位与中间体 [IA] 搭合。最后，硫代化合物被 R''取代。在一个实施
方案中，使用中间体 [3]、[4A]、[5A]、[5B] 或 [6A] 中任一个进行反应。

[0102] 方案 9A

[0103]

方案10

方案10提供了由式(1)涵盖的化合物的合成。在这条方案中，化合物[GG2]被转化为苯酚化合物[HH2]。在一个实施方案中，使用三溴化硼进行反应。然后苯酚化合物
[HH2] 在 OH 基团被 R'取代。在一个实施方案中，使用 R'烷基卤化物进行取代。然后化合物 [II2] 的 6 位被取代以形成化合物 [JJ2]。最终，通过 R'取代的化合物 [JJ2] 形成标题化合物。

[0108] 方案 10A

[0109]

[GG1] → [HH1] → [II1] → [JJ1]

[0111] 方案 10B

[0112]
[0113] \(R_1 \) = 烷基或取代的烷基

[0115] 方案 11

[0116]

方案 11A

[0119]

应化合物 [RR1] 和中间体 [5A] 形成标题化合物。

方案 11B

[0121]

[0122]

方案 12

[0124]

[0125]

[0127] 方案12A

[0128]

[0130] 方案12B

[0131]

方案 13

在一个实施方案中，使用氯化试剂（例如POCl₃）进行氯化。然后化合物[YY2]的4位被R¹取代。在一个实施方案中，使用吗啉进行R¹取代。然后化合物[ZZ2]的6位被取代以形成化合物[AAA2]。最终，通过R²取代化合物[AAA2]形成标题化合物。

[0136] 方案13A

[0137]

[0139] 方案13B

[0140]

[0142] 方案 14

[0143]

方案 14A

[0145]

方案 15A

方案 16

申请书

16. 提供了由式 (1) 的化合物合成。具体地，化合物 [KKK] 被卤化以形成溴代化合物 [LLL]。在一个实施方案中，使用溴进行溴化。然后将溴代化合物 [LLL] 甲基
化以形成甲酯 [MMM]。在一个实施方案中，使用碘甲烷进行甲基化。然后通过与氯酸钾反应将甲酯 [MMM] 转化为尿素化合物 [NNN]。然后通过以甲烷处理将尿素化合物 [NNN] 转化为
喹啉二酮 [QQQ]。在一个实施方案中，甲烷是氢氧化钠。然后将喹啉二酮 [QQQ] 在 2 和
4 位氯化以形成化合物 [PPP]。在一个实施方案中，使用 POCl3 进行氯化。然后通过与任选
取代的醇 [R'] 反应将喹啉二酮 [PPP] 的 4 位进行取代以产生化合物 [QQQ]。然后将化合物
[QQQ] 的 6 位取代以形成化合物 [RRR]。最后，通过 R'取代化合物 [RRR] 形成特定化合物。

157. 使用于本文的药物组合物包含式 (1) 的化合物，所述化合物优选与其他药学活性
或非活性成分存在于药学可接受的载体中。在另一个实施方案中，式 (1) 的化合物以单组
份存在。在进一步的实施方案中，式 (1) 的化合物与一个或多个如下所述的赋形剂和 / 或
其他治疗剂组合。

158. 本发明的药物组合物包括有效调控个体中一条或全部 RAS/RAF/MEK/ERK 和 PI3K/
AKT/Pten/P53 通路的一定量的式 (1) 的化合物或其药学可接受的盐。具体地，达到治疗效
果的式 (1) 的化合物的剂量将取决于剂型、患者的年龄、体重和性别以及递送途径。也涵盖
的是式 (1) 的化合物的治疗和剂量可以单位剂型给药，且本领域普通技术人员将相应地调
节单位剂型以反映相对活性水平。对于欲采用的特定剂量（以及每天给药的次数）的确定
在普通医师的判断内，并可对特定情况由剂量制定以改变以产生所需的治疗效果。在一个
实施方案中，治疗有效的量为约 0.01mg/kg 至 10mg/kg 体重。在另一个实施方案中，治疗
有效的量小于约 5g/kg、约 500mg/kg、约 400mg/kg、约 300mg/kg、约 200mg/kg、约 100mg/kg、
约 50mg/kg、约 25mg/kg、约 10mg/kg、约 1mg/kg、约 0.5mg/kg、约 0.25mg/kg、约 0.1mg/kg、
约 0.05μg/kg、约 0.01μg/kg，约 1μg/kg。但是，式 (1) 的化合物的治疗有效的量可由主治医师确定，并取决于治疗的病症、施用的化合物、
递送的途径、年龄、体重、患者症状的严重性和患者的应答模式。

159. 治疗有效的量可基于定期安排提供（即，每天、每周、每月或每年），或通过变化给
药天数、周数、月数等基于不定期安排提供。可选择地，施用的治疗有效的量可变化。在一个
实施方案中，首次剂量的治疗有效的量高于一种或多种后续剂量的治疗有效的量。在另一
个实施方案中，首次剂量的治疗有效的量低于一种或多种后续剂量的治疗有效的量。可
在各种时期内使用等效的量，所述各种时期包括但不限于：约每 2 小时、约每 6 小时、约每
8 小时、约每 12 小时、约每 24 小时、约每 36 小时、约每 48 小时、约每 72 小时、约每两周、约每
两周、约每三周、约每个月和约每两个月。对应于完整疗程的剂量的数目和频率将根据健康
保健从业者的判断确定。本文所述的治疗有效的量指在给定给药期内给药的总量，即，若施用
多于一种式 (1) 的化合物或其药学可接受的盐，则治疗有效的量对应给药总量。

160. 包含式 (1) 的化合物的药物组合物可简单地配制或与一种或多种药物载体一
同给予。药物载体的基质根据式 (1) 的化合物的溶解度和化学性质、所选给药路径和标准药
理实践确定。药物载体可以是固体或液体，并且可包括固体或液体载体两者。已知多种多
样合适的液体载体，且可易于由本领域普通技术人员选择。这样的载体可包括，例如，DMSO、
盐水、缓冲盐水、羟丙基环糊精及其混合物。相似的，多种多样的固体载体和赋形剂为本领
域普通技术人员所知。式 (1) 的化合物可由任意途径给药，其中考虑已选择的任意途径所

42
针对的特定病状。式 (I) 的化合物可按以下方式递送：经口、通过注射、吸入 (包括经口、鼻内和气管内)、经眼、经皮、血管内、皮下、肌肉、舌下、颅内、硬膜外、经直肠和经阴道等。

【0161】虽然式 (I) 的化合物可被单独给药，但它也可在一种或多种生理上配伍 (compatible) 的药用载体的存在下被给药。所述载体可呈干态或液态，并且必须是药学可接受的。液体药物组合物通常是无菌溶液或悬浮液。当液体载体被用于肠胃外给药时，它们合意地是无菌液体。液体载体通常被用于制备溶液、悬液液、乳液、糖浆和酏剂。在一个实施方案中，式 (I) 的化合物被溶解于液体载体中。在一个实施方案中，式 (I) 的化合物悬浮于液体载体中。制剂领域普通技术人员将能够根据给药途径选择合适的液体载体。式 (I) 的化合物可被替代选择地配制于固体载体中。在一个实施方案中，组合物可被压缩成单位剂型，即，片剂或囊片。在另一个实施方案中，组合物可被加入至单位剂型中，即，胶囊中。在进一步的实施方案中，组合物可被配制以用于散剂给药。固体载体可执行多种功能，即，可执行两种或更多种下述的赋形剂的功能。例如，固体载体也可作为增味剂、润滑剂、增溶剂、助悬剂、填充剂、助溶剂、压制助剂、粘合剂、崩解剂或封装材料。

【0162】组合物也可被细分以包含适量的式 (I) 的化合物。例如，单位剂量可以是包装组合物，例如，分包的散剂、含有液体的小瓶、瓶装、预装注射器或小袋。

【0163】可与一种或多种式 (I) 的化合物组合的赋形剂的实例包括，但不限于：佐剂、抗氧化剂、粘合剂、缓冲剂、包覆剂、着色剂、压制助剂、稀释剂、崩解剂、乳化剂、软化剂、封藏材料、填充剂、增味剂、助溶剂、成粒剂、润滑剂、金属整合剂、渗透调节剂、pH 调节剂、防腐剂、增溶剂、吸收剂、稳定剂、甜味剂、表面活性剂、助悬剂、糖浆、增稠剂或粘度调节剂。见，例如：“Handbook of Pharmaceutical Excipients”(《药用赋形剂手册》) (第 5 版：Rowe、Sheskey 和 Owen 编著，APhA 出版 (Washington, DC), 2015 年 12 月 4 日) 中所述的赋形剂，其以引用方式并入本文。

【0164】在一个实施方案中，组合物可作为吸入剂被使用。对于这条给药途径，为了通过雾化喷淋剂或对于吸入而言通过干粉进行递送，可使用式 (I) 的化合物和载体以流体单位剂量制备组合物。

【0165】在另一个实施方案中，组合物可作为气雾剂 (即，经口或鼻内) 被使用。对于这条给药途径，配制组合物，以连同气态或液化推进剂 (例如氯氟二氯甲烷、二氧化碳、氨气、丙烷等) 一起在加压气雾剂容器中使用。同样也提供的是在一次或多次推进中定剂量的递送。

【0166】在另一个实施方案中，组合物可通过持续递送装置给药。本文所使用的“持续递送”指延时的或另外受控的式 (I) 的化合物的递送。本领域普通技术人员了解合适的持续递送装置。为了用于这样的持续递送装置，如本文所述配制式 (I) 的化合物。

【0167】除了用于组合物之中的上述组分和式 (I) 的化合物之外，本文所述的组合物和试剂盒可包含一种或多种用于治疗癌症的药物或治疗剂，所述癌症包括：例如以肿瘤为特征的癌症，包括实体肿瘤和“液体”或非实体肿瘤癌症 (例如：淋巴瘤)。在一个实施方案中，药物为化学治疗剂。化学治疗剂的实例包括那些列举于“The Physician’s Desk Reference”(医师的案头参考) (第 64 版，Thomson Reuters, 2010) 中的，其通过引用的方式并入本文。其他药物或治疗剂的治疗有效的量为本领域普通技术人员所熟知。但是，确定有待递送的其他药物的量完全处于主治医师的能力之内。
式 (1) 的化合物和 / 或其他的药物或治疗剂可以单一组份给药。但是，本发明并没有这样的限制。在其他的实施方案中，式 (1) 的化合物可以一种或多种与如所需的其他式 (1) 的化合物、化学治疗剂或其他药剂分开的剂型给药。

本文也提拱的是包含本文所制的式 (1) 的化合物或组合物的药物剂型的试剂盒或包装。可组织所述试剂盒以指出各所需时间下有待采用剂型的单一剂型或组合。

合适地，试剂盒包含按所需递送途径配制的具有式 (1) 的化合物的包装或容器。合适地，试剂盒包含剂量说明书和有关活性药剂的插页。任选地，试剂盒可以进一步包含用于监测产物循环水平的说明书以及进行这样的分析的材料。例如，试剂、孔板、容器、标记或标签等。这样的试剂盒易于以适于治疗所需适应症的方式进行包装。例如，试剂盒也可以包含喷射器或其他递送装置的使用说明。在这样的试剂盒中包括的其他合适的组分对本领域普通技术人员在考虑所需适应症和递送途径下将是显而易见的。

本文所述的式 (1) 的化合物或组合物可以是单一剂量或用于连续或周期不连续给药。对于连续给药，包装或试剂盒包括呈某种剂量单位 (例如，溶液、洗剂、片剂、丸剂或上述或在由药物递送中使用的其他单位) 的式 (1) 的化合物，以及任选地用于每天、每周或每月，在预设时长或按剂量施用剂量的说明书。当以不连续方式周期性递送式 (1) 的化合物时，包装或试剂盒可包括未递送式 (1) 的化合物的时期内的安慰剂。当需要随时间改变组合物的组合物组分的浓度，或组合物中式 (1) 的化合物或药剂的相对比率时，包装或试剂盒可包含一系列提供所需改变的剂量单位。

领域已知许多用于配发不定期口服使用的药剂的包装或试剂盒。在实施设计方案中，包装具有对各周期的指示。在另一个实施方案中，所述包装是标号的泡罩包装、刻度盘药包装 (dial dispenser package) 或瓶。

试剂盒的包装方式可自身经调整以适用于给药，例如吸入器、注射器、移液管、滴眼器或其他这样的装置，由此，制剂可被施用至全身的受影响区域 (例如，肺)，注射至个体或者甚至施加至试剂盒的其他组分并与其混合。

这些试剂盒中的组合物还可以干燥或冻干形式提供。当试剂或组分以干燥形式提供时，通常通过添加合适溶剂来重构。设想还可将溶剂提供于另一包装中。

本发明的试剂盒通常还将包括一种工具，所述工具包含用于商业销售的密闭限制的小瓶，例如将所需的小瓶保留于其中的注射或吹模成型的塑料容器。不考虑包装的数目或类型并且如上所述，试剂盒还可包含用于帮助在动物体内注射 / 施用或布置组合物的单独仪器，或者所述试剂盒与所述单独仪器一起包装。这种仪器可以是吸入器、注射器、移液管、钳、量匙、滴眼器或任何这样的医学上认可的递送工具。

在一个实施方案中，提供试剂盒并且其包含式 (1) 的化合物。式 (1) 化合物可存在或缺乏一种或多种用于药物或赋形剂 tack 剂盒可任选地包含用于用于与患者疾病治疗的个体施用药物和式 (1) 化合物的说明书，其中所述疾病特征在于 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 两条通路中的一条的异常调控。

在进一步的实施方案中，提供试剂盒并且其包含呈第二剂量单位的式 (1) 的化合物和一种或多种呈第三剂量单位的上述载体或赋形剂。试剂盒可任选地包含用于用于与患者疾病的个体施用药物和式 (1) 化合物的说明书，其中所述疾病的特征在于 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 全部两条通路或两条中的一条的异常调控。
本文所述的化合物用于调控与一种或多种 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 通路相关的病状。在一个实施方案中，这样的疾病与异常细胞增殖相关。术语“异常细胞增殖”指天然存在于哺乳动物类体内的细胞的不受控生长。在一个实施方案中，以异常细胞增殖为特征的疾病是癌症，包括但不限于：前列腺、头、颈、眼、口腔、咽喉、食管、支气管、喉、胸、背、肺、结肠、直肠、胃、膀胱、子宫、子宫颈、乳腺、卵巢、阴道、睾丸、皮肤、甲状腺、血液、淋巴结、肾、肝、肠、胰腺、脑、中枢神经系统、肾上腺或皮肤的癌症或白血病或淋巴瘤。

在一个实施方案中，以异常细胞增殖为特征的疾病是前列腺癌。在另一个实施方案中，所述异常细胞增殖与至少一种实体肿瘤相关。

在进一步的实施方案中，式 (I) 的化合物调控 PI3K 活性。式 (I) 的化合物具有抑制 PI3K 的三种亚型 (α、β、δ、γ) 的至少一种或其组合的能力。

如本文所使用的，作为提及对一种或更种 PI3K 的亚型的活性时所使用的术语“选择性”指对 PI3K 的亚型表现出不同活性的化合物。显示 PI3K 亚型选择性的化合物对一种、两种或三种 α、β、δ、γ 亚型表现出更高的抑制。在一个实施方案中，选择性调控一种、两种或三种这些亚型的化合物对其他亚型不表现或基本上不表现活性。例如，某些化合物可对 α 和 δ PI3K 亚型显示出选择性。本文所述的其他化合物可对 PI3K α、PI3K β 和 PI3K δ 具有选择性。本文所述的其他化合物还可对 PI3K α 和 PI3K β 具有选择性。而其他化合物可仅对单一亚型（例如 α 或 δ）具有选择性。

与对 α 亚型活性相关的化合物可特别适合于治疗与此 PI3K 亚型相关病状，包括，例如：乳腺癌和胃癌、结直肠肿瘤、成胶质细胞瘤和前列腺癌和肺癌。

在另一个实施方案中，一些式 (I) 的化合物调控 PI3K-δ 亚型的通路。在另一进一步的实施方案中，式 (I) 的化合物调控 PI3K-δ 亚型的通路。在又另一个实施方案中，式 (I) 的化合物调控 PI3K-γ 亚型的通路。

本文所用的术语“调控”或其变化指式 (I) 的化合物抑制生物学通路的一种或多种组份的能力。在一个实施方案中，“调控”指 mTOR 活性的抑制。在一个实施方案中，“调控”指一种或多种 PI3K 亚型活性的抑制。如上文所述，调控可以是选择性的。在进一步的实施方案中，“调控”指 RAS 活性的抑制。在又另一个实施方案中，“调控”指 RAF 活性的抑制。在另一进一步的实施方案中，调控指 MEK 活性的抑制。在另一个实施方案中，“调控”指 ERK 活性的抑制。在又进一步的实施方案中，“调控”指 AKT 活性的抑制。在进一步的实施方案中，调控指两种或更多种最近在通路的抑制。在又另一个实施方案中，调控包括 RAS/RAF/MEK/ERK 通路的抑制。在进
一步的实施方案中，调控包括 PI3K/ Akt/PTEN/mTOR 通路的抑制。在还另一个实施方案中，
调控包括 RAS/RAF/MEK/ERK 和 PI3K/Akt/PTEN/mTOR 通路的抑制。

【0185】 式 (I) 的化合物的效用可，例如：通过下述它们在体外肿瘤细胞增殖试验中的活性
说明。式 (I) 的化合物展现出 RAS/RAF/MEK/ERK 和 / 或 PI3K/Akt/PTEN/mTOR 抑制活性，且
因此可被利用以抑制异常细胞生长，在其中这些独立通路的任一条均发挥作用。因此，式
(I) 的化合物在与 RAS/RAF/MEK/ERK 和 PI3K/Akt/PTEN/mTOR 异常调控的异常细胞生长活
动 (例如癌症) 相关的疾病的治疗中是有效的。本领域普通技术人员将意识到是体外肿
瘤细胞增殖试验的活跃性和临床环境中的抗癌性能间建立的联系。例如多种药剂 (例如：
紫杉醇 (Silvestrini, Stem Cells, 1993, 11 (6); 528–535)、泰索帝 (Bissey, Anti Cancer Drugs, 1995, 6 (3); 330) 和拓扑异构酶抑制剂 (Edelman, Cancer Chemother. Pharmacol., 1996, 37 (5); 385–395) 的疗效已通过使用体外肿瘤增殖试验被证明。

【0186】在一个实施方案中，提供用于调控 RAS/RAF/MEK/ERK 和 / 或 PI3K/Akt/PTEN/mTOR
通路的方法，包括向有需要的患者施用治疗有效的量的式 (I) 的化合物。

【0187】在进一步的实施方案中，提供用于共 - 调控 RAS/RAF/MEK/ERK 和 / 或 PI3K/Akt/
PTEN/mTOR 通路的方法，包括向有需要的患者施用治疗有效的量的式 (I) 的化合物。

【0188】在另一合乎需要的实施方案中，提供用于治疗特征在于由异常调控 RAS/RAF/MEK/
ERK 和 / 或 PI3K/Akt/PTEN/mTOR 通路导致异常细胞生长的疾病的通路的方法，包括向有需要的患
者施用治疗有效的量的式 (I) 的化合物。

【0189】在进一步的一个合乎需要的实施方案中，提供用于治疗通过抑制 RAS/RAF/MEK/
ERK 和 / 或 PI3K/Akt/PTEN/mTOR 通路可治疗的病状的方法，包括向有需要的患者施用治疗
有效的量的式 (I) 的化合物。

【0190】如本文所述，当用于治疗癌症时，化合物治疗有效的量是可降低体液 (例如：血液
和周围细胞或淋巴) 中癌细胞数目、降低肿瘤尺寸、抑制转移、抑制肿瘤生长和 / 或改善
一种或多种癌症症状的量。对于癌症治疗，疗效可通过通过评估疾病进展时间和 / 或确定
响应速率测量。

【0191】如本文所述，当用于治疗炎性疾病时，化合物治疗有效的量是可延长炎性反应发
作或降低炎性反应的严重性或持续时间的量，或是缓和一种或多种炎性反应症状的量。对
于炎性疾病治疗，疗效可通过通过例如以下测量：炎性生理信号的减轻 (例如：发红、肿胀、发
热、功能丧失) 或测量与炎症相关的细胞 (例如：单核细胞、巨噬细胞和其他单核细胞) 或
分子 (例如：促炎性细胞因子) 的水平改变。

【0192】已知 RAS/RAF/MEK/ERK 和 / 或 PI3K/Akt/PTEN/mTOR 在多种癌症中被解除调控，归
因于各种通路不同成员中的异常性突变。例如，在 RAS/RAF/MEK/ERK 通路中，RAS 蛋白常在残
而 B-Raf 仅在氨基酸 600 位突变。使用本领域已知的方法 (例如由 Sarkar 等人所描述的
突变可由 FDA 批准的可从 Roche (Cobas® 4800 BRAF V600 Mutation Test) 购买的试剂盒检测。
在 PI3K/Akt/PTEN/mTOR 通路中，PI3K- α 同工酶、PTEN 和更不频繁的 AKT 在多种
实体癌中突变。PI3K- α 亚单元通常在残基 542、545 和 1047 处 (见，例如：Karacas 等人,
British J. Cancer (2006), 94: 455-459) 突变。相似地，已在广泛的实体癌中的 PTEN 肿瘤
抑制基因中识别到突变。大多数PTEN突变通过移码或无义突变导致PTEN活性的丢失。约3%的乳腺癌肿瘤在AKT蛋白17位表现出突变(Yi等人, Oncotarget (2013) 4(1), 29-34)。

[0193] 确立哺乳动物个体 (例如:在治疗开始前, 将对以本发明化合物的治疗反应呈阳性的人类患者 (本文也称作“预设或选择”) 可通过检测来自癌细胞样本, 确定一种或多种上文所讨论的RAS、B-RAF、PI3K-α同工酶 (或本文所指另一所选的PI3K同工酶或其组合)、PTEN或AKT突变来实现。

[0194] 可从个体身体获取合适的样本, 属于样本可包括, 例如: 组织样本、细胞、树突物、血液或淋巴液中的循环癌细胞。这些样本可来自于人类或非人类哺乳动物。组织样本可来自于任何器官, 包括这样的器官的疾病状态、血液循环系统和任何循环肿瘤细胞。可使用已知的方法获取组织样本 (例如肿瘤活组织检查)。组织样本也可包括异种移植肿瘤样本, 例如: 来自于药物剂量或毒理学研究中的动物的那些。

[0195] 例如, 可检测患者B-RAF突变和mTOR突变的存在、B-RAF突变和PI3K突变的存在或B-RAF突变、mTOR和PI3K通路突变的存在。如上所述, 可使用任意本领域已知合适的检测这些突变的方法, 包括荧光原位杂交法、复合基因相关部分的PCR-基测序、限制性片段长度多态性分析或通过检测给定基因产物 (例如: 蛋白质或RNA) 的表达水平。B-RAF、mTOR和PI3K突变也可通过测量RAS/RAF/MEK/ERK和/或PI3K/AKT/PTEN/mTOR通路中生物标志物的活性来检测。因此, 提供了通过检测RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路可治疗的病状的方法, 包括选择具有B-RAF、PI3K和/或PTEN突变的患者; 施用至少一种治疗有效的剂的式(1)的化合物。

[0196] 本发明的化合物对RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路中的多种靶蛋白显示出不同的抑制图谱。在一个图谱中, 本发明的化合物可抑制B-RAF和mTOR。在另一图谱中, 本发明的化合物可抑制B-RAF和一种或多种PI3K亚型。在另一图谱中, 本发明的化合物可抑制B-RAF、mTOR和一种或多种PI3K亚型。因此可使用某些蛋白质标志物的活性来监测式(1)的化合物一旦施用于患者的功效。例如, 作为B-RAF和mTOR抑制剂具有双重活性的式(1)的化合物将导致降低的pERK和pS6RP或pS6K活性。适于表现本发明化合物功效的生物标志物的组合示于表1中。

[0197] 表1

<table>
<thead>
<tr>
<th>式(1)的化合物的活性谱</th>
<th>生物标志物的组合</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-RAF+mTOR抑制剂</td>
<td>pERK和(pS6RP或pS6K)</td>
</tr>
<tr>
<td>B-RAF+PI3K抑制剂</td>
<td>pERK和pAKT</td>
</tr>
<tr>
<td>B-RAF+mTOR+PI3K抑制剂</td>
<td>pERK、(pS6RP或pS6K)和pAKT</td>
</tr>
</tbody>
</table>

[0199] 表现出这些生物标志物的一种或组合 (例如, 如表1所示) 的降低活性的可以, 例如, 被用作患者肿瘤生长抑制功效的替代表示。因此, 提供了监测式(1)的化合物的功效的方法, 或治疗通过抑制RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路可治疗的病状的方法, 包括向患者施用至少一种式(1)的化合物, 评估pERK、(pS6RP或pS6K)或pAKT (例如: pAKT-S473和/或pAKT-T308) 或其组合的活性, 以及调节施用的化合物的量直至pERK、
(pS6RP 或 pS6K) 或 pAKT 或其组合的活性与未治疗患者的活性水平相比，降低至预设的活性水平。例如，pERK 的活性可被降低至少约 50%、至少约 55%、至少约 60%、至少约 65%、至少约 70%、至少约 75%、至少约 80%、至少约 85%、至少约 90% 或至少约 99%。在另一个实施例中，pERK 的活性可被降低约 80% 至约 100%。（pS6RP 或 pS6K）或 pAKT 的活性可被降低例如至少约 50%、至少约 55%、至少约 60%、至少约 65%、至少约 70%、至少约 75%、至少约 80%、至少约 85%、至少约 90%、至少约 95%、至少约 99%。在另一个实施例中，（pS6RP 或 pS6K）或 pAKT 的活性可被降低至少约 50% 至约 100%。具有这些 pERK、pS6RP 或 pS6K）或 pAKT 活性降低图谱中的任一种，且特征在于其他生物标志物无降低、最小降低或低降较少的化合物仍可被使用。但是，在这些标志物中的两个或这些标志物的全部三个中具有活性降低图谱的化合物特别适用于本文所述的用途。

[0200] 如本文所使用的，"pAKT 活性图谱"指在给定样品中与非活化或非磷酸化的 AKT 水平相比，AKT（“pAKT”）的活化或磷酸化水平。在一个实施例中，样品是实体肿瘤细胞或组织。在另一个实施例中，样品是非实体肿瘤细胞或组织。pAKT 活性图谱可以依据比率（例如，用式 (1) 的化合物治疗的癌细胞中 pAKT 的量除以未用式 (1) 的化合物治疗的相同类型癌细胞中磷酸化的 AKT 的量）表示。在 pAKT 活性图谱的典型测量中，以相同样品中的总 AKT（即，磷酸化的 AKT 加上非磷酸化的 AKT）归一化各治疗或患者样品和未治疗对照样品。然后将每个治疗或患者样品中的 pAKT 的归一化量除以未治疗对照样品中的 pAKT 的量，并将该数乘以 100 以得到对于给定样品仍保持 pAKT 活性的百分数。然后可将所保持的百分数减去 100 以得到 pAKT 活性降低百分数。pAKT 活性图谱也可通过测量磷酸化的 AKT 下游靶的量依据通路的活化水平表达。“降低的 pAKT 活性图谱”指样品中低于基线值的全部 AKT 的活化或磷酸化水平。这样的基线值可基于单一细胞类型的基础水平确定。可替代选择地，基线值可基于给定样品细胞种群中 pAKT 的平均值或平均水平。在一个实施例中，对于本文所用的 pAKT 活性图谱，其指基于来自未用本发明化合物治疗的患者的肿瘤细胞的 pAKT 活性图谱的平均值。

[0201] 如本文所使用的，"pERK 活性图谱"指在给定样品中与非活化的或非磷酸化的 ERK 水平相比，ERK（“pERK”）的活化或磷酸化水平。在一个实施例中，所述样品是实体肿瘤细胞或组织或非实体肿瘤细胞或组织。pERK 活性图谱可以依据比率（例如，用式 (1) 的化合物治疗的癌细胞中 pERK 的量除以未用式 (1) 的化合物治疗的相同类型癌细胞中非磷酸化的 ERK 的量）表示。在 pERK 活性图谱的典型测量中，以总 ERK（即，磷酸化的 ERK 加上非磷酸化的 ERK）归一化每个治疗或患者样品和未治疗对照样品。然后将每个治疗或患者样品中的 pERK 的归一化量除以未治疗对照样品中的 pERK 的量，并将该数乘以 100 以得到对于给定样品仍保持 pERK 活性的百分数。然后可将所保持的百分数减去 100 以得到 pERK 活性降低百分数。pERK 活性图谱也可通过测量磷酸化的 ERK 下游靶的量依据通路的活化水平表达。“降低的 pERK 活性图谱”指样品中低于基线值的全部 ERK 的活化或磷酸化水平。这样的基线值可基于单一细胞类型的基础水平确定。可替代选择地，基线值可基于给定样品细胞种群中 pERK 的平均值或平均水平。在一个实施例中，对于本文所用的 pERK 活性图谱，其指基于来自未用本发明化合物治疗的患者的肿瘤细胞的 pERK 活性图谱的平均值。

[0202] 被测量以确定式 (1) 的化合物的功效的蛋白之一是磷-S6 核糖体蛋白 (pS6RP)。可替代选择地，为了确定 pS6K 活性，测量丝氨酸 / 苏氨酸蛋白激酶 pS6K（其编码可选择的亚

[0203]任何用于显示这些生物标志物降低的活性的合适技术可以被用于本发明的方法，例如，如述实施例90所示，通过传统蛋白质印迹试验（见，例如，AKT蛋白质印迹检测试剂盒（Cell Signaling Technology, Danverse, MA）或使用细胞内蛋白质印迹（ICW）试验检验蛋白质。另见Fachook等人，Lancet（2012），379：1893-1901中所述的技术。此外，用于测量样品中AKT活化水平和pAKT量的方法是已知的。例如，可使用免疫沉淀试验，例如：AKT活检试剂盒（abcam, San Francisco, CA），化学发光联接免疫吸附试验（Cicenas等人，Breast Can Res., 7（4）：R394（2005）或AlphaScreen SureFire Akt1（p-Thr308）检测试剂盒（Perkin-Elmer, Waltham, MA）。其他可商用的检测试剂盒包括来自iHistochem（San Diego, CA）的pS6RP试剂盒和pERK检测试剂盒（MesoScale, CA）。其他的技术或试剂盒对本领域普通技术人员将会是显而易见的。

[0204]一种用于治疗通过抑制RAS/RAF/MEK/ERK和PI3K/AKT/PTEN/mTOR通路可治疗的病症的方法，包括向患者施用首次剂量的量的一种或多种式（1）的化合物；检测来自于患者样品，随后施用化合物以确定pERK、pS6RP或pS6K或pAKT或其组合的活性水平与未治疗患者中的活性相比，是否已降低了预设的活性水平，以及向患者施用第二剂量的量的一种或多种式（1）的化合物。首次和第二剂量的量可以是相同的，并处于约0.01mg/kg至500mg/kg体重的范围内。可替代选择地，处于该范围内，首次和第二剂量可以是上升的剂量或下降的剂量。例如，假如第二剂量的量可高于首次剂量的量（即，提升），可替代选择地，第二剂量的量可低于首次剂量的量（即，下降的剂量），为更低的约0.01mg/kg至约0.1mg/kg，第二剂量的量可以是更高的剂量约1mg/kg，约0.5mg/kg，约0.25mg/kg，约0.1mg/kg，约100μg/kg，约75μg/kg，约50μg/kg，约25μg/kg，约10μg/kg或约1μg/kg。

[0205]如本文所使用的，“未治疗的患者”指未被施用治疗有效的量的一种或多种式（1）的化合物的患者。
本文也描述了用于监测式 (1) 的化合物功能的方法，其包括向患者施用首次剂量的量的至少一种式 (1) 的化合物。检测来自于患者的样品随后是施用化合物以确定 pERK、pS6RP 或 pS6K 或 pAKT 其组合的活性水平。与未治疗患者的活性相比，是否已降低了预设的活性水平。以及施用第二剂量的量的化合物。

当监控治疗效果时，自患者获得的样品可包括多种样品，可选择的样品包括例如：全血或血流衍生物（例如：血浆、外周血）、淋巴液或组织样品。

本文所述的方法使得治疗可根据单独个体的需要定制。在需要的情况下，依据个体的需求，通过允许向上、向下调节剂量或保持固定（不变）的剂量来实现。因此，检测来自于患者的样品的首次剂量和第二剂量可以是根据需要提升的剂量、固定的剂量或下降的剂量。

以下实施例仅是说明性的而并非意在限制本发明。

实施例

制备 1：N-(2-溴-3-(4, 4, 5, 5-四甲基-1, 3, 2-二氧杂环己烯-2-基) 苯基) 丙烷-1-磺酰胺

步骤 1：3-溴-2-氟苯胺

在 0°C 向搅拌的 3-溴-2-氟苯甲酸 (10g, 0.04566mol) 于 N,N-二甲基甲酰胺 (80mL) 的溶液中按序逐滴加入三乙胺 (19mL, 0.13669mol)和叠氮磷酸二苯酯 (14.8mL, 0.05378mol)。将反应混合物在 0°C 下搅拌 2h。加入水 (27mL)，并且将所述反应混合物在 80°C 下加热 2h。将所述反应混合物冷却至室温，以水 (200mL) 稀释，并用三乙酸 (3×150mL) 萃取。用冷水 (2×200mL) 洗涤合并的有机层，于无水硫酸钠上干燥并在减压下蒸发。所得残渣以乙烷 (100mL) 洗涤，过滤，用乙烷 (2×100mL) 洗涤滤饼。在减压下蒸发所述滤液以产生作为棕色液体的标题化合物 (4.3g, 50%)。1H NMR (400MHz, DMSO-d6)：δ 6.82-6.70 (m, 3H), 5.43 (brs, 2H); ESI-MS：计算质量: 188.96；观测质量: 188.10 [M−H]−。
在室温下，向搅拌的 3-溴-2-氟苯胺 (1.8g, 0.00952mol) 于 DCM (80mL) 的溶液中逐滴加入吡啶 (1.35mL, 0.017mol) 和丙基磺酰氯 (1.57mL, 0.017mol)。将反应混合物在相同的温度下搅拌过夜。用水 (50mL) 稀释所述反应混合物，并用二氯甲烷 (2×50mL) 萃取。用 1N HCl (25mL)、卤水溶液洗涤合并的有机层，并于无水硫酸钠上干燥然后过滤。在减压下蒸发所述滤液。使用柱色谱法 (100-200 目硅胶; 二氯甲烷中 2% 的 EtOAc) 纯化粗产物以得到标题化合物 (700mg, 25%)。\(^1\) H NMR (400MHz, DMSO-\(d_6\))：\& 9.85 (s, 1H), 7.52 (t, J = 8.4Hz, 1H), 7.42 (t, J = 8.4Hz, 1H), 7.14 (t, J = 8.4Hz, 1H), 3.32 (s, 10m, 2H), 1.76-1.70 (m, 3H), 0.97 (t, J = 7.2Hz, 3H)；ESI-MS: 计算质量: 294.96；观察质量: 296.0[M+H]^+。

步骤 3: N-(2-氟-3-(4,4,5,5-四甲基-1,3,2-二氧杂已硼烷-2-基) 苯基) 丙烷-1-磺酰胺

于 100mL 的圆底烧瓶中装入 N-(3-溴-2-氟苯基) 丙烷-1-磺酰胺 (0.65g, 0.0022mol)、甲苯 (20mL)、醋酸钾 (0.64g, 0.0066mol) 和双(频哪醇合) 二硼 (0.83g, 0.0033mol)。用氮气将反应混合物脱气 15min。向该混合物中加入 Pd(dppf)Cl2, DCM (89mg, 0.00011mol) 再次用氮气将混合物脱气 5min。将反应混合物在 100℃搅拌过夜。使用 Celite® 试剂将所述反应混合物过滤，用乙酸乙酯 (50mL) 洗涤滤饼，在减压下蒸发滤液。用正已烷 (50mL) 洗涤所得残渣并在真空下干燥以产生作为固体的标题化合物。粗产物被用于下一步骤而未进行任何进一步的纯化。\(^1\) H NMR (400MHz, DMSO-\(d_6\))：\& 9.59 (brs, 1H), 7.53 (t, J = 8.0Hz, 1H), 7.44 (t, J = 7.2Hz, 1H), 7.18 (t, J = 8.0Hz, 1H), 3.06 (t, J = 7.6Hz, 2H), 1.78-1.68 (m, 2H), 1.30 (s, 12H), 0.96 (t, J = 8.0Hz, 3H)；ESI-MS: 计算质量: 343.14；观察质量: 342.20[M-H]^–。

制备 2: 3-氟-N-(2-氟-3-(4,4,5,5-四甲基-1,3,2-二氧杂已硼烷-2-基) 苯基) 丙烷-1-磺酰胺

步骤 1: 3-氟丙基甲磺酸酯

在 0℃向搅拌的 3-氟丙醇 (15g, 0.19208mol) 于二氯甲烷 (210mL) 的溶液中逐滴
加入三乙胺 (32mL, 0.2302mol), 随后是甲磺酰氯 (16.3mL, 0.21068mol) 并且将反应混合物在 0℃下搅拌 3h。用水 (150mL) 稀释所述反应混合物, 并用 DCM (2×150mL) 萃取。用饱和碳酸氢钠溶液, 随后是卤水溶液洗涤合并的有机层, 并于无水硫酸钠上干燥然后过滤。蒸发表述滤液, 使用柱色谱法 (100-200 目硅胶, 己烷中 30% 的 EtOAc) 纯化粗产物以得到标题化合物 (20g, 66%)。1H NMR (400MHz, DMSO-d6): 6 4.60 (t, j = 6.0Hz, 1H), 4.48 (t, j = 6.0Hz, 1H), 4.29 (t, j = 6.4Hz, 2H), 3.18 (s, 3H), 2.12-2.0 (m, 2H)。

步骤 2: (3-氟丙基) 硫代乙酸酯

在室温下, 向搅拌的 3-氟丙基甲磺酸酯 (20g, 0.12807mol) 于二甲亚砜 (210mL) 的溶液中加入硫代乙酸钾 (17.5g, 0.15323mol), 并将反应混合物在室温下搅拌 12h。加入水 (300mL), 并用乙醚 (3×150mL) 萃取所述反应混合物。用卤水溶液洗涤合并的有机层, 并于无水硫酸钠上干燥然后过滤。在减压下蒸发表述滤液以得到标题化合物 (15g, 86%)。1H NMR (400MHz, DMSO-d6): 6 4.52 (t, j = 5.6Hz, 1H), 4.40 (t, j = 6.0Hz, 1H), 2.91 (t, j = 7.6Hz, 2H), 2.33 (s, 3H), 1.94-1.84 (m, 2H)。

步骤 3: 3-氟丙烷 -1-磺酰氯

在 -20℃使氯气通过 (3-氟丙基) 硫代乙酸酯 (15g) 于 DCM 和水 (150mL) 1: 1 混合物的搅拌溶液 3h (直至水颜色变为绿色), 停止氯气流, 并将反应混合物在 -20℃下保持额外 2h。用 TLC 确定反应完成后, 用 DCM (2×300mL) 萃取反应混合物。用 10% 亚硫酸氢钠溶液 (2×200mL), 随后是卤水溶液洗涤合并的有机层, 并于无水硫酸钠上干燥然后过滤。在减压下蒸发表述滤液, 以得到标题化合物 (13g, 73%)。1H NMR (400MHz, DMSO-d6): 6 4.58 (t, j = 6.0Hz, 1H), 4.46 (t, j = 5.6Hz, 1H), 2.70 (t, j = 7.2Hz, 2H), 2.05-1.92 (m, 2H)。

步骤 4: N-(3-溴 -2-氟苯基) -3-氟丙烷 -1-磺酰胺

在 0℃向搅拌的 3-溴 -2-氟苯胺 (3g, 0.0158mol) 于二氯甲烷 (300mL) 的溶液中逐滴加入吡啶 (12.53mL, 0.158mol) 和 3-氟丙烷 -1-磺酰氯 (7.64mL, 0.047mol)。向所得混合物中在 0℃下加入 DMAP (0.387g, 0.00317mol)。将所述反应混合物在室温下搅拌过夜。加入水 (500mL) 并用 DCM (2×200mL) 萃取反应混合物。用 1N HCl (50mL), 随后是卤水溶液洗涤合并的有机层, 并于无水硫酸钠上干燥然后过滤。在减压下蒸发表述滤液, 使用柱色谱法 (100-200 目硅胶, 己烷中 10% 的 EtOAc) 纯化粗产物以得到标题化合物 (3.4g, 69%)。1H NMR (400MHz, DMSO-d6): 6 9.99 (s, 1H), 7.54 (t, j = 7.6Hz, 1H), 7.42 (t, j = 8.4Hz, 1H)。
7.16 (t, J = 8.4 Hz, 1H), 4.61 (t, J = 3.2 Hz, 1H), 4.49 (t, J = 4.0 Hz, 1H), 3.25 (t, J = 5.6 Hz, 2H), 2.16-2.03 (m, 2H); ESI-MS: 计算质量: 312.96; 观测质量: 314.0 [M+H]+。

步骤 5: 3- 溴 -N-(2- 氟 -3-(4, 4, 5, 5- 四甲基 -1, 3, 2- 二氧杂已烯烷 -2- 基) 苯基) 丙烷 -1- 碘酰胺

[0237] 于 250mL 的圆底烧瓶中装入 N-(3- 溴 -2- 氟苯基) -3- 氟丙烷 -1- 碘酰胺 (3.4g, 0.0108mol)、双 (频哪醇合) 二硼 (4.13g, 0.0162mol)、醋酸钾 (3.19g, 0.032mol) 和甲苯 (90mL)。用氮气将反应混合物脱气 15min。向该混合物中加入 Pd(dpff)Cl2·DCM (883mg, 0.00108mol)。再次用氮气将混合物脱气 10min, 在 100℃ 搅拌过夜。将反应混合物冷却至室温, 使用 Celite® 试剂过滤, 用乙酸乙酯 (500mL) 洗涤滤饼, 在减压下蒸发滤液。用正己烷 (2×50mL) 洗涤粗残渣。真空下干燥残渣以得到标题化合物 (4g, 粗)。粗产物被用于下一步骤而未进行任何进一步的纯化。ESI-MS: 计算质量: 361.13; 观测质量: 360.2 [M-H]。[0238] 制备 3: N-(3- 溴 -2, 4- 二氟苯基) 丙烷 -1- 碘酰胺

[0239]

步骤 1: 2- 溴 -1, 3- 二氟 -4- 硝基苯

[0240]

步骤 2: 3- 溴 -2, 4- 二氟苯胺

[0241]

在 0℃ 将浓 HNO3 (6mL, 0.143mol) 和浓 H2SO4 (6mL, 0.111mol) 的混合物逐滴加入搅拌的 2- 溴 -1, 3- 二氟苯 (10g, 0.057mol) 于浓 H2SO4 (30mL, 0.56mol) 的搅拌溶液中。在加入完成后, 将反应混合物在室温下搅拌 2h。然后使用饱和氢氧化钠溶液将所述反应混合物中和至 pH 7, 并用乙酸乙酯 (2×250mL) 萃取。将合并的有机层干燥, 过滤并蒸发以得到标题化合物 (8.75g, 71%)。1H NMR (400MHz, CDCl3): 8 8.15-8.10 (m, 1H), 7.15-7.11 (m, 1H); ESI-MS: 计算质量: 236.92; 观测质量: 235.90 [M-H]。[0242]

步骤 2: 3- 溴 -2, 4- 二氟苯胺

[0243]

[0244]
[0245] 在 60 °C, 将 2-溴-1,3-二氟-4-硝基苯 (8.5g, 0.035mol)、浓 HCl (24mL, 0.789mol)、SnCl₂·H₂O (24.3g, 0.107mol) 和小量的二乙酰 (10mL) 于油浴中加热 40min。然后冷却反应混合物, 使用饱和氢氧化钠溶液中和, 并用乙酸乙酯 (2×250mL) 萃取。将合并的有机层干燥, 过滤并蒸发以产生作为固体的标题化合物 (9.51g, 粗产物)。¹H NMR (400MHz, DMSO-d₆): 6 6.95 (t, J = 8.8Hz, 1H), 6.80-6.74 (m, 1H), 5.27 (brs, 2H); ESI-MS: 计算质量: 206.95; 观测质量: 206.0 [M-H]。[0246] 步骤 3: N-(3-溴-2,4-二氟苯基) 丙酰胺-1-磺酰胺

![分子结构图]

[0248] 在 0°C 向搅拌的 3-溴-2,4-二氟苯胺 (1.93g, 0.0093mol) 于二氯甲烷 (20mL) 的溶液中滴加入吡啶 (1.5mL, 0.0186mol)、丙酰胺-1-磺酰氯 (1.98g, 0.0139mol) 和 DMAP (113mg, 0.0009mol)。将反应混合物在室温下搅拌过夜。加入水 (20mL), 用二氯甲烷 (2×50mL) 萃取所述反应混合物。用 1N HCl (20mL)、然后是卤水溶液洗涤合并的有机层, 并于无水硫酸钠上干燥。然后过滤。在减压下蒸出所述滤液。使用柱色谱法 (100-200 目硅胶; 乙醚中 10% 的 EtOAc) 纯化粗产物以得到标题化合物 (2.5g, 86%)。¹H NMR (400MHz, DMSO-d₆): 6 9.81 (s, 1H), 7.49-7.43 (m, 1H), 7.28-7.23 (m, 1H), 3.11-3.07 (m, 2H), 1.78-1.69 (m, 2H), 0.97 (t, J = 7.2Hz, 3H)。[0249] 制备 4:1- 甲基 -3-(4-(4,4,5,5-四甲基 -1,3,2- 二氧杂环己烷 -2- 基) 苯甲) 尿素

![分子结构图]

[0250]

[0251] 步骤 1: 1-(4-溴苯基)-3-甲基尿素

![分子结构图]

[0252]

[0253] 在室温下, 向搅拌的 4-溴苯基异氰酸酯 (3g, 0.01515mol) 于乙腈 (40mL) 的溶液中逐滴加入饱和甲胺水溶液 (60mL) 并继续在室温下搅拌 10min。分离白色固体, 将其过滤,
以己烷 (30mL) 洗涤，在真空下干燥以得到标题化合物 (4.1g)。1H NMR (400MHz, DMSO-d$_6$): δ 8.62 (s, 1H), 7.36 (s, 4H), 6.03-6.02 (m, 1H), 2.62 (d, J = 4.8Hz, 3H); ESI-MS: 计算质量：227.99; 观测质量：229.0 [M+H]$^+$.

步骤 2: 甲基 –3-(4- (4, 4, 5, 5 四甲基 -1, 3, 2- 二氧杂己硼烷 -2- 基) 苯基) 尿素

于 250mL 的圆底烧瓶中装入 1-(4- 溴苯基)-3- 甲基尿素 (4g, 0.0178mol), 乙酸乙酯 (2×50mL) 洗涤滤饼。在碱压下蒸发滤液, 使用色谱法 (100-200 个硅胶, DCM 中 2% 的 MeOH) 纯化粗产物以得到标题化合物 (2g, 40%)。1H NMR (400MHz, DMSO-d$_6$): δ 8.63 (s, 1H), 7.52 (d, J = 8.8Hz, 2H), 7.39 (d, J = 8.4Hz, 2H), 6.05 (d, J = 4.4Hz, 1H), 2.63 (d, J = 4.4Hz, 3H), 1.26 (s, 12H); ESI-MS: 计算质量：276.16; 观测质量 277.20 [M+H]$^+$.

步骤 5: 甲基 –3-(5- (4, 4, 5, 5 四甲基 -1, 3, 2- 二氧杂己硼烷 -2- 基) 吡啶 -2- 基) 尿素

步骤 1: 苯基 (5- 溴吡啶 -2- 基) 氨基甲酸酯

在 0℃, 向搅拌的 5- 溴吡啶 -2- 胺 (1g, 0.00578mol) 于二氯甲烷 (40mL) 的溶液中按序逐滴加入二异丙基乙基胺 (2mL, 0.01156mol) 和氨基甲酸苯酯 (0.87mL, 0.00693mol), 并于室温下继续搅拌 2h。向反应混合物中加入水 (10mL), 过滤所得固体，干燥以得到标题化合物 (1g, 59%)。1H NMR (400MHz, DMSO-d$_6$): δ 10.93 (brs, 1H), 8.45 (brs, 1H), 8.02 (d, J = 8.80Hz, 1H), 7.80 (d, J = 8.80Hz, 1H), 7.46-7.42 (m, 2H), 7.30-7.22 (m, 3H).
步骤 2: 1-(5-溴吡啶-2-基)-3-甲基尿素

向密封管装入苯并 (5-溴吡啶-2-基) 氨基甲酸酯 (1g, 0.00341mol) 和 2M THF 中的甲胺 (17mL, 0.0341mol)。将反应混合物在 100°C 搅拌 5h。在真空下浓缩所述反应混合物, 并将残渣溶于二氯甲烷 (50mL), 然后以 1N 氢氧化钠溶液洗涤 (10mL)。将有机层于无水硫酸钠上干燥, 过滤并在减压下蒸发以得到标题化合物 (650mg, 82%)。1H NMR (400MHz, DMSO-d$_6$); δ 9.32 (brs, 1H), 8.27 (d, J = 2.4Hz, 1H), 7.87 (dd, J' = 8.80Hz, J" = 2.4Hz, 1H), 7.47-7.45 (m, 2H), 2.70 (d, J = 4.4Hz, 3H); LC-MS: 计算质量: 228.99; 观测质量: 230.10 [M+H]⁺。

步骤 3: 1-甲基-3-(5-(4,4,5,5-四甲基-1,3,2-二氧杂环己烯-2-基) 吡啶-2-基) 尿素

于 100mL 的圆底烧瓶中装入 1-(5-溴吡啶-2-基)-3-甲基尿素 (650mg, 0.0028mol)、KOA (830mg, 0.00846mol)、双（须酒醇）二硼 (930mg, 0.0036mol) 和甲苯 (15mL)。用氮气将反应混合物脱气 10min, 向这里中加入再用氮气脱气 10min 的 Pd(dppe)Cl$_2$, DCM (231mg, 0.0028mol) 并在 100°C 搅拌 16h。将所述反应混合物使用 Celite® 试剂过滤, 用 EtOAc (100mL) 洗涤。在减压下蒸发滤液, 使用正已烷 (30mL) 洗涤残渣, 以得到标题化合物 (300mg, 38%)。1H NMR (400MHz, DMSO-d$_6$); δ 9.43 (brs, 1H), 8.38 (s, 1H), 7.83 (dd, J' = 8.40Hz, J" = 2.0Hz, 1H), 7.55-7.49 (m, 1H), 7.32 (d, J = 8.40Hz, 1H), 2.72 (d, J = 4.4Hz, 3H), 1.35 (s, 12H)。

步骤 6: 5-(4,4,5,5-四甲基-1,3,2-二氧杂环己烯-2-基)-4-(三氟甲基) 吡啶-2-胺

步骤 1: 5-溴-4-(三氟甲基) 吡啶-2-胺
[0272] 在室温黑暗条件下，向搅拌的 4-（三氟甲基）吡啶-2-胺 (2.5g, 0.01542mol) 于二氯甲烷 (250mL) 的溶液中分批加入 N-溴琥珀酰亚胺 (2.74g, 0.01542mol) 并在室温下持续搅拌 6h。用 1N NaOH 溶液 (20mL) 稀释反应混合物，并用 DCM (2×100mL) 萃取。将合并的有机层用硫酸钠干燥，并在减压下过滤并蒸发以得到标题化合物 (3.2g, 86%)。1H NMR (400MHz, CDC1₃) : δ 8.28 (s, 1H), 6.77 (s, 1H), 4.73 (brs, 2H) ; ESI-MS: 计算值: 239.95 ; 观测值: 239.10 [M⁺]。[0273] 步骤 2:5- (4,4,5,5-四甲基-1,3,2-二氧杂己硼烷-2-基)-4-（三氟甲基）吡啶-2-胺

[0274]

[0275] 于 250mL 的圆底烧瓶中装入 5-溴 -4-（三氟甲基）吡啶-2-胺 (3.2g, 0.013mol)、双（频哪醇合）二硼 (4.74g, 0.0186mol)、KOA (5.22g, 0.053mol) 和 1,4-二氧六环 (100mL)。用氮气将反应混合物脱气 15min，向混合物中加入 Pd(dppf)Cl₂. DCM (544mg, 0.00066mol)。再次用氮气将所得混合物脱气 10min 并在 100℃持续搅拌过夜。将所述反应混合物冷却至室温，通过 Celite® 试剂过滤，用 EtOAc (300mL) 洗涤滤饼。在减压下蒸发滤液以得到标题化合物 (5g, 粗产物)。粗产物被用于下一步反应而未进行进一步的纯化。ESI-MS: 计算质量: 288.13 ; 观测质量: 289.0 [M⁺]

[0276] 制备 7:1-（四氢-2H-吡喃-2-基）-4-（4,4,5,5-四甲基-1,3,2-二氧杂己硼烷-2-基）-1H-吲哚

[0277]

[0278] 步骤 1:2-溴-6-氟苯甲醛

[0279]
[0280] 在0℃向搅拌的二异丙基胺 (1.4mL, 0.00571mol) 于干四氢呋喃 (7.2mL) 的溶液中逐滴加入正丁基锂 (1.6M 乙烷中) (3.56mL, 0.00571mol), 并于0℃持续搅拌15min。将反应混合物冷却至-78℃并在10min内加入1-溴-3-氟苯 (1g, 0.00571mol)。在-78℃搅拌1h后, 在5min内逐滴加入无水 N,N-二甲基甲酰胺 (7.2mL), 将所得混合物在-78℃搅拌另外的20min。通过醚酸 (0.6mL) 后是水 (15mL) 的加入猝灭上述反应, 并将上述混合物暖至室温。使用乙酸乙酯 (2x20mL) 萃取上述混合物, 并用水 (2x10mL), 随后是卤水洗涤合并的有机层, 并于无水硫酸钠上干燥。在真空下蒸发溶剂, 以产生为淡黄色固体的标称化合物 (850mg, 73%)。

\[\text{H NMR (400MHz, DMSO-}d_6 \text{)} : \delta 13.44 (s, 1H), 8.03 (s, 1H), 7.78 (d, J = 8.0Hz, 1H), 7.42 (d, J = 7.20Hz, 1H), 7.35 (t, J = 8.4Hz, 1H), 5.80 (dd, J' = 9.6Hz, J" = 2.80Hz, 1H), 3.89-3.86 (m, 1H), 3.77-3.71 (m, 1H), 2.49-2.32 (m, 1H), 2.06-1.95 (m, 2H), 1.77-1.60 (m, 1H), 1.59-1.56 (m, 2H). \]

[0282] 步骤 4: 1-溴-1H-吲唑

[0283] 在室温向搅拌的2-溴-6-氟苯甲酸 (850mg, 0.004mol) 于 DMSO(1mL) 的溶液中加入水合肼 (4.5mL), 并将所得混合物于 80℃搅拌过夜。将反应混合物冷却至室温, 加入水 (10mL), 并用乙酸乙酯 (2x100mL) 萃取上述混合物。以卤水溶液洗涤合并的有机层, 于无水硫酸钠上干燥并过滤。在减压下蒸发滤液以产生为黄色固体的标称化合物 (700mg, 84%)。

\[\text{H NMR (400MHz, DMSO-}d_6 \text{)} : \delta 13.44 (brs, 1H), 8.03 (s, 1H), 7.78 (d, J = 8.0Hz, 1H), 7.34 (d, J = 7.20Hz, 1H), 7.28 (t, J = 7.60Hz, 1H) \text{ESI-MS: 计算质量 } 195.96 \text{, 观测质量 } 197.0 [M+H]^+. \]

[0285] 步骤 4: 1-(四氢-2H-呫喃-2-基)-4-(4,4,5,5-四甲基-1,3,2-二氧杂环己酮)
烷[2-基]-1H- 吲唑

[0288]

[0289] 于 50mL 的圆底烧瓶中装入 4-溴-1-(四氢-2H- 吡喃-2-基)-1H- 吲唑 (550mg, 0.001956mol)、KOMc (575mg, 0.00586mol)、双(频哪醇)二硼 (645mg, 0.002543mol) 和 1,4-二氧六环 (10mL)。用氮气将反应混合物脱气 20min, 并向反应混合物中加入 Pd(dppf)Cl2, DCM (159mg, 0.00019mol)。再以氮气将所得混合物脱气 10min, 并在 100℃ 搅拌过夜。通过 Celite® 试剂过滤所述反应混合物, 并用乙酸乙酯洗涤 (30mL)。蒸发滤液, 使用柱色谱法 (100~200 目硅胶, 己烷中 20% 的 EtOAc) 纯化粗产物以产生作为液体的标题化合物 (590mg, 91 %)。1H NMR (400MHz, DMSO-d6) : δ 8.20 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 5.6 Hz, 1H), 7.43 (t, J = 6.8 Hz, 1H), 5.86 (dd, J’ = 9.2 Hz, J” = 2.4 Hz, 1H), 3.89-3.86 (m, 1H), 3.77-3.70 (m, 1H), 2.54-2.40 (m, 1H), 2.05-1.92 (m, 2H), 1.77-1.60 (m, 1H), 1.59-1.57 (m, 2H), 1.35 (s, 12H); ESI-MS; 计算质量: 328.20; 观测质量: 329.0 [M+H]⁺。

[0290] 制备 8:2-(二氟甲基)-1H- 苯并[d] 吲唑

[0291]

[0292] 向搅拌的邻苯二胺 (1g, 0.00925mol) 于 4N HCl (10mL) 的溶液中加入二氯乙酸 (0.977g, 0.01018mol), 将反应混合物回流加热 2h。将所得反应混合物冷却至室温, 以碳酸钠中和, 通过过滤收集获得的固体, 并用水 (30mL) 洗涤, 然后在真空下干燥以得到标题化合物 (1g, 64 %)。1H NMR (400MHz, CDCl3) : δ 10.64 (brs, 1H), 7.82-7.57 (m, 2H), 7.37 (dd, J’ = 6.0 Hz, J” = 3.20 Hz, 2H), 6.92 (t, J = 5.3 Hz, 1H); ESI-MS; 计算质量: 168.05; 观测质量: 169.0 [M+H]⁺。

[0294]

[0295] 步骤 1: (1H- 苯并[d] 吲唑-2-基) 甲醇

[0296]
向搅拌的邻苯二胺（5g，0.046mol）于4N HCl（50mL）的溶液中加入2-羟基乙酸（4.2g，0.0555mol）并在100℃继续搅拌3h。将所得反应混合物冷却至室温，以饱和碳酸氢钠中和，通过过滤收集获得的固体，并干燥以得到标题化合物（3.5g，73%）。1H NMR（400MHz，DMSO-d6）：δ 12.28（bs，1H），7.52-7.44（m，2H），7.12（d，J = 4.80Hz，2H），5.66（t，J = 6.0Hz，1H），4.68（d，J = 5.2Hz，2H）。

步骤2：2-（（（酸-丁基二甲基硅基）氨基）甲基）-1H- 苯并[d] 咪唑

在室温下，向搅拌的（1H-苯并[d] 咪唑-2-基）甲醇（2g，0.0135mol）于吡啶（30mL）的溶液中加入叔-丁基二甲基硅基氯（3.46g，0.02296mol），并在室温继续搅拌4h。在真空下蒸发吡啶，用二氟甲烷提取残渣（50mL）。用饱和碳酸氢钠和卤水洗涤有机层，于无水硫酸钠干燥并过滤。在减压下蒸发滤液，得到柱色谱法（100-200目硅胶；己烷中20%的EtOAc）纯化产物以得到标题化合物（3.1g，85%）。1H NMR（400MHz，DMSO-d6）：δ 12.23（bs，1H），7.51（bs，2H），7.15（dd，J' = 6.0Hz，J'' = 2.80Hz，2H），4.85（s，2H），0.90（s，9H），0.10（s，6H）；ESI-MS：计算质量262.15；观察质量263.20[M+H]+。

实施例1：2,6-二氟-N-(2-氟-3-(8-甲氧基-2-[(3-甲基联苯基)苯基]-4-[吗啉代喹唑啉-6-基)苯基]苯磺酰胺

步骤1：3-羟基-2-硝基苯甲酸

在室温下将3-氯-2-硝基苯甲酸（30g，0.148mol）溶于氢氧化钾水溶液（240g，4.277mol，于300mL H2O）中，然后在110℃加热12h。将反应混合物冷却至室温，以水稀释，用浓HCl在0℃酸化至pH 2，然后以乙酸乙酯（2×500mL）萃取。用卤水洗涤合并的有机
说 明 书

步骤 2:3- 甲基基 -2- 硝基苯甲酸甲酯

步骤 3:2- 氨基 -3- 甲基苯甲酸甲酯

步骤 4:2- 氨基 -5- 溴 -3- 甲基苯甲酸甲酯

步骤 5:2- 氨基 -5- 溴 -3- 甲基苯甲酸甲酯

步骤 6:2- 氨基 -5- 溴 -3- 甲基苯甲酸甲酯

步骤 7:2- 氨基 -5- 溴 -3- 甲基苯甲酸甲酯
滤。在减压下浓缩滤液，使用柱色谱法(100~200目硅胶:己烷中10%的EtOAc)纯化粗产物以得到为白色固体的标题化合物(20g,63%产率)。1H NMR(400MHz,DMSO-\textit{d}_6): 6.7.42(d, J = 2.0Hz, 1H), 7.09(d, J = 2.0Hz, 1H), 6.47(brs, 2H), 3.85(s, 3H), 3.81(s, 3H) ;ESI-MS:计算质量:258.98;观测质量:260.10[M+H]+。

步骤5:6~溴~8~甲氧基喹啉~2,4(1H,3H)~二酮

![Image](image)

步骤6:6~溴~2,4~二氯~8~甲氧基喹啉

![Image](image)

步骤7:4-(6~溴~2,4~二氯~8~甲氧基喹啉~4~基)吗啉

![Image](image)

步骤8:在0℃向搅拌的6~溴~2,4~二氯~8~甲氧基喹啉(18g,0.058mol)和二异丙基乙胺(30mL,0.174mol)于二氯甲烷(180mL)的溶液中缓慢逐滴加入吗啉(5.1mL,0.058mol)。
在加入完成后，搅拌反应混合物直至 TLC 分析指示起始原料完全消耗（0°C，进行 10min）。用水 (250mL) 稀释所述反应混合物，并用二氯甲烷 (2×500mL) 萃取。滤合并有机层用卤水洗涤，在无水硫酸钠上干燥，过滤并在减压下浓缩。使用柱色谱法 (100−200 目硅胶；己烷中 30% 的 EtOAc) 纯化粗产物以得到为黄色固体的标题化合物（12g，57%）。"H NMR (400MHz, DMSO-d_6): δ 7.63 (d, J = 1.2Hz, 1H), 7.44 (d, J = 2.0Hz, 1H), 3.94 (s, 3H), 3.80−3.74 (m, 8H); ESI-MS: 计算质量: 356.99; 观测质量: 358.0 [M+H]^+.

步骤 8: N-(3-(2-氯-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯磺酰胺)

![Chemical Structure](image)

于 100mL 圆底烧瓶中加入 4-(6-溴-2-氯-8-甲氧基喹唑啉-4-基) 咪啡 (250mg, 0.7mmol)、N, N- 二甲基甲酰胺 (8mL)、水 (2mL)、2, 6- 二氯-N-(2-氯-3-(4, 4, 5, 5-四甲基-1, 3, 2- 二氧杂己硼烷-2-基) 苯基) 苯磺酰胺 (375mg, 0.9mmol) 和碳酸钠 (150mg, 1.4mmol)。用氮气将反应混合物脱气 10min。向该混合物中加入 Pd(PPh_3)_2Cl_2 (48mg, 0.07mmol)，再将所得混合物脱气 5min。将反应混合物在 80°C 搅拌 3h。向反应混合物中加入水 (50mL)，随后用乙酸乙酯 (2×100mL) 萃取。用卤水洗涤合并的有机层，于无水硫酸钠上干燥，过滤，在减压下浓缩。使用柱色谱法 (100−200 目硅胶；DCM 中 2% 的甲醇) 纯化粗产物以得到标题化合物 (175mg, 44%); "H NMR (400MHz, DMSO-d_6): δ 10. 9 (s, 1H), 7.77−7.70 (m, 1H), 7.55 (t, J = 7. 68Hz, 1H), 7.49 (s, 1H), 7.37−7.25 (m, 5H), 3.94 (s, 3H), 3.81−3.73 (m, 8H); ESI-MS: 计算质量: 564.08; 观测质量: 565. 20 [M+H]^+.

步骤 9: 2, 6- 二氟-N-(2-氯-3-(8-甲氧基-2-(4-(3-甲基脲基) 苯基)-4-吗啉代喹唑啉-6-基) 苯基) 苯磺酰胺

![Chemical Structure](image)

于 100mL 圆底烧瓶中加入 N-(3-(2-氯-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)-2, 6- 二氯苯磺酰胺 (175mg, 0.31mmol)、N, N- 二甲基甲酰胺 (8mL)、水 (2mL)、1- 甲基-3-(4-(4, 4, 5, 5-四甲基-1, 3, 2- 二氧杂己硼烷-2-基) 苯基) 尿素 (130mg, 0.46mmol) 和碳酸钠 (131mg, 1.24mmol)。用氮气将反应混合物脱气 10min。向该混合物中加入 Pd(PPh_3)_2Cl_2 (21mg, 0.03mmol)，再将所得混合物用氮气脱气 5min。将反应混合物在 80°C
搅拌过夜。向反应混合物中加入水 (50mL), 随后用乙酸乙酯 (2×100mL) 萃取。用卤水洗涤合并的有机层，于无水硫酸钠上干燥，过滤，在减压下浓缩。使用柱色谱法 (100–200 目硅胶；DCM 中 3% 的甲醇) 纯化粗产物以得到标题化合物 (80mg, 38%)。

1H NMR (400MHz, DMSO-d$_6$): δ 10.89 (s, 1H), 8.79 (s, 1H), 8.35 (d, J = 8.8Hz, 2H), 7.74–7.70 (m, 1H), 7.57–7.53 (m, 3H), 7.49 (s, 1H), 7.35–7.28 (m, 4H), 7.21 (s, 1H), 7.09–7.08 (m, 1H), 4.0 (s, 3H), 3.80–3.75 (m, 8H), 2.66 (d, J = 4.4Hz, 3H); ESI-MS: 计算质量: 678.19; 观测质量: 679.3 [M+H]$^+$.

【0333】实施例 2: N-(3-(2-(1H-吲唑-4-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基) 丙烷-1-磺酰胺

【0331】

在室温向搅拌的 N-(2-氯-3-(8-甲氧基-4-吗啉代-2-(1-(四氢化-2H-吡喃-2-基)-1H-吲唑-4-基)喹唑啉-6-基)苯基) 丙烷-1-磺酰胺 (200mg, 0.312mmol) 于二氯甲烷 (3mL) 的溶液中逐滴加入三氟乙酸 (3mL), 将反应混合物在室温搅拌 1h。在减压下蒸发所述反应混合物，将残渣用饱和的碳酸氢钠溶液中和，然后用乙酸乙酯 (3×50mL) 萃取。用卤水溶液洗涤合并的有机层，于无水硫酸钠上干燥，过滤并在减压下蒸发。使用制备 HPLC 纯化粗产物以得到目标产物 (26mg, 14%)。

1H NMR (400MHz, DMSO-d$_6$): δ 13.21 (s, 1H), 9.75 (s, 1H), 9.17 (s, 1H), 8.37 (d, J = 6.8Hz, 1H), 7.72 (s, 1H), 7.69 (s, 1H), 7.58 (t, J = 7.2Hz, 1H), 7.56–7.50 (m, 1H), 7.47 (s, 2H), 7.34 (t, J = 8.0Hz, 1H), 4.12 (s, 3H), 3.86–3.84 (m, 8H), 3.19–3.15 (m, 2H), 1.82–1.76 (m, 2H), 1.02–0.99 (m, 3H); ESI-MS: 计算质量: 576.20; 观测质量: 577.40 [M+H]$^+$.

【0333】实施例 3: N-(3-(2-(6-((2-氨基乙基)氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基) 丙烷-1-磺酰胺

【0334】

将 N-(2-氯-3-(2-(6-氯吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)苯基) 丙烷-1-磺酰胺 (190mg) 和乙二胺 (1.9mL) 的混合物在密封管中于 70°C 加热 1h。由 TLC 确认反应完成后，在减压下直接蒸发反应混合物。使用制备 HPLC 纯化粗产物以得到标题化合物 (70mg, 34%)。

1H NMR (400MHz, DMSO-d$_6$): δ 9.10 (s, 1H), 8.38 (d, J = 8.8Hz, 1H), 8.02–7.75 (m, 8H), 7.69–7.57 (m, 8H), 7.49–7.43 (m, 2H), 7.34–7.26 (m, 2H), 7.09–6.97 (m, 2H), 6.95–6.87 (m, 2H), 5.26–5.19 (m, 2H), 5.08–4.91 (m, 2H), 2.84–2.61 (m, 4H), 2.66–2.50 (m, 4H), 1.89–1.67 (m, 4H), 1.66–1.50 (m, 4H), 1.47–1.31 (m, 4H), 1.30–1.13 (m, 4H), 1.13–0.96 (m, 4H), 0.94–0.81 (m, 4H).

【0335】
7.58 (brs, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.34 (s, 1H), 7.14-7.07 (m, 3H), 7.59 (d, J = 8.8 Hz, 1H), 4.01 (s, 3H), 3.80-3.77 (m, 8H), 2.96 (t, J = 7.2 Hz, 2H), 2.84 (t, J = 5.6 Hz, 2H), 2.79 (t, J = 6.4 Hz, 2H), 2.78-2.61 (m, 2H), 1.75-1.69 (m, 2H), 0.94-0.85 (m, 3H); ESI-MS:计算质量 595.24; 观测质量 596.2 [M+H]^+.

[0336] 实施例 4: N-(3-(2-(6-氨基吡啶-3-基)-8-(2-羟乙氧基)-4-吗啉代喹啉啶-6-基)-2-氯苯基) 丙烷-1-磺酰胺

[0337]

![化合物结构示意图]

[0338] 步骤 1: 6-溴-2-氯-4-吗啉代喹啉啶-8-醇

[0339]

[0340] 在 0℃向搅拌的 4-(6-溴-2-氯-8-甲氧基喹啉啶-4-基) 吗啉 (2g, 0.0056mol) 于二氯甲烷 (40mL) 的溶液中逐滴加入三溴化硼 (8.42g, 0.033mol)。将反应混合物在室温搅拌 16h 并倾倒入冰冷的水中。用饱和的碳酸氢钠溶液将所得混合物中和至 pH 7, 并用二氯甲烷 (2×100mL) 萃取。在无水硫酸钠上干燥合并的有机层, 过滤并在减压下蒸去得到醚, 装配物 (800mg, 粗)。该产物被用于下一步未进行进一步的纯化。ESI-MS:计算质量 342.97; 观测质量 342.10 [M-H]^-。

[0341] 步骤 2: 2-(6-溴-2-氯-4-吗啉代喹啉啶-8-基) 氧基) 乙醇

[0342]

![化合物结构示意图]

[0343] 在室温向搅拌的 6-溴-2-氯-4-吗啉代喹啉啶-8-醇 (0.8g, 0.0023mol) 和碳酸钾 (1.12g, 0.0081mol) 于 N,N-二甲基甲酰胺 (15mL) 的悬浮液中加入 2-溴乙醇 (0.43g, 0.0034mol)。将反应温度增加至 80℃并持续搅拌另外 18h。向反应混合物中加入水 (50mL), 随后用乙酸乙酯 (3×50mL) 萃取。合并有机层, 于无水硫酸钠上干燥, 过滤并蒸发。
说明书

使用柱色谱法（100-200目硅胶，DCM中2%的甲醇）纯化粗产物以得到标题化合物（200mg，22%）。\(^1\)H NMR（400MHz，DMSO-d\(_6\)）：δ 7.64（d，J = 1.2Hz，1H），7.49（d，J = 1.68Hz，1H），4.98（t，J = 5.2Hz，1H），4.18（t，J = 4.4Hz，2H），3.82-3.74（m，10H）；ESI-MS：计算质量：387.0；观测质量：388.20[M+H]^+。

[0344] 步骤3：N-(3-(2-氯-8-(2-羟乙氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺

[0345]

[0346] 使用氮气将搅拌的2-((6-溴-2-氯-4-吗啉代喹唑啉-8-基)氧基)乙醇（0.2g，0.000516mol）、N-(2-氟-3-(4,4,5,5-四甲基-1,3,2-二氧杂环己烷-2-基)苯基)丙烷-1-磺酰胺（0.21g，0.00062mol）和碳酸钠（0.1g，0.001mol）于25mL DMF和水（4:1混合物）中的混合物脱气15min。向此混合物中加入Pd(PPh\(_3\))\(_2\)Cl\(_2\)（36mg，0.00051mol），再用氮气将所得混合物脱气10min。将反应混合物在80℃搅拌1h。将反应混合物冷却至室温，加入水（50mL），并用乙酸乙酯（3×50mL）萃取所得混合物。合并有机层，用水静置，合并有机层，用水洗涤，并在减压下浓缩。使用柱色谱法（100-200目硅胶，DCM中2%的甲醇）纯化粗产物以得到标题化合物（180mg，66%）。

[0347] 步骤4：N-(3-(2-(6-氨基吡啶-3-基)-8-(2-羟乙氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺

[0348]

[0349] 使用氮气将搅拌的N-(3-(2-氯-8-(2-羟基乙氧基)-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺（0.18g，0.00034mol）、5-(4,4,5,5-四甲基-1,3,2-二氧杂环己烷-2-基)吡啶-2-胺（98mg，0.00044mol）和碳酸钠（0.14g，0.0013mol）于25mL DMF和水（4:1混合物）的混合物脱气15min。向该混合物中加入Pd(PPh\(_3\))\(_2\)Cl\(_2\)（24mg，0.00034mol），再用氮气将所得混合物脱气10min。将反应混合物在80℃搅拌1h。将反应混合物冷却至室温，加入水（50mL），并用乙酸乙酯（3×50mL）萃取所
得混合物。合并有机层，以水随后是卤水洗涤，并在减压下浓缩。使用制备 HPLC 纯化粗产物以得到目标化合物 (8mg, 4%)。1H NMR (400MHz, DMSO-d$_6$) : δ 9.72 (s, 1H), 9.05 (d, J = 2.4Hz, 1H), 8.4 (dd, J' = 8.8Hz, J'' = 2.0Hz, 1H), 7.63 (s, 1H), 7.52 (t, J = 7.2Hz, 1H), 7.46-7.43 (m, 2H), 7.31 (t, J = 8.0Hz, 1H), 6.56 (d, J = 8.4Hz, 1H), 6.51 (brs, 2H), 4.98 (t, J = 4.4Hz, 1H), 4.29 (t, J = 4.8Hz, 2H), 3.88-3.77 (m, 10H), 3.16 (t, J = 8.0Hz, 2H), 1.81-1.73 (m, 2H), 1.05 (t, J = 6.8Hz, 3H); ESI-MS: 计算质量: 582.21; 观测质量: 583.1 [M+H]$^+$.

[0350] 实施例 5: N-(3-(2-(6-(氨基吡啶-3-基)-4,8-双吗啉代喹唑啉-6-基)-2-氮苯基)-3-氟丙烷-1-磺酰胺

[0351]

[0352] 步骤 1: 3- 吡嗪代 -2- 硝基苯甲酸

[0353]

[0354] 将 3- 氯 2- 硝基苯甲酸 (5g, 0.024mol) 和吗啉 (40mL) 的混合物在 130℃加热 48h。将反应混合物冷却至室温，加入水 (150mL)，使用 1N 盐酸将所得混合物酸化至 pH 2。通过过量收集1h后分离的固体，在真空下干燥以得到目标化合物 (6.2g, 98%)。1H NMR (400MHz, DMSO-d$_6$) : δ 13.9 (brs, 1H), 7.83-7.77 (m, 2H), 7.35 (t, J = 7.6Hz, 1H), 3.65-3.62 (m, 4H), 2.90-2.88 (m, 4H); ESI-MS: 计算质量: 525.07; 观测质量: 521.0 [M-H]。

[0355] 步骤 2: 3- 吡嗪代 -2- 硝基苯甲酸甲酯

[0356]

[0357] 在 0℃向搅拌的 3- 吡嗪代 -2- 硝基苯甲酸 (6.2g, 0.024mol) 和碳酸钾 (6.78g, 0.049mol) 于 N, N- 二甲基甲酰胺 (62mL) 的悬浮液中加入碘甲烷 (6.98g, 0.049mol)。将反
应混合物在室温搅拌 3h。加入冰冷的水 (300mL)，并用所得混合物在室温搅拌 30min。通过
过滤收集分离出的固体，并在真空下干燥以得到标题化合物 (5.6g, 85%)。

1H NMR (400MHz, DMSO-d6): δ 7.86 (dd, J' = 7.6Hz, J'' = 1.6Hz, 1H), 7.79 (dd, J' = 7.6Hz, 1H), 7.71 (t, J = 8.4Hz, 1H), 3.83 (s, 3H), 3.65-3.63 (m, 4H), 2.91-2.89 (m, 4H).

步骤 3: 2- 氨基-3- 吡喃甲酸甲酯

在 Parr 加氢装置中以 60PSI 氢气压力将 3- 吡喃甲酸甲酯 (5.6g) 和
10% Pd-C (1.5g) 于 56mL 甲醇中的混合物搅拌 2h。由 TLC 确认完成后，通过 Celite® 试剂过滤
反应混合物，并用甲醇（200mL）洗涤所述 Celite® 试剂。减压下浓缩滤液，在高真空下干
燥获得的固体以得到标题化合物 (4.5g, 97%)。

1H NMR (400MHz, DMSO-d6): δ 7.52 (d, J = 6.8Hz, 1H), 7.17 (d, J = 6.8Hz, 1H), 6.56 (t, J = 7.6Hz, 1H), 6.4 (bs, 2H), 3.79-3.75 (m, 7H), 2.78-2.76 (m, 4H); ESI-MS: 计算质量: 236.12; 观测质量: 237.10 [M+H]^+.

步骤 4: 2- 氨基-5- 溴-3- 吡喃甲酸甲酯

在 0℃ 向 2- 氨基-3- 吡喃甲酸甲酯 (4.5g, 0.02044mol) 于醋酸 (45mL) 的溶液中逐滴加入溴 (3.92g, 0.024mol)。将反应混合物在室温搅拌 1h。反应完成后，将反应混
合物倾倒入 1L 的冷水中，将所得混合物在室温搅拌 30min，然后以乙酸乙酯 (2×500mL) 萃
取。以饱和的碳酸氢钠溶液随后是卤水溶液洗涤合并的有机层，于无水硫酸钠上干燥并过
滤。在减压下浓缩滤液，用柱色谱法 (100-200 目硅胶，己烷中 20% 的 EtOAc) 纯化粗产
物以得到标题化合物 (4.4g, 68%)。

1H NMR (400MHz, DMSO-d6): δ 7.61 (d, J = 2.0Hz, 1H), 7.23 (d, J = 2.0Hz, 1H), 6.50 (bs, 2H), 3.80-3.75 (m, 7H), 2.80-2.78 (m, 4H); ESI-MS: 计算质量: 314.03; 观测质量: 313.20 [M+H]^+.

步骤 5: 6- 溴-8- 吡喃代唑嗪甲 -2, 4(1H, 3H)- 二酮

步骤 6: 2- 溴 -8- 吡喃代唑嗪甲 -2, 4(1H, 3H)- 二酮
[0366] 将尿素（8.4g, 0.14mol）和2-氨基-5-溴-3-吗啉代苯甲酸甲酯（4.4g, 0.014mol）的混合物在200℃加热3h。由TLC确认反应完成后，使反应混合物冷却至60℃，并加入100mL水。将反应混合物水溶液在100℃搅拌15min，通过过滤收集固体。在真空下干燥。得到的固体化合物（4g, 86%）未经进一步的纯化即被用于下一步。1H NMR (400MHz, DMSO-d$_6$): δ 7.73 (d, J = 2.4Hz, 1H), 6.60 (d, J = 2.4Hz, 1H), 3.84-3.82 (m, 4H), 2.84-2.82 (m, 4H); ESI-MS:计算质量: 325.01; 观测质量: 324.0 [M-H]。

[0367] 步骤6：4-（6-溴-2, 4-二氯喹唑啉-8-基）吗啉

[0368]

[0369] 向搅拌的6-溴-8-吗啉代喹唑啉-2, 4 (1H, 3H) -二酮于100mL三氯氧磷 (POCl$_3$)的悬浮液中按序逐滴加入二异丙基乙胺 (1.41g, 0.0109mol) 和N,N-二甲基甲酰胺 (2.5ml)。将反应混合物在130℃保持过夜。通过蒸馏移除过量的POCl$_3$，并将粗残渣与甲苯 (2×100mL) 共沸两次。将所得粗产物倒置在冰冷的水中，通过过滤收集沉淀的固体，并于真空下干燥后得到标题化合物（4.4g），其未经进一步的纯化即被用于下一步。1H NMR (400MHz, DMSO-d$_6$): δ 7.93 (d, J = 1.6Hz, 1H), 7.51 (d, J = 2.0Hz, 1H), 3.83-3.81 (m, 4H), 3.40-3.38 (m, 4H)。

[0370] 步骤7：4, 4’-（6-溴-2-氯喹唑啉-4, 8-二基）双吗啉

[0371]

[0372] 在0℃向搅拌的4-（6-溴-2, 4-二氯喹唑啉-8-基）吗啉（4.4g, 0.012mol）和二异丙基乙胺（4.71g, 0.036mol）于二氯甲烷（130mL）的溶液中缓慢逐滴加入吨吗啉（1.062g, 0.012mol）。加入完成后，将反应混合物在0℃搅拌30min。用水稀释反应混合物（200mL）并用二氯甲烷萃取 (2×500mL)。用卤水洗涤合并的有机层，于无水硫酸钠上干燥，过滤并在
减压下浓缩。使用柱色谱法 (100-200 目硅胶, 己烷中 20%的 EtOAc) 纯化粗产物以得到标题化合物 (3.2g, 64%)。1H NMR (400MHz, DMSO-d6): δ 7.6 (d, J = 2.0Hz, 1H), 7.23 (d, J = 2.0Hz, 1H), 3.80-3.73 (m, 12H), 3.31-3.28 (m, 4H); ESI-MS; 计算质量: 412.03; 观测质量: 413.20 [M+H]⁺。

步骤 8: 4',4’-(6-溴-2-氯喹唑啉 - 4,8-二基) 双吗啉

![图示]

步骤 9: 4',4’-(6-溴-2-氯喹唑啉 - 4,8-二基) 双吗啉

![图示]

步骤 10: 用氮气将搅拌的 4,4’-(6-溴-2-氯喹唑啉 - 4,8-二基) 双吗啉 (0.6g, 0.0014mol), 3-氟-N-(2-氯-3-(4,4,5,5-四甲基-1,3,2-二氧杂环己烷)-2-基) 苯烷-1-磺酰胺 (0.788g, 0.00218mol) 和碳酸钠 (0.308g, 0.0029mol) 于 30mL 的 DMF 和 H2O (4:1 混合物) 中的混合物煮沸 15min。向该混合物加入 Pd(PPh3)2Cl2 (103mg, 0.00014mol), 再用氮气将所得混合物煮沸 10min。将反应混合物在 80℃搅拌 1h。将所述反应混合物冷却至室温，加入水 (100mL), 用乙酸乙酯 (2×200mL) 萃取所得混合物。合并有机层, 用水是卤水溶液洗涤，并在减压下浓缩。使用柱色谱法 (100-200 目硅胶, 己烷中 50%的 EtOAc) 纯化粗产物以得到标题化合物 (150g, 18%)。1H NMR (400MHz, DMSO-d6): δ 9.86 (brs, 1H), 7.52 (s, 1H), 7.54 (t, J = 6.4Hz, 1H), 7.45 (t, J = 6.8Hz, 1H), 7.31 (t, J = 8.0Hz, 2H), 6.62 (t, J = 6.0Hz, 1H), 4.5 (t, J = 6.0Hz, 1H), 3.80-3.76 (m, 12H), 3.31-3.27 (m, 4H), 3.31-3.325 (m, 2H), 2.17-2.10 (m, 2H); ESI-MS; 计算质量: 567.15; 观测质量: 566.30 [M+H]⁺。
温，加入水（50mL），用乙酸乙酯（3×50mL）萃取所得混合物。合并有机层，用水随后是卤水溶液洗涤，并在减压下浓缩。使用制备 HPLC 纯化粗产物以得到标题化合物（30mg，18%）。

1H NMR (400MHz, DMSO-d6) : δ 9.85 (brs, 1H), 9.02 (d, J = 6.8Hz, 1H), 8.33 (d, J' = 8.8Hz, J'' = 2.4Hz, 1H), 7.6 (s, 1H), 7.52 (t, J = 7.2Hz, 1H), 7.43 (t, J = 6.0Hz, 1H), 7.3 (t, J = 8.4Hz, 1H), 7.2 (s, 1H), 6.54 (d, J = 8.4Hz, 1H), 6.44 (brs, 2H), 4.62 (t, J = 6.0Hz, 1H), 4.50 (t, J = 5.6Hz, 1H), 3.9 (brs, 4H), 3.81-3.77 (m, 8H), 3.50-3.40 (m, 4H), 3.33-3.20 (m, 2H), 2.21-2.09 (m, 2H); ESI-MS; 计算质量: 625.23; 观测质量: 626.4 [M+H]^+.

[0379] 实施例 6 : N-(3-(2-(2-氨基嘧啶-5-基)-8-甲基喹啉-4-基)-2,4-二氟苯基) 丙烷-1-磺酰胺

[0380]

[0381] 步骤 1: 4-(2-氯-8-甲氧基-6-(4,4,5,5-四甲基-1,3,2-二氧杂环己烯-2-基)喹啉-4-基) 吡啶

[0382]

[0383] 于 250mL 圆底烧瓶中装入 4-(6-溴-2-氯-8-甲氧基喹啉-4-基) 吡啶 (2g, 0.0056mol)、甲苯 (150mL)、双(频哪醇) 二硼 (1.7g, 0.0067mol) 和 KOAc (1.09g, 0.011mol)。用氮气将反应混合物脱气 15min。向该混合物中加入 Pd(dpff)Cl₂, DCM (228mg, 0.00028mol), 并再用氮气将所得混合物脱气 10min。将反应混合物在 80℃搅拌 3h。通过 Celite®试剂过滤反应混合物, 并以甲苯 (200mL) 洗涤 Celite®试剂。减压下蒸发滤液, 并以己烷 (200mL) 洗涤残渣以提供作为固体的标题化合物 (2g, 88%)。粗产物未经进一步的纯化即被用于下一步。1H NMR (400MHz, DMSO-d₆) : δ 7.8 (s, 1H), 7.36 (s, 1H), 3.93 (s, 3H), 3.87-3.73 (m, 8H), 1.32 (s, 12H); ESI-MS; 计算质量: 405.16; 观测质量: 406.20 [M+H]^+.

[0384] 步骤 2 : N-(3-(2-氯-8-甲氧基-4-吡啶基喹啉-6-基)-2,4-二氟苯基) 丙烷-1-磺酰胺

[0385]
【0386】于100mL圆底烧瓶中装入N-(3-溴-2,4-二氟苯基)丙烷-1-磺酰胺(0.65g,0.002mol),4-(2-氯-8-甲氧基-6-(4,4,5,5-四甲基-1,3,2-二氧杂二环烷-2-基)喹唑啉-4-基)吗啉(0.83g,0.002mol)，DME(20mL)和2M碳酸钠水溶液(2mL水中0.438g)。用氮气将反应混合物脱气15min。向该混合物中加入Pd(dpdpf)Cl2,DCM(169mg,0.0002mol)。再用氮气将所得混合物脱气10min。将所述反应混合物在90℃搅拌2h。用水(75mL)稀释反应混合物。并用乙酸乙酯(2×250mL)萃取所得混合物。用卤水洗涤合并的有机层。于无水硫酸钠上干燥，过滤并在减压下蒸发。使用柱色谱法(230-400目硅胶，DCM中1%的MeOH)纯化粗产物以得到目标化合物(200mg,18%)。1H NMR(400MHz,DMSO-d6):δ 9.70(brs,1H),7.62(s,1H),7.50-7.47(m,1H),7.39(s,1H),7.27(t,J=8.4Hz,1H),3.93(s,3H),3.80-3.74(m,8H),3.15-3.12(m,2H),1.79-1.74(m,2H),0.98(t,J=7.2Hz,3H);ESI-MS:计算质量512.10;观测质量513.20[M+H]+。

【0387】步骤3:N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氟苯基)丙烷-1-磺酰胺

【0388】

【0389】于50mL圆底烧瓶中装入N-(3-(2-氯-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氟苯基)丙烷-1-磺酰胺(0.1g,0.00019mol),5-(4,4,5,5-四甲基-1,3,2-二氧杂二环烷-2-基)喹唑-2-胺(0.063g,0.00028mol)、碳酸钠(0.060g,0.00056mol)、N,N-二甲基甲酰胺(4mL)和水(1mL)。用氮气将反应混合物脱气10min。向该混合物中加入Pd(PPh3)2Cl2(0.013g,0.00019mol),再用氮气将所得混合物脱气5min。将所述反应混合物在80℃搅拌16h。使反应混合物通过Celite®试剂,并用乙酸乙酯(50mL)洗涤所述Celite®试剂,在减压下蒸发滤液。使用柱色谱法(100-200目硅胶，DCM中3%的MeOH)纯化粗产物以得到目标化合物(35mg,31%)。1H NMR(400MHz,DMSO-d6):δ 9.69(brs,1H),9.19(s,2H),7.59(s,1H),7.51-7.45(m,1H),7.33(s,1H),7.25(t,J=8.0Hz,1H),7.19(brs,2H),3.98(s,3H),3.79-3.78(m,8H),3.16-3.12(m,2H),1.80-1.74(m,2H),0.99(t,J=7.2Hz,3H);ESI-MS:计算质量571.18;观测质量570.2[M+H]+。

【0390】实施例7:N-(3-(2-(2-氨基嘧啶-5-基)-4-吗啉代毗啶并[3,2-d]嘧啶-6-基)-2-氟苯基)丙烷-1-磺酰胺
步骤 1: 6-氯-3-硝基-吡啶-2-甲腈 (6-chloro-3-nitropicolonitrile)

向搅拌的 2,6-二氯-3-硝基吡啶 (10g, 0.0518mol) 于 NMP (100mL) 的混合物中加入 CuCN (9.7g, 0.1083mol), 并将反应混合物在 180°C 加热 1h。将所述反应混合物冷却至室温，并将深棕色混合物倾倒至冰冷水 (300mL) 中，并通过 Celite® 耐热过滤。用 DCM 中 10% 的甲醇 (4×250mL) 萃取固体，并用 EtOAc (3×500mL) 萃取水层。用卤水洗涤合并的有机层，于无水硫酸钠上干燥，过滤并在减压下浓缩。使用柱色谱法 (100-200 目硅胶：己烷中 10% 的 EtOAc) 纯化粗产物以得到标题化合物 (3.5g, 36%)。1H NMR (400MHz, DMSO-$_d_6$): δ 8.82 (d, J = 8.8Hz, 1H), 8.17 (d, J = 9.6Hz)。

步骤 2: 3-氨基-6-氯-吡啶-2-酰胺 (3-amino-6-chloropicolinamide)

步骤 3: 6-氯吡啶并 [3,2-d] 嘧啶-2,4(1H,3H)-二酮

步骤 4: 在室温下, 向搅拌的 3-氨基-6-氯-吡啶-2-酰胺 (2.8g, 0.0163mol) 于 1,4-二
氧六环（90mL）的混合物中加入三光气（4.85g，0.0163mol）。将反应混合物在100℃加热1.5h。将所述反应混合物冷却至室温，加入水（1L）并通过过滤收集固体。使用乙酸乙酯洗涤所述固体以得到目标化合物（2.3g，72%）。\(^\text{1}^\text{H} \text{NMR (400MHz, DMSO-}d_{6}\text{): } \delta 11.61 \text{(brs, 1H), 11.36 \text{(brs, 1H), 7.72 \text{(d, J = 8.4Hz, 1H), 7.62 \text{(d, J = 8.4Hz, 1H))；ESI-MS: 计算质量: 197.0；观察质量: 196.10}[M+H]^-}。\\n
步骤4:2,4,6-三氯吡啶并[3,2-d]嘧啶

\[
\text{Cl} \quad \text{N} \quad \text{Cl}
\]

步骤5:4-(2,6-二氯吡啶并[3,2-d]嘧啶-4-基)吗啉

\[
\text{N} \quad \text{O} \quad \text{Cl} \quad \text{Cl}
\]

步骤6:N-(3-(2-氯-4-基吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基）丙烷-1-磺酰胺

\[
\text{Cl} \quad \text{N} \quad \text{O}
\]

步骤7:向搅拌的4-(2,6-二氯吡啶并[3,2-d]嘧啶-4-基)吗啉（0.5g，0.00176mol）和N-(2-氟-3-(4,4,5,5-四甲基-1,3,2-二氧杂环己烯-2-基)苯基）丙烷-1-磺酰胺。
胺（0.6g，0.00175mol）于乙腈（20mL）的溶液中加入碳酸钾的水溶液（486mg于2.5mL水中，0.0035mol）。用氮气将反应混合物脱气15min。向该混合物中加入Pd（PPh₃）₄（60mg，0.00051mol），再用氮气将所得混合物脱气10min。将所述反应混合物在室温搅拌30min。在减压下蒸发溶剂，并使用柱色谱法（100-200目硅胶，DCM中1.5%的MeOH）纯化残渣以得到标题化合物（350mg，42%）。¹H NMR（400MHz，DMSO-d₆）：δ 9.80（brs，1H），8.20-8.14（m，2H），7.68（t，J = 6.8Hz，1H），7.56-7.52（m，1H），7.35（t，J = 8.0Hz，1H），5.35-5.40（brm，2H），4.40-3.90（brm，2H），3.81-3.79（m，4H），3.16-3.13（m，2H），1.80-1.72（m，2H），0.98（t，J = 8.0Hz，3H）；ESI-MS：计算质量：465.10；观测质量：466.20[M⁺]⁺。

步骤7：N-(3-(2-(2-氨基嘧啶-5-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)丙烷-1-磺酰胺

在室温下向搅拌的N-(3-(2-氯-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氟苯基)丙烷-1-磺酰胺（0.175g，0.000376mol）和5-(4,4,5,5-四甲基-1,3,2-二氧杂异硼烷-2-基)嘧啶-2-胺（0.20g，0.000936mol）于DMF（8mL）的溶液中加入碳酸钠（0.159g于2mL水中，0.0015mol）水溶液。用氮气将反应混合物脱气15min。向该混合物中加入Pd（PPh₃）₃Cl₂（26mg，0.000037mol）并再用氮气将所得混合物脱气10min。将所述反应混合物在80℃加热1.5h。使所述反应混合物通过Celite®试剂，并用乙酸乙酯（100mL）洗涤所述Celite®试剂。用水（2×50mL）随是卤水溶液洗涤有机层，在无水硫酸钠上干燥并过滤。在减压下蒸发溶剂并使用柱色谱法（中性氧化铝，DCM中7%的MeOH）纯化粗产物以得到标题化合物（6mg，3%）。¹H NMR（400MHz，DMSO-d₆）：δ 9.80（brs，1H），9.18（brs，2H），8.22（d，J = 8.8Hz，1H），8.11（d，J = 8.4Hz，1H），7.69（t，J = 6.0Hz，1H），7.52（t，J = 7.2Hz，1H），7.35（t，J = 7.6Hz，1H），7.19（brs，2H），4.65-4.40（brm，4H），3.83（brs，4H），3.20-3.14（m，2H），1.78-1.76（m，2H），0.99（t，J = 6.4Hz，3H）；ESI-MS：计算质量：524.18；观测质量：523.4[M⁺]⁺。

实施例8：N-(3-(2-(6-氨基吡啶-3-基)-8-甲基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺
步骤1: (E)-2-(肼基)-N-(邻-甲苯基)乙酰胺

于三颈2L圆底烧瓶中装入水合氨醛(39.9g, 0.241mol)、无水硫酸钠(312.2g, 1.75mol)和水(880mL), 搅拌溶液并在40°C加热直至溶液变澄清。向该混合物加入邻-甲苯胺(23.4g, 0.219mol 溶于135mL水和19mL盐酸中)和盐酸羟胺(50.2g, 0.723mol)中。将所得溶液在100°C加热1.5h, 然后冷却至室温。在室温下静置16h后产物从溶液中沉淀析出。通过过滤收集固体并干燥以得到标题化合物(27g, 69%)。

\[\text{H NMR (400 MHz, DMSO-}d_6 \text{): } \delta 12.17 (s, 1H), 9.48 (brs, 1H), 7.67 (s, 1H), 7.47 (d, J = 7.60Hz, 1H), 7.21 (d, J = 7.2Hz, 1H), 7.20-7.09 (m, 2H), 2.20 (s, 3H); ESI-MS; 计算质量: 178.07; 观测质量: 177.30 [M-H]。\]

步骤2: 7- 氨基吲哚啉-2,3-二酮

在快速搅拌下向预热(50°C)的浓硫酸(93.39mL)溶液中缓慢加入2-(肼基)-N-(邻-甲苯基)乙酰胺(27g, 0.151mol), 将反应温度保持在60°C和70°C之间。一旦加入完成, 便将反应混合物加热至80°C并搅拌20min。然后使所述反应混合物冷却至室温并倾倒于碎冰(800g)上。形成粗绿色沉淀, 其由乙酸乙酯(2×300mL)随后是二氯甲烷中10%的甲醇萃取。将合并的有机层于硫酸钠上干燥, 过滤, 在减压下蒸发滤液以得到为橘黄色固体的标题化合物(7g, 28%)。

\[\text{H NMR (400 MHz, DMSO-}d_6 \text{): } \delta 11.08 (s, 1H), 7.42 (d, J = 7.2Hz, 1H), 7.33 (d, J = 7.2Hz, 1H), 6.98 (t, J = 7.6Hz, 1H), 2.19 (s, 3H); ESI-MS; 计算质量: 161.05; 观测质量: 160.10 [M-H]。\]

步骤3: 5- 溴-7- 氨基吲哚啉-2,3-二酮

在室温下, 向搅拌的7- 氨基吲哚啉-2,3 二酮(7g, 0.043mol)于氯仿(700mL)的混合物中于15min内逐滴加入溴(2.8mL, 0.053mol)于氯仿(100mL)的溶液。将反应混合物在80°C加热24h然后冷却至0°C, 其导致为红色固体的产物的沉淀。通过抽滤收集固体, 在真空下干燥以得到标题化合物(8g, 77%)。

\[\text{H NMR (400 MHz, DMSO-}d_6 \text{): } \delta 11.20 (s, 1H), 7.64 (d, J = 1.2Hz, 1H), 7.42 (d, J = 7.2Hz, 1H), 2.18 (s, 3H); ESI-MS; 计算质量: 238.96; 观测质量: 238.30 [M-H]。\]

步骤4: 2- 氨基-5- 溴-3- 甲基苯甲酸
通过搅拌将 5-溴-7-甲基吲哚啉-2,3-二酮 (8g, 0.033mol)、氯化钠 (4.5g, 0.09mol) 和氢氧化钠 (3.6g, 0.09mol) 的混合物溶于水中 (96mL) 以产生黄色溶液。将反应混合物冷却至 0℃并向该混合物中缓慢加入 30%的过氧化氢溶液 (7mL) 和于 83mL 水中的氢氧化钠 (6.27g)。将反应混合物在 0℃搅拌另外的 1.5h 然后使用冰醋酸水溶液以产生棕褐色沉淀。将固体过滤，用冷水彻底洗涤并在真空下干燥以得到标题化合物 (5.8g, 75%)。\[^1\] H NMR (400MHz, DMSO-\text{d}_6): \delta 7.69 (d, J = 2.4Hz, 1H), 7.26 (s, 1H), 2.0 (s, 3H); ESI-MS: 计算质量: 228.97; 观测质量: 228.10 [M+H]⁺.

步骤 5: 6-溴-8-甲基喹唑啉-2,4(1H, 3H)-二酮

将尿素 (15.28g, 0.254mol) 和 2-氨基-5-溴-3-甲基苯甲酸 (7.6g, 0.031mol) 的混合物在 180℃加热 4h。由 TLC 确定反应完成后，使反应混合物冷却至 80℃并加入水 (200mL)。将反应混合物水溶液在 80℃搅拌 30min, 通过过滤收集沉淀。所得固体化合物 (8.4g, 稍许不纯) 未经进一步的纯化即被用于下一步。\[^1\] H NMR (400MHz, DMSO-\text{d}_6): \delta 7.82 (d, J = 2.0Hz, 1H), 7.68 (d, J = 1.6Hz, 1H), 2.33 (s, 3H); ESI-MS: 计算质量: 253.97; 观测质量: 255.20 [M+H]⁺.

步骤 6: 6-溴-2,4-二氯-8-甲基喹唑啉

在室温下，向搅拌的 6-溴-8-甲基喹唑啉-2,4(1H, 3H)-二酮 (9.4g, 0.037mol) 于三氯氧磷 (84mL) 的悬浮液中逐滴加入二异丙基乙胺 (5.14mL, 0.037mol) 和 N,N-二甲基甲酰胺 (1.3mL)。将反应混合物在 130℃加热 24h。通过蒸馏移除过量的三氯氧磷并将残渣与甲苯共沸。将所得反应混合物冷却至室温，倾倒至水 (150mL) 中并搅拌 30min。通过过滤收集分离出的固体，并在真空下干燥以得到标题化合物 (8.8g, 92%)。\[^1\] H NMR (400MHz, DMSO-\text{d}_6): \delta 8.28 (s, 1H), 8.22 (s, 1H), 2.64 (s, 3H).

步骤 7: 4-(6-溴-2-氯-8-甲基喹唑啉-4-基) 吩嗪
[0435] 在0℃向搅拌的6-溴-2,4-二氯-8-甲基喹唑啉(8.8g, 0.030mol)于二氯甲烷(300mL)的溶液中加入二异丙基乙基胺(10mL, 0.06mol)和氯仿(2.7mL, 0.03mol)然后将反应混合物在0℃搅拌30min。加入水(100mL),通过Celite®试剂过滤所述反应混合物,并用二氯甲烷(200mL)洗涤所述Celite®试剂。分离有机层并用二氯甲烷(2×200mL)萃取水层。用水洗涤合并的有机层,于无水硫酸钠上干燥,过滤并在减压下浓缩。使用柱色谱法(60-120目硅胶;己烷中20%的EtOAc)纯化粗产物以得到为黄色固体的标题化合物(9g, 87%)。^1H NMR(400MHz, DMSO-d_6): δ 7.97 (d, J = 2.0Hz, 1H), 7.88 (d, J = 0.8Hz, 1H), 3.83-3.73 (m, 8H), 2.53 (s, 3H)。

[0436] 步骤8: N-(3-(2-氯-8-甲基-4-吗啉代喹唑啉-6-基)-2-氯苯基)丙烷-1-磺酰胺

[0437]

[0438] 于50mL圆底烧瓶中装入4-(6-溴-2-氯-8-甲基喹唑啉-4-基)吗啉(0.3g, 0.000879mol)、N-(2-氯-3-(4,4,5,5-四甲基-1,3,2-二氧杂已硼烷-2-基)苯基)丙烷-1-磺酰胺(0.36g, 0.00105mol)、碳酸钠(0.184g于2mL水中, 0.00174mol)和DMF(8mL)。用氮气将反应混合物脱气15min。向该混合物中加入Pd(PPh_3)_2Cl_2(60mg, 0.000879mol)并再用氮气将所得混合物脱气10min。将所述反应混合物在80℃搅拌12h。用乙酸乙酯(40mL)稀释所述反应混合物,通过Celite®试剂过滤,并用乙酸乙酯(100mL)洗涤Celite®试剂。用冷水(50mL)洗涤有机层,干燥,于无水硫酸钠上干燥,过滤并在减压下蒸发。使用柱色谱法(230-400目硅胶;DCM中1%的MeOH)纯化粗产物以得到标题化合物(200mg, 47%)。^1H NMR(400MHz, DMSO-d_6): δ 9.73 (brs, 1H), 8.14 (s, 1H), 8.11 (s, 1H), 7.49-7.42 (m, 2H), 7.30 (t, J = 8.0Hz, 1H), 3.85-3.76 (m, 8H), 3.17-3.11 (m, 6H), 2.63 (s, 3H), 1.82-1.72 (m, 2H), 0.85 (t, J = 6.4Hz, 3H); ESI-MS: 计算质量: 478.12; 观测质量: 479.3[M+H]^+。

[0439] 步骤9: N-(3-(2-(6氨基吡啶-3-基)-8-甲基-4-吗啉代喹唑啉-6-基)-2-氯苯基)丙烷-1-磺酰胺

[0440]
[0441] 于50mL圆底烧瓶中装入N-(3-(2-氯-8-甲基-4-喹啉基)-2-氟基)丙酰胺(0.2g,0.004mol)，5-(4,4,5,5-四甲基-1,3,2-二氧杂环己烯-2-基)吡啶-2-胺(0.18g,0.008mol)、碳酸钠水溶液(0.169g于2mL水中,0.0016mol)和DMF(8mL)。用氮气将反应混合物脱气15min。向此混合物中加入Pd(PPh₃)₃Cl₂(28mg,0.0004mol),并用氮气将所得混合物脱气10min。将所述反应混合物在80°C搅拌12h。通过Celite®试剂过滤所述反应混合物,并用乙酸乙酯(100mL)洗涤所述Celite®试剂。用冷水(2×50mL)洗涤有机层,于无水硫酸钠上干燥,过滤并在减压下浓缩。使用制备HPLC纯化粗产物以得到标题化合物(13mg,6%)。

'H NMR(400MHz, DMSO-d₆) : 6.9.70 (d, J = 2.0Hz, 1H), 8.42 (dd, J′ = 8.8Hz, J″ = 1.6Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.44 (t, J = 8.4Hz, 2H), 7.29 (t, J = 7.6Hz, 1H), 6.55 (d, J = 8.8Hz, 1H), 6.45 (d, J = 8.4Hz, 2H), 3.81-3.79 (m, 8H), 3.14 (t, J = 7.2Hz, 2H), 2.69 (s, 3H), 1.80-1.74 (m, 2H), 1.02 (t, J = 6.4Hz, 3H); ESI-MS: 计算质量: 536.2; 观测质量: 537.1 [M+H⁺]⁺.

[0443]

[0444] 步骤1: 4-(6-溴-2-(2-(二氯甲基)-1H-苯并[d] 咪唑-1-基)-8-甲氧基喹啉-4-基) 喹啉

[0445]

[0446] 在室温下,向搅拌的4-(6-溴-2-氟-8-甲氧基喹啉-4-基) 喹啉(300mg,
0.00084mol) 和碳酸钾(348mg,0.00251mol)于N,N-二甲基甲酰胺(10ml)的混合物中加入2-(二氟甲基)-1H-苯并[d]咪唑(169mg,0.001mol)将反应混合物在80℃加热16h。将所述反应混合物加入冰冷的水(100ml)中，通过过滤收集分离的固体，以于己烷中的5%EtOAc洗涤，并在真空下干燥以得到为白色固体的标题化合物(230mg,56%)。\[\text{H NMR (400 MHz, DMSO-d$_6$)}: \delta 8.67 (d, J = 8.40 Hz, 1H), 7.96 (t, J = 5.3 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 7.53-7.43 (m, 2H), 4.05 (s, 3H), 3.94-3.83 (m, 8H); ESI-MS:计算质量:489.06;观察质量:490.29[M-H]。\]

【0447】步骤2: N-(3-(2-(二氟甲基)-1H-苯并[d]咪唑-1-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)丙烷-1-磺酰胺

【0448】

【0449】于50ml的圆底烧瓶中装入4-(6-溴-2-(二氟甲基)-1H-苯并[d]咪唑-1-基)-8-甲氧基喹唑啉-4-基)吗啉(0.12g,0.000245mol)、N-(2-氟-3-(4,4,5,5-四甲基-1,3,2-二氧杂环己烯-2-基)苯基)丙烷-1-磺酰胺(0.126g,0.000367mol)、碳酸钠(0.077g,0.000726mol)和10ml的DMF和水的混合物(4:1)。用氮气将反应混合物脱气15min。向该混合物中加入Pd(PPh$_3$)$_2$Cl$_2$(17mg,0.00002mol)并在室温下将所得混合物脱气10min。将所述反应混合物在80℃加热2小时。加入水(50ml)并用乙酸乙酯(2×50ml)萃取所得混合物。用卤水洗涤合并的有机层，于无水硫酸钠上干燥，过滤并在减压下蒸发。使用柱色谱法(230-400目硅胶:DCM中2%的MeOH)纯化粗产物以得到标题化合物(46mg,30%)。

【0450】实施例10(TBDMS去保护):N-(2-氟-3-(2-(羟甲基)-1H-苯并[d]咪唑-1-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺

【0451】
说明书

在室温下，向搅拌的 N-(3-（2-（2-（叔-丁基二甲基硅基）氧基）甲基）-1H-苯并[d]咪唑-1-基）-8-甲氧基-4-吗啉代喹唑啉-6-基）-2-氟苯基)丙烷-1-磺酰胺 (0.2g, 0.002778mol) 于二氯甲烷 (10mL) 的溶液中加入四正丁基氯化铵 (1M 于 THF 溶液中, 0.18g, 0.000689mol), 并持续搅拌 16h。用水 (50mL) 稀释反应混合物，用饱和碳酸氢钠溶液中和并用二氯甲烷 (2×100mL) 萃取。于无水硫酸钠上干燥合并的有机层在减压下浓缩。使用制备 HPLC 纯化粗产物以得到标题化合物 (17mg, 10%)。1H NMR (400MHz, DMSO-d$_6$) : δ 9.75 (s, 1H), 8.45 (d, J = 8.4Hz, 1H), 7.73 (d, J = 2.8Hz, 1H), 7.70 (m, 1H), 7.55-7.51 (m, 2H), 7.47 (t, J = 7.6Hz, 1H), 7.40 (t, J = 7.5Hz, 1H), 7.35-7.30 (m, 2H), 6.01 (t, J = 6.4Hz, 1H), 4.96 (d, J = 7.2Hz, 2H), 4.06 (s, 3H), 3.96-3.95 (m, 1H), 3.88-3.87 (m, 4H), 3.15 (t, J = 7.2Hz, 2H), 1.79-1.77 (m, 2H), 1.0 (t, J = 7.6Hz, 3H); ESI-MS: 计算质量 :606.2; 观测质量:605.30 [M-H]。实施例 11: N-(3-（2-（2-氨基嘧啶-5-基）-7-甲氧基-4-吗啉代喹唑啉-6-基）-2-氟苯基)丙烷-1-磺酰胺

步骤 1: 2-氨基-5-溴-4-甲氧基苯甲酸

在0℃, 向搅拌的 2-氨基-4-甲氧基苯甲酸 (5g, 0.029mol) 于醋酸 (100mL) 的悬浮液中逐滴加入溴 (1.23mL, 0.023mol)。将反应混合物在室温搅拌 8h。过滤分离的固体，以水 (30mL) 洗涤并在真空下干燥也产出为白色固体的产物 (6.3g, 86%)。根据 LC-MS 数据，此固体包含 14% 的初始材料，22% 的二溴副产物和 61% 的所需化合物。1H NMR (400MHz, DMSO-d$_6$) : δ 7.76 (s, 1H), 6.42 (s, 1H), 3.72 (s, 3H); ESI-MS: 计算质量 :244.97; 观测质量 LC-MS:246.0 [M+H]。RT:2.07min。

步骤 2: 2-氨基-5-溴-4-甲氧基苯甲酸甲酯

在0℃向搅拌的 2-氨基-5-溴-4-甲氧基苯甲酸 (6.3g, 0.025mol) 和碳酸钾 (7.06g, 0.051mol) 于 N,N-二甲基甲酰胺 (63mL) 的悬浮液中逐滴加入碘甲烷 (5.45g, 81
0.038mol)。加入完成后，将反应混合物在室温下搅拌1h。将所述混合物倾倒至冷水(500ml)中并用乙酸乙酯(2×200ml)萃取。用水(100ml)后续是卤水溶液洗涤合并的有机层，于无水硫酸钠上干燥并过滤。在减压下蒸发滤液，使用柱色谱法(100–200目硅胶:已烷中20%的EtOAc)纯化粗产物以得到为白色固体的标态化合物(5.5g,83%产率)。\(^\text{1}\)H NMR(400MHz, DMSO–d_6) : δ 7.78(s,1H), 6.85(brs,2H), 6.44(s,1H), 3.80(s,3H), 3.75(s,3H). ESI-MS:计算质量:258.98;观测质量:258.3[M-H]。

步骤3: 6-溴-7-甲氧基唑啉-2,4(1H,3H)-二酮

在室温下，向搅拌的2-氨基-5-溴-4-甲氧基苯甲酸甲酯(5.5g,0.021mol)于醋酸(25ml)的悬浮液中逐滴加入0.1M氢氧化钠(7.49g,0.10mol)的水溶液。将反应混合物在50℃搅拌24h。过滤分离的固体，用水(20ml)后续是于乙烷(50ml)中的10% EtOAc洗涤，并在真空下干燥以得到相应的尿素。

步骤4: 6-溴-2,4-二氯-7-甲氧基唑啉

向搅拌的上述尿素于甲醇(20ml)的悬浮液中加入2N氢氧化钠(10ml)。将反应混合物在90℃搅拌1h。将所述混合物冷却至室温，用3M盐酸酸化至pH 3。过滤所得固体并在真空下干燥以得到为白色固体的标态化合物(3.5g,61%产率)。\(^\text{1}\)H NMR(400MHz, DMSO–d_6) : δ 11.29(s,1H), 11.18(s,1H), 7.94(s,1H), 6.74(s,1H), 3.90(s,3H)。

步骤5: 6-溴-2,4-氯-7-甲氧基唑啉

向搅拌的6-溴-7-甲氧基唑啉-2,4(1H,3H)-二酮(1.7g,0.006mol)于三氯氧磷(25.5ml;POCl_3)的悬浮液中按序加入二异丙基乙胺(1.7ml)和N,N-二甲基甲酰胺(0.85ml)。将反应混合物在130℃保持8h。通过蒸馏移除POCl_3并将粗残渣用甲苯共沸两次以得到标态化合物(1.7g,粗)。该化合物未进行任何一步纯化即被用于下一步骤。

步骤6: 6-溴-2,4-氯-7-甲氧基唑啉-4a-二氢唑啉-4-基)吗啉

在0℃向搅拌的6-溴-2,4-氯-7-甲氧基唑啉(1.7g,0.005mol)和二异丙基乙胺(3.62ml,0.022mol)于二氯甲烷(100ml)的溶液中缓慢加入吗啉(0.48ml,0.005mol)。在加入完成后，将反应混合物在0℃搅拌30min。用水(50ml)稀释所述反应混合物并用二氯
说明书

甲烷（2×200mL）萃取。用海水洗涤合并的有机层，于无水硫酸钠上干燥，过滤并在减压下浓缩。使用柱色谱法（100~200目硅胶；己烷中30%的EtOAc）纯化粗产物以得到为米白色固体的标题化合物（850mg,43%产率）。^1H NMR (400MHz, DMSO-d₆) : δ 8.19 (s, 1H), 7.29 (s, 1H), 3.99 (s, 3H), 3.83~3.74 (m, 8H); ESI-MS:计算质量:356.99;观测质量:358.20 [M+H]^+。

步骤6:N-(3-(2-氯-7-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺

步骤7:N-(3-(2-氨基嘧啶-5-基)-7-甲氧基-4-吗啉代喹唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺
1h。加入水 (50mL)，用于 EtOAc 中的 10% MeOH (2×50mL) 萃取反应混合物。用卤水洗涤有机层，于无水硫酸钠上干燥，过滤并在减压下浓缩。使用柱色谱法（100-200 目硅胶；DCM 中 4% 的 MeOH）纯化粗产物以得到纯度为 85% 的所需产物。使用制备 HPLC 将此产品再纯化以得到为米白色固体的标题化合物 (62mg, 28% yield)。\(^1\)H NMR (400MHz, DMSO-d_6): 6 9.84 (s, 1H), 9.20 (s, 2H), 7.81 (s, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.37-7.34 (m, 2H), 7.27 (t, J = 8.0 Hz, 1H), 7.19 (brs, 2H), 4.61 (t, J = 6.0 Hz, 1H), 4.49 (t, J = 6.0 Hz, 1H), 3.91 (s, 3H), 3.78-3.68 (m, 8H), 3.23-3.22 (m, 2H), 2.17-2.10 (m, 2H)；计算质量: 571.18；观测质量: 572.3 [M+H]^+。

[0477] 实施例 1-120 的 ESI-MS 表征数据提供于表 2 中。

[0478] 表 2

<table>
<thead>
<tr>
<th>实施例</th>
<th>结构</th>
<th>结构名称</th>
<th>质量 (ESI-MS)</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2,6-二氯-N-(2-氯-3-(8-甲氧基-2-(4-(3-甲基取代苯基)-4-吗啉代喹啉基)-6-基)基)苯磺酰胺</td>
<td>679.30 [M+H]^+</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>N-(3-(2-(1H-吲哚基)-4-基)-8-甲氧基-4-吗啉代喹啉基-6-基)-2-氯苯基)丙烷-1-磺酰胺</td>
<td>577.40 [M+H]^+</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>N-(3-(2-(6-(2-氨基乙基)氨基)吲哚-3-基)-8-甲氧基-4-吗啉代喹啉基-6-基)-2-氯苯基)丙烷-1-磺酰胺</td>
<td>596.20 [M+H]^+</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>N-(3-(2-(6-氨基吲哚基)-3-基)-8-(2-羟乙基氨基)-4-吗啉代喹啉基-6-基)-2-氯苯基)丙烷-1-磺酰胺</td>
<td>583.10 [M+H]^+</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>N-(3-(2-(6-氨基吲哚基)-3-基)-4,8-双吗啉代喹啉基-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>626.40 [M+H]^+</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>化学式</td>
<td>结构式</td>
<td>酰胺</td>
<td>PMR</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代唑啉-6基)-2,4-二氟苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>570.20 [M-H]^-</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲基-4-吗啉代唑啉-6基)-2-氟苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>537.10 [M+H]^+</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>N-(3-(2-(2-(二氟甲基)-1H-苯并[d]咪唑-1基)-8-甲氧基-4-吗啉代唑啉-6基)-2-氟苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>625.40 [M-H]^-</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>N-(2-氟-3-(2-(2-羟甲基)-1H-苯并[d]咪唑-1基)-8-甲氧基-4-吗啉代唑啉-6基)苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>605.30 [M-H]^-</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-7-甲氧基-4-吗啉代唑啉-6基)-2-氟苯基)-3-氯丙烷-1-磺酰胺</td>
<td></td>
<td>572.30 [M+H]^+</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>2,6-二氟-N-(2-氯-3-(2-(4-(3-二氯乙基)氨基)苯基)-8-甲基-4-吗啉代嗪啶-6基)苯环酰胺</td>
<td></td>
<td>707.50 [M-H]^-</td>
<td>9</td>
</tr>
</tbody>
</table>

[0481]
<p>| 13 | N-(3-(2-(2-氨基嘧啶-5-基)-8-甲基-4-吗啉代喹啉啉-6-基)-2-氟苯基)-2,6-二氟苯磺酰胺 | 622.20 [M-H] | 9 |
| 14 | N-(2-氟-3-(8-甲基-2-(4-(3-甲基哌嗪)苯基)-4-吗啉代喹啉啉-6-基)苯基)丙烷-1-磺酰胺 | 609.50 [M+H]^+ | 9 |
| 15 | N-(3-(2-(2-氨基嘧啶-5-基)-8-甲基-4-吗啉代喹啉啉-6-基)-2-氟苯基)丙烷-1-磺酰胺 | 554.20 [M+H]^+ | 9 |
| 16 | 2,6-二氟-N-(2-氟-3-(8-甲基-4-吗啉代-2-(1H-吡咯[2,3-b]吡啶-5-基)喹啉啉-6-基)苯基)苯磺酰胺 | 647.30 [M+H]^+ | 9 |
| 17 | N-(3-(2-(6-氨基喹啉-3-基)-8-甲基-4-吗啉代喹啉啉-6-基)-2-氟苯基)丙烷-1-磺酰胺 | 551.30 [M-H] | 9 |
| 18 | N-(3-(2-(6-氨基-2-氯喹啉-3-基)-8-甲基-4-吗啉代喹啉啉-6-基)-2-氟苯基)丙烷-1-磺酰胺 | 571.40 [M+H]^+ | 9 |
| 19 | N-(3-(2-(6-氨基喹啉-3-基)-8-甲基-4-吗啉代喹啉啉-6-基)-2-氟苯基)-2,6-二氟苯磺酰胺 | 623.20 [M+H]^+ | 9 |
| 20 | N-(3-(2-(2-氨基嘧啶-5-基)-8-甲基-4-吗啉代喹啉啉-6-基)-2-氟苯基)-2-甲基丙烷-1-磺酰胺 | 568.30 [M+H]^+ | 9 |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Chemical Structure</th>
<th>Chemical Formula</th>
<th>Molecular Weight</th>
<th>Charge</th>
<th>Mass Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)乙烷磺酰胺</td>
<td>538.30</td>
<td>[M-H]</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)-2,5-二氟苯磺酰胺</td>
<td>622.30</td>
<td>[M-H]</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)丁烷-1-磺酰胺</td>
<td>566.30</td>
<td>[M-H]</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)-2,4-二氟苯磺酰胺</td>
<td>622.30</td>
<td>[M-H]</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)丙烷-1-磺酰胺</td>
<td>621.30</td>
<td>[M+H]^+</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>N-(3-(2-(6-氨基-5-甲基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)丙烷-1-磺酰胺</td>
<td>567.30</td>
<td>[M+H]^+</td>
<td>9</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>570.40</td>
<td>[M-H]</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6-基)-2-氟苯基)-2,5-二氟苯磺酰胺</td>
<td>623.40</td>
<td>[M+H]^+</td>
<td>9</td>
</tr>
<tr>
<td>No.</td>
<td>Molecular Structure</td>
<td>Chemical Formula</td>
<td>Molecular Weight</td>
<td>Charge</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)-2-氟苯磺酰胺</td>
<td>603.30</td>
<td>[M-H]⁻</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>571.30</td>
<td>[M+H]⁺</td>
<td>9</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)-3,3,3-三氟丙烷-1-磺酰胺</td>
<td>605.20</td>
<td>[M-H]⁻</td>
<td>9</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>3-氟-N-(2-氟-3-(8-甲氧基-2-(4-(3-(甲基磺酰基)苯基)-4-吗啉代噻唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td>627.40</td>
<td>[M+H]⁺</td>
<td>9</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)丙烷-2-磺酰胺</td>
<td>551.20</td>
<td>[M-H]⁻</td>
<td>9</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>N-(2-氟-3-(8-甲氧基-4-吗啉代-2-(4-(3-(吡啶-4-基)苯基)噻唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td>672.20</td>
<td>[M+H]⁺</td>
<td>9</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>N-(3-(2-(2-氨基-4-甲基噻唑-5-基)-8-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>586.30</td>
<td>[M+H]⁺</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-8-甲氧基-4-吗啉代噻唑啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>639.0</td>
<td>[M+H]⁺</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>化学式</td>
<td>结构式</td>
<td>分子量</td>
<td>增量</td>
<td>页码</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>37</td>
<td>N-(3-(2-(1H-吲哚-4-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td></td>
<td>595.30</td>
<td>[M+H]$^+$</td>
<td>9</td>
</tr>
<tr>
<td>38</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)噻吩-2-磺酰胺</td>
<td></td>
<td>593.20</td>
<td>[M+H]$^+$</td>
<td>9</td>
</tr>
<tr>
<td>39</td>
<td>3-氯-N-(2-氯-3-(8-甲氧基-2-(6-甲基氨基)-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>628.30</td>
<td>[M+H]$^+$</td>
<td>9</td>
</tr>
<tr>
<td>40</td>
<td>3-氯-N-(2-氯-3-(8-甲氧基-4-吗啉代-2-(1H-吡啶[2,3-b]吡啶-5基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>595.30</td>
<td>[M+H]$^+$</td>
<td>9</td>
</tr>
<tr>
<td>41</td>
<td>(S)-N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td></td>
<td>586.20</td>
<td>[M+H]$^+$</td>
<td>9</td>
</tr>
<tr>
<td>42</td>
<td>(R)-N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td></td>
<td>585.10</td>
<td>[M+H]$^+$</td>
<td>9</td>
</tr>
<tr>
<td>43</td>
<td>(R)-N-(3-(2-(2-氯喹啉-5基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td></td>
<td>586.40</td>
<td>[M+H]</td>
<td>9</td>
</tr>
<tr>
<td>44</td>
<td>(R)-3-氯-N-(2-氯-3-(8-甲氧基-4-(3-甲基吗啉代-2-(1H-吡啶[2,3-b]吡啶-5基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td></td>
<td>607.40</td>
<td>[M-H]</td>
<td>9</td>
</tr>
<tr>
<td>序号</td>
<td>化合物结构</td>
<td>化学式</td>
<td>分子量</td>
<td>质荷比</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>(S)-N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺</td>
<td>586.20</td>
<td>[M+H]^+</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-4-吗啉代喹唑啉-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺</td>
<td>541.20</td>
<td>[M+H]^+</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)-2-氯苯磺酰胺</td>
<td>604.30</td>
<td>[M-H]^−</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>N-(3-(2-(6-氨基-5-氯吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)丙烷-1-磺酰胺</td>
<td>587.40</td>
<td>[M+H]^+</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>3-氯-N-(2-氯-3-(8-甲氧基-4-吗啉代-2-(6-(丙基氨基)吡啶-3-基)喹唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td>613.20</td>
<td>[M+H]^+</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>3-氯-N-(2-氯-3-(8-甲氧基-2-(6-(甲基氨基)吡啶-3-基)-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td>585.30</td>
<td>[M+H]^+</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>3-氯-N-(2-氯-3-(8-甲氧基-2-(2-(甲基氨基)嘧啶-5-基)-4-吗啉代喹唑啉-6-基)苯基)丙烷-1-磺酰胺</td>
<td>586.10</td>
<td>[M+H]^+</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-乙氧基-4-吗啉代喹唑啉-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺</td>
<td>585.30</td>
<td>[M+H]^+</td>
<td></td>
</tr>
</tbody>
</table>

[0486]
<table>
<thead>
<tr>
<th>图号</th>
<th>化学结构式</th>
<th>化合物名称</th>
<th>分子量</th>
<th>电荷状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td></td>
<td>N-(3-(2-(6-氨基呪啶-3-基)-8-(环戊基甲氧基)-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>625.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-乙氧基-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>584.30</td>
<td>[M-H]^-</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>N-(3-(2-(6-氨基呪啶-3-基)-8-异丙氧基-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>599.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>N-(3-(8-(2-氨基乙氧基)-2-(6-氨基呪啶-3-基)-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>600.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>N-(3-(2-(6-氨基呪啶-3-基)-8-(环丙基甲氧基)-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>611.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>N-(3-(2-(6-氨基呪啶-3-基)-8-(2-羟乙氧基)-4-吗啉代喹啉-6-基)-2-氟苯基)-3-氟丙烷-1-磺酰胺</td>
<td>601.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>2-((2-(6-氨基呪啶-3-基)-6-(2-氟-3-(3-氟丙基磺酰胺基)苯基)-4-吗啉代喹啉-8-基)氨基)醋酸 2,2,2-三氯醋酸盐</td>
<td>615.30</td>
<td>[M+H]^+</td>
</tr>
</tbody>
</table>

[0487]
<p>| 60 | 2-(((2-(6-氨基喹唑啉-3-基))6-(2-氯-3-(3-氨基丙基磺酰胺基)苯基)-4-吗啉代喹唑啉-8-基)氨基)乙酰胺 | 614.30 | [M+H]^+ | 10 |
| 61 | (R)-N-(3-(8-乙氨基-4-(3-甲基吗啉代)-2-(1H-双喹唑啉-2,3-b)吡啶-5-基)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 623.50 | [M+H]^+ | 10 |
| 62 | (R)-N-(3-(2-(6-氨基吡啶-3-基)-8-(环戊氧基)-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 639.40 | [M+H]^+ | 10 |
| 63 | (R)-N-(3-(2-(6-氨基吡啶-3-基)-8-异丙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 613.10 | [M+H]^+ | 10 |
| 64 | (R)-N-(3-(2-(2-氨基嘧啶-5-基)-8-异丙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 614.40 | [M+H]^+ | 10 |
| 65 | (S)-N-(3-(2-(6-氨基吡啶-3-基)-8-乙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 599.50 | [M+H]^+ | 10 |
| 66 | (S)-N-(3-(2-(2-氨基嘧啶-5-基)-8-乙氧基-4-(3-甲基吗啉代)喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 600.30 | [M+H]^+ | 10 |
| 67 | N-(3-(2-(6-氨基吡啶-3-基)-8-(2-甲氨基乙氧基)-4-吗啉代喹唑啉-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺 | 615.30 | [M+H]^+ | 10 |</p>
<table>
<thead>
<tr>
<th></th>
<th>化合物结构与分子式</th>
<th>分子量</th>
<th>页数</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td></td>
<td>616.40</td>
<td>10</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>627.30</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>610.40</td>
<td>11</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>611.50</td>
<td>11</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>640.30</td>
<td>11</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>641.20</td>
<td>11</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>624.50</td>
<td>11</td>
</tr>
</tbody>
</table>

[0489]
<table>
<thead>
<tr>
<th></th>
<th>化学结构式</th>
<th>化合物名称</th>
<th>[M+H]^+</th>
<th>[M-H]^-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)丙烷-1-磺酰胺</td>
<td>571.40</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)-2,6-二氯苯磺酰胺</td>
<td>640.20</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)-2,6-二氯苯磺酰胺</td>
<td>641.10</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)-2,5-二氯苯磺酰胺</td>
<td>639.40</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>589.40</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹啉-6基)-4-氯-2-氟苯基)丙烷-1-磺酰胺</td>
<td>585.20</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>N-(3-(2-(1H-吲哚-4-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>613.10</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲氧基-4-吗啉代喹啉-6基)-2,4-二氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>588.30</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>N-(2,4-二氟-3-(8-甲氧基-4-吗啉基)-2-(1H-吲哚[2,3-b]哒嗪-5-基)喹唑啉-6-基)苯并)-3-氯丙烷-1-磺酰胺</td>
<td>613.10 ([\text{M+H}^+]^+)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>N-(3-(2-(6-氨基-4-(三氯甲基) 吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-2,4-二氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>657.30 ([\text{M+H}^+]^+)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲氧基-4-吗啉代喹唑啉-6-基)-4-氯-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>603.30 ([\text{M-H}^-])</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-4-吗啉代吡啶并[3,2-d]哇啶-6-基)-2-氯苯基)丙烷-1-磺酰胺</td>
<td>524.20 ([\text{M+H}^+]^+)</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>N-(3-(2-(2-氨基喹啶-5-基)-4-吗啉代吡啶并[3,2-d]哇啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>541.40 ([\text{M-H}^-])</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-4-吗啉代吡啶并[3,2-d]哇啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>540.30 ([\text{M-H}^-])</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>N-(3-(2-(1H-吲哚-4-基)-4-吗啉代吡啶并[3,2-d]哇啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>564.30 ([\text{M-H}^-])</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0491]
<table>
<thead>
<tr>
<th></th>
<th>化学结构式</th>
<th>化学名称</th>
<th>分子量</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td>N-(3-(2-(6-氨基-5-甲基吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺</td>
<td>556.40</td>
<td>13</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>3-氟-N-(2-氯-3-(4-吗啉代-2-(1H-吡咯[2,3-b]吡啶-5-基)吡啶并[3,2-d]嘧啶-6-基)苯基)丙烷-1-磺酰胺</td>
<td>564.40</td>
<td>13</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-2,5-二氯苯磺酰胺</td>
<td>594.30</td>
<td>13</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>N-(3-(2-(氨基嘧啶-5-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-2,5-二氯苯磺酰胺</td>
<td>595.30</td>
<td>13</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>610.30</td>
<td>13</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-2,6-二氯苯磺酰胺</td>
<td>594.30</td>
<td>13</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>(R)-N-(3-(2-(6-氨基-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>556.40</td>
<td>13</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>(R)-N-(3-(2-(氨基嘧啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>557.30</td>
<td>13</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Formula</td>
<td>Molecular Weight</td>
<td>Charge</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>N-(3-(2-(2-氨基嘧啶-5基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-2,6-二氟苯磺酰胺</td>
<td>595.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>3-氯-N-(2-氯-3-(2-(6-(2-羟乙基)氨基)吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)苯基)丙烷-1磺酰胺</td>
<td>586.20</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>N-(3-(2-(2-氨基-4-(三氟甲基)嘧啶-5基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1磺酰胺</td>
<td>611.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>N-(3-(2-(6-氨基-4-甲基吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1磺酰胺</td>
<td>554.50</td>
<td>[M-H]^–</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>N-(3-(2-(6-氨基-4-氟吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1磺酰胺</td>
<td>560.20</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>N-(3-(2-(6-氨基-5-氯吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1磺酰胺</td>
<td>576.20</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-2,5-二氯苯磺酰胺</td>
<td>660.30</td>
<td>[M-H]^–</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>N-(3-(2-(6-氨基-5-氯吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1磺酰胺</td>
<td>560.20</td>
<td>[M+H]^+</td>
</tr>
</tbody>
</table>

[0493]
<table>
<thead>
<tr>
<th>No.</th>
<th>Formula Description</th>
<th>Molecular Weight</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)-2-氯苯基)-2,6-二氯苯磺酰胺</td>
<td>662.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>107</td>
<td>(R)-N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-4(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>624.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>108</td>
<td>(S)-N-(3-(2-(6-氨基-4-(三氟甲基)吡啶-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>624.50</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>109</td>
<td>N-(3-(2-(2-氨基-4-甲基嘧啶-5基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>557.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>110</td>
<td>3-氯-N-(2-氯-3-(2-(2-((3-烃丙基)氨基)嘧啶-5基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)苯基)丙烷-1-磺酰胺</td>
<td>601.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>111</td>
<td>3-氯-N-(2-氯-3-(2-(6-((3-烃丙基)氨基)钯啶-3基)-4-吗啉代钯啶并[3,2-d]钯啶-6基)苯基)丙烷-1-磺酰胺</td>
<td>598.40</td>
<td>[M-H]^-</td>
</tr>
<tr>
<td>112</td>
<td>3-氯-N-(2-氯-3-(4-吗啉代-2-(2-(丙基氨基)钯啶-5基)钯啶并[3,2-d]钯啶-6基)苯基)丙烷-1-磺酰胺</td>
<td>585.10</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>113</td>
<td>3-氯-N-(2-氯-3-(2-(6-(甲基氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)苯基)丙烷-1-磺酰胺</td>
<td>556.0</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>114</td>
<td>3-氯-N-(2-氯-3-(2-(6-(丙基氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)苯基)丙烷-1-磺酰胺</td>
<td>584.20</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>115</td>
<td>3-氯-N-(2-氯-3-(4-吗啉代乙酰-2-(6-(丙基氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6-基)苯基)-3-氯丙烷-1-磺酰胺</td>
<td>584.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>116</td>
<td>N-(3-(2-(2-氨基嘧啶-5-基)-8-甲基-4-吗啉代嘧啶-6-基)2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>556.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>117</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-8-甲基-4-吗啉代嘧啶-6-基)2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>555.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>118</td>
<td>N-(3-(2-(1H-吲唑-4-基)-8-甲基-4-吗啉代嘧啶-6-基)2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>579.40</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>119</td>
<td>(R)-N-(3-(2-(2-氨基嘧啶-5-基)-8-乙基-4-(3-甲基吗啉代)嘧啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>584.30</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>120</td>
<td>N-(3-(2-(6-氨基吡啶-3-基)-7-甲基-4-吗啉代嘧啶-6-基)-2-氯苯基)-3-氯丙烷-1-磺酰胺</td>
<td>569.30</td>
<td>[M-H]^-</td>
</tr>
</tbody>
</table>
121

3-氟-N-(2-氟-3-(2-(甲基氨基)嘧啶-5-基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)苯基)丙烷-1-磺酰胺

557.3
\([\text{M}+\text{H}]^+\)

13

122

N-(3-(2-(2-(乙基氨基)嘧啶-5基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1-磺酰胺

569.4
\([\text{M}-\text{H}]^-\)

13

123

N-(3-(2-(6-(乙基氨基)吡啶-3基)-4-吗啉代吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1-磺酰胺

570.4
\([\text{M}+\text{H}]^+\)

13

124

N-(5-(6-(2-氯-3-(3-氟丙基磺酰胺基)苯基)-8-甲氧基-4-吗啉代喹唑啉-2基)吡啶-2基)-乙酰胺

613.3
\([\text{M}+\text{H}]^+\)

9

125

N-(4-(6-(2-氯-3-(3-氟丙基磺酰胺基)苯基)-8-甲氧基-4-吗啉代喹唑啉-2基)苯基)乙酰胺

612.3
\([\text{M}+\text{H}]^+\)

9

126

3-氟-N-(2-氯-3-(8-甲氧基-2-4-(甲基磺酰胺基)苯基)-4-吗啉代喹唑啉-6基)苯基)丙烷-1-磺酰胺

646.4
\([\text{M}-\text{H}]^-\)

9

127

(S)-N-(3-(2-(6-氨基吡啶-3基)-4-(3-甲基吗啉代)吡啶并[3,2-d]嘧啶-6基)-2-氟苯基)-3-氟丙烷-1-磺酰胺

556.6
\([\text{M}+\text{H}]^+\)

13
128	![Image](image1.png)	(S)-N-(3-(2-(2-氨基噻啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]噻啶-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺	557.3	[M+H]^+	13
129	![Image](image2.png)	(S)-N-(3-(2-(6-氨基-4-氟吡啶-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]噻啶-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺	574.3	[M+H]^+	13
130	![Image](image3.png)	(S)-N-(3-(2-(6-氨基-4-甲基吡啶-3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]噻啶-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺	570.2	[M+H]^+	13
131	![Image](image4.png)	(S)-N-(3-(2-(2-氨基-4-甲基噻啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]噻啶-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺	571.3	[M+H]^+	13
132	![Image](image5.png)	(S)-N-(3-(2-(2-氨基-4-甲基噻啶-5-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]噻啶-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺	623.1	[M+H]^+	13
133	![Image](image6.png)	3-氟-N-(2-氯-3-(2-(6-(2-甲氧基乙氧基)氨基)吡啶-3-基)-4-吗啉代吡啶并[3,2-d]噻啶-6-基)苯基)丙烷-1-磺酰胺	600.2	[M+H]^+	13
134	![Image](image7.png)	(R)-N-(3-(2-(6-氨基-5-氟吡啶-3-基)-8-甲氧基-4-(3-甲基吗啉代)喹啉-6-基)-2-氯苯基)-3-氟丙烷-1-磺酰胺	603.1	[M+H]^+	9
135	(R)-N-(3-(2-(6-氨基-4-氮唑基 -3-基)-8-甲氧基-4-(3-甲基吗 啉代)喹啉基-6基)-2-氟苯 基)-3-氯丙烷-1-磺酰胺	603.3	[M+H]+	9	
136	(R)-3-氟-N-(2-氟-3-(8-甲氧基 -2-(2-(甲氨基)喹啉-5 基)-4-(3-甲基吗啉代)喹啉基-6基)苯基)丙烷-1-磺酰胺	600.1	[M+H]+	9	
137	(R)-N-(3-(2-(氨基喹啉-5基)-8-乙氧基-4-(3-甲基吗啉代)喹啉基-6基)-2-氟苯基)-3-氯丙烷-1-磺酰胺	600.3	[M+H]+	10	
138	(R)-N-(3-(8-乙氧基-2-(2-(甲基氨基)喹啉-5基)-4-(3-甲基吗啉代)喹啉基-6基)-2-氟苯基)-3-氯丙烷-1-磺酰胺	614.3	[M+H]+	10	
139	3-氯-N-(2-氯-3-(2-(4-(3-甲基 肪基)苯基)-4-吗啉代吡啶并 [3,2-d]喹啉-6基)苯基)丙烷 -1-磺酰胺	598.3	[M+H]+	13	
140	(R)-N-(3-(2-(6-氨基-4-氮唑基 -3-基)-4-(3-甲基吗啉代)吡啶并[3,2-d]喹啉-6基)-2-氟苯基)-3-氯丙烷-1-磺酰胺	574.3	[M+H]+	13	
141	(R)-N-(3-(2-(氨基喹啉-5基)-8-(2-氟乙氧基)-4-(3-甲基 吗啉代)喹啉基-6基)-2-氟苯基)-3-氯丙烷-1-磺酰胺	618.2	[M+H]+	10	
实施例 145

A. B-RAF_{V600E}放射性试验。

使用 BRAF 酶（目录号: 14-557, Millipore, USA）和 MEK-K97M 蛋白作为底物（目录号: 0785-0000-1, ProqQinase GmbH, 德国）通过放射性试验确定对于 B-RAF_{V600E}的化合物抑制。在 \(\gamma \) ATP (PLC-101, Jonaki, CCMB, Hyderabad), 冷 ATP 和 Mg\(^{2+}\)的存在下 B-RAF 激酶催化 MEK 蛋白的磷酸化。

通过闪烁计数器 Topcount® 机器 (Perkin Elmer) 检测磷酸化的蛋白质产物。该试验改进自先前由 Yeh 等人报道的方法 (2007, Clinical Cancer Research; 13, 1576-1583)。试验测量 B-RAF 介导的 32P 从放射性标记的 ATP 的 \(\gamma \) 位至 MEK-KD 位的转移。在 MicroBeta® Trilux 计数器 (Perkin Elmer) 中测量标记的磷酸化蛋白。试验被报道为 B-RAF 酶抑制剂的参加化合物 RAF1 激酶抑制剂 I 和 ZM 336372 抑制剂验证 (Lackey, 2000, Medicinal Chemistry Letters; 10(3): 223-226; Kupcho, “Fluorescent High throughput kinase cascade assays for inhibitor characterization, RAF-MEK-ERK pathway, www.invitrogen.com, and Hall-Jackson, 1999, Chemical Biology; 6(8): 559-568)。将 B-RAF 酶混合物 (13 μL) 加入包含 2 μL 1% DMSO 中的 NCE 的化合物孔中, 并且在室温于震荡培养器上 300rpm 下培养 45min。向每个孔中加入 MEK-K97M (0.5 μg) 和冷 ATP 至 5 μM 的最终浓度, 并加入体积为 10 μL 的热 ATP 0.1 μCi。并且在室温于震荡培养器上 300rpm 下培养 2h。通过加入包含 ATP (1mM; 0.95 μL HCl 和 5 μL 100mM ATP) 的 8N HCl (13 μL) 停止反应。然后将等分试样 (30 μL) 转移至 2cm x 2cm P81 纸的中心。每次使用正磷酸 (0.5%) 将 P81 纸洗涤 8x5min。以丙酮将 P81 纸洗涤两次, 5min。将检验方块在 37℃ 干燥 15min。将 P81 纸转移至 Optiplate™ (Perkin Elmer) 并且在 Topcount® 计数器 (Perkin Elmer)
中计数。将数据与化合物浓度作图以生成剂量 - 响应曲线并使用 S 型剂量响应曲线拟合 GraphPad Prism® v5 软件确定 IC₅₀值。

[0503] B. mTOR 激酶 TR-FRET 试验

使用 Ultra-p70 S6K(Thr 389) 肽作为底物，通过均相 TR-FRET 试验确定 mTOR 激酶的化合物抑制。在实验中使用 mTOR 活酶（Millipore, US, 5 μg）。反应缓冲剂是 HEPES (50mM, pH 7.5) 、EGTA (1mM) 和 MnCl₂ (3mM)。测试的化合物使用 mTOR 预 - 培养 30min，随后是 50nM 与 ATP (20 μM) 一起的 Ultra-p70 S6K (Thr 389) 肽。

[0505] 在将反应混合物培养 30min 后，加入 Eu- 标记的抗 - 磷酸 - 底物抗体 (In Perkin Elmer, 美国)。在 340nM 的激发下测量 615 和 665nM 处的荧光发射。在 100％的 DMSO 中进行化合物稀释，随后是缓冲稀释。于室温下将激酶反应培育 1h，随后是加入底物 - ATP 混合物，并于室温下培育 1h。通过加入 EDTA 随后加入检测混合物终止反应。使用 S 型剂量响应曲线拟合 GraphPad Prism® v5 软件确定 IC₅₀值。

[0506] C. PI3K 激酶 α TR-FRET 试验

使用 PI3K 抑制剂（Millipore, 美国, 目录 #33-016）在均相 TR-FRET 试验中确定 PI3K δ的化合物抑制。PI3K 活酶在 ATP 和 Mg²⁺ 的存在下催化磷脂酰肌醇-5- 终磷酸 (PI(3,4,5)P₃) 向磷脂酰肌醇-3,4,5- 三磷酸盐 (PIP3) 的磷酸化。通过从能量转移复合物中生物素 -PIPE 的取代检验 PIP3 产物，所述能量转移复合物由铕标记的抗 -GST 单克隆抗体、GST- 标记的普列克特底物蛋白同源（pleckstrin homology, PH）域、生物素化的 PIP3 和抗生蛋白链菌素 - 软藻链蛋白 (APC) 组成。复合物中铕的激发引起能量转移至 APC 以及 665nm 处的荧光发射。

[0508] 将实验的化合物溶解于 DMSO 中，并直接分至体积为 0.5 μL 的 384 孔盘中。将 P110/P85α/PI2 混合物 (14.5 μL) 加入化合物孔中，在室温下培育 30 分钟, 60 分钟。P110/ P85α 在 SF9 细胞中表达并内部纯化。在试验中使用 5ng P110/P85α。通过 ATP 的加入开始激酶反应。PIP2 和 ATP 的试验浓度均为 40 μM。将反应混合物培养 30min，然后通过加入终止混合物和检测混合物终止。在 Victor V5 荧光计（Perkin Elmer, 美国）上通过 340nm 的激发，在 615 和 665nm 下测量荧光。将和激酶活性成比例的 665 至 615nm 的荧光发射率与产生剂量 - 应答曲线的化合物浓度作图，确定 IC₅₀值。

[0509] D. 细胞活性的 XTT 试验

细胞系（A375 ATCC 编号 CRL-1619, A2058 ATCC 编号 CRL-11447 和 RKO ATCC 编号 CRL-2577, American Type Culture Collection (ATCC), Manassas VA）一旦达到 ~ 80％的融汇，将其在新鲜培养基中进行胰酶去上代，离心和再悬浮。将所述细胞（1000-2000/ 孔）接种在 96- 孔盘中，于 37°C 在 5% CO₂的培养箱中培养过夜。使用 100% DMSO 制备化合物稀释物，随后在分光的培养基中稀释。使用 NCEs 将细胞于 37°C 在 5% CO₂的培养箱中处理 72h。72h 后，加入新鲜制备的 XTT (1mg/ml)/PMS (25 μM) 溶液，于 37°C 培养 2 至 3h 并且使用 ELISA 板检测仪 (plate reader) 测量 450nm 处的吸光度。将 DMSO 对照保持为 100%。计算化合物抑制细胞增殖的效果，使用在 GraphPad Prism® v5 软件中 S- 形剂量应答曲线拟合确定 GI₅₀值。

[0511] E. 通过细胞内蛋白质印迹 (ICW) 试验的 pERK、pS6RP、pAKT-S473 和 pAKT-T308 测量

104
[0512] 生长从如上文所提供的 ATCC 中获得的细胞系 A375、A2058 和 RKO，达到～80％的融汇后，对其在新鲜培养基中进行脱蛋白酶化、离心和再悬浮。在指定的密度（20,000 至 50,000）下于 96-孔板式黑色一孔透明底板（Corning）中接种所述细胞，于 37℃在 5％ CO₂的培养箱中培养过夜。次日，在 100％ DMSO 中制备试样化合物的化合物稀释物，随后在分别的培养基中稀释。在 37℃在 5％ CO₂的培养箱中进行试验化合物的处理 3 小时。在 3h 药物处理后，弃去条件培养基，以 cPBS（包含 0.1％六水合氯化镁和 0.1％无水氯化钙的 PBS）洗涤细胞一次，并于室温下在 cPBS 中与 4％的多聚甲醛将细胞固定 1 小时。固定后，使用 cPBST（包含 0.1％ Triton X-100 试剂的 cPBS）将细胞洗涤 3 次，然后通过在 300rpm 下震荡于室温使用封闭液（5％脱脂奶粉或 5％在 cPBST 中制备的 BSA）封闭 2h。再以 cPBST 将所述细胞洗涤三次，并在分别的封闭液中于 4℃在架（racker）上过夜制备的特定溶液（1:500-1:2500）中，使用第一抗体磷-p44/42 MAPK（Thr202/204）（Cell Signaling，目录 #9101L）抗体、磷 S6 核糖体蛋白（Cell Signaling，目录 #4858L）、磷 AKT（Thr 308）（Cell Signaling，目录 #9275）或磷 AKT（Ser 473）（Cell Signaling，目录 #4060L）培养。次日，使用 1X Delfia® 洗涤缓冲液洗涤所述细胞（4x 1 洗涤），并用第二抗体（Delfia® -Eu-N1 标记抗兔抗体；PerkinElmer，目录 #AD0105）/稀释液；Delfia® 检测缓冲液中 1:2000 至 1:6000（PerkinElmer，目录 #1244-111）在 300rpm 下于暗中室温下培养 2h。然后使用 1X Delfia® 洗涤缓冲液将细胞洗涤四次，并且使用 Wallac Delfia® 增强溶液（100 μL；PerkinElmer，目录 #1244-105）在 300rpm 下于暗中室温下培养 20min。然后使用 Victor V5 荧光计（Perkin Elmer，美国）读取 340nM 激发波长下 615nM 处的荧光发射。然后用 1X cPBS 将细胞洗涤一次，使用 100 μL 0.5mg/mL 的在 cPBS 中制备的 Hoechst 33342 染料培养，并读取 355nm 激发下 460nm 处，从而评估纠正系数。

[0513] 如下表中示出的，将 PLX-4032（B-RAF 抑制剂）、BEZ-235（PI3K/mTOR 抑制剂）和 GDC-0941（PI3K 抑制剂）分别作为 pERK、pS6RP/pAKT（S473）和 pAKT（T308）抑制的标准。把 DMSO 对照作为 0％，计算测试的式（I）的化合物（新化学实体（NCEs））的％抑制，使用在 GraphPad Prism® v5 软件中的 S-形剂量应答曲线拟合确定 IC₅₀ 值。

[0514]
<table>
<thead>
<tr>
<th>分析物</th>
<th>组</th>
<th>浓度</th>
<th>平均读取范围-相对荧光单位 (RFU)</th>
<th>% 抑制</th>
</tr>
</thead>
<tbody>
<tr>
<td>A375-pERK 抑制</td>
<td>背景</td>
<td>无细胞</td>
<td>500-1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>阳性对照</td>
<td>0.1% DMSO</td>
<td>50000-90000</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>标准</td>
<td>PLX-4032 (10 mM)</td>
<td>3000-10000</td>
<td>85%-90%</td>
</tr>
<tr>
<td></td>
<td>NCE 的</td>
<td>10 mM</td>
<td>2000-10000</td>
<td>85%-90%</td>
</tr>
<tr>
<td>RKO-pERK 抑制</td>
<td>背景</td>
<td>无细胞</td>
<td>500-1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>阳性对照</td>
<td>0.1% DMSO</td>
<td>50000-90000</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>标准</td>
<td>PLX-4032 (10 mM)</td>
<td>8000-10000</td>
<td>75%-85%</td>
</tr>
<tr>
<td></td>
<td>NCE 的</td>
<td>10 mM</td>
<td>8000-10000</td>
<td>80%-90%</td>
</tr>
<tr>
<td>RKO-pS6RP 抑制</td>
<td>背景</td>
<td>无细胞</td>
<td>1000-2000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>阳性对照</td>
<td>0.1% DMSO</td>
<td>40000-80000</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>标准</td>
<td>BEZ-235 (10 mM)</td>
<td>4000-16000</td>
<td>80%-90%</td>
</tr>
<tr>
<td></td>
<td>NCE 的</td>
<td>10 mM</td>
<td>2000-12000</td>
<td>70%-95%</td>
</tr>
<tr>
<td>RKO-pAKT (Ser473) 抑制</td>
<td>背景</td>
<td>无细胞</td>
<td>700-1000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>阳性对照</td>
<td>0.1% DMSO</td>
<td>50000-60000</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>标准</td>
<td>BEZ-235 (10 mM)</td>
<td>5000-9000</td>
<td>80%-90%</td>
</tr>
<tr>
<td></td>
<td>NCE 的</td>
<td>10 mM</td>
<td>4000-20000</td>
<td>85%-90%</td>
</tr>
<tr>
<td>RKO-pAKT (Thr308) 抑制</td>
<td>背景</td>
<td>无细胞</td>
<td>500-5000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>阳性对照</td>
<td>0.1% DMSO</td>
<td>30000-80000</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>标准</td>
<td>GDC-0941 (10 mM)</td>
<td>2000-30000</td>
<td>55%-65%</td>
</tr>
<tr>
<td></td>
<td>NCE 的</td>
<td>10 mM</td>
<td>10000-30000</td>
<td>50%-70%</td>
</tr>
</tbody>
</table>

[0515] 对于实施例 1-120，B-RAF 放射性试验、PI3K 和 mTOR TR-FRET 试验、XTT 细胞活性试验和细胞内蛋白质印迹试验中的数据示出于表 3 中。
[0516] 表 3
[0517]
<table>
<thead>
<tr>
<th>实施例</th>
<th>激酶测定</th>
<th>A375 细胞</th>
<th>RKO 细胞</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-Raf</td>
<td>PI3K</td>
<td>mTOR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>21</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>27</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>33</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>34</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>37</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>38</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>39</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>40</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>41</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>42</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>实施例</td>
<td>激酶测定</td>
<td>A375细胞</td>
<td>RKO细胞</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>B-Raf</td>
<td>PI3K</td>
<td>mTOR</td>
</tr>
<tr>
<td>43</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>44</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>46</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>47</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>48</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>51</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>52</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>53</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>54</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>55</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>56</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>57</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>58</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>59</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>61</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>63</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>64</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>68</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>69</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>70</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>71</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>72</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>74</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>76</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>77</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>78</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>79</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>80</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>81</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>82</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>83</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

[0519]
<table>
<thead>
<tr>
<th>实施例</th>
<th>B-Raf</th>
<th>PI3K</th>
<th>mTOR</th>
<th>pERK</th>
<th>XTT</th>
<th>pERK</th>
<th>pS6RP</th>
<th>PAKT (T308)</th>
<th>XTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td>B</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例</td>
<td>B-Raf</td>
<td>PI3K</td>
<td>mTOR</td>
<td>pERK</td>
<td>XTT</td>
<td>pERK</td>
<td>pS6RP</td>
<td>PAKT (T308)</td>
<td>XTT</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>131</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>137</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

[0521] A: IC₅₀ = 1-100nM
[0522] B: IC₅₀ = >100-1000nM
[0523] C: IC₅₀ = >1000-10000nM
[0524] 实施例 146:用于监控 RAS/RAF/MEK/ERK 和 PI3K/AKT/PTEN/mTOR 通路抑制的蛋白质生物标志物
[0525] 测试本发明的化合物抑制体外培养细胞中以及由肿瘤样品制备的细胞裂解液中不同生物标志物 (pERK、pS6RP、pS6K、pAKT-S473 和 pAKT-T308) 的组合的能力。代表性的结果示于图 1 中，在蛋白质印迹上评估来自于小鼠的肿瘤细胞裂解液中不同生物标志物的磷酸化作用的减少。根据实施例 89A 中详述的专利提供者提供的方法完成生物化学分析。对于图 1 所示的实验，以本发明的化合物对结肠癌细胞系 RKO 的肿瘤的小鼠治疗 4 小时（对于 pERK 1/2 和 pS6RP 分析物）或 8 小时（对于 pAKT-S473 和 pAKT-T308 分析物）。然后切除所述肿瘤，在蛋白质印迹上裂解和分析总的和磷蛋白水平。每条泳道代表来自单个动物的肿瘤的裂解液，并且每个治疗组有四种动物。磷蛋白水平信号的百分率抑制在每条泳道上指明。Panel A) ERK 蛋白质的总的和磷蛋白质水平。Panel B) S6 蛋白质的总的和磷蛋白质水平。Panel C) AKT 的总的和磷蛋白质 (S473) 水平。Panel D) AKT 的总的和磷蛋白质 (T308) 水平。与给定磷蛋白质相应的带的信号的降低表明化合物对靶蛋白的抑制效果。
[0526] 本说明书引用的所有出版物以引用的方式引入本文。尽管本发明已参照特定实施方案予以描述，但应理解可在不脱离本发明的主旨下进行修改。这样的修改意在在导所附权利要求的范围内。
对照（1%）共聚维酮

测试化合物（100 mg/kg）

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>87</th>
<th>0</th>
<th>42</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>pERK 1/2</td>
<td>pERK 1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>pS6 (Ser235/236)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>pAkt (Ser473)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>pAkt (Thr308)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 1