发明名称
芦苇汁饮料及其制备方法

摘要
本发明涉及一种稳定性更好的芦苇汁饮料，特别是一种涉及芦苇汁饮料的制备工艺及其用途。它的制备工艺流程包括：芦苇选料、洗净、蒸煮、榨汁、离心、冷处理、过滤、调配、过滤、胶体、均质、精滤、灌装、杀菌、贴标、装箱、入库、检验、成品这几个过程。发明优点：该芦苇汁可以增进食欲，帮助消化。其也可以缓解疲劳，对心脏病、高血压、肾炎、肝硬化等患者很有益处，并具有利尿、镇静等作用。
1. 芦笋汁饮料的制备方法，其特征是：它是由含有下述重量配比的原料制备而成：芦笋汁 70 份、海藻酸钠 1 份、魔芋胶 1 份、特丁基对苯二酚 0,2 份、羧甲基纤维素钠 2 份、白砂糖 4 份、异维 C 钠 0,1 份、纯净水 21,7 份，其中：芦笋汁饮料的制备工艺流程包括芦笋选料、洗净、蒸煮、榨汁、离心、冷处理、过滤、调配、过滤、胶体、均质、精滤、灌装、杀菌、贴标、装箱、入库、检验、成品，其中：蒸汽熏需要 1-5 分钟；过滤采用 200 目的滤布过滤；调配加专用稳定剂及原料按科学配方进行调配；杀菌是在 121℃ 下热压 15 分钟，其中：海藻酸钠的粘度为 2840-3000mPa·s。
芦笋汁饮料及其制备方法

技术领域
[0001] 本发明涉及一种食用饮料，特别是一种涉及含有特定配方组合的芦笋汁饮料的制备工艺及其用途。

背景技术
[0002] 芦笋营养丰富，是一种富含蛋白质、维生素、多种氨基酸，芦丁及某些对人体有益的微量元素的名贵蔬菜。现代科学表明它除了具有防治心血管疾病，增强机体免疫功能外，还对多种肿瘤细胞有明显的抑制作用，因此可见，芦笋具有良好的应用前景，作为保健品的研制开发也同样具有重要的意义。
[0003] 目前市场上出现的，除了芦笋罐头、速冻芦笋外，以芦笋汁为原料研制出饮料、冲剂、片剂、饼干等系列新产品，受到了消费者的青睐，同时也对芦笋饮料的制作方法也有一些报道，但目前大多数芦笋饮料质量欠佳，只要表现在沉淀物太多，化学性状不稳定，芦笋因有生青味和苦味太浓，同时营养成分损失严重等问题出现。

发明内容
[0004] 本发明的目的是提供一种稳定性及质量都更好的芦笋汁饮料。稳定性越高是指在同等条件下，对比实验中含氨物的含量越少。
[0005] 本发明的技术方案如下：
[0006] 芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成，芦笋汁 40-70 份，海藻酸钠 1-4 份，魔芋胶 1-3 份，特丁基对苯二酚 0.2 份，羧甲基纤维素钠 1-3 份，白糖 1-5 份，异维 C 钠 0.1 份，纯净水 15-25 份。
[0007] 较优的技术方案为：芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成的，芦笋汁 70 份，海藻酸钠 1 份，魔芋胶 1 份，特丁基对苯二酚 0.2 份，羧甲基纤维素钠 2 份，白糖 4 份，异维 C 钠 0.1 份，纯净水 21.7 份。
[0008] 芦笋汁饮料及其制备方法，它的制备工艺流程包括：芦笋选料、洗净、蒸煮、榨汁、离心、冷处理、过滤、调配、过滤、胶体、均质、精滤、灌装、杀菌、贴标、装箱、入库、检验、成品，其中：蒸汽煮需要 1-5 分钟；过滤采用 200 目的滤布过滤，调配加专用稳定剂及调料按科学配方进行调配；杀菌是在 121℃下稳压 15 分钟。
[0009] 芦笋汁饮料及其制备方法，其中：所制得的芦笋汁饮料具有很好的保健功效，不仅可以增进食欲，帮助消化，缓解疲劳，而且对心脏病、高血压、肾炎、肝硬化等患者有益处，并具有利尿、镇静等作用。
[0010] 本发明中的食品添加剂海藻酸钠以其良好的生物降解性，被广泛应用于化学、生物、医药、食品等领域。目前，比较传统的提取工艺是酸解 - 酸化法，钙凝 - 酸化法，但这两种方法制得的中间产物海藻酸都不稳定，易降解，因此所得到的产品收率和粘度都比较低，早钙凝 - 酸化法上作出了工艺上的改进，该提取法的其他步骤与钙凝 - 酸化法相同，只是采用了离子交换脱钙，即将钙析后的产品过滤后，再往里面加入一定量浓度为 17%
的 NaCl 溶液脱钙。

[0011] 具体的提取过程包括浸泡、切碎、消化、稀释、过滤及洗涤、钙析、离子交换脱钙、乙醇沉淀、过滤、烘干、粉碎、成品这几个步骤。

[0012] 在此工艺上，钙析的速度比较快，沉淀颗粒也比较大，采用该方法所得的产品收率较高，可达到 55%，粘度也可达到 2840～3000mPa • s。所得产品均质性好，储存过程中粘度稳定。

[0013] 上述制备方法所述辅料为食品中允许加入的辅料或辅助性成分。

[0014] 市场上有很多的海藻酸钠的成熟提取工艺，还有各种粘度不同的海藻酸钠可供选择。其中本发明提供的海藻酸钠的制法来源于文献《海藻酸钠提取的新研究》王孝华、郑明、王虹 (1. 重庆交通学院实验教学部，重庆 400074；2. 重庆大学材料科学与工程学院，重庆 400044；3. 重庆工商大学环境保护研究所，重庆 400015) 中，并且制得的海藻酸钠的黏度为 2840～3000mPa • s。

[0015] 方法 A：本发明提供的海藻酸钠的提取技术，其过程包括浸泡、切碎、消化、稀释、过滤及洗涤、钙析、离子交换脱钙、乙醇沉淀、过滤、烘干、粉碎、成品这几个步骤。

[0016] 方法 B：传统的钙凝酸化法海藻酸钠提取技术，其过程包括浸泡、切碎、消化、稀释、过滤及洗涤、钙析、盐酸脱钙、碱溶、乙醇沉淀、过滤、烘干、粉碎、成品这几个步骤。

[0017] 现将两种方法提取出的海藻酸钠的性质结果对比如下：

<table>
<thead>
<tr>
<th></th>
<th>钙析的速度</th>
<th>沉淀颗粒</th>
<th>产品收率</th>
<th>粘度</th>
</tr>
</thead>
<tbody>
<tr>
<td>方法 A</td>
<td>较快</td>
<td>较大</td>
<td>高, 55.2%</td>
<td>2840～3000mPa • s</td>
</tr>
<tr>
<td>方法 B</td>
<td>较快</td>
<td>较大</td>
<td>较低, 37.1%</td>
<td>2759mPa • s</td>
</tr>
</tbody>
</table>

[0019] 经过实验结果对比表格可以得知：由本发明所提供的海藻酸钠的提取技术制得的产品收率较高，可达到 55%，粘度也可达到 3450mPa • s。所得产品均质性好，储存过程中粘度稳定。而采用传统提取技术生成的中间产物海藻酸不稳定，易降解，因此得到的产品收率及粘度都不是很高。

[0020] 本发明提供的芦笋汁饮料还具有很好的增进食欲，帮助消化，缓解疲惫的作用，对心脏病、高血压、肾炎、肝硬化等患者很有益处，并具有利尿、镇静等作用，质量改善也得到很大程度的改善。

[0021] 单独采用本发明所提供的配方组合制得的芦笋汁不仅具有较高的营养价值，除了有较高的增进食欲，帮助消化，缓解疲惫作用外，对心脏病、高血压、肾炎、肝硬化等患者很有益处，并具有利尿、镇静等作用，同时制得的芦笋汁的性质稳定性以及质量等方面比传统方法制得的芦笋汁有很大的提高。

[0022] 以下通过具体实施例，对本发明的上述内容再作进一步的详细说明。但不应将此误解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
具体实施例：

【0023】实施例1、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁40~70份、海藻酸钠1~4份、魔芋胶1~3份、特丁基对苯二酚0.2份、羧甲基纤维素钠1~3份、白砂糖1~5份、异维C钠0.1份、纯净水15~25份。

【0024】其中：芦笋汁饮料的制备工艺流程包括芦笋选料、洗净、蒸煮、榨汁、离心、冷处理、过滤、调配、过滤、胶体、均质、精滤、灌装、杀菌、贴标、装箱、入库、检验、成品，其中：蒸汽蒸需要1~5分钟；过滤采用200目的滤布过滤，调配加专用稳定剂及调料按科学配方进行调配；杀菌是在121℃下湿压15分钟。

【0025】其中：制备工艺流程中过滤制得粗品芦笋汁，再向粗品芦笋汁中加入各种饮料添加剂，包括海藻酸钠1~4份、魔芋胶1~3份、特丁基对苯二酚0.2份、羧甲基纤维素钠1~3份、白砂糖1~5份、异维C钠0.1份、纯净水15~25份。

【0026】实施例2、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁40份、海藻酸钠1份、魔芋胶1份、特丁基对苯二酚0.2份、羧甲基纤维素钠1份、白砂糖1份、异维C钠0.1份、纯净水15份，其中：海藻酸钠的粘度为2760mPa·s。其余同实施例1。

【0027】实施例3、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁50份、海藻酸钠2份、魔芋胶2份、特丁基对苯二酚0.2份、羧甲基纤维素钠2份、白砂糖2份、异维C钠0.1份、纯净水18份，其中：海藻酸钠的粘度为3250mPa·s。其余同实施例1。

【0028】实施例4、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁55份、海藻酸钠3份、魔芋胶2份、特丁基对苯二酚0.2份、羧甲基纤维素钠3份、白砂糖1~5份、异维C钠0.1份、纯净水20份，其中：海藻酸钠的粘度为2640mPa·s。其余同实施例1。

【0029】实施例5、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁70份、海藻酸钠1份、魔芋胶1份、特丁基对苯二酚0.2份、羧甲基纤维素钠2份、白砂糖4份、异维C钠0.1份、纯净水21.7份，其中：海藻酸钠的粘度为2840~3000mPa·s。其余同实施例1。

【0030】实施例6、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁65份、海藻酸钠3份、魔芋胶2份、特丁基对苯二酚0.2份、羧甲基纤维素钠2份、白砂糖5份、异维C钠0.1份、纯净水25份，其中：海藻酸钠的粘度为3470mPa·s。其余同实施例1。

【0031】实施例7、芦笋汁饮料及其制备方法，其中：它是由含有下述重量配比的原料制备而成；芦笋汁70份、魔芋胶1份、特丁基对苯二酚0.2份、羧甲基纤维素钠2份、白砂糖4份、异维C钠0.1份、纯净水21.7份。其余同实施例1。

【0032】将由实施例2、实施例3、实施例4、实施例5、实施例6、实施例7提供的粘度不同的海藻酸钠液体按照不同配方含量组合制备得到的芦笋汁饮料分别量取等量的液体分装于标号为（1号、2号、3号、4号、5号、6号）的直径口为1.5cm、高度为20cm的实验室试管中，并将它们同时置于同等环境条件下的恒温（温度设置为80℃）培养箱中，其余恒温培养箱中的条件（湿度、水份、温度等）保持相同，其中，在量取各实施例制得的芦笋汁及转移试管5
的时候应保证是在无菌条件下操作的，同时试管的外壁应整洁干净，使瓶内芦笋汁液体能清晰可见，便于试验现象的观察，现将各组试验的感官对比结果列出如下：（实验结果以试管底部出现的沉淀量即固形物的高度计算，单位为 cm, 其中 6 号试管的芦笋汁是在没有添加藻酸钠的条件下制得的）

<table>
<thead>
<tr>
<th>观察天数</th>
<th>1 号试管中的海藻酸钠液体（实施例 2 提供）</th>
<th>2 号试管中的海藻酸钠液体（实施例 3 提供）</th>
<th>3 号试管中的海藻酸钠液体（实施例 4 提供）</th>
<th>4 号试管中的海藻酸钠液体（实施例 5 提供）</th>
<th>5 号试管中的海藻酸钠液体（实施例 6 提供）</th>
<th>6 号试管中的海藻酸钠液体（实施例 7 提供）</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 5 天</td>
<td>无固形物 0.3cm</td>
<td>0.6cm</td>
<td>无固形物 0.9cm</td>
<td>无固形物</td>
<td>0.5cm</td>
<td></td>
</tr>
<tr>
<td>第 8 天</td>
<td>0.8cm</td>
<td>0.8cm</td>
<td>1.5cm</td>
<td>0.3cm</td>
<td>1.2cm</td>
<td>0.5cm</td>
</tr>
<tr>
<td>第 11 天</td>
<td>1.2cm</td>
<td>1.2cm</td>
<td>2.1cm</td>
<td>0.5cm</td>
<td>1.6cm</td>
<td>0.8cm</td>
</tr>
<tr>
<td>第 14 天</td>
<td>1.6cm</td>
<td>1.6cm</td>
<td>2.6cm</td>
<td>0.8cm</td>
<td>2.4cm</td>
<td>1.1cm</td>
</tr>
<tr>
<td>第 17 天</td>
<td>2.1cm</td>
<td>2.0cm</td>
<td>3.8cm</td>
<td>1.1cm</td>
<td>2.8cm</td>
<td>1.5cm</td>
</tr>
</tbody>
</table>

[0033] 根据以上表格中的对比结果可以得知：按照实施例 5 制得的 4 号试管中的芦笋汁的感官效果很好，首先，在同等环境条件下对比其它试管中出现固形物的量最少；其次，无论从色泽、滋味及气味、组织形态、杂物等各项的指标观察，由实施例 5 制得的 4 号试管中的芦笋汁都比较符合各项指标以及饮料的产品质量标准，由此可见由实施例 5 制得的芦笋汁具有更好的稳定性，质量更佳。对比 4 号试管与 6 号试管中芦笋汁的固形物含量可以看出，6 号试管中的固形物含量明显偏多。