WO 2005/045707 A1 |0 000 00 0 000 T 0 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
19 May 2005 (19.05.2005)

(10) International Publication Number

WO 2005/045707 A1l

(51) International Patent Classification’: GO6F 17/30

(21) International Application Number:
PCT/US2004/024537

(22) International Filing Date: 29 July 2004 (29.07.2004)

Microsoft Way, Redmond, WA 98052 (US). SEZGIN,
Beysim [US/US]; c/o Microsoft Corporation, One Mi-
crosoft Way, Redmond, WA 98052 (US). BLAKELEY,
Jose, A. [MX/US]; c/o Microsoft Corporation, One Mi-
crosoft Way, Redmond, WA 98052 (US). ALTUDOYV,
Denis, Y. [RU/US]; c/o Microsoft Corporation, One

(25) Filing Language: Engllsh Microsoft Way, Redmond, WA 98052 (US)
(26) Publication Language: English (74) Agents: ROCCI, Steven, J. et al.; Woodcock Washburn
LLP, One Liberty Place, 46th Floor, Philadelphia, PA
(30) Priority Data: 19103 (US).
10/692,225 23 October 2003 (23.10.2003) US (81) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): MI- kind of national protection available): AE, AG, AL, AM,
CROSOFT CORPORATION [US/US]; One Microsoft AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
Way, Redmond, WA 98052 (US). CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(72) Inventors; and KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
(75) Inventors/Applicants (for US only): VENKATESH, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
Ramachandran [IN/US]; c/o Microsoft Corporation, One PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
[Continued on next page]
(54) Title: OBJECT PERSISTENCE IN A DATABASE STORE
(57) Abstract: A new persistence format (404) for
storing objects of a user defined type in a database
store enables information about the structure of the
type to be communicated to the store. This informa-
tion enables a number of store optimizations, includ-
[Database server (sQL Server) ing direct structural access (408) to members of the
type. Specifically, metadata is exchanged between the
CLR type implementer and the data store. The store uses
Object memen the metadata to determine the storage layout for in-
(in-memory form) stances of the type. With this information, the store is
Appiication generates able to detect access patterns that can be optimized to
pr:;liecr:!téh;t;r;‘g:l;es?on directly operate over the storage representation with-
m;f;z‘gf:dfe;g:fofof T out hydration the object (410).
UDT object (1) ™
—— Operation
. y transiated into
APPLICATION |7/ equivalent
structural
\ access path (2)

Value accessed
structurally and /

returned withou
deserialization

3

uoT
Persisted
Form

WO 2005/045707 Al

0 0000 00O

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/045707 PCT/US2004/024537

OBJECT PERSISTENCE IN A DATABASE STORE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Application Serial No. 10/693,302, filed

October 24, 2003, the disclosure of which is incorporated herein by reference in its entirety.

COPYRIGHT NOTICE AND PERMISSION:

[0001] A portion of the disclosure of this patent document may contain material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights
whatsoever. The following notice shall apply to this document: Copyright © 2003, Microsoft
Corp.

FIELD OF THE INVENTION
[0002] The present invention relates to data storage in a computer system, and more

particularly, to a system and method for persisting objects in a database store.

BACKGROUND

[0003] Microsoft SQL SERVER is a comprehensive database management platform that
provides extensive management and development tools, a powerful extraction, transformation,
and loading (ETL) tool, business intelligence and analysis services, and other capabilities. Two
improvements to SQL SERVER have recently been implemented. First, the Microsoft Windows
NET Framework Common Language Runtime (CLR) has been integrated into the SQL
SERVER database, and second, a new object, referred to as a user defined type (UDT), can now

be created with managed code in the CLR environment and persisted in the database store.

-1-

WO 2005/045707 PCT/US2004/024537

[0004] The CLR is the heart of the Microsoft NET Framework, and provides the
execution environment for all NET code. Thus, code that runs within the CLR is referred to as
"managed code." The CLR provides various functions and services required for program
execution, including just-in-time (JIT) compilation, allocating and managing memory, enforcing
type safety, exception handling, thread management and security. The CLR is now loaded by
SQL SERVER upon the first invocation of a NET routine.

[0005] In previous versions of SQL SERVER, database programmers were limited to
using Transact-SQL when writing code on the server side. Transact-SQL is an extension of the
Structured Query Language as defined by the International Standards Organizétion (ISO) and the
American National Standards Institute (ANSI). Using Transact-SQL, database developers can
create, modify and delete databases and tables, as well as insert, retrieve, modify and delete data
stored in a database. Transact-SQL is specifically designed for direct structural data access and
manipulation. While Transact-SQL excels at structural data access and management, it is not a
full-fledged programming language in the way that Visual Basic .NET and C# are. For example,
Transact-SQL does not support arrays, collections, for each loops, bit shifting or classes.

[0006] With the CLR integrated into the SQL SERVER database, database developers
can now perform tasks that were impossible or difficult to achieve with Transact-SQL alone.
Both Visual Basic .NET and C# are modern programming languages offering full support for
arrays, structured exception handling, and collections. Developers can levérage CLR integration
to write code that has more complex logic and is more suited for computation tasks using
languages such as Visual Basic .NET and C#.

[0007] In addition to CLR integration, SQL SERVER also adds support for user
defined types (UDT) - a new mechanism that enables a developer to extend the scalar type
system of the database. UDTs provide two key benefits from an application architecture
perspective: they provide strong encapsulation (both in the client and the server) between the
internal state and the external behaviors, and they provide deep integration with other related
server features. Once a UDT is defined, it can be used in all the contexts that a system type can
be used in SQL SERVER, including in column definitions, variables, parameters, function
results, cursors, triggers, and replication.

[0008] The process of defining a UDT on a database server is accomplished as follows:

a) create a class in managed code that follows the rules for UDT creation;

b) load the Assembly that contains the UDT into a database on the server using the

CREATE ASSEMBLY statement; and

WO 2005/045707 PCT/US2004/024537
¢) create a type in the database using the CREATE TYPE statement that exposes the
managed code UDT.
At this point, the UDT can be used in a table definition.

[0009] When a UDT definition is created in managed code, the type must meet the
following requirements:

a) it must be marked as Serializable;

b) it must be decorated with the SqlUserDefinedTypeAttribute;

c) the type should be NULL aware by implementing the INullable interface;

d) the type must have a public constructor that takes no arguments; and

e) the type should support conversion to and from a string by implementing the

following methods:
1. Public String ToString(); and
2. Public Shared <type> Parse (SqlString s).

[0010] Figure 1 is an example of a class that defines a UDT in accordance with the
process described above. In accordance with the steps described above, this class is then
compiled into a dynamic link library (dll). An Assembly containing the compiled class is then
created using the following T-SQL script commands:

create assembly test
from 'c:\test.dll'

go
[0011] The following T-SQL script commands are then used to create the UDT on the

SCrver:

create type Baseltem
external name [test]:[Baseltem]

go
[0012] Once the UDT has been created on the server, a table (e.g., “MyTable”) can be
created defining an attribute of the table as the UDT type, as follows:
create table MyTable

Item Baseltem,
TtemlId as item::ID

)
go

[0013] A new item can be added to the table, as follows:

WO 2005/045707 PCT/US2004/024537

declare @i Baseltem
set @i = convert(Baseltem, ")
insert into MyTable values (@i)

go
The UDT expression can then be used in a query such as: SELECT Item.ID, Item.Name FROM
MyTable.

[0014] With the integration of the CLR into SQL SERVER and the ability to define
UDTs from a class definition in managed code, applications can now instantiate objects of the
type defined by the managed code class and have those objects persisted in the relational
database store as an instance of the UDT. Moreover, the class that defines the UDT can also
include methods that implement specific behaviors on objects of that type. An application can
therefore instantiate objects of a type defined as a UDT and can invoke managed behaviors over
them.

[0015] When an object of a class that has been defined as a UDT is instantiated in the
CLR, the object can be persisted in the database store through the process of object serialization,
wherein the values of the variables of the class are transferred to physical storage (e.g., hard
disk). Figure 2 illustrates the serialization of an object in memory to its persisted form on disk.
The object may be persisted in the database store in a traditional relational database table of the
format illustrated in Figure 3. As shown, the table comprises a column of the specified UDT.
The serialized values of a persisted object of the specified UDT occupy a cell of the UDT
column.

[0016] Referring again to Figure 2, when an application generates a query that includes
a predicate or an expression that references a managed behavior of a UDT object that has been
persisted in the database store (e.g., a behavior that returns the value of a field of the UDT
object), the persisted object must be de-serialized (sometimes also referred to as “hydrating”) and
the CLR must allocate memory for the full object in order to receive its stored values. The CLR
must then invoke the actual method that implements the behavior desired by the application.
Unfortunately, the processing overhead associated with allocating memory to store the full object
at run time, deserializing and populating all parts of the object, and then invoking the method
that implements the requested behavior, can be burdensome. Consequently, there is a need for
systems and methods that provide more efficient storage and retrieval of objects persisted in a

database store. The present invention satisfies this need.

WO 2005/045707 PCT/US2004/024537

SUMMARY

[0017] The present invention is directed to a system and method that provides a new
persistence format for user defined types (UDTs) within a database store that enables
information about the structure of a UDT to be communicated to the underlying data store. This
information enables a number of store optimizations, including direct structural access to
members of the type. Specifically, the present invention enables metadata exchange between the
type implementer and the data store. The store uses the metadata to determine the storage layout
for instances of the type. With this information, the store is able to detect access patterns that
can be optimized to directly operate over the storage representation without hydration
(deserialization) of the object. Moreover, by understanding operations that are structural access-
only operations, the system is able to build data distribution statistics and indexes over the
individual members without requiring redundant persistence of the computed value.

[0018] Other features and advantages of the invention may become apparent from the

following detailed description of the invention and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The foregoing summary, as well as the following detailed description of the
invention, is better understood when read in conjunction with the appended drawings. For the
purpose of illustrating the invention, there is shown in the drawings exemplary embodiments of
various aspects of the invention; however, the invention is not limited to the specific methods
and instrumentalities disclosed. In the drawings:

[0020] Fig. 1 is an exemplary code segment illustrating a managed code class definition
for a user defined type;

[0021] Fig. 2 is a block diagram illustrating the serialization and deserialization of an
instance of a user defined type that has been instantiated in managed code;

[0022] Fig. 3 is a diagram illustrating a database table in which an object of a user
defined type has been persisted;

[0023] Fig. 4A is a flow diagram illustrating one embodiment of an aspect of the
method of the present invention;

[0024] Fig. 4B is a flow diagram illustrating one embodiment of another aspect of the
method of the present invention;

[0025] Fig. 5 is an exemplary code segment illustrating a managed code class definition

for a user defined type that has been annotated in accordance with the present invention;

WO 2005/045707 PCT/US2004/024537

[0026] Fig. 6 is a block diagram of a system in which the present invention can be
implemented, as well as illustrating the structural access and return of a value of a persisted
object of a UDT in accordance with the method of the present invention;

[0027] Fig. 7 is a block diagram representing an exemplary network environment
having a variety of computing devices in which the present invention may be implemented; and

[0028] Fig. 8 is a block diagram representing an exemplary computing device in which

the present invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

[0029] The subject matter of the present invention is described with specificity to meet
statutory requirements. However, the description itself is not intended to limit the scope of this
patent. Rather, the inventors have contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or elements similar to the ones described in
this document, in conjunction with other present or future technologies. Moreover, although the
term “step” may be used herein to connote different aspects of methods employed, the term
should not be interpreted as implying any particular order among or between various steps herein
disclosed unless and except when the order of individual steps is explicitly described.

[0030] As stated above, the present invention is directed to a system and method that
provides a new persistence format for user defined types (UDTs) within a database store that
enables information about the structure of a UDT to be communicated to the underlying data
store. This information enables a number of store optimizations, including direct structural
access to members of the type. Specifically, the present invention enables metadata exchange
between the type implementer and the data store. The store uses the metadata to determine the
storage layout for instances of the type. With this information, the store is able to detect access
patterns that can be optimized to directly operate over the storage representation without
hydration (deserialization) of the object. Moreover, by understanding operations that are
structural access-only operations, the system is able to build data distribution statistics and
indexes over the individual members without requiring redundant persistence of the computed
value. The term “direct structural access” refers to the ability of the database store to execute a
query over an object by direct access to the persisted values of the object in a table of the data
store, without having to hydrate (deserialize) the object.

[0031] Figure 4A is a flow diagram illustrating one embodiment of a method of the
present invention. As illustrated, the method begins at step 400 with the definition of a user
defined type. As with most UDTs, the type is defined as a CLR class in managed code using, for

example, a high-level programming language such as Visual Basic NET or C#. According to
-6-

WO 2005/045707 PCT/US2004/024537

the present invention, however, 1n order to apply the new persistence format of the present
invention to this class definition, the class definition is annotated in step 402 to provide metadata
that describes the storage layout of the UDT. Preferably, the metadata describes the storage
facets of the fields of the type, such as size, precision, scale, etc. as well as denoting equivalent
structural access paths for every behavior of the type. Figure 5 is an exemplary code listing in
which the CLR class shown Figure 1 has been annotated in accordance with the present
invention. In the present embodiment, there are three aspects to this annotation.

[0032] First, the class definition is annotated to identify the UDT as one to which the
new persistence format of the present invention will be applied. In the present embodiment, this
is achieved by adding the parameter “Format.Structured” to the [SqlUserDefined Type()]
attribute of the class definition, as show in line 2 of the exemplary class definition of Figure 5.
This identifies the UDT to the data store as one to which the persistence format of the present
invention is to be applied.

[0033] Second, each field of the class is annotated with a storage attribute that controls
the storage facets of the type, such as size, precision, scale, etc. In the present embodiment, this
is achieved by annotating each field with a custom storage attribute named SqlUdtField(). This
attribute annotates fields with additional storage directives. These directives are enforced when
the object is serialized to disk. In the present embodiment, the properties (i.e., the directives that

can be issued) of the SqlUdtField() custom attribute are as follows:

Name Description Default value
IsFixedLength Is this a fixed length field? False
Max Size The maximum size, in logical | X
units for the underlying field
type, bytes for the binary
field types, and characters for
the character field types.
Precision Precision, valid only for X
numeric types
Scale Scale, valid only for numeric | X
types
IsNullable Can values of this field be True
null?

It is understood, however, that the present invention is by no means limited to the properties
show. Rather, in other embodiments additional or other properties may be specified with this

attribute.

WO 2005/045707 PCT/US2004/024537

[0034] In the present embodiment, the following field types are permitted in a
Format.Structured UDT: SqlBoolean, SqlByte, Sqllnt16, SqlInt32, Sqllnt64, SqlSingle,
SqlDouble, SqlDateTime, SqlMoney, SqlGuid, SqlDecimal, SqlString, SqlBinary,
SqglXmlReader, SqlBytes, SqlChars, SqlUtcDateTime, SqlDate, SqlTime, and Embedded UDTs.
Of course, in other embodiments, some of these field types may not be permitted and other field
types may be permitted. The following table reflects the matrix of valid values of the various
properties for specific field types. “Y” means the property is valid, “N” means the property is
not valid, “R” means the property is required. If the property is invalid, type registration will
report an error if a non-default value for the property is specified. In other embodiments, these

limitations and constraints may differ.

Type IsFixedLength | MaxSize Precision Scale IsNullable
SqlBoolean N N N N Y
SqlByte N N N N Y
SqlIntl6 N N N N Y
SqlInt32 N N N N Y
Sqlint64 N N N N Y
SqlSingle N N N N Y
SqlDouble N N N N Y
SqlDateTime N N N N Y
SqlMoney N N N N Y
SqlGuid N N N N Y
S qIDecimal N N Y Y Y
SqlString Y R N N Y
SqlBinary Y R N N Y
SqlXmlReader |Y Y N N Y
SqlBytes Y R N N Y
SqlChars Y R N N Y
SqlUtcDateTime | N N N N Y
SqlDate N N N N Y
SqlTime N N N N Y
Embedded N N N N Y
UDTs i

[0035] Referring to the exemplary code listing of Figure 5, the SqlUdtField() custom
attribute has been added at lines 5, 8, 37, and 49 to annotate the respective fields of the
exemplary UDT class definition.

[0036] As athird aspect of the class definition annotation, every managed behavior
(e.g., amethod that can be invoked on the UDT object to return the value of a field) defined in
the CLR class is annotated with an attribute that denotes an equivalent structural access path for

that managed behavior. In the present embodiment, the custom attribute used for this purpose is

-8-

WO 2005/045707 PCT/US2004/024537

named SqlUdtProperty(), and the database server (e.g., SQL SERVER) assumes that the
implementation of properties annotated with this custom attribute will delegate to a field
specified as part of the attribute definition. This lets the server optimize access to the property
structurally without creating an instance and invoking the behavior on it. The properties of the

SqlUdtProperty() custom attribute are as follows:

Name Description

FieldName the name of the field that is used to store
the value for this property.

[0037] The presence of the SqlUdtProperty denotes that the body of the property can be
ignored, and the name of the field is used as the structural access path. In the present
embodiment, property accessors are the only behaviors that can be accessed structurally.
However, in other embodiments, other types of methods may be capable of structural access.

[0038] Referring to the exemplary code listing of Figure 5, the SqlUdtProperty()
custom attribute has been added at lines 11 and 24 to annotate the respective managed behaviors
of the class.

[0039] Referring again to Figure 4A, at step 404 the UDT as defined by the UDT
author is created on the database server and the metadata reflected in the class definition
annotations is imported into the database store, which uses the metadata to determine the storage
layout for instances of the type. Specifically, the SqlUdtField attribute in combination with the
actual type of a given field is used to control the storage layout of the persisted value of that
field. For example, if the attribute indicates that a field is nullable, the component of the
database system that handles storage can reserve a bit in the area used to store null values for this
field. As another example, if the field is of a varying sized type (like string), the attribute may
indicate that the field is actually fixed size. This information can again be used by the database
system to optimize access to this field by storing the field in the fixed size portion of the value.
The specifics of how the facets on the SqlUdtField attribute affect the storage layout are
dependent upon the particular storage layout choices of the database system. It is understood,
therefore, that the foregoing discussion provides merely two examples of how such an attribute
can control the storage layout of an instance of a UDT; the present invention is by no means
limited thereto.

[0040] In the present embodiment, step 404 of the method is carried out by (1)
compiling the CLR class file that defines the UDT into a dynamic link library (.dll), (2) creating
an Assembly that contains the UDT and registering the Assembly with the store, and then (3)

-9.

WO 2005/045707 PCT/US2004/024537

creating the UDT over the managed type. As part of step(3), the storage facets of the type are
validated and the metadata information reflected in the annotations to the CLR class definition
are imported into the database system catalog that describes the structure of the type. In the
present embodiment, these steps can be carried out using the following T-SQL script commands:

--create the assembly
create assembly test
from 'c:\test.dll'

go

-- create the UDT
create type Baseltem
external name [test]:[Baseltem]

g0

Instances of the UDT can then be instantiated in managed code, and those objects can be
persisted in a table of the database store, as with any UDT. It is understood that in other
embodiments, particularly those that may employ database servers other than SQL SERVER, the
details of how the UDT is registered and how the metadata information is exchanged with the
database store may be different.

[0041] Figure 4B is a flow diagram illustrating a method for accessing values of a UDT
to which the new persistence format of the present invention has been applied, e.g., UDTs
annotated with the “Format.Structured” property as discussed above. According to the inventive
method, as shown in step 406, the database server receives a query that includes a predicate or an
expression that references a managed behavior of an object persisted in the database store, to
which the method of the present invention has been applied. For example, suppose a
Format.Structured UDT named “Person” has been created and that it includes a field of type
SqlString called “Name,” which has been properly annotated with the SqlUdtField() attribute as
described above. Assume also that the Person type has a managed behavior that returns the
value of the “Name” field of an instance of the type and that the behavior has been properly
annotated with the SqlUdtProperty() attribute. The database server may receive the following
query on the Person object:

SELECT Person.Name FROM T
where T is a table that contains a UDT column called Person.

[0042] As described above in the Background section, in the case of SQL SERVER, for
UDTs to which the new persistence format of the present invention is rot applied, the query
would be processed as follows. At query compilation time, the assembly metadata for the UDT

is examined to determine that Name is a valid property on the type. A helper function is then

-10-

WO 2005/045707 PCT/US2004/024537

Deserialization is implemented by a type-specific deserializer that is also generated on the fly.

As discussed above, the process of deserialization involves using the contents of the on-disk

representation to populate the internals of the new managed object. Internally, the query:
SELECT person.Name FROM T

gets converted to:

SELECT deserializelnto(new person()), personDatum)->invokeFunction(Name)
FROMT

All the new code that is generated is encapsulated in a function InvokeUdfExternal, which is
used at runtime to evaluate this expression.

[0043] In accordance with the present invention, however, as illustrated at step 408, the
query is processed differently. Specifically, the query operation is translated into its equivalent
structural access path based on the metadata stored in the system catalog of the database. In the
presently described embodiment in which the invention is implemented in the SQL SERVER
database, at query compilation time, the assembly metadata for the UDT is examined to
determine that Name is a property that can be rewritten for structural access. Ifit can be
executed structurally, sql metadata and assembly metadata are used to determine the physical
access information (location, type and size of the value, along with the access path to get to it).
This structural metadata is used to compile an accessor and store this information in the
compiled expression. In the present embodiment, therefore, the same query above gets compiled
instead into:

Select binding.GetData(personDatum, NameOrdinal) from T

[0044] Next, at step 410, the value of the requested field can now be accessed
structurally and returned to the user without the need for object hydration and without invoking
any behaviors in managed code. Specifically, in the present embodiment, the accessor is used at
runtime to fetch the field. Internally, the implementation of the accessor parses the serialized
form and returns the property.

[0045] Figure 6 is a block diagram that illustrates a system that implements the method
illustrated in Figure 4B. As shown at (1), an application generates a query that includes a
predicate or an expression that references a managed behavior of an object persisted in the
database store, to which the present invention has been applied. A query processing system of
the database server uses the stored metadata associated with the UDT to translate the query into
an equivalent structural access path, as shown at (2). The value is then accessed structurally and
returned to the application without object hydration and without invoking the behavior on the

object, as shown at (3).
-11-

WO 2005/045707 PCT/US2004/024537

[0046T Developets can build upon the ability of the present invention to provide
structural access to fields of a UDT object without object hydration, to enable additional
optimizations. For example, with the present invention, developers have the ability to build
computed column indexes over structurally accessible UDT operations without requiring the
column to be persisted redundantly. The direct structural access to a value provided by the
present invention can be used to retrieve interesting information from the value, such as the
actual type of the value, or whether the value contains embedded large values. The present
invention can also be used to provide structural transformations of a value in response to
servicing and data upgrade scenarios. Additionally, the present invention can be used to migrate
and import/export values from one domain (store) to another more efficiently.

[0047] As is apparent from the above, all or portions of the various systems, methods,
and aspects of the present invention may be embodied in hardware, software, or a combination
of both. When embodied in software, the methods and apparatus of the present invention, or
certain aspects or portions thereof, may be embodied in the form of program code (i.e.,
instructions). This program code may be stored on a computer-readable medium, such as a
magnetic, electrical, or optical storage medium, including without limitation a floppy diskette,
CD-ROM, CD-RW, DVD-ROM, DVD-RAM, magnetic tape, flash memory, hard disk drive, or
any other machine-readable storage medium, wherein, when the program code is loaded into and
executed by a machine, such as a computer or server, the machine becomes an apparatus for
practicing the invention. A computer on which the program code executes will generally include
a processor, a storage medium readable by the processor (including volatile and non-volatile
memory and/or storage elements), at least one input device, and at least one output device. The
program code may be implemented in a high level procedural or object oriented programming
language. Alternatively, the program code can be implemented in an assembly or machine
language. In any case, the language may be a compiled or interpreted language.

[0048] The present invention may also be embodied in the form of program code that is
transmitted over some transmission medium, such as over electrical wiring or cabling, through
fiber optics, over a network, including a local area network, a wide area network, the Internet or
an intranet, or via any other form of transmission, wherein, when the program code is received
and loaded into and executed by a machine, such as a computer, the machine becomes an
apparatus for practicing the invention.

[0049] When implemented on a general-purpose processor, the program code may
combine with the processor to provide a unique apparatus that operates analogously to specific

logic circuits.

-12-

WO 2005/045707 PCT/US2004/024537

[0050f Moreover, the invention can be implemented in connection with any computer
or other client or server device, which can be deployed as part of a computer network, or in a
distributed computing environment. In this regard, the present invention pertains to any computer
system or environment having any number of memory or storage units, and any number of
applications and processes occurring across any number of storage units or volumes, which may
be used in connection with processes for persisting objects in a database store in accordance with
the present invention. The present invention may apply to an environment with server computers
and client computers deployed in a network environment or distributed computing environment,
having remote or local storage. The present invention may also be applied to standalone
computing devices, having programming language functionality, interpretation and execution
capabilities for generating, receiving and transmitting information in congection with remote or
local services.

[0051] Distributed computing facilitates sharing of computer resources and services by
exchange between computing devices and systems. These resources and services include, but are
not limited to, the exchange of information, cache storage, and disk storage for files. Distributed
computing takes advantage of network connectivity, allowing clients to leverage their collective
power to benefit the entire enterprise. In this regard, a variety of devices may have applications,
objects or resources that may implicate processing performed in connection with the object
persistence methods of the present invention.

[0052] Fig. 7 provides a schematic diagram of an exemplary networked or distributed
computing environment. The distributed computing environment comprises computing objects
10a, 10b, etc. and computing objects or devices 110a, 110b, 110c, etc. These objects may
comprise programs, methods, data stores, programmable logic, etc. The objects may comprise
portions of the same or different devices such as PDAs, televisions, MP3 players, personal
computers, etc. Each object can communicate with another object by way of the
communications network 14. This network may itself comprise other computing objects and
computing devices that provide services to the system of Fig. 7, and may itself represent multiple
interconnected networks. In accordance with an aspect of the invention, each object 10a, 10b,
etc. or 110a, 110b, 110c, etc. may contain an application that might make use of an API, or other
object, software, firmware and/or hardware, to request use of the processes used to implement
the object persistence methods of the present invention.

[0053] It can also be appreciated that an object, such as 110c, may be hosted on another
computing device 10a, 10b, etc. or 110a, 110b, etc. Thus, although the physical environment

depicted may show the connected devices as computers, such illustration is merely exemplary

-13 -

WO 2005/045707 PCT/US2004/024537

and tlie physical environment may alternatively be depicted or described comprising various
digital devices such as PDAs, televisions, MP3 players, etc., software objects such as interfaces,
COM objects and the like.

[0054] There are a variety of systems, components, and network configurations that
support distributed computing environments. For example, computing systems may be connected
together by wired or wireless systems, by local networks or widely distributed networks.
Currently, many of the networks are coupled to the Internet, which provides the infrastructure for
widely distributed computing and encompasses many different networks. Any of the
infrastructures may be used for exemplary communications made incident to the present
invention.

[0055] The Internet commonly refers to the collection of networks and gateways that
utilize the TCP/IP suite of protocols, which are well-known in the art of computer networking.
TCP/IP is an acronym for “Transmission Control Protocol/Internet Protocol.” The Internet can
be described as a system of geographically distributed remote computer networks interconnected
by computers executing networking protocols that allow users to interact and share information
over the network(s). Because of such wide-spread information sharing, remote networks such as
the Internet have thus far generally evolved into an open system for which developers can design
software applications for performing specialized operations or services, essentially without
restriction.

[0056] Thus, the network infrastructure enables a host of network topologies such as
client/server, peer-to-peer, or hybrid architectures. The “client” is a member of a class or group
that uses the services of another class or group to which it is not related. Thus, in computing, a
client is a process, i.e., roughly a set of instructions or tasks, that requests a service provided by
another program. The client process utilizes the requested service without having to “know” any
working details about the other program or the service itself. In a client/server architecture,
particularly a networked system, a client is usually a computer that accesses shared network
resources provided by another computer, e.g., a server. In the example of Fig. 7, computers 110a,
110b, etc. can be thought of as clients and computer 10a, 10b, etc. can be thought of as servers,
although any computer could be considered a client, a server, or both, depending on the
circumstances. Any of these computing devices may be processing data in a manner that
implicates the object persistence techniques of the invention.

[0057] A server is typically a remote computer system accessible over a remote or local
network, such as the Internet. The client process may be active in a first computer system, and

the server process may be active in a second computer system, communicating with one another

-14 -

WO 2005/045707 PCT/US2004/024537

over ‘a'cormmniuntcations mediuni, thiis providing distributed functionality and allowing multiple
clients to take advantage of the information-gathering capabilities of the server. Any software
objects utilized pursuant to the persistence mechanism of the invention may be distributed across
multiple computing devices.

[0058] Client(s) and server(s) may communicate with one another utilizing the
functionality provided by a protocol layer. For example, HyperText Transfer Protocol (HTTP) is
a common protocol that is used in conjunction with the World Wide Web (WWW), or “the
Web.” Typically, a computer network address such as an Internet Protocol (IP) address or other
reference such as a Universal Resource Locator (URL) can be used to identify the server or client
computers to each other. The network address can be referred to as a URL address.
Communication can be provided over any available communications medium.

[0059] Thus, Fig. 7 illustrates an exemplary networked or distributed environment, with
aserver in communication with client computers via a network/bus, in which the present
invention may be employed. The network/bus 14 may be a LAN, WAN, intranet, the Internet, or
some other network medium, with a number of client or remote computing devices 110a, 110b,
110c, 110d, 110e, etc., such as a portable computer, handheld computer, thin client, networked
appliance, or other device, such as a VCR, TV, oven, light, heater and the like in accordance
with. the present invention. It is thus contemplated that the present invention may apply to any
computing device in connection with which it is desirable to maintain a persisted object.

[0060] In a network environment in which the communications network/bus 14 is the
Internet, for example, the servers 10a, 10b, etc. can be servers with which the clients 110a, 110b,
110c, 1104, 110e, etc. communicate via any of a number of known protocols such as HTTP.
Servers 10a, 10b, etc. may also serve as clients 110a, 110b, 110c, 110d, 110e, etc., as may be
characteristic of a distributed computing environment.

[0061] Communications may be wired or wireless, where appropriate. Client devices
110a, 110b, 110c, 110d, 110e, etc. may or may not communicate via communications
network/bus 14, and may have independent communications associated therewith. For example,
in the case of a TV or VCR, there may or may not be a networked aspect to the control thereof.
Each client computer 110a, 110b, 110c, 110d, 110e, etc. and server computer 10a, 10b, etc. may
be equipped with various application program modules or objects 135 and with connections or
access to various types of storage elements or objects, across which files or data streams may be
stored or to which portion(s) of files or data streams may be downloaded, transmitted or
migrated. Any computer 10a, 10b, 110a, 110b, etc. may be responsible for the maintenance and

updating of a database, memory, or other storage element 20 for storing data processed according

-15-

WO 2005/045707 PCT/US2004/024537

tofthe-invention: Thus; the piesetit ihvention can be utilized in a computer network environment
having client computers 110a, 110b, etc. that can access and interact with a computer
network/bus 14 and server computers 10a, 10b, etc. that may interact with client computers 110a,
110b, etc. and other like devices, and databases 20.

[0062] Fig. 8 and the following discussion are intended to provide a brief general
description of a suitable computing device in connection with which the invention may be
implemented. For example, any of the client and server computers or devices illustrated in
Figure 7 may take this form. It should be understood, however, that handheld, portable and other
computing devices and computing objects of all kinds are contemplated for use in connection
with the present invention, i.e., anywhere from which data may be generated, processed, received
and/or transmitted in a computing environment. While a general purpose computer is described
below, this is but one example, and the present invention may be implemented with a thin client
having network/bus interoperability and interaction. Thus, the present invention may be
implemented in an environment of networked hosted services in which very little or minimal
client resources are implicated, e.g., a networked environment in which the client device serves
merely as an interface to the network/bus, such as an object placed in an appliance. In essence,
anywhere that data may be stored or from which data may be retrieved or transmitted to another
computer is a desirable, or suitable, environment for operation of the object persistence methods
of the invention.

[0063] Although not required, the invention can be implemented via an operating
system, for use by a developer of services for a device or object, and/or included within
application or server software that operates in accordance with the invention. Software may be
described in the general context of computer-executable instructions, such as program modules,
being executed by one or more computers, such as client workstations, servers or other devices.
Generally, program modules include routines, programs, objects, components, data structures
and the like that perform particular tasks or implement particular abstract data types. Typically,
the functionality of the program modules may be combined or distributed as desired in various
embodiments. Moreover, the invention may be practiced with other computer system
configurations and protocols. Other well known computing systems, environménts, and/or
configurations that may be suitable for use with the invention include, but are not limited to,
personal computers (PCs), automated teller machines, server computers, hand-held or laptop
devices, multi-processor systems, microprocessor-based systems, programmable consumer
electronics, network PCs, appliances, lights, environmental control elements, minicomputers,

mainframe computers and the like.

-16-

WO 2005/045707 PCT/US2004/024537

[0064] Fig. 8 thus illustrates an example of a suitable computing system environment
100 in which the invention may be implemented, although as made clear above, the computing
system environment 100 is only one example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or functionality of the invention.
Neither should the computing environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the exemplary
operating environment 100.

[0065] With reference to Fig. 8, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer 110. Components of
computer 110 may include, but are not limited to, a processing unit 120, a system memory 130,
and a system bus 121 that couples various system components including the system memory to
the processing unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced
ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus (also known as Mezzanine bus).

[0066] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and non-removable media. By way of
example, and not limitation, computer readable media may comprise computer storage media
and communication media. Computer storage media include both volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or other
data. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which can
be accessed by computer 110. Communication media typically embody computer readable ,
instructions, data structures, program modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and include any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example, and not

limitation, communication media include wired media such as a wired network or direct-wired

-17 -

WO 2005/045707 PCT/US2004/024537

connection, and wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of any of the above should also be included within the scope of computer readable
media.

[0067] The system memory 130 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that
help to transfer information between elements within computer 110, such as during start-up, is
typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit 120. By way of
example, and not limitation, Fig. 8 illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

[0068] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Fig. 8 illustrates a hard
disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk
156, such as a CD-RW, DVD-RW or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tape, solid state RAM, solid state ROM and the like. The hard disk
drive 141 is typically connected to the system bus 121 through a non-removable memory
interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable memory interface, such as interface
150.

[0069] The drives and their associated computer storage media discussed above and
illustrated in Fig. 8 provide storage of computer readable instructions, data structures, program
modules and other data for the computer 110. In Fig. 8, for example, hard disk drive 141 is
illustrated as storing operating system 144, application programs 145, other program modules
146 and program data 147. Note that these components can either be the same as or different
from operating system 134, application programs 135, other program modules 136 and program
data 137. Operating system 144, application programs 145, other program modules 146 and
program data 147 are given different numbers here to illustrate that, at a minimum, they are
different copies. A user may enter commands and information into the computer 110 through

input devices such as a keyboard 162 and pointing device 161, such as a mouse, trackball or

-18-

WO 2005/045707 PCT/US2004/024537
touchpad. Gther iﬁput"de\ﬁbéS“(nﬁfEshovm) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input devices are often connected to the
processing unit 120 through a user input interface 160 that is coupled to the system bus 121, but
may be connected by other interface and bus structures, such as a parallel port, game port or a
universal serial bus (USB). A graphics interface 182 may also be connected to the system bus
121. One or more graphics processing units (GPUs) 184 may communicate with graphics
interface 182. A monitor 191 or other type of display device is also connected to the system bus
121 via an interface, such as a video interface 190, which may in turn communicate with video
memory 186. In addition to monitor 191, computers may also include other peripheral output
devices such as speakers 197 and printer 196, which may be connected through an output
peripheral interface 195.

[0070] The computer 110 may operate in a networked or distributed environment using
logical connections to one or more remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to the computer 110, although only a memory storage device 181 has
been illustrated in Fig. 8. The logical connections depicted in Fig. 8 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may also include other networks/buses.
Such networking environments are commonplace in homes, offices, enterprise-wide computer
networks, intranets and the Internet.

[0071] When used in a LAN networking environment, the computer 110 is connected
to the LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet. The modem 172, which may be
internal or external, may be connected to the system bus 121 via the user input interface 160, or
other appropriate mechanism. In a networked environment, program modules depicted relative to
the computer 110, or portions thereof, may be stored in the remote memory storage device. By
way of example, and not limitation, Fig. 8 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers may
be used.

[0072] As the foregoing illustrates, the present invention is directed to a new persistence
format for user defined types in a database management system. It is understood that changes

may be made to the embodiments described above without departing from the broad inventive

-19-

WO 2005/045707 PCT/US2004/024537

concepts thereof. Fot example, while an embodiment of the present invention has been
described above as being implemented in Microsoft’s SQL SERVER database management
system, it is understood that the present invention may be embodied in any database management
system that supports the creation of user defined types. Accordingly, it is understood that the
present invention is not limited to the particular embodiments disclosed, but is intended to cover
all modifications that are within the spirit and scope of the invention as defined by the appended

claims.

=20 -

WO 2005/045707 PCT/US2004/024537

WHAT IS CLAIMED?

1. A method for persisting an object in a database store, comprising:

defining a type of an object that can be persisted in the database store, wherein the type
definition comprises fields and behaviors; and

annotating the type definition with attributes that define the storage layout in the database
store for instances of the type, wherein the database store uses the annotations in the type

definition to control the storage layout of instances of the type in the database store.

2. The method recited in claim 1, wherein said step of annotating the type definition
comprises:

annotating each field of the type with a first attribute that controls one or more storage
facets of the field; and

annotating each behavior with a second attribute that denotes an equivalent structural

access path.

3. The method recited in claim 1, wherein the storage facets of the field that are
controlled by the first attribute comprise at least one of the maximum size of the field, whether or
not the field is fixed length, the precision of the field, the scale of the field, and whether values of
the field can be null. ’

4. The method recited in claim 2, wherein the second attribute specifies the name of

a field of the type that is the subject of the behavior.

5. The method of claim 1, wherein the object type is defined as a class in managed

code.

6. In a system in which an object that is an instance of a user defined type is
persisted in a database store, wherein a definition of the user defined type comprises one or more
fields and behaviors and includes annotations that control a storage layout for instances of the
type in the database store, and wherein the database store maintains information reflecting the
storage layout as provided by the annotations to the type definition, a method of executing a

query on an object that is an instance of the type, the method comprising:

221 -

WO 2005/045707 PCT/US2004/024537

receivVing a query on an ofjjéct that is an instance of the type, wherein execution of the
query may require hydration of the object;

accessing the information maintained by the database store to determine the storage
layout of instances of the type;

translating the query into an equivalent structural access path for a value of a field of the
type that is to be returned in response to the query, based on the information about the storage
layout of instances of the type;

structurally accessing the value without hydrating the object; and

returning the value in response to the query.

7. The method recited in claim 6, wherein each field of the type is annotated with a
first attribute that controls one or more storage facets of the field, and wherein each behavior is

annotated with a second attribute that denotes an equivalent structural access path.

8. The method recited in claim 6, wherein the storage facets of the field that are
controlled by the first attribute comprise at least one of the maximum size of the field, whether or
not the field is fixed length, the precision of the field, the scale of the field, and whether values of
the field can be null.

9. The method recited in claim 7, wherein the second attribute specifies the name of

a field of the type that is the subject of the behavior.

10. The method of claim 6, wherein the object type is defined as a class in managed

code.

11. A system comprising:

a database store in which an object that is an instance of a user defined type is persisted,
wherein a definition of the user defined type comprises one or more fields and behaviors and
includes annotations that control a storage layout for instances of the type in the database store,
and wherein the database store maintains information reflecting the storage layout as provided by
the annotations to the type definition; and

a database server that (i) receives a query on an object that is an instance of the user
defined type, wherein execution of the query may require hydration of the object, (ii) accesses

the information maintained by the database store to determine the storage layout of instances of

-22.

WO 2005/045707 PCT/US2004/024537

thé type, (iii){ransfates the query into an equivalent structural access path for a value of a field of
the type that is to be returned in response to the query, based on the information about the
storage layout of instances of the type, (iv) structurally accesses the value without hydrating the

object, and (v) returns the value in response to the query.

12. The system recited in claim 11, wherein each field of the type is annotated with a
first attribute that controls one or more storage facets of the field, and wherein each behavior is

annotated with a second attribute that denotes an equivalent structural access path.

13. The system recited in claim 12, wherein the storage facets of the field that are
controlled by the first attribute comprise at least one of the maximum size of the field, whether or
not the field is fixed length, the precision of the field, the scale of the field, and whether values of
the field can be null.

14. The system recited in claim 12, wherein the second attribute specifies the name of

a field of the type that is the subject of the behavior.

15. The system recited in claim 11, wherein the object type is defined as a class in

managed code.

16. A computer readable medium having program code stored thereon for use in a
system in which an object that is an instance of a user defined type is persisted in a database
store, wherein a definition of the user defined type comprises one or more fields and behaviors
and includes annotations that control a storage layout for instances of the type in the database
store, and wherein the database store maintains information reflecting the storage layout as
provided by the annotations to the type definition, said program code, when executed on a
computer, causing the computer to:

receive a query on an object that is an instance of the type, wherein execution of the
query may require hydration of the object;

access the information maintained by the database store to determine the storage layout
of instances of the type;

translate the query into an equivalent structural access path for a value of a field of the
type that is to be returned in response to the query, based on the information about the storage

layout of instances of the type;

-23-

WO 2005/045707 PCT/US2004/024537

structurally access the value without hydrating the object; and

return the value in response to the query.

17. The computer readable medium recited in claim 16, wherein each field of the type
is annotated with a first attribute that controls one or more storage facets of the field, and
wherein each behavior is annotated with a second attribute that denotes an equivalent structural

access path.

18. The computer readable medium recited in claim 16, wherein the storage facets of
the field that are controlled by the first attribute comprise at least one of the maximum size of the
field, whether or not the field is fixed length, the precision of the field, the scale of the field, and

whether values of the field can be null.

19. The computer readable medium recited in claim 17, wherein the second attribute

specifies the name of a field of the type that is the subject of the behavior.

20. The computer readable medium of claim 16, wherein the object type is defined as

a class in managed code.

-4 -

WO 2005/045707 PCT/US2004/024537
1/8

[Serializable]

[SglUserDefinedType (MaxByteSize=8000)]
public class Baseltem: INullable

{

private SglGuid m_ID;
private SglString m Name;

public SglGuid ID
{

get

{

return m_ID;

set

{
}

this.m_ID = value;
}

public SglGuid Name
{

get

{

return m_Name;

set

{
}

this.m_Name = value;
}
public MultiSet<PropertyAssociation> Properties;

#region UDT boilerplate
public Baseltem()
{

}
public override string ToString()

{

}

protected SglBoolean m IsNull = SglBoolean.False;

public bool IsNull { get { return this.m IsNull.Value; } }
public static Baseltem Null

{

this.ID = new SglGuid(Guid.NewGuid());

return "ID " + this.ID;

get
{

Baseltem s new Baseltem();

s.m_IsNull
return s;

SglBoolean.True;
}

public static Baseltem Parse(SglString s)
{

}

#endregion

return new BaselItem();

Fig. 1

WO 2005/045707 PCT/US2004/024537

2/8
Application generates
guery that includes
predicate or expression
that references a Database Server (SQL Server)
managed behavior of
UDT object
CLR
memory
.—___)\\

APPLICATION N—

Object A
(in-memory form)

De-serialization
/ T~ .~ (Hydration)
Serialization DISK

Persisted

Form

Fig. 2

WO 2005/045707 PCT/US2004/024537
3/8

Column Defined

as UDT \'

TABLE
ubT

values of object
(i.e., an instance
of the UDT) are
stored in cell of
column

Fig. 3

WO 2005/045707

Define type

,

Add metadata to type
definition to control the
storage facets of each
field of the type and to
denote equivalent
structural access paths
for behaviors

l

Create UDT on
database server and
import metadata

Fig. 4A

400 .

402

404

4/8

PCT/US2004/024537

Receive query that
includes predicate or
expression that
references a managed
behavior of UDT object

\ 406

Translate operation
into its equivalent
structural access path
based on information
in system catalog

— 408

Access value
structurally and return to
user without hydration
or managed method
invocation

410

Fig. 4B

WO 2005/045707 PCT/US2004/024537

5/8
1. Serializable]
2 [SglUserDefinedType (Format. Structured, MaxByteSize=8000)]
3 public class BaseItem: INullable
4. {
5. [SqglUdtField (IsNullable=false)]
6 private SqlGuid m_ID;
7
8. [SqlUdtField (MaxSize=128, IsFixedLength=false)]
9. private SqlString m_Name;
10.
11. [SqlUdtProperty (FieldName="m_ID")]
12. public SglGuid ID
13. {
14. get
15. {
l6. return m_ID;
17. }
18. set
19. {
20. this.m_ID = value;
21. }
22. }
23.
24. [SqlUdtProperty (FieldName="m Name")]
25. public SgqlGuid Name
26. { ’
27. get
28. {
29. return m_Name;
30. }
31. set
32. {
33. this.m Name = value;
34. }
35. }
36.
37. [SglUdtField (IsNullable=true)]
38. public MultiSet<PropertyAssociation> Properties;
39.
40. #region UDT boilerplate
41, public Baseltem()
42, {
43. this.ID = new SqlGuid(Guid.NewGuid());
44.
45. public override string ToString()
46. {
47. return "ID " + this.ID;
48. }
49, [SqlUdtField]
50. protected SglBoolean m IsNull = SglBoolean.False;
51. public bool IsNull { get { return this.m_IsNull.Value; } }
52. public static BaselItem Null
53. {
54. get
55. {
56. Baseltem s = new Baseltem();
57.
58. s.m_IsNull = SglBoolean.True;
59. return s;
60. }
61. }
62. public static Baseltem Parse(SqglString s)
63. {
64. return new Baseltem();
65. }

g?z } $endregion F:ig;_ 55

WO 2005/045707

6/8

Object
(in-memory form)

Application generates
guery that includes
predicate or expression
that references a
managed behavior of

UDT object (1) ™

Database Server (SQL Server)

\

——
APPLICATION \—————

~

Value accessed
structurally and
returned withou
deserialization

(3)

CLR
memory
-
Query Processing
System
DISK

ubDT
Persisted
Form

Fig. 6

PCT/US2004/024537

Operation
translated into
equivalent
structural
access path (2)

WO 2005/045707 PCT/US2004/024537

[110b
"I Object
(" 110c

Computing — |
Device = FANRN 5
110a Computing Device
Object Computing
110d [T—=__ | Communications Device
Network/Bus 110e

Server Object

D __—10a) I
I
0000000

oo N —
N L

Server Object

Database 20

PCT/US2004/024537

WO 2005/045707

8/8

S8l SWVHO0Ud
% (000000 E » NOILYDITddY
x JLOWIY Lol
081 adAsq iz ovl- GvL i
291 p1eoqhey Bupuiog viva SAOW 1 *'Swveooud |~ WaLsis
¥ILNAWOD WY¥90¥d | \6)1vortday | oNi
310W3Y ’lﬁm; T -SN ¥3H1O dV | ONILVH3dO
/ CEJETTY g) esk o T
] s N L
WOMON Boly SpIM L WOPOW ¢ | 4 e) o
“ _olnL oooocoo| [o .
| ¥ | _
\ut ! 5 It smo
’ — > wesboel
“ 0Z1 [15]% 0S} aseuaju) 0T aseuaju) d
MomjaN | edepau) 3dep9ju) Aowspy Kowop oeT
BaIY |BD0T] || IOMJIN nduj sasp ajljejoA-UON 311BJOA-UON Esww%u.”u_so
“ a|qeAoway 3jqeAoway-uoN
y ¥ A A A —
“ | [S€} sweiboag
L6lgjoyeadg |¢—-1 L2I sng wajshg e uopeoyddy
n \ T S \
! St goppayy) aoeIaU) %" oorpioguy ozt Ve wajshs
961 Jopung < > jesayduag 03pIA sojydeas nun Bunesadg
_ ndino y 7y Bujssasolg € (Wvy)
| Yy __ 1r | oo mmo e
L6l JOJluo ag1 TCL
o Ol o [St som |
= | owop Ndo /] T o
J | OBPIA 0€L -2 T8
< “ Alowspy wayshAg

INTERNATIONAL SEARCH REPORT

Tnternational application No.

PCT/US04/24537

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 17/30
USCL 707/10, 1, 3, 6, 100, 101, 102, 103Y

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s.:707/10, 1, 3, 6, 100, 101, 102, 103Y

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST, IEEE, ACM, DIALOG

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 6,223,344 A (GERALD et al.,) April 2001, see the entire document. 1-20
Y US 6,199,100 B (FILEPP et al.,) March 2001, see the entire document. 1-20

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited docnments:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“B” earlier application or patent published on or after the international filing date

“L» document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“0O" document referring to an oral disclosure, use, exhibition or other means

“P” document pubjished prior to the international filing date but later than the
priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“xn document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document js taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such do ts, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search
18 October 2004 (18.10.2004) '

Date of mailing of ile int;:mao'ong s;cfﬁtne?ﬁ D 5

Name and mailing address of the ISA/US

Mail Stop PCT, Atin: ISA/US
Commissioner for Patents

P.O. Box 1450

Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer. 217 7
uthorize: o/gg;:,f!/

Jean M. Corriéjiiy” /

K
Telephone No'. (571) 272- 4032

Form PCT/ISA/210 (second sheet) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

