03/077128 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

18 September 2003 (18.09.2003) PCT WO 03/077128 Al
(51) International Patent Classification’: GO6F 11/00 H.; 10, Oak Meadow Rd., Lincoln, MA 01773 (US).
GRANNUM, Gairy; 35, Leonard Road, Boxborough,
(21) International Application Number: PCT/US03/06620 MA 01719 (US).

(22) International Filing Date: 6 March 2003 (06.03.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/090,728 6 March 2002 (06.03.2002) US

(71) Applicant: MARATHON TECHNOLOGIES CORPO-
RATION [US/US]; 1300 Massachusetts Avenue, Boxbor-
ough, MA 01719 (US).

(72) Inventors: TREMBLAY, Glenn, A.; 139 South Street,
Upton, MA 01568 (US). LEVEILLE, Paul, A.; 12 Strat-
ton Road, Grafton, MA 01519 (US). KAMAN, Charles,

(74) Agent: HAYDEN, John, F.; Fish & Richardson, P.C,
1425 K Street, N.W., 11th Floor, Washington, DC 20005-
3500 (US).

(81) Designated State (national): JP.

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PRODUCING A MIRRORED COPY USING INCREMENTAL-DIVERGENCE

125

Lﬂ

CLIENT

DATA

170

1#0 CONTROLLER 1

CONFIRMATION
MESSAGE

‘ { 160

COMMIT

DATA

120

1/0 CONTROLLER 2

SYNCRHONIZATION
MESSAGE

DATA

155
185 M

BACKUP
BIT MAP

DATA

(57) Abstract: Producing a mirror copy using incremental-divergence is performed in a computer system in which write requests
(130) are each associated with a reference label. A mirror set may be restored to a state in which the data storage devices contain
identical data by copying from the data storage device having “good” data only portions of data which have not been stored on the
data storage device having divergent data. Incremental-divergence copying may be accomplished by keeping track of the changes
made after a point in which the data storage devices are known to contain identical data.

10

15

20

25

WO 03/077128 PCT/US03/06620

PRODUCING A MIRRORED COPY USING INCREMENTAL-
DIVERGENCE

TECHNICAL FIELD

This invention relates to techniques for producing a mirrored copy of a disk

drive or other storage device.
BACKGROUND

In many computer systems, a level of fault tolerance is proxiided by storing
identical data on each of multiple storage devices. Storage devices having identical
data are referred to as mirrored devices and are said to belong to a mirror set. If one
mirrored device in a mirror set fails or otherwise becomes inaccessible, the other

mirrored device or devices in the mirror set continue to provide access to the data.

To maintain identical data on each device in a mirror set, each device must
receive and process every request to store data on the mirror set (i.e., every write
request). A device in a mirror set will diverge from other devices in the mirror set if
the device is unable to process such write requests. When members of a mirror set
become divergent, a mirror set copy may be performed to copy data from one
mirrored device to another mirrored device. In one approach to maintaining a mirror
set copy, the computer system is shut down and all data are copied from one mirrored

device to the other mirrored device.
SUMMARY

In one general aspect, a mirrored copy of a first storage device is maintained at
a second storage device in a computer system. The first storage device includes an
associated controller, and the second storage device includes an associated controller,
volatile storage, and non-volatile storage. Write requests received at the storage
devices are processed. A commit-synchronization message is sent to the second
storage device along with information designating a write request, and the controller
of the second storage device, after receiving the commit-synchronization message,
confirms that data associated with the designated write request have been written to

the non-volatile storage of the second storage device.

10

15

20

25

30

WO 03/077128 PCT/US03/06620

Implementations may include one or more of the following features. For
example, the controller of the second storage device may confirm that data associated
with all write requests that preceded the designated write request have been written to
the non-volatile storage of the second storage device. Alternatively, the controller of
the second storage device may process the designated write request and may confirm
that data associated with the designated write request and preceding write requests
have been written to the non-volatile storage of the second storage device. The
controller of the second storage device may confirm a successful cache flush of the

volatile storage of the second storage device.

Information sent with the commit-synchronization message may be a
reference label identifying a write request processed or to be processed by the first
storage device. The reference label may be assigned sequentially relative to reference
labels assigned to other write requests. All write requests received at the second
storage device may be sequentially processed prior to processing the write request

identified by the reference label in the commit-synchronization message.

The identified regions of storage affected by write requests may be
accumulated in, for example, a first bit map. After sending the commit-
synchronization message, newly-identified regions of storage may be accumulated in
a second bit map. After the controller of the second storage device confirms that data
in the processed write requests have been written to non-volatile storage of the second
storage device, a status message may be sent to the first storage device to indicate that
the write data were successfully written to the non-volatile storage. After receipt of
the status message indicating that the write data were successfully written, the first bit

map may be deleted and the second bit map may be designated as the first bit map.

After a period when the second storage device was unavailable, the contents of
the first bit map may be copied to a recovery bit map that then is used to identify the
regions of storage of the first storage device to be copied from the first storage device
to the second storage device. The identified regions of storage of the first storage
device may be copied to the second storage device; and newly-received write requests

may be accumulated at the second storage device in a third bit map.

10

15

20

25

30

WO 03/077128 PCT/US03/06620

The second storage device may perform one or more of the features and
functions as described above with respect to the first storage device, and the first
storage device may perform one or more of the features and functions as described

above with respect to the second storage device.

In another general aspect, maintaining a mirrored copy of a first storage device
at a second storage device in a computer system includes receiving write requests at a
first storage device that includes an associated controller, volatile storage, and non-
volatile storage; processing the write requests received at the first storage device;
receiving write requests at a second storage device that includes an associated
controller, volatile storage, and non-volatile storage; and processing the write requests
received at the second storage device. After determining that the second storage
device is about to enter a period in which the second storage device will be unable to
process write requests, the controller of the first storage device sends a commit-
synchronization message to the second storage device along with information
designating a write request, and the controller of the second storage device, after
receiving the commit-synchronization message, confirms that data associated with the
designated write request have been written to the non-volatile storage of the second
storage device. After sending the commit-synchroniiation message, the controller of
the first storage device accumulates regions of storage affected by new write requests
in a bit map. Once the second storage device is able to process write requests again,
the controller of the first storage device uses the bit map to identify the regions of
storage of the first storage device to be copied from the first storage device to the
second storage device and copies the contents of the identified regions of the first

storage device to the second storage device.

Implementations of the techniques discussed above may include a method or
process, an apparatus or system, or computer software on a computer-accessible

medium.

The details of one or more of the implementations are set forth in the
accompanying drawings and description below. Other features and advantages will

be apparent from the descriptions and drawings, and from the claims.

10

15

20

25

WO 03/077128 PCT/US03/06620

DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a mirrored drive system.

Fig. 2 is a flow chart of a process for monitoring differences between mirrored

disks.

Fig. 3 is a flow chart of a process for recovering synchronization to a mirrored

disk set that has become divergent.

Fig. 4 is a flow chart illustrating a periodic synchronization process as

performed by a master input-output controller.

Fig. 5 is a flow chart showing a periodic synchronization process as performed

by a slave input-output controller.

Fig. 6 is a flow chart of a process for restoring a mirrored disk having

divergent data to being a mirror copy having identical data.

Fig. 7 is a flow chart illustrating a periodic synchronization performed during

a recovery process.
Like reference symbols in the various drawings indicate lik;a elements.
DETAILED DESCRIPTION

Fig. 1 shows a block diagram of a mirror set 100 that includes a first data
storage device 105 and a second data storage device 110. In the implementation of
Fig. 1, the data storage devices are disk drives. In other implementations, the data

storage devices may be arrays of disk drives or other storage devices.

For ease of description, one of the disks is designated as the master disk and
serves as the primary data storage device, while the other disk is designated as the
slave disk and serves as a redundant backup. When both disks are active and contain
the same data, master/slave status may be assigned arbitrarily to theé two disks.
Indeed, for purposes of the synchronization techniques described below, two-disk
implementations actually maintain two master-slave relationships, with each disk
serving as the master in one relationship and the slave in the other. In Fig. 1, the disk
105 has been designated as the master disk while the disk 110 has been designated as
the slave disk.

10

15

20

25

30

WO 03/077128 PCT/US03/06620

A first I/O (“Input/Output”) controller 115 is associated with the first disk 105,
and a second I/O controller 120 is associated with the second disk 110. The I/O

controllers 115, 120 control the reading and writing of data on the disks.

A client 125, which may be, for example, a processor, sends the same write
requests 130 to both I/O controllers. Each write request contains data. In addition, a
reference label, such as a sequential reference number, is associated with each write
request. The I/O controllers write the data from the write requests to their respective
disks so that, under normal conditions, both disks contain identical data. Typically,
each I/O controller processes the write requests in the same order. To accomplish
this, the I/O controllers process the write requests in order of the reference labels,
which means that the I/O controllers do not need to receive the write requests in the

same order.

The client 125 also sends read requests 135 to the I/O controllers. In one
implementation, when both disks contain the same data, only the rr{aster disk responds
to the read requests 135. In other implementations; the slave disk or both disks may
respond. When the master disk fails or becomes inaccessible, the slave disk is
redesignated as the master disk and continues to provide data to the client 125. Thus,
if the disk 105 failed, the disk 110 would become the master disk.

A disk in a mirror set 100 will contain divergent data from that of its peer if
the disk is unable to process write requests for some period of time. For example, if
the slave disk were disabled for a period of time, the data of the slave disk would
differ from the data of the master disk. When the disks in a mirror set become
divergent, a mirror set copy may be implemented to copy data from the disk having
"good" data to the disk having divergent data. For some large storage devices, this
process may take a long time, during which the level of fault tolerance of the system

is reduced because the mirrored disks do not contain identical data.

To improve the level of fault tolerance of a system, the amount of time
required to restore the mirrored disks to a state in which both disks.contain identical
data (which may be referred to as recovery) may be reduced by copying from the disk
having “good” data only portions of data which have not been stored on the disk
having divergent data. This process of copying only portions of the disk may be

5

10

15

20

25

30

WO 03/077128 PCT/US03/06620

referred to as incremental-divergence copying or delta copying (where delta refers to

the changes that have been made to one disk and not another disk).‘

In general, incremental-divergence copying may be accomplished by slave
changes made to one or more mirrored disks such that after a period of unavailability
a mirrored disk having divergent data may be restored by copying from the disk
having “good” data only the data that have not been stored on the mirrored disk
having divergent data. Monitoring changes that have been made to a mirrored disk
generally requires keeping track of the changes made after a point in which both
mirrored disks in the mirrored set are known to contain identical data, at which point

the mirrored disks may be referred to as being synchronized.

The monitoring of changes made to a mirrored disk after a point of
synchronization may be problematic when a system, subsystem or processor records a
write request as completed when the data has been written to volatile disk cache but
the data has not yet been written to the non-volatile storage of the mirrored disk. This
issue may be particularly significant when the mirrored data has been striped across
more than one disk, for example using RAID (“Redundant Array of Inexpensive
Disks”) techniques, as the time period from when the write request is placed in the
disk cache to when all the data has been written to non-volatile disk storage may be

substantial due to the increased time required to write to more than one RAID disk.

The effectiveness of incremental-divergence copying may be improved by
periodically synchronizing the data on the mirror disks (e.g., where each disk contains
identical data) up to a particular write request reference label by flushing the disk
cache and committing the data in the cache to disk storage. Flushing the disk cache
ensures that all the write requests that have been processed have been stored in non-

volatile disk storage.

Each I/O controller 115, 120 in mirror set 100 keeps track of the write requests
130 made to the I/O controller’s respective disk by accumulating the changes made to
the disk in a bit map 155, 156. The bit map 155, 156 is a data structure that uses one
or more bits to indicate whether each area of a disk has been affected by a write
request 150. The bit map in this implementation is stored on the disk. Other
implementations may store the bit map in volatile memory until the system is shut
6

10

15

20

25

30

WO 03/077128 PCT/US03/06620

down or may save the bit map in non-volatile storage that is not included in the mirror
set. The level of abstraction (or granularity) provided by the bit map is based on the
size of the storage area represented by a bit. Each bit typically represents
substantially more data than is written to a corresponding area of storage by a single

write request. Here, the bit map 155, 156 may be referred to as a disk change bit map.

The bit map and the disk may be associated by a unique identifier. The unique
identifier, for example, may include a disk identifier that identifies the instance of the
client 125 to which the bit map and disk apply. The association of the bit map and the
disk may ensure that the changed disk regions are copied to the appropriate disk. For
example, the association of a particular bit map with a particular disk or a particular
data set on a disk is important when the mirror set includes a removable disk (i.e., a

disk that can be removed without opening the computer housing unit).

Periodically, one I/O controller, which may be referred to as a master I/O
controller, sends a commit-synchronization message 160 to the other I/O controller,
which may be referred to as a slave I/O controller. As shown and described below,
the first I/O controller 115 is the master I/O controller and the second I/O controller
120 is the slave I/O controller. However, it is important to note that the second I/O
controller 120 is simultaneously serving as the master I/O controller (and the first I/O
controller is simultaneously serving as the slave I/O controller) in the relationship in

which the disk 110 is the master and the disk 105 is the slave.

The commit-synchronization message 160 identifies a write request reference
label up to which the data on the mirrored disks is to be synchronized. The first I/O
controller 115 makes a backup copy 165 of the disk change bit map 155 to allow for
recovery if a failure occurs during the synchronization process and starts a new disk
change bit map to accumulate all subsequent writes to be used in the next

synchronization.

‘When the second I/O controller 120 receives the commit-synchronization
message sent by the first I/O controller 115, the second I/O controller determines
whether the second I/O controller has already processed the write request identified in

the commit-synchronization message and all previous write requests. If not, the

10

15

20

25

30

WO 03/077128 PCT/US03/06620

second I/O controller waits until it has processed that write request and all previous

write requests before initiating the synchronization.

Once the second I/O controller 120 has processed the write request identified
in the commit-synchronization message and all previous write requests, or if the
second I/O controller had already processed the write request and all previous write
requests when the commit-synchronization message was received, the second I/O
controller flushes its disk controller cache to commit the processed write requests to
non-volatile disk storage. If the cache flush is successful, the second I/O controller
120 sends a confirmation message 170 to the first I/O controller 115. Upon receiving
confirmation that the flush and the synchronization were successful, the first I/O
controller 115 clears the backup copy 165 of its disk change bit map. In the event that
the synchronization is unsuccessful, or if the first I/O controller 115 does not receive a
confirmation within a predetermined time, the first I/O controller 115 combines the
bit map 155 and the backup 165 (typically by OR-ing), and uses the combined bit map

in restoring the second disk 110.

An incremental-divergence copying process that accumulates only changes
made to a disk from a particular point forward may be initiated when a disk failure is
detected (and thus accumulates only changes made during a period of unavailability)
or may be used whenever the system is active (and thus accumulates changes made to
the mirrored set at all times during system operation). When changes are accumulated
only during the period of unavailability, the period of unavailability must start with a
disk controller cache flush for the disk which is becoming unavailable (which may be
done when the disk becomes unavailable through a process that may be referred to as
a “graceful shutdown”) for the incremental-divergence copying process to be effective

in restoring the disk after it becomes available.

Another implementation may involve accumulating changes by deleting
specific write requests in the disk change bit map rather than starting to accumulate
disk changes made after a synchronization point in a different disk change bit map.

This may reduce recovery time.

Either I/O controller 115, 120 in mirror set 100 may initiate the commit-

synchronization process to insure that both disks contain the same data up through a
8

10

15

20

25

30

WO 03/077128 PCT/US03/06620

specific write request reference label. After a period of unavailability, the mirrored
disk having divergent data may be restored to being a mirror copy storing identical
data by copying only the disk regions that were changed since the last

synchronization.

An implementation may involve associating a date (or a date and time) with a
particular data set on one of the mirrored disks. This may be beneficial when write
request reference labels are not necessarily unique. For example, a write request
reference label may not be unique when the reference label is a sequential number that
restarts at some fixed value (e.g., one) when the operating system that controls the
client is reset. Such write requests may be uniquely identified by associating a date
(or a date and time) with the data set when the disk cache of the disk storing the data
set is flushed. Alternatively or additionally, when the client is restarted, a mirror set
may be given a new instance number to help distinguish non-unique write request
reference labels. Other unique identifiers may include, alone or in combination, a

client identifier, a mirror set identifier, and a data set identifier.

Although Fig. 1, for illustrative purposes, uses two disks as mirror devices to
store the mirrored data sets, the benefits of incremental-divergence copying are not
limited to that particular implementation, and are equally applicable to other
implementations involving other numbers or types of storage devices, including
RAID technology. For example, other implementations may mirror three or more
disks, or may provide multiple instantiations of a mirrored disk (e.g., four disks may

be used to provide two mirrored sets for the same disk).

Referring to Fig. 2, a process 200 uses incremental—diverge{lce tracking to
prepare to restore synchronization to a mirrored disk set that has bécome divergent
during a period in which a disk of the mirrored disk set has become unavailable
through a graceful shutdown. The implementation of a mirrored disk set in Fig. 2 has
two disk storage devices that are each controlled by a separate I/O controller. Each
I/O controller receives the same write requests from a processor and processes the
received write requests in sequential order. A reference label is as;ociated with each
write request and is used in sequencing the write requests. Another implementation

may track whether a particular write request has been processed (or completed). This

9

10

15

20

25

30

WO 03/077128 PCT/US03/06620

allows write requests to be processed out of order (i.e., not sequentially). When both

disks are active, each disk contains the same data.

The process 200 is initiated when a determination is made that one of the disks
is going to enter a period of unavailability (step 205). When this determination is
made, the I/O controller for the disk that is becoming unavailable is instructed to
commit to non-volatile storage write requests that have been processed by the I/O
controller (step 210). The disk becoming unavailable may be referred to as the slave
disk, and the active disk may be referred to as the master disk, and the associated I/O
controllers may be referred to as the slave I/O controller and the master I/O controller.
The master I/O controller starts to accumulate changes made to the master disk in a
disk change bit map (step 220), continues to receive and process wgite requests (step
225), and updates the disk change bit map to reflect every change to the master disk
resulting from the processed write requests (step 230). Each bit in the disk change bit
map represents a region of the master disk. Other implementations may vary the

amount of disk space represented by each bit in the disk change bit map.

The master I/O controller also continues to monitor the status of the slave disk
(step 235). When the slave disk becomes available and has begun processing new
write requests, the master I/O controller begins a recovery process 300 as described

below with respect to Fig. 3 (step 240).

Referring to Fig. 3, the recovery process 300 involves copying to the slave
disk portions of the master disk as indicated by the disk change bit'map. The
recovery process occurs as a background process that is active while the mirror set
continues to process new write requests. The recovery process 300 begins when the
master I/O controller makes a backup copy of the disk change bit map and designates
the original version of the disk change bit map as the recovery bit map (step 310).
The master I/O controller also starts a new disk change bit map to accumulate all
subsequent changes to the master disk (step 320). The backup copy of the disk
change bit map and the new disk change bit map allow for recovery if a failure occurs

during the recovery process.

The master I/O controller checks each bit in the recovery bit map (step 330)
and determines whether the bit indicates that the corresponding master disk region has
10

10

15

20

25

30

WO 03/077128 PCT/US03/06620

been changed (step 340). If not, the master I/O controller proceeds to check the next
bit in the recovery bit map (step 345). If the bit indicates that the master disk region
has been changed, the master I/O controller determines whether subsequent write

requests have changed the corresponding disk region of the slave disk (step 345).

If subsequent write requests have changed the corresponding slave disk
region, the master I/O controller copies only the portion from the master disk region
that corresponds to the portion of the slave disk region that has not been changed by a
subsequent write request (step 350). The master I/O controller may identify the
portion that has not been changed by having the slave I/O controller maintain a list of
write requests processed by the slave disk during the recovery process, with each
entry in the list identifying the actual memory portion that was modified.
Alternatively, the slave I/O controller may maintain a disk change bit map having
finer granularity such that each bit of the bit map corresponds to the smallest portion
of the disk that a write request is permitted to modify. To conserve space, the slave
/0 controller may maintain a bit map having varying granularity such that a finer

granularity map is maintained only for modified portions of the disk.

If no subsequent changes have been made to the slave disk region, the master

I/O controller copies the entire master disk region to the slave disk (step 355).

The master I/O controller modifies the portion of the data b"eing copied to
avoid a potential inefficiency of writing data which will be overwritten by a
subsequent write request (steps 345-355). For instance, if a write request WR-102
changes a portion of the data stored in disk region 12 and a write request WR-155 also
changes data stored in a different portion of disk region 12, the process to write data
to disk region 12 may change only the portions of region 12 requiréd for each write

request.

Additionally or alternatively, the slave I/O controller may modify the portion
of data being copied. For instance, if the slave I/O controller has received a new write
request that modifies the same disk region that is to be updated by the data copied
from the master disk, the slave I/O controller may modify the portion of the data

being copied from the master disk.

11

10

15

20

25

30

WO 03/077128 PCT/US03/06620

After copying the master disk region (or portion thereof) to the slave disk, the
master I/O controller determines whether more bits in the recovery"bit map need to be

checked (step 360), and, if so, checks the next bit (step 330).

Recovery is complete when the master I/O controller determines that all the
bits in the recovery bit map have been checked. Upon completion, the master I/O
controller may optionally initiate a synchronization that flushes the slave disk cache
(step 370) to commit the copied data to the slave disk. If the master I/O controller
determines that a subsequent synchronization or flush is not successful (step 375), the
master I/O controller combines the backup copy of the disk change bit map with the
new disk change bit map (typically by OR-ing) (step 380) and repeats the recovery
process 300 using the combined disk change bit map. If the slave I/O controller
synchronization and slave disk controller flush is successful, the master I/O controller

clears the backup disk change bit map (step 390).

Although the implementation discussed with reference to Fig. 2 modifies the
level of granularity when copying disk regions from the master disk to the slave disk,
another implementation may copy the entire changed region each time without regard
to whether a portion of the region will be overwritten by a subsequent write request.
The implementation of Fig. 3 processes the recovery bit map during recovery such
that it cannot be used a second time. To be able to recover from a failure during the
recovery process, a backup copy of the disk change bit map is made prior to
processing bits (step 310). Another implerﬁentation may not destroy the recovery bit
map during recovery, and may be able to recover from a recovery process failure by
using the recovery bit map itself. That implementation may not make a copy of the
disk change bit map prior to processing bits (step 310). An alternative
implementation may not use a new disk change bit map to accumulate master disk
changes made after the slave disk has returned to availability but before the recovery

process has been successfully completed.

Referring to Figs. 4-6, an incremental-divergence copying process may be
active whenever the mirror set is used. The implementation of a mirrored set in Figs.
4-6 has two disk storage devices and two I/O controllers that receive write requests in

the manner described with respect to Fig. 2.

12

10

15

20

25

30

WO 03/077128 PCT/US03/06620

Each I/O controller keeps track of the write requests made to the I/O
controller’s disk by accumulating the changes made to the disk in a disk change bit
map. Periodically, one I/O controller (called the master I/O controller) sends a
commit-synchronization message to the other I/O controller (called the slave /O
controller) to start a periodic synchronization process. Fig. 4 illustrates a periodic
synchronization process as performed by a master I/O controller. Fig. 5 shows a
periodic synchronization process as performed by a slave I/O controller. Fig. 6
illustrates a process for restoring a mirrored disk having divergent data to being a

mirror copy having identical data.

Referring to Fig. 4, a master I/O controller initiates a process 400 to perform a
periodic synchronization with a slave I/O controller. The process 400 begins as a
master I/O controller receives and processes write requests from the processor (step
410) and accumulates changes made to the master disk in a disk change bit map (step
415). The master I/O controller determines whether the mirror set should be
synchronized (step 420). The master I/O controller may make a commit-
synchronization request, for example, after a specified period of time has passed since
the last synchronization, after a specified number of write requests have been
processed since the last synchronization, or after a fixed percentage of incremental
divergence between two mirrored disks. In determining when a synchronizatiqn is
requested, the frequency of synchronization (which may reduce system performance
because flushing the disk cache stops the processing of all write requests during the
time when the disk cache is being written to non-volatile storage) may be balanced
against the amount of data which is not synchronized between the mirrored disks
(which may require a longer amount of time to perform incremental-divergent

copying to restore identical data to the mirror set).

When the master I/O controller determines that the mirror set should be
synchronized, the master I/O controller sends a commit-synchronization message to
the slave I/O controller (step 430). The commit-synchronization message identifies a
write request reference label up to which the data on the mirrored disks is to be
synchronized. The master I/O controller makes a backup copy of the disk change bit

map (step 435) to allow for recovery if a failure occurs in the synchronization process

13

10

15

20

25

30

WO 03/077128 PCT/US03/06620

and starts a new disk change bit map to accumulate disk changes made to the master
I/O controller’s disk from this point forward for use in the next synchronization (step
440). The master I/O controller continues to receive and process write requests from
the processor (step 445) and updates the new disk change bit map to reflect every
master disk change (step 450).

Upon receiving confirmation that the cache flush by the slave I/O controller
and the synchronization were successful (step 455), the master I/O controller clears

the backup disk change bit map (step 460) and the synchronization process ends.

Alternatively, the master I/O controller may determine that the
synchronization was unsuccessful (step 455) because, for instance, the master /O
controller did not receive a confirmation message from the slave I/O controller within
a predetermined amount of time or the master I/O controller received a message that
the synchronization failed. If so, the master I/O controller combines the backup disk
change bit map and the new disk change bit map (typically by OR-ing) (step 470) and,
upon determining that the slave I/O controller and its associated disk are operational,
initiates the recovery process 300 as described with respect to Fig. 3 using the
combined disk change bit map to guide which disk regions should be copied from the
master disk to the slave disk (step 475).

Referring to Fig. 5, a process 500 begins when a slave I/O controller receives a
commit-synchronization message that identifies a write request reference label up to
which the data on the mirrored disks is to be synchronized (step 510). The slave I/O
controller determines whether the slave I/O controller has already processed the write
request identified in the commit-synchronization message and all previous write
requests (step 520). Ifnot, the slave 1/O controller waits until it has processed that

write request and all previous write requests before initiating the synchronization.

Once the slave I/O controller has processed the write request identified in the
commit-synchronization message and all previous write requests, or if the slave VO
controller has already processed the write request and all previous write requests
when the commit-synchronization message was received, the slave disk controller
flushes its cache to commit the processed write requests to non-volatile disk storage
(step 530) and determines whether the cache flush was successful (step 540). If the

14

10

15

20

25

30

WO 03/077128 PCT/US03/06620

cache flush was successful, the slave I/O controller sends a confirmation message to
the master I/0O controller (step 550). If the cache flush was not successful, the slave
I/O controller sends a failure message to the master I/O controller (step 560). After
sending the appropriate message to the master I/O controller, the slave I/O controller

ends the process 500.

Fig. 6 illustrates a process 600 for restoring a mirrored disk having divergent
data to being a mirror copy storing identical data. The following description assumes
that one of the disks (the slave disk) in a mirrored set has previously failed or
otherwise become unavailable and that there exists a disk change bit map that
contains all changes made to the remaining active disk (the master disk) since the last
time that the mirrored set was synchronized. This may be accomplished, for instance,

by performing the processes which were described with respect to Figs. 4-5.

When the slave disk is not available, the master I/O controller continues to
receive and process write requests from the processor (step 610) and accumulate
changes made to the master disk in the disk change bit map that tracks the disk
changes that have been made since the last synchronization (step 620). When the
master I/O controller determines that the slave disk has recovered and is able to begin
processing write requests (step 630), the master /O controller begins a recovery
process 300 as described with respect to Fig. 3 using the disk change bit map to

restore the slave disk to contain data identical to that of the master disk (step 640).

The incremental-divergence copying accomplished by performing processes
400, 500 and 600 differs from that accomplished by performing process 200. In
particular, processes 400-600 are effective in reestablishing a mirror disk set during
an unexpected disk or controller failure in one of the disks because the disk change bit
maps are updated while the mirror set is active. Process 200 is only effective in
reestablishing a mirror disk set when warning of an upcoming period of disk
unavailability is sufficient to allow a disk cache flush to occur and the start of changes
to the remaining active disk to be accumulated in a disk change bit map. However,
since the process 200 is only implemented at particular times, it may result in

significantly less processing overhead than the processes 400-600.

15

10

15

20

25

30

WO 03/077128 PCT/US03/06620

Referring to Fig. 7, a recovery process 700 involves performing a periodic
synchronization and copying to the slave disk of portions of the master disk as
indicated by the disk change bit map. The recovery process 700 begins when the
master /O controller makes a backup copy of the disk change bit map and designates
the original version of the disk change bit map as the recovery bit map (step 710).
The master I/O controller also starts a new disk change bit map to accumulate all

subsequent changes to the master disk (step 720).

As described above with respect to Fig. 3, the master I/O controller checks
each bit in the recovery bit map (step 730), and, if the bit indicates that the master
disk region has been changed, the master disk copies to the slave disk the changed

portions of the master disk (step 735).

As described above with respect to Fig. 4, the master I/O cc;ntroller
periodically initiates a synchronization process with the slave I/O controller. In
particular, if the master I/O controller determines that the mirror set should be
synchronized (step 740), the master I/O controller sends a commit-synchronization
message to the slave I/O controller, makes a backup copy of the disk change bit map,
and starts a new disk change bit map to accumulate changes made fo the master I/O

controller’s disk from this point forward (step 745).

Upon receiving confirmation that the cache flush by the slave disk controller
and the synchronization were successful (step 750), the master I/O controller removes
from the recovery bit map the bits that indicate regions of the master disk that have
been successfully copied to the slave disk (step 755). The master I/O controller may
accomplish this, for example, by maintaining a list of the bits processed by the master
disk during the recovery process and deleting the listed bits from the recovery bit
map. However, if the master I/O controller determines that the synchronization was
not successful (step 750), the master I/O controller combines the backup disk change
bit map and the new disk change bit map (step 760) and initiates the recovery process
300 as described with respect to Fig. 3 using the combined disk change bit map (step
765).

When the master I/O controller has determined that all the bits in the recovery
bit map have been checked (step 770), the recovery process is complete and the
16

WO 03/077128 PCT/US03/06620

backup disk change bit map js cleared (step 775). Implementations may include a
method or process, an apparatus or system, or computer software on a computer
medium. It will be understood that various modifications may be made without
departing from the spirit and scope of the following claims. For example,
advantageous results still could be achieved if steps of the disclosed techniques were
performed in a different order and/or if components in the disclosed systems were
combined in a different manner and/or replaced or supplemented by other

components.

17

WO 03/077128 PCT/US03/06620

WHAT IS CLAIMED IS:

1. A method of maintaining a mirrored copy of a first storage device at a

second storage device in a computer system, the method comprising:

5 receiving write requests at a first storage device, the first storage device

including an associated controller;
processing the write requests received at the first storage device;

receiving write requests at a second storage device, the second storage device

including an associated controller, volatile storage, and non-volatile storage;
10 processing the write requests received at the second storage device;

sending a commit-synchronization message to the second storage device along

with information designating a write request; and

having the second storage device, after receiving the commit-synchronization
message, confirm that data associated with the designated write request have been

15 written to the non-volatile storage of the second storage device.

2. The method of claim 1 wherein having the second storage device
confirm that data associated with the designated write request have been written to the
non-volatile storage of the second storage device comprises having the second storage
device confirm that data associated with all write requests that preceded the

20 designated write request have been written to the non-volatile storage of the second

storage device.

3. The method of claim 2 wherein having the second storage device
confirm that data associated with the designated write request have been written to the
non-volatile storage of the second storage device comprises having the second storage

25 device confirm that data associated with the designated write request have been

written to the non-volatile storage of the second storage device.

18

10

15

20

WO 03/077128 PCT/US03/06620

4. The method of claim 1 further comprising having the second storage
device, after receiving the commit-synchronization message, process the designated

write request.

5. The method of claim 1 wherein having the second storage device
confirm that the data associated with the designated write request have been written to
the non-volatile storage of the second storage device comprises having the second
storage device confirm a successful cache flush of the volatile storage of the second

storage device.

6. The method of claim 1 wherein the information sent with the commit-
synchronization message is a reference label identifying a write request processed by

the first storage device.

7. The method of claim 6 wherein reference labels are assigned

sequentially to write requests.

8. The method of claim 7 wherein processing the write requests received
at the second storage device further comprises processing write requests in sequential
order by their reference labels such that all write requests issued prior to the write
request identified by the reference label in the commit-synchronization message are

processed prior to processing that write request.

9. The method of claim 7 wherein each storage device receives write

requests with the same sequence of reference labels.

10. The method of claim 1 further comprising identifyirig regions of

storage affected by write requests that have been processed at the first storage device.

19

10

15

20

WO 03/077128 PCT/US03/06620

11. The method of claim 10 wherein identifying regions of storage affected
by write requests that have been processed at the first storage device further

comprises accumulating the identified regions of storage in a first bit map.

12. The method of claim 11 further comprising:

after sending the commit-synchronization message, accumulating newly

identified regions of storage in a second bit map,

after the second storage device confirms that data in the processed write
requests have been written to non-volatile storage of the second storage device,
sending a status message to the first storage device indicating whether the write data

were successfully written to the non-volatile storage, and

after receiving the status message indicating that the write data were

successfully written, deleting the first bit map.

13. The method of claim 12 further comprising after receiving the status
message indicating that the write data were not successfully written, copying the

contents of the second bit map to the first bit map and deleting the second bit map.

14. The method of claim 12 further comprising, after deleting the first bit
map, designating the second bit map as the first bit map.

15. The method of claim 1 further comprising, after a period when the

second storage device was unable to process write requests:
copying the contents of the first bit map to a recovery bit map,

using the recovery bit map to identify regions of storage of the first storage

device to be copied from the first storage device to the second storage device,

copying the identified regions of storage of the first storage device to the

second storage device, and

20

10

15

20

WO 03/077128 PCT/US03/06620

accumulating newly received write requests at the first storage device in a
third bit map.

16. The method of claim 1 wherein the first storage device includes a

volatile storage and a non-volatile storage, the method further comprising:

sending a second commit-synchronization message to the first storage device

along with information designating a second write request, and

having the first storage device, after receiving the second commit-
synchronization message, confirm that data associated with the designated second

write request have been written to the non-volatile storage of the first storage device.

17. The method of claim 16 wherein having the first storage device
confirm that data associated with the designated second write request have been
written to the non-volatile storage of the first storage device comprises having the first
storage device confirm that data associated with all write requests that preceded the
designated second write request have been written to the non-volatile storage of the

first storage device.

18. The method of claim 17 wherein having the first storage device
confirm that data associated with the designated second write request have been
written to the non-volatile storage of the first storage device comprises having the first
storage device confirm that data associated with the designated second write request

have been written to the non-volatile storage of the first storage device.

19. The method of claim 16 further comprising having the first storage
device, after receiving the second commit-synchronization message, process the

designated second write request.

21

10

15

20

WO 03/077128 PCT/US03/06620

20. The method of claim 16 wherein having the first storage device
confirm that the data associated with the designated second write request have been
written to the non-volatile storage of the first storage device comprises having the first
storage device confirm a successful cache flush of the volatile storage of the second

storage device.

21. The method of claim 16 wherein the information sent with the second
commit-synchronization message is a reference label identifying a second write

request processed by the second storage device.

22. The method of claim 21 wherein the reference labels are assigned

sequentially to write requests.

23. The method of claim 22 wherein processing the write requests received
at the first storage device further comprises processing write requests in sequential
order by their reference labels such that all write requests issued prior to the write
request identified by the reference label in the second commit-synchronization

message are processed prior to processing that write request.

24. The method of claim 22 wherein each storage device receives write

requests with the same sequence of reference labels.

25. The method of claim 16 further comprising identifying regions of
storage affected by write requests that have been processed at the second storage

device.

26. The method of claim 25 wherein identifying regions of storage affected
by write requests that have been processed at the second storage device further
comprises accumulating the identified regions of storage in a fourth bit map.

22

10

15

20

WO 03/077128 PCT/US03/06620

27. The method of claim 26 further comprising:

after sending the second commit-synchronization message, accumulating

newly identified regions of storage in a fifth bit map,

after the first storage device confirms that data in the processed write requests
have been written to non-volatile storage of the first storage device, sending a status
message to the second storage device indicating whether the write data were

successfully written to the non-volatile storage, and

after receiving the second status message indicating that the write data were

successfully written, deleting the fourth bit map.

28. The method of claim 27 further comprising after receiving the status
message indicating that the write data were not successfully written, copying the

contents of the fifth bit map to the fourth bit map and deleting the fifth bit map.

29. The method of claim 27 further comprising, after deleting the fourth bit
map, designating the fifth bit map as the fourth bit map.

30. The method of claim 20 further comprising, after a period when the

first storage device was unable to process write requests:
copying the contents of the fourth bit map to a second recovery bit map,

using the second recovery bit map to identify the regions of storage of the
second storage device to be copied from the second storage device to the first storage

device,

copying the identified regions of storage of the second storage device to the

first storage device, and

accumulating newly received write requests at the first storage device in a

sixth bit map.

23

WO 03/077128 PCT/US03/06620

31. The method of claim 16 further comprising associating a unique
identifier with a particular data set such that wherein the write request is uniquely
identified.

32. The method of claim 31 wherein the unique identifier comprises an

5 instance number.
33. The method of claim 31 wherein the unique identifier comprises a date.

34. A method of maintaining a mirrored copy of a first étorage device at a

second storage device in a computer system, the method comprising:

receiving write requests at a first storage device, the first storage device

10 including an associated controller, volatile storage, and non-volatile storage;
processing the write requests received at the first storage device;

receiving write requests at a second storage device, the second storage device

including an associated controller, volatile storage, and non-volatile storage;
processing the write requests received at the second storage device;

15 after determining that the second storage device is about to enter a period in
which the second storage device will be unable to process write requests, having the
controller of the first storage device send a commit-synchronization message to the

second storage device along with information designating a write request;

having the controller of the second storage device, after receiving the commit-
20 synchronization message, confirm that data associated with the designated write

request have been written to the non-volatile storage of the second storage device;

after sending the commit-synchronization message, having the controller of
the first storage device accumulate regions of storage affected by new write requests

in a bit map;

24

10

15

20

25

WO 03/077128 PCT/US03/06620

after the second storage device is able to process write requests, having the
controller of the first storage device use the bit map to identify the regions of storage
of the first storage device to be copied from the first storage device to the second

storage device; and

copying the contents of the identified regions of the first storage device to the

second storage device.

35. A method of maintaining a mirrored copy of a first storage device at a

second storage device in a computer system, the method comprising:

receiving write requests at a first storage device, the first storage device

including an associated controller, volatile storage, and non-volatile storage;
processing the write requests received at the first storage device;

receiving write requests at a second storage device, the second storage device

including an associated controller, volatile storage, and non-volatile storage;
processing the write requests received at the second storage device;

having the controller of the first storage device accumulate regions of storage

affected by new write requests in a first bit map,

having the controller of the first storage device send a commit-synchronization
message to the second storage device along with information designating a uniquely

identified write request;

having the controller of the second storage device, after receiizing the commit-
synchronization message, confirm that data associated with the designated write

request have been written to the non-volatile storage of the second storage device;

after sending the commit-synchronization message, having the controller of
the first storage device accumulate regions of storage affected by new write requests

in a second bit map;

after the controller of the second storage device confirms that data in the

processed write requests have been written to non-volatile storage of the second

25

10

15

20

25

WO 03/077128 PCT/US03/06620

storage device, sending a status message to the first storage device indicating whether

the write data were successfully written to non-volatile storage;

after receiving the status message indicating that the write data were

successfully written, deleting the first bit map;

after receiving the status message indicating that the write data were not
successfully written, copying the contents of the second bit map to the first bit map

and deleting the second bit map;

after the second storage device is able to process write requests after a period

in which the second storage device was unable to process write requests:
copying the contents of the second bit map to a recovery bit map;

using the recovery bit map to identify regions of storage of the first

storage device to be copied from the first storage device to the second storage device,

copying the contents of the identified regions of the first storage device

to the second storage device, and

having the controller of the first storage device accumulate regions of

storage affected by new write requests in a third bit map.

36. The method of claim 35 wherein copying the contents of the identified

regions of the first storage device to the second storage device comprises:

having the controller of the first storage device send a commit-synchronization
message to the second storage device along with information designating a uniquely

identified write request;

having the controller of the second storage device, after receiving the commit-
synchronization message, confirm that data associated with the designated write

request have been written to the non-volatile storage of the second storage device;

after sending the commit-synchronization message, having the controller of
the first storage device accumulate regions of storage affected by new write requests

in a fourth bit map;

26

WO 03/077128 PCT/US03/06620

after the second storage device confirms that data in the processed write
requests have been written to non-volatile storage of the second storage device,
sending a status message to the first storage device indicating whether the write data

were successfully written to non-volatile storage;

5 after receiving the status message indicating that the write data were

successfully written, deleting the third bit map; and

after receiving the status message indicating that the write data were not
successfully written, copying the contents of the fourth bit map to the third bit map
and deleting the fourth bit map.

10 37. A mirrored data storage system comprising:
a first storage device;
a second storage device;
a first controller associated with the first storage device; ancvi
a second controller associated with the second storage device;
15 wherein:
the first controller is configured to:
receive write requests at a first storage devic;:;
process the write requests received at the first storage;
and

20 send a commit-synchronization message to the first storage

device along with information designating one write request; and
the second controller is configured to:

receive write requests at a second storage device, the second

storage device including volatile storage and non-volatile storage;

25 process the write requests received at the second storage

device;

27

10

15

20

WO 03/077128 PCT/US03/06620

confirm that data associated with the write request identified by
the information in the commit-synchronization message have been written to the non-
volatile storage of the second storage device after receiving the commit-
synchronization message and processing the write request identified by the

information in the commit-synchronization message.

38. The system of claim 37 wherein the second controller is configured to
confirm that data associated with all write requests that preceded the designated write

request have been written to the non-volatile storage of the second storage device.

39. The system of claim 38 wherein the second controller is configured to
confirm that data associated with the designated write request have been written to the

non-volatile storage of the second storage device.

40. The system of claim 37 wherein the second controller is configured to

confirm a successful cache flush of the volatile storage of the second storage device.

41. The system of claim 37 wherein the information sent with the commit-
synchronization message is a reference label identifying a write request processed by

the first storage device.

42. The system of claim 41 wherein reference labels are assigned

sequentially to write requests.

43. The system of claim 42 wherein the second controller is configured to
process write requests in sequential order by their reference labels such that all write
requests issued prior to the write request identified by the reference label in the

commit-synchronization message are processed prior to processing that write request.

28

10

15

20

WO 03/077128 PCT/US03/06620

44, The system of claim 42 wherein each storage device receives write

requests with the same sequence of reference labels.

45. The system of claim 37 wherein the first controller is further
configured to identify regions of storage affected by write requests that have been

processed at the first storage device.

46. The system of claim 45 wherein the first controller is configured to

accumulate the identified regions of storage in a first bit map.

47. The system of claim 46 wherein:

the second controller is further configured to, after the second storage device
confirms that data in the processed write requests have been written to non-volatile
storage of the second storage device, send a status message to the first storage device

indicating whether the write data were successfully written to the non-volatile storage,

the first controller is further configured to, after sending the commit-
synchronization message, accumulate newly identified regions of storage in a second

bit map, and

after receiving the status message indicating that the write data were

successfully written, delete the first bit map.

48. The system of claim 47 wherein the first controller is further
configured to, after receiving the status message indicating that the write data were
not successfully written, copy the contents of the second bit map to the first bit map

and delete the second bit map.

49, The system of claim 37 wherein the first controller is further
configured to, after a period when the second storage device was unable to process

write requests:
29

WO 03/077128 PCT/US03/06620

copy the contents of the first bit map to a recovery bit map,

use the recovery bit map to identify regions of storage of the first storage

device to be copied from the first storage device to the second storage device,

copy the identified regions of storage of the first storage device to the second

5 storage device, and

accumulate newly received write requests at the first storage device in a third

bit map.

50. A computer-readable medium or propagated signal having embodied
thereon a computer program configured to maintain a mirrored copy of a first storage
10 device at a second storage device in a computer system, the medium comprising code

segments configured to:

receive write requests at a first storage device, the first storage device

including an associated controller;
process the write requests received at the first storage device;

15 receive write requests at a second storage device, the second storage device

including an associated controller, volatile storage, and non-volatile storage;
process the write requests received at the second storage device;

send a commit-synchronization message to the second storage device along

with information designating a write request; and

20 confirm that data associated with the designated write request have been
written to the non-volatile storage of the second storage device after receiving the

commit-synchronization message.

51. The medium of claim 50 wherein having the controller of the second
storage device confirm that data associated with the designated write request have
25 been written to the non-volatile storage of the second storage device comprises having

the controller of the second storage device confirm that data associated with all write

30

10

15

20

WO 03/077128 PCT/US03/06620

requests that preceded the designated write request have been written to the non-

volatile storage of the second storage device.

52. The medium of claim 51 wherein having the controller of the second
storage device confirm that data associated with the designated write request have
been written to the non-volatile storage of the second storage device comprises having
the controller of the second storage device confirm that data associated with the
designated write request have been written to the non-volatile storage of the second

storage device.

53. The medium of claim 50 wherein having the second storage device
confirm that the data associated with the designated write request have been written to
the non-volatile storage of the second storage device comprises having the second
storage device confirm a successful cache flush of the volatile storage of the second

storage device.

54. The medium of claim 50 wherein the information sent with the
commit- synchronization message is a reference label identifying a write request

processed by the first storage device.

55. The medium of claim 54 wherein reference labels are assigned

sequentially to write requests.

56. The medium of claim 55 wherein processing the write requests
received at the second storage device further comprises processing write requests in
sequential order by their reference labels such that all write requests issued prior to
the write request identified by the reference label in the commit-synchronization

message are processed prior to processing that write request.

31

10

15

20

WO 03/077128 PCT/US03/06620

57. The medium of claim 55 wherein each storage device receives write

requests with the same sequence of reference labels.

58. The medium of claim 50 further comprising a code segment configured
to identify regions of storage affected by write requests that have been processed at

the first storage device.

59. The medium of claim 58 wherein identifying regions of storage
affected by write requests that have been processed at the first storage device further

comprises accumulating the identified regions of storage in a first bit map.

60. The medium of claim 59 further comprising code segments configured
to:
accumulate newly identified regions of storage in a second bit map after

sending the commit-synchronization message,

send a status message to the first storage device indicating whether the write
data were successfully written to the non-volatile storage after the second storage
device confirms that data in the processed write requests have been written to non-

volatile storage of the second storage device, and

delete the first bit map after receiving the status message indicating that the

write data were successfully written.

61. The medium of claim 60 further comprising a code segment configured
to copy the contents of the contents of the second bit map to the first bit map and
delete the second bit map after receiving the status message indicating that the write

data were not successfully written.

32 -

10

WO 03/077128 PCT/US03/06620

62. The medium of claim 50 further comprising code segments configured
to, after a period when the second storage device was unable to process write

requests:
copy the contents of the first bit map to a recovery bit map,

use the recovery bit map to identify regions of storage of the first storage

device to be copied from the first storage device to the second storage device,

copy the identified regions of storage of the first storage device to the second

storage device, and

accumulate newly received write requests at the first storage device in a third

bit map.

33

WO 03/077128

100

130

117

125

Lﬂ

CLIENT

PCT/US03/06620

130

w R R w
135 DATA DATA
‘/ 135

I/O CONTROLLER 1

DATA

<>

BIT MAP \

155

165 M

105

BACKUP
BIT MAP

170

CONFIRMATION
_ MESSAGE

[~ 160

COMMIT
SYNCRHONIZATION
MESSAGE

FIG. 1

»

120

_

110

1/0 CONTROLLER 2

DATA

<>

156

BITMAP |/

S

-

WO 03/077128

2/7

N
[
o

205
| DETERMINE DISK IS GOING TO

ENTER A PERIOD OF
UNAVAILABILITY

21 0\\
FLUSH SLAVE DISK CACHE

220

h START TO ACCUMULATE CHANGES MADE TO
MASTER DISK IN A DISK CHANGE BIT MAP

225

\ RECEIVE AND PROCESS WRITE REQUESTS FOR
THE MASTER DISK

PCT/US03/06620

230 v

L UPDATE DISK CHANGE BIT MAP TO REFLECT
EVERY MASTER DISK CHANGE

235

NO

SLAVE DISK

AVAILABLE?

240

PERFORM RECOVERY PROCESS 300

FIG. 2

WO 03/077128 PCT/US03/06620

37

(%3
(=3
o

A

MAKE BACKUP COPY OF DISK CHANGE BIT MAP AND
DESIGNATE ORIGINAL VERSION AS THE RECOVERY BIT MAP

310‘/

START A NEW DISK CHANGE BIT MAP

320/

<
<

CHECK NEXT BIT IN THE RECOVERY DISK CHANGE

BIT MAP
330—/

340

IT INDICAT!
MASTER DISK
REGION
CHANGE?

NO

UBSEQUEN COPY MASTER DISK REGION

é}g?&gg%ﬁ*ﬁ%ﬁf& CHANGES TO PORTION UNAFFECTED BY
o MASTER DISK SUBSEQUENT CHANGE TO
REGION? SLAVE DISK

YES

i

INITIATE SYNCHRONIZATION TO FLUSH SLAVE DISK CACHE

380
N

COMBINE BACKUP DISK CHANGE

BIT MAP AND DISK CHANGE BIT
MAP

CLEAR BACKUP DISK CHANGE BIT MAP

FIG. 3

WO 03/077128

4/7

PCT/US03/06620

/‘ RECEIVE AND PROCESS WRITE REQUESTS |

TO MASTER DISK
410

1N
o
(=

UPDATE DISK CHANGE BIT MAP TO REFLECT EVERY MAST

ER DISK CHANGE

K 415

PERIODIC

NO

SYNCHRONIZATION?

430 \ lYES

CONTROLLER

SEND COMMIT-SYNCHRONIZATION MESSAGE TO SLAVE /O

435

MAKE BACKUP COPY OF FIRST DISK CHANGE BIT MAP FOR THE /

MASTER DISK
440
START A NEW DISK CHANGE BIT MAP /
445
A /
RECEIVE AND PROCESS WRITE REQUESTS
\ 450

CHANGE

UPDATE NEW DISK CHANGE BIT MAP TO REFLECT EVERY MASTER DISK /

455

470 \

NO

COMBINE THE BACKUP DISK CHANGE BIT MAP AND THE
NEW DISK CHANGE BIT MAP

460 \ YES

! /’ 475

CLEARS BACKUP DISK CHANGE BIT MAP

INITIATE THE RECOVERY
PROCESS 300 USING THE
COMBINED BIT MAP

FIG. 4

WO 03/077128 PCT/US03/06620

57

00

RECEIVE COMMIT-SYNCHRONIZATION
/ ' MESSAGE
510

520

PROCESSED
IDENTIFIED WRITE
REQUEST?

530
\ J’ YES

FLUSH SLAVE DISK CACHE

560 '\

NO »| SEND FLUSH FAILURE MESSAGE

540\

SUCCESSFUL
?

YES

550 \

SEND FLUSH CONFIRMATION
MESSAGE

FIG. 5

WO 03/077128

6/7

600
610
\\ RECEIVE AND PROCESS WRITE REQUESTS TO THE
MASTER DISK

PCT/US03/06620

620
N !

UPDATE DISK CHANGE BIT MAP WITH MASTER DISK
CHANGES

630

SLAVE DISK NO

AVAILABLE?

YES

640 \

INITIATE RECOVERY PROCESS 300 USING THE DISK
CHANGE BIT MAP

FIG. 6

WO 03/077128

PCT/US03/06620

717

MAKE BACKUP COPY OF DISK CHANGE BIT MAP AND
DESIGNATE ORIGINAL VERSION AS THE RECOVERY BIT

MAP

START A NEW DISK CHANGE BIT MAP

1q
Y

710

\

720

(735

I\E/‘I'T ‘NI';'CS\]T?(YES COPY TO SLAVE DISK THE CHANGED
—_—
. G‘]\g; CRH A,\?GE PORTIONS OF MASTER DISK
NO
740 / 745
SEND COMMIT-SYNCHRONIZATION
CERIODIC YES MESSAGE TO SLAVE l/0 CONTROLLER;
NG N7 O———>| MAKE BACKUP COPY OF FIRST DISK
' CHANGE BIT MAP FOR THE MASTER DISK;
START A NEW DISK CHANGE BIT MAP

NO

750 l

YES

755 '\

YES
775
CLEAR
BACKUP DISK
CHANGE BIT
MAP

FIG. 7

REMOVE BITS

NO

COMBINE THE
BACKUP DISK
CHANGE BIT
MAP AND THE
NEW DISK
CHANGE BIT
MAP

\760

765
|

] ‘

PROCESS 30

INITIATE THE RECOVERY

0 USING THE

COMBINED BIT MAP

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US03/06620

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 11/00
US CL : 714/5,6
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 714/5,6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AP US 6,442,706 B1 (WAHL et al) 27 August 2002 (27.08.2002), Entire Document 1-62
AE US 6,549,921 B1 (OFEK) 15 April 2003 (15.04.2003), Entire Document 1-62
AP US 2002/0083366 Al (OHRAN) 27 June 2002 (27.06.2002), Entire Document 1-62
A US 5,742,792 A (YANAI et al.) 21 April 1998 (21.04.1998), Entire Document 1-62

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underiying the invention
of particular relevance
“X" document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

, when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
speified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O" dcoument referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“p" document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailitf of the international search report
29 May 2003 (29.05.2003) 6 J UN 2003
Name and mailing address of the ISA/US Authorized officer)
Comumissioner of Patents and Trademarks 7 . dﬁ/fM ﬁ /7/ [uﬂ%%
Box PCT Robert Beausoleil 1/ -
Washington, D.C. 20231
Facsimile No. (703)305-3230 Telephone No. (703)305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

