Title: IMIDAZOTRIAZINE DERIVATIVES AS MODULATORS OF TNF ACTIVITY

Abstract: A series of substituted imidazo[1,2-b][1,2,4]triazine derivatives of formula (I), being potent modulators of human TNFa activity, are accordingly of benefit in the treatment and/or prevention of various human ailments, including autoimmune and inflammatory disorders; neurological and neurodegenerative disorders; pain and nociceptive disorders; cardiovascular disorders; metabolic disorders; ocular disorders; and oncological disorders.
IMIDAZOTRIA ZINE DERIVATIVES AS MODULATORS OF TNF ACTIVITY

The present invention relates to a class of fused imidazole derivatives, and to their use in therapy. More particularly, this invention is concerned with pharmacologically active substituted imidazo[1,2-\textit{b}][1,2,4]triazine derivatives. These compounds are modulators of the signalling of TNF\textalpha, and are accordingly of benefit as pharmaceutical agents, especially in the treatment of adverse inflammatory and autoimmune disorders, neurological and neurodegenerative disorders, pain and nociceptive disorders, cardiovascular disorders, metabolic disorders, ocular disorders, and oncological disorders.

TNF\textalpha is the prototypical member of the Tumour Necrosis Factor (TNF) superfamily of proteins that share a primary function of regulating cell survival and cell death. One structural feature common to all known members of the TNF superfamily is the formation of trimeric complexes that bind to, and activate, specific TNF superfamily receptors. By way of example, TNF\textalpha exists in soluble and transmembrane forms and signals through two receptors, known as TNFR1 and TNFR2, with distinct functional endpoints.

Various products capable of modulating TNF\textalpha activity are already commercially available. All are approved for the treatment of inflammatory and autoimmune disorders such as rheumatoid arthritis and Crohn's disease. All currently approved products are macromolecular and act by inhibiting the binding of human TNF\textalpha to its receptor. Typical macromolecular TNF\textalpha inhibitors include anti-TNF\textalpha antibodies; and soluble TNF\textalpha receptor fusion proteins. Examples of commercially available anti-TNF\textalpha antibodies include fully human antibodies such as adalimumab (Humira®) and golimumab (Simponi®), chimeric antibodies such as infliximab (Remicade®), and pegylated Fab' fragments such as certolizumab pegol (Cimzia®). An example of a commercially available soluble TNF\textalpha receptor fusion protein is etanercept (Enbrel®).

TNF superfamily members, including TNF\textalpha itself, are implicated in a variety of physiological and pathological functions that are believed to play a part in a range of conditions of significant medical importance (see, for example, M.G. Tansey & D.E. Szymkowski, Drug Discovery Today, 2009, 14, 1082-1088; and F.S. Carneiro \textit{et al}, J. Sexual Medicine, 2010, 7, 3823-3834).
The compounds in accordance with the present invention, being potent modulators of human TNFa activity, are therefore beneficial in the treatment and/or prevention of various human ailments. These include autoimmune and inflammatory disorders; neurological and neurodegenerative disorders; pain and nociceptive disorders; cardiovascular disorders; metabolic disorders; ocular disorders; and oncological disorders.

In addition, the compounds in accordance with the present invention may be beneficial as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents. Thus, in one embodiment, the compounds of this invention may be useful as radioligands in assays for detecting pharmacologically active compounds. In an alternative embodiment, certain compounds of this invention may be useful for coupling to a fluorophore to provide fluorescent conjugates that can be utilised in assays (e.g. a fluorescence polarisation assay) for detecting pharmacologically active compounds.

None of the prior art available to date, however, discloses or suggests the precise structural class of imidazotriazine derivatives as provided by the present invention.

The compounds in accordance with the present invention potently inhibit the binding of a fluorescence conjugate to TNFa when tested in the fluorescence polarisation assay described herein. Indeed, when tested in that assay, the compounds of the present invention exhibit an IC$_{50}$ value of 50 µM or less, generally of 20 µM or less, usually of 5 µM or less, typically of 1 µM or less, suitably of 500 nM or less, ideally of 100 nM or less, and preferably of 20 nM or less (the skilled person will appreciate that a lower IC$_{50}$ figure denotes a more active compound).

Certain compounds in accordance with the present invention potently neutralise the activity of TNFa in a commercially available HEK-293 derived reporter cell line known as HEK-Blue™ CD40L. This is a stable HEK-293 transfected cell line expressing SEAP (secreted embryonic alkaline phosphatase) under the control of the IFNP minimal promoter fused to five NF-κB binding sites. Secretion of SEAP by these cells is stimulated in a concentration-dependent manner by TNFa. When tested in the HEK-293 bioassay, also referred to herein as the reporter gene assay, certain compounds of the
The present invention provides a compound of formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof:

![Chemical Structure](image)

(I)

wherein

E represents a covalent bond; or E represents -O-, -S-, -S(0)-, -S(0)\(\text{O}^-\) or -N(R\(^3\))\(^-\); or E represents an optionally substituted straight or branched C\(_{1-4}\) alkylene chain;

Q represents a covalent bond; or Q represents -O-, -S-, -S(0)-, -S(0)\(\text{O}^-\);

R\(^1\), R\(^2\), and R\(^3\) respectively represent hydrogen, halogen, or trifluoromethyl; or R\(^1\), R\(^2\), and R\(^3\) respectively represent C\(_{1-6}\) alkyl, C\(_{3-7}\) cycloalkyl, aryl, C\(_{3-7}\) heterocycloalkyl, C\(_{3-7}\) heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents;

Z represents hydrogen, halogen or trifluoromethyl; or Z represents C\(_{1-6}\) alkyl, C\(_{3-7}\) cycloalkyl, aryl, C\(_{3-7}\) heterocycloalkyl, C\(_{3-7}\) heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; or Z represents -Z\(^1\)-Z\(^2\) or -Z\(^1\)-C(0)-Z\(^2\), either of which moieties may be optionally substituted by one or more substituents;

Z\(^1\) represents a divalent radical derived from an aryl, C\(_{3-7}\) heterocycloalkyl or heteroaryl group;

Z\(^2\) represents aryl, C\(_{3-7}\) heterocycloalkyl, C\(_{3-7}\) heterocycloalkenyl or heteroaryl;
R¹ and R² independently represent hydrogen, halogen, cyano, nitro, hydroxy, trifluoromethyl, trifluoromethoxy, -OR, -SR, -SOR, -SO₂R, -SF₅, -NR²R³, -NR³COR, -NR²C₀₂R⁴, -NHCONR⁵R⁶, -NR³S₀₂R⁷, -N(SO₂R⁷)₂, -NHSO₂NR³R⁷, -COR⁸, -C₀₂R⁹, -CONR⁵R⁶, -CON(OR)⁺R⁸, -SO₂NR³R⁷ or -S(O)(NR)⁺R⁷; or C₁⁶ alkyl, C₂⁶ alkenyl, C₂⁶ alkynyl, C₃⁷ cycloalkyl, C₄⁷ cycloalkenyl, C₃⁷ heterocycloalkyl, C₃⁷ heterocycloalkenyl, C₃⁷ heterocycloalkenyl, C₄⁹ heterocycloalkyl, heteroaryl, heteroaryl(C₁⁶)alkyl, (C₃⁷)heterocycloalkyl(C₁⁶)alkyl, (C₃⁷)heterocycloalkyl(C₂⁶)alkyl-aryl-, heteroaryl(C₃⁷)heterocycloalkyl-, (C₃⁷)cycloalkyl-heteroaryl-, (C₃⁷)cycloalkyl(C₁⁶)alkyl-heteroaryl-, (C₄⁹)bicycloalkyl-heteroaryl-, (C₃⁷)heterocycloalkyl -heteroaryl-, (C₃⁷)heterocycloalkyl(C₁⁶)alkyl-heteroaryl-, (C₃⁷)heterocycloalkenyl-heteroaryl-, (C₄⁹)bicycloalkyl-heteroaryl- or (C₄⁹)spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents;

R³ and R⁴ independently represent hydrogen or C₁⁶ alkyl;

R³ represents C₁⁶ alkyl, aryl, aryl(C₁⁶)alkyl, heteroaryl or heteroaryl(C₁⁶)alkyl, any of which groups may be optionally substituted by one or more substituents;

R⁵ and R⁶ independently represent hydrogen or trifluoromethyl; or C₁⁶ alkyl, C₃⁷ cycloalkyl, C₃⁷ cycloalkyl(C₁⁶)alkyl, aryl, aryl(C₁⁶)alkyl, C₃⁷ heterocycloalkyl, C₃⁷ heterocycloalkyl(C₁⁶)alkyl, heteroaryl or heteroaryl(C₁⁶)alkyl, any of which groups may be optionally substituted by one or more substituents; or

R⁵ and R⁶, when taken together with the nitrogen atom to which they are both attached, represent azetidin-1-yl, pyrroolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-2-yl, piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, homopiperidin-1-yl, homomorpholin-4-yl or homopiperazin-1-yl, any of which groups may be optionally substituted by one or more substituents;

R⁴ represents hydrogen; or C₁⁶ alkyl, C₃⁷ cycloalkyl, aryl, C₃⁷ heterocycloalkyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; and

R⁵ represents C₁⁶ alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

The present invention also provides a compound of formula (I) as defined above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for use in therapy.
The present invention also provides a compound of formula (I) as defined above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for use in the treatment and/or prevention of disorders for which the administration of a modulator of TNFa function is indicated.

In another aspect, the present invention provides a compound of formula (I) as defined above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for use in the treatment and/or prevention of an inflammatory or autoimmune disorder, a neurological or neurodegenerative disorder, pain or a nociceptive disorder, a cardiovascular disorder, a metabolic disorder, an ocular disorder, or an oncological disorder.

The present invention also provides a method for the treatment and/or prevention of disorders for which the administration of a modulator of TNFa function is indicated which comprises administering to a patient in need of such treatment an effective amount of a compound of formula (I) as defined above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof.

In another aspect, the present invention provides a method for the treatment and/or prevention of an inflammatory or autoimmune disorder, a neurological or neurodegenerative disorder, pain or a nociceptive disorder, a cardiovascular disorder, a metabolic disorder, an ocular disorder, or an oncological disorder, which comprises administering to a patient in need of such treatment an effective amount of a compound of formula (I) as defined above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof.

Where any of the groups in the compounds of formula (I) above is stated to be optionally substituted, this group may be unsubstituted, or substituted by one or more substituents. Typically, such groups will be unsubstituted, or substituted by one or two substituents.

For use in medicine, the salts of the compounds of formula (I) will be pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds of use in the invention or of their pharmaceutically acceptable salts. Standard principles underlying the selection and preparation of pharmaceutically acceptable salts are described, for example, in *Handbook of Pharmaceutical Salts:*
Suitable pharmaceutically acceptable salts of the compounds of use in this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound of use in the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid or phosphoric acid. Furthermore, where the compounds of use in the invention carry an acidic moiety, e.g. carboxy, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; ammonium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts, and meglumine salts.

The present invention includes within its scope solvates of the compounds of formula (I) above. Such solvates may be formed with common organic solvents, e.g. hydrocarbon solvents such as benzene or toluene; chlorinated solvents such as chloroform or dichloromethane; alcoholic solvents such as methanol, ethanol or isopropanol; ethereal solvents such as diethyl ether or tetrahydrofuran; or ester solvents such as ethyl acetate. Alternatively, the solvates of the compounds of formula (I) may be formed with water, in which case they will be hydrates.

The present invention also includes co-crystals within its scope. The technical term "co-crystal" is used to describe the situation where neutral molecular components are present within a crystalline compound in a definite stoichiometric ratio. The preparation of pharmaceutical co-crystals enables modifications to be made to the crystalline form of an active pharmaceutical ingredient, which in turn can alter its physicochemical properties without compromising its intended biological activity (see Pharmaceutical Salts and Co-crystals, ed. J. Wouters & L. Quere, RSC Publishing, 2012). Typical examples of co-crystal formers, which may be present in the co-crystal alongside the active pharmaceutical ingredient, include L-ascorbic acid, citric acid, glutaric acid, urea and nicotinamide.

The present invention includes within its scope prodrugs of the compounds of formula (I) above. In general, such prodrugs will be functional derivatives of the compounds of formula (I) which are readily convertible in vivo into the required compound of formula (I). Conventional procedures for the selection and preparation of
suitable prodrug derivatives are described, for example, in *Design of Prodrugs*, ed. H. Bundgaard, Elsevier, 1985.

Suitable alkyl groups which may be present on the compounds of use in the invention include straight-chained and branched C₁₋₆ alkyl groups, for example C₁₋₄ alkyl groups. Typical examples include methyl and ethyl groups, and straight-chained or branched propyl, butyl and pentyl groups. Particular alkyl groups include methyl, ethyl, n-propyl, isopropyl, w-butyl, sec-butyl, isobutyl, tert-butyl, 2,2-dimethylpropyl and 3-methylbutyl. Derived expressions such as "C₁₋₆ alkoxy", "C₁₋₆ alkylthio", "C₁₋₆ alkylsulphonyl" and "C₁₋₆ alkylamino" are to be construed accordingly.

The expression "C₁₋₄ alkylene chain" refers to a divalent straight or branched alkylene chain containing 1 to 4 carbon atoms. Typical examples include methylene, ethylene, methylmethylene, ethylmethylene and dimethylmethylene.

Suitable C₂₋₆ alkenyl groups include vinyl and allyl.

Suitable C₂₋₆ alkynyl groups include ethynyl, propargyl and butynyl.

The term "C₃₋₇ cycloalkyl" as used herein refers to monovalent groups of 3 to 7 carbon atoms derived from a saturated monocyclic hydrocarbon, and may comprise benzo-fused analogues thereof. Suitable C₃₋₇ cycloalkyl groups include cyclopropyl, cyclobutyl, benzocyclobutenyl, cyclopentyl, indanyl, cyclohexyl and cycloheptyl.

The term "C₄₋₇ cycloalkenyl" as used herein refers to monovalent groups of 4 to 7 carbon atoms derived from a partially unsaturated monocyclic hydrocarbon. Suitable C₄₋₇ cycloalkenyl groups include cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl.

The term "C₅₋₉ bicycloalkyl" as used herein refers to monovalent groups of 4 to 9 carbon atoms derived from a saturated bicyclic hydrocarbon. Typical bicycloalkyl groups include bicyclo[3.1.0]hexanyl, bicyclo[4.1.0]heptany1 and bicyclo[2.2.2]octanyl.

The term "aryl" as used herein refers to monovalent carbocyclic aromatic groups derived from a single aromatic ring or multiple condensed aromatic rings. Suitable aryl groups include phenyl and naphthyl, preferably phenyl.

Suitable aryl(Ci_6)alkyl groups include benzyl, phenylethyl, phenylpropyl and naphthylmethyl.

The term "C₃₋₇ heterocycloalkyl" as used herein refers to saturated monocyclic rings containing 3 to 7 carbon atoms and at least one heteroatom selected from oxygen, sulphur and nitrogen, and may comprise benzo-fused analogues thereof. Suitable heterocycloalkyl groups include oxetanyl, azetidinyl, tetrahydrofuranyl, dihydrobenzo-
furanyl, dihydrobenzothienyl, pyrrolidinyl, indolinyl, isoindolinyl, oxazolidinyl, thiazolidinyl, isothiazolidinyl, imidazolidinyl, tetrahydropyranyl, chromanyl, tetrahydrothiopyranyl, piperidinyl, 1,2,3,4-tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, piperazinyl, 1,2,3,4-tetrahydroquinoxalinyl, hexahydro-[1,2,5]thiadiazolo[2,3-a]pyrazinyl, homopiperazinyl, morpholinyl, benzoxazinyl, thiomorpholinyl, azepanyl, oxazepanyl, diazepanyl, thiadiazepanyl and azocanyl.

The term "C₃₋₇ heterocycloalkenyl" as used herein refers to monounsaturated or polyunsaturated monocyclic rings containing 3 to 7 carbon atoms and at least one heteroatom selected from oxygen, sulphur and nitrogen, and may comprise benzo-fused analogues thereof. Suitable heterocycloalkenyl groups include thiazolinyl, isothiazolinyl, imidazolinyl, dihydropyranyl, dihydrothiopyranyl and 1,2,3,6-tetrahydropyridinyl.

The term "C₄₋₉ heterobicycloalkyl" as used herein corresponds to C₄₋₉ bicycloalkyl wherein one or more of the carbon atoms have been replaced by one or more heteroatoms selected from oxygen, sulphur and nitrogen. Typical heterobicycloalkyl groups include 3-azabicyclo[3.1.0]hexanyl, 2-oxa-5-azabicyclo[2.2.1]heptanyl, 6-azabicyclo[3.2.0]heptanyl, 3-azabicyclo[3.1.1]heptanyl, 3-azabicyclo[4.1.0]heptanyl, 2-oxabicyclo[2.2.2]octanyl, quinuclidinyl, 2-oxa-5-azabicyclo[2.2.2]octanyl, 3-azabicyclo[3.2.1]octanyl, 8-azabicyclo-[3.2.1]octanyl, 3-oxa-8-azabicyclo[3.2.1]octanyl, 3,8-diazabicyclo[3.2.1]octanyl, 3,6-diazabicyclo[3.2.2]nonanyl, 3-oxa-7-azabicyclo[3.3.1]nonanyl and 3,9-diazabicyclo-[4.2.1]nonanyl.

The term "C₄₋₉ spiroheterocycloalkyl" as used herein refers to saturated bicyclic ring systems containing 4 to 9 carbon atoms and at least one heteroatom selected from oxygen, sulphur and nitrogen, in which the two rings are linked by a common atom. Suitable spiroheterocycloalkyl groups include 5-azaspiro[2.3]hexanyl, 5-azaspiro[2.4]-heptanyl, 2-azaspiro[3.3]heptanyl, 2-oxa-6-azaspiro[3.3]heptanyl, 2-oxa-6-azaspiro[3.4]-octanyl, 2-oxa-6-azaspiro[3.5]nonanyl, 7-oxa-2-azaspiro[3.5]nonanyl, 2-oxa-7-azaspiro[3.5]nonanyl and 2,4,8-triazaspiro[4.5]decanyl.

The term "heteroaryl" as used herein refers to monovalent aromatic groups containing at least 5 atoms derived from a single ring or multiple condensed rings, wherein one or more carbon atoms have been replaced by one or more heteroatoms selected from oxygen, sulphur and nitrogen. Suitable heteroaryl groups include furyl, benzofuryl, dibenzofuryl, thiienyl, benzothienyl, thieno[2,3-c]pyrazolyl, thieno[3,4-b][1,4]dioxinyl, dibenzothienyl, pyrrolyl, indolyl, pyrrolo[2,3-b]pyridinyl, pyrrolo[3,2-c]pyridinyl,

The term "halogen" as used herein is intended to include fluorine, chlorine, bromine and iodine atoms, typically fluorine, chlorine or bromine.

Where the compounds of formula (I) have one or more asymmetric centres, they may accordingly exist as enantiomers. Where the compounds of use in the invention possess two or more asymmetric centres, they may additionally exist as diastereomers. The invention is to be understood to extend to the use of all such enantiomers and diastereomers, and to mixtures thereof in any proportion, including racemates. Formula (I) and the formulae depicted hereinafter are intended to represent all individual stereoisomers and all possible mixtures thereof, unless stated or shown otherwise. In addition, compounds of formula (I) may exist as tautomers, for example keto (CH2C=O) ← enol (CH=CHOH) tautomers or amide (NHC=O) ← hydroxyimine (N=COH) tautomers.

Formula (I) and the formulae depicted hereinafter are intended to represent all individual tautomers and all possible mixtures thereof, unless stated or shown otherwise.

It is to be understood that each individual atom present in formula (I), or in the formulae depicted hereinafter, may in fact be present in the form of any of its naturally occurring isotopes, with the most abundant isotope(s) being preferred. Thus, by way of example, each individual hydrogen atom present in formula (I), or in the formulae depicted hereinafter, may be present as a ¹H, ²H (deuterium) or ³H (tritium) atom, preferably ¹H. Similarly, by way of example, each individual carbon atom present in formula (I), or in the formulae depicted hereinafter, may be present as a ¹²C, ¹³C or ¹⁴C atom, preferably ¹²C.

In one aspect, the present invention provides a compound of formula (I) as depicted above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, wherein

Q represents -O-, -S-, -S(O)-, -S(O)₂-, -S(O)(NR₄)-, -N(R₄)-, -C(O)N(R₄)-, -N(R₄)C(O)-, -S(O)₂N(R₄)- or -N(R₄)S(O)₂-; or Q represents an optionally substituted
straight or branched C\textsubscript{1-6} alkylene chain optionally comprising one, two or three heteroatom-containing linkages independently selected from -O-, -S-, -S(O)-, -S(0)\textsubscript{2}, -S(0)(NR\textsubscript{4})-, -N(R\textsubscript{4})-, -C(0)N(R\textsubscript{4})-, -N(R\textsubscript{4})C(0)-, -S(0)\textsubscript{2}N(R\textsubscript{4})- and -N(R\textsubscript{4})S(0)\textsubscript{2}.

Z represents C\textsubscript{3-7} cycloalkyl, aryl, C\textsubscript{3-7} heterocycloalkyl, C\textsubscript{3-7} heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; or Z represents -Z1-Z2 or -Z1-C(0)-Z2, either of which moieties may be optionally substituted by one or more substituents; and

E, Y, R1, R2, R4, Z1 and Z2 are as defined above.

In another aspect, the present invention provides a compound of formula (I) as depicted above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, wherein

R1 represents halogen or cyano; or C\textsubscript{1-6} alkyl, C\textsubscript{2-6} alkenyl, C\textsubscript{2-6} alkynyl, C\textsubscript{3-7} cycloalkyl, C\textsubscript{4-7} cycloalkenyl, C\textsubscript{3-7} cycloalkyl(C\textsubscript{1-6})alkyl, aryl, aryl(C\textsubscript{1-6})alkyl, C\textsubscript{3-7} heterocycloalkyl, C\textsubscript{3-7} heterocycloalkyl(C\textsubscript{1-6})alkyl, C\textsubscript{3-7} heterocycloalkenyl, C\textsubscript{4-9} heterobicycloalkyl, heteroaryl, heteroaryl(C\textsubscript{1-6})alkyl, (C\textsubscript{3-7})heterocycloalkyl(Ci\textsubscript{1-6})alkyl-aryl-, heteroaryl(C\textsubscript{3-7})heterocycloalkyl-, (C\textsubscript{3-7})cycloalkyl-heteroaryl-, (C\textsubscript{3-7})cycloalkyl-(Ci\textsubscript{6})alkyl-heteroaryl-, (C\textsubscript{4-7})cycloalkenyl-heteroaryl-, (C\textsubscript{4-9})bicycloalkyl-heteroaryl-, (C\textsubscript{3-7})heterocycloalkyl-heteroaryl-, (C\textsubscript{3-7})heterocycloalkenyl-heteroaryl-, (C\textsubscript{4-9})heterobicycloalkyl-heteroaryl- or

(C\textsubscript{4-9})spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents; and

E, Q, Y, Z and R2 are as defined above.

Where the compounds in accordance with the invention comprise an optionally substituted straight or branched alkylene chain, typical values thereof include methylene (-CH\textsubscript{2}-), (methyl)methylene, ethylene (-CH\textsubscript{2}CH\textsubscript{2}-), (ethyl)methylene, (dimethyl)methylene, (methyl)ethylene, propylene (-CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}-), (propyl)methylene and (dimethyl)ethylene, any of which chains may be optionally substituted by one or more substituents. Suitably, such chains are unsubstituted, monosubstituted or disubstituted. Typically, such chains are unsubstituted or monosubstituted. In one embodiment, such chains are unsubstituted. In another embodiment, such chains are monosubstituted. In a further embodiment, such chains are disubstituted.

Examples of typical substituents on the alkylene chain which may be present in a compound in accordance with the invention include halogen, cyano, trifluoromethyl, oxo,
hydroxy, C_{1-6} alkoxy, carboxy(C_{6})alkoxy, trifluoromethoxy, amino, C_{1-6} alkylamino, di(C_{6})alkylamino, C_{2-6} alkylcarbonylamino, carboxy, benzyloxy carbonyl, tetrazolyl, aminocarbonyl, Cl_{-6} alkylaminocarbonyl and di(C_{6})alkylaminocarbonyl.

Specific examples of suitable substituents on the alkylene chain which may be present in a compound in accordance with the invention include fluoro, cyano, trifluoromethyl, hydroxy, methoxy, carboxymethoxy, amino, acetylamino, carboxy, benzyloxy carbonyl and tetrazolyl.

In a first embodiment, E represents a covalent bond, whereby the integer Y is attached directly to the imidazole ring.

In a second embodiment, E represents -0, $-\text{S}$, $-\text{S(O)}$, $-\text{S(0)}_2$ or $-\text{N(R}^3\text{)}$. In a first aspect of that embodiment, E represents -0. In a second aspect of that embodiment, E represents $-\text{S}$. In a third aspect of that embodiment, E represents $-\text{S(O)}$. In a fourth aspect of that embodiment, E represents $-\text{S(0)}_2$. In a fifth aspect of that embodiment, E represents $-\text{N(R}^3\text{)}$.

In a third embodiment, E represents an optionally substituted straight or branched Ci_{-4} alkylene chain. In a first aspect of that embodiment, E represents an optionally substituted methylene ($-\text{CH}_2$) linkage. In a second aspect of that embodiment, E represents an optionally substituted (methyl)methylene linkage. In a third aspect of that embodiment, E represents an optionally substituted (ethyl)methylene linkage.

Generally, E represents a covalent bond; or E represents $-\text{N(R}^3\text{)}$; or E represents an optionally substituted straight or branched Ci_{-4} alkylene chain.

Typically, E represents $-\text{N(R}^3\text{)}$; or E represents an optionally substituted straight or branched Ci_{-4} alkylene chain.

Suitably, E represents a covalent bond; or E represents $-\text{N(R}^3\text{)}$; or E represents methylene ($-\text{CH}_2$), (methyl)methylene or (ethyl)methylene, any of which groups may be optionally substituted by one or more substituents.

Generally, E represents $-\text{N(R}^3\text{)}$; or E represents methylene ($-\text{CH}_2$) or (ethyl)methylene, either of which groups may be optionally substituted by one or more substituents.

Appositely, E represents $-\text{N(R}^3\text{)}$, or optionally substituted methylene.

Selected examples of typical substituents on the linkage represented by E include halogen, trifluoromethyl, hydroxy, Ci_{-6} alkoxy, carboxy(C_{6})alkoxy, trifluoromethoxy,
amino, C$_{1-6}$ alkylamino, di(C$_{6}$)alkylamino, C$_{2-6}$ alkylcarbonylamino, carboxy, benzyloxy carbonyl and tetrazolyl.

Specific examples of typical substituents on the linkage represented by E include fluoro, trifluoromethyl, hydroxy, methoxy, carboxymethoxy, trifluoromethoxy, amino, methylamino, dimethylamino, acetyl amino, carboxy, benzyloxy carbonyl and tetrazolyl.

A particular example of a typical substituent on E is hydroxy.

Typical values of E include -N(R$_3$)$_2$-, -CH$_2$-, -CH(OH)$_2$-, -CH(OCH$_2$)$_2$-, -CH(NH$_2$)$_2$-, -CH(NHCOCH$_3$)$_2$-, -CH(CO$_2$H)$_2$-, -CH(CO$_2$benzyl)$_2$-, -CH(CH$_3$)$_2$, -C(CH$_3$)(OH)$_2$ and -CH(CH$_2$CH$_3$)$_2$; or E may represent a covalent bond.

Suitable values of E include -N(R$_3$)$_2$-, -CH$_2$- and -CH(OH)$_2$. In one embodiment, E represents -N(R$_3$)$_2$-. In another embodiment, E represents -CH$_2$-. In a further embodiment, E represents -CH(OH)$_2$.

In another embodiment, E represents -CH(OCH$_2$)$_2$.

In another embodiment, E represents -CH(NH$_2$)$_2$.

In an additional embodiment, E represents -CH(CH$_3$)$_2$. In a particular aspect of that embodiment, the -CH(CH$_3$)$_2$- linkage represented by E is in the (S) stereochemical configuration.

In a further embodiment, E represents -C(CH$_3$)(OH)$_2$.

In a first embodiment, Q represents a covalent bond, whereby the integer Z is attached directly to the imidazole ring.

In a second embodiment, Q represents -O-, -S-, -S(O)-, -S(0)$_2$-, -S(0)(NR)4-, -N(R)4-, -C(0)N(R)4-, -N(R)4C(0)-, -S(0)$_2$N(R)4- or -N(R)4S(0)$_2$-. In a first aspect of that embodiment, Q represents -O-. In a second aspect of that embodiment, Q represents -S-. In a third aspect of that embodiment, Q represents -S(O)-. In a fourth aspect of that embodiment, Q represents -S(0)$_2$-. In a fifth aspect of that embodiment, Q represents -S(0)(NR)4-. In a sixth aspect of that embodiment, Q represents -N(R)4-. In a seventh aspect of that embodiment, Q represents -C(0)N(R)4-. In an eighth aspect of that embodiment, Q represents -N(R)4C(0)-. In a ninth aspect of that embodiment, Q represents -S(0)$_2$N(R)4-. In a tenth aspect of that embodiment, Q represents -N(R)4S(0)$_2$-.

In a third embodiment, Q represents an optionally substituted straight or branched C$_{6}$ alkylene chain optionally comprising one, two or three heteroatom-containing linkages independently selected from -O-, -S-, -S(O)-, -S(0)$_2$-, -S(0)(NR)4-, -N(R)4-, -C(0)N(R)4-, -N(R)4C(0)-, -S(0)$_2$N(R)4- or -N(R)4S(0)$_2$-.
-C(0)N(R 4)-, -N(R 4)C(0)-, -S(0) 2 N(R 4)- and -N(R 4)S(0) 2-. In a first aspect of that embodiment, Q represents an optionally substituted straight or branched C1-6 alkylene chain. In a second aspect of that embodiment, Q represents an optionally substituted straight or branched C1-6 alkylene chain comprising one heteroatom-containing linkage independently selected from -O-, -S-, -S(O)-, -S(0) 2-, -S(0)(NR 4)-, -N(R 4)-,
-C(0)N(R 4)-, -N(R 4)C(0)-, -S(0) 2 N(R 4)- and -N(R 4)S(0) 2-. In a third aspect of that embodiment, Q represents an optionally substituted straight or branched C1-6 alkylene chain comprising two heteroatom-containing linkages independently selected from -O-, -S-, -S(O)-, -S(0) 2-, -S(0)(NR 4)-, -N(R 4)-,
-C(0)N(R 4)-, -N(R 4)C(0)-, -S(0) 2 N(R 4)- and -N(R 4)S(0) 2-. In a fourth aspect of that embodiment, Q represents an optionally substituted straight or branched C1-6 alkylene chain comprising three heteroatom-containing linkages independently selected from -O-, -S-, -S(O)-, -S(0) 2-, -S(0)(NR 4)-, -N(R 4)-,
-C(0)N(R 4)-, -N(R 4)C(0)-, -S(0) 2 N(R 4)- and -N(R 4)S(0) 2-. In a fifth aspect of that embodiment, Q represents an optionally substituted straight or branched C1-6 alkylene chain comprising one, two or three heteroatom-containing linkages independently selected from -O-, -S-, -N(R 4)-, -C(0)N(R 4)- and -N(R 4)C(0)-.

Typically, Q represents a covalent bond; or Q represents -S(0)- or -S(0) 2-; or Q represents an optionally substituted straight or branched C1-6 alkylene chain optionally comprising one or two heteroatom-containing linkages selected from -O-, -S-, -N(R 4)-
-C(0)N(R 4)- and -N(R 4)C(0)-.

Selected examples of typical substituents on the linkage represented by Q include halogen, cyano, trifluoromethyl, hydroxy, C1-6 alkoxy and amino.

Specific examples of typical substituents on the linkage represented by Q include fluoro, cyano, trifluoromethyl, hydroxy, methoxy and amino.

Suitably, Q represents a covalent bond; or Q represents -S(0)-, -S(0) 2- or -N(R 4)-;

or Q represents -CH 2-, -CH(F)-, -CF 2-, -CH(CN)-, -CH(CH 3)-, -CH(OH)-, -CH(CH 2 OH)-,
-CH(OCH 3)-, -CH(NH 2)-, -CH 2 CH 2-, -CH(OH)CH 2-, -CH(OH)CF 2-, -CH(OCH 3)CH 2-,
-CH 2 O-, -CH(CH 3)0-, -C(CH 3)2 0-, -CH(CH 2 CH 3)0-, -CH(CF 3)0-, -CH 2 S-, -CH 2 S(0)-,
-CH 2 S(0) 2-, -CH 2 N(R 4)-, -CH 2 CH 2 CH 2-, -CH(OH)CH 2 CH 2-, -CH(OCH 3)CH 2 CH 2-,
-CH 2 CH 2 O-, -CH 2 OCH 2-, -CH 2 CH(OH)-, -CH 2 OCF 2-, -CH 2 OCH(CH 3)-,
-CH(CH 3)OCH 2-, -CH 2 OCH(CH 3)2-, -CH 2 OCH(CH 3)2-, -CH 2 SCH 2-, -CH 2 S(0)CH 2-,
-CH 2 S(0) 2 CH 2-, -CH 2 CH 2 N(R 4)-, -CH 2 N(R 4)CH 2-, -CH 2 N(R 4)C(0)-, -CH 2 CH(OCH 2 CH 3)-,
-CH₂OCH(CH₃)CH₂-, -CH₂OC(CH₃)₂CH₂-, -CH₂OCH₂CH(CH₃)CH₂-, -CH₂OCH₂CH₂0-, -CH₂OCH₂(CO)N(R₄)- or -CH₂OCH₂CH₂OCH₂-.

Appositely, Q represents a covalent bond; or Q represents -CH₂-, -CH(CN)-, -CH(OH)-, -CH(OCH₃)-, -CH₂0-, -CH₂N(R⁴)- or -CH₂OCH₂-.

More particularly, Q represents a covalent bond; or Q represents -CH₂-. Particular values of Q include -CH₂-, -CH(OH)-, -CH₂0-, -CH₂S- and -CH₂OCH₂-. In a first embodiment, Q represents -CH₂-. In a second embodiment, Q represents -CH₂0-. In a third embodiment, Q represents -CH₂S-. In a fourth embodiment, Q represents -CH₂OCH₂-. In a fifth embodiment, Q represents -CH₂OCH₂-.

Generally, Y represents C₃₋₇ cycloalkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

Typically, Y represents aryl or heteroaryl, either of which groups may be optionally substituted by one or more substituents.

In a first embodiment, Y represents optionally substituted C₃₋₇ cycloalkyl. In one aspect of that embodiment, Y represents unsubstituted C₃₋₇ cycloalkyl. In another aspect of that embodiment, Y represents monosubstituted C₃₋₇ cycloalkyl. In a further aspect of that embodiment, Y represents dissubstituted C₃₋₇ cycloalkyl.

In a second embodiment, Y represents optionally substituted aryl. In one aspect of that embodiment, Y represents unsubstituted aryl. In another aspect of that embodiment, Y represents monosubstituted aryl. In a further aspect of that embodiment, Y represents dissubstituted aryl.

In a third embodiment, Y represents optionally substituted C₃₋₇ heterocycloalkyl. In one aspect of that embodiment, Y represents unsubstituted C₃₋₇ heterocycloalkyl. In another aspect of that embodiment, Y represents monosubstituted C₃₋₇ heterocycloalkyl. In a further aspect of that embodiment, Y represents dissubstituted C₃₋₇ heterocycloalkyl.

In a fourth embodiment, Y represents optionally substituted heteroaryl. In one aspect of that embodiment, Y represents unsubstituted heteroaryl. In another aspect of that embodiment, Y represents monosubstituted heteroaryl. In a further aspect of that embodiment, Y represents dissubstituted heteroaryl.

Suitably, Y represents benzocyclobutenyl, phenyl, thienyl, thiazolyl or pyridinyl, any of which groups may be optionally substituted by one or more substituents.

Appositely, Y represents phenyl, thienyl or thiazolyl, any of which groups may be optionally substituted by one or more substituents.
Appositely, Y represents phenyl, which may be optionally substituted by one or more substituents.

Examples of optional substituents which may be present on the moiety Y include one, two or three substituents independently selected from halogen, cyano, nitro, C1-6 alkyl, trifluoromethyl, hydroxy, C1-6 alkoxy, difluoromethoxy, trifluoromethoxy, C1-6 alkylthio, C1-6 alkylsulfanyl, C1-6 alkylsulfonyl, (Ci-6)alkylsulfonyloxy, amino, C1-6 alkylamino, di(Ci-6)alkylamino, arylamino, C2-6 alkylcarbonylamino, Ci-6 alkylsulfonylamino, formyl, C2-6 alkylcarbonyl, C3-6 cycloalkylcarbonyl, C3-6 heterocycloalkylcarbonyl, carboxy, C2-6 alkoxy, amino, C1-6 alkylaminocarbonyl, di(C1-6)alkylaminocarbonyl, (C1-6)alkylaminocarbonyl, amino, C1-6 alkylaminosulfanyl, and di(C1-6)alkylaminosulfanyl.

Examples of particular substituents on the moiety Y include difluoromethoxy, methylthio, methylsulfanyl, methylsulfonyl, (C1-6)alkylsulfonyl, amino, methylamino, iert-butylamino, dimethylamino, phenylamino, acetylamino, methylsulfonylamino, formyl, acetyl, cyclopropylcarbonyl, azetidinylcarbonyl, piperidinylcarbonyl, pyrrolidinylcarbonyl, piperazinylcarbonyl, morpholinylcarbonyl, carboxy, methoxy, amino, methylaminocarbonyl, diethylaminocarbonyl, amino, methylaminosulfanyl, and dimethylaminosulfanyl.

Examples of particular substituents on the moiety Y include difluoromethoxy.

Typical values of Y include benzo[cyclobutene], phenyl, fluorophenyl (including 2-fluorophenyl, 3-fluorophenyl and 4-fluorophenyl), chlorophenyl (including 2-chlorophenyl, 3-chlorophenyl and 4-chlorophenyl), difluorophenyl (including 2,6-difluorophenyl), (Chloro)(fluoro)phenyl (including 5-chloro-2-fluorophenyl and 2-chloro-5-fluorophenyl), dichlorophenyl (including 2,5-dichlorophenyl and 2,6-dichlorophenyl), methylphenyl (including 4-methylphenyl), dimethylphenyl (including 2,5-dimethylphenyl and 2,6-dimethylphenyl), (trifluoromethyl)phenyl [including 2-(trifluoromethyl)phenyl], (chloro)(trifluoromethyl)phenyl [including 5-chloro-2-(trifluoromethyl)phenyl], (methyl)(trifluoromethyl)phenyl [including 2-methyl-5-(trifluoromethyl)phenyl], bis(trifluoromethyl)phenyl [including 2,5-bis(trifluoromethyl)phenyl], methoxyphenyl (including 2-methoxyphenyl), (difluoromethoxy)phenyl [including 2-(difluoromethoxy)phenyl] and 3-
(difluoromethoxy)phenyl], (difluoromethoxy)(fluoro)phenyl [including 2-(difluoromethoxy)-5-fluorophenyl and 2-(difluoromethoxy)-6-fluorophenyl], (chloro)(difluoromethoxy)phenyl [including 5-chloro-2-(difluoromethoxy)phenyl and 6-chloro-2-(difluoromethoxy)phenyl], (cyano)(difluoromethoxy)phenyl [including 6-cyano-2-(difluoromethoxy)phenyl], methylsulfonyloxyphenyl, (amino)(chloro)phenyl (including 5-amino-2-chloro-phenyl), methylthienyl (including 3-methylthien-2-yl), methylthiazolyl (including 2-methyl-1,3-thiazol-4-yl), (chloro)(methyl)thiazolyl (including 5-chloro-2-methyl-1,3-thiazol-4-yl), dimethylthiazolyl (including 2,4-dimethyl-1,3-thiazol-5-yl) and pyridinyl.

Selected values of Y include dichlorophenyl, dimethylphenyl, (difluoromethoxy)phenyl, (difluoromethoxy)(fluoro)phenyl, methylsulfonyloxyphenyl, methylthienyl and dimethylthiazolyl.

In one embodiment, Y represents 2,5-dichlorophenyl.
In another embodiment, Y represents 2,5-dimethylphenyl.
In a particular embodiment, Y represents 2-(difluoromethoxy)phenyl.
In another embodiment, Y represents (difluoromethoxy)(fluoro)phenyl.
In another embodiment, Y represents 3-methylthien-2-yl.
In another embodiment, Y represents 2,4-dimethyl-1,3-thiazol-5-yl.
In one embodiment, Z represents hydrogen.
In another embodiment, Z is other than hydrogen.
In a selected embodiment, Z represents hydrogen; or Z represents C_{1-6} alkyl, C_{3-7} cycloalkyl, aryl, C_{3-7} heterocycloalkyl, C_{3-7} heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; or Z represents -Z'_{1-2} or -Z'_{1-2}C(0)-Z', either of which moieties may be optionally substituted by one or more substituents.

In a further embodiment, Z represents C_{1-6} alkyl, C_{3-7} cycloalkyl, aryl, C_{3-7} heterocycloalkyl, C_{3-7} heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; or Z represents -Z'_{1-2} or -Z'_{1-2}C(0)-Z', either of which moieties may be optionally substituted by one or more substituents.

Suitably, Z represents hydrogen; or Z represents C_{1-6} alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; or Z
represents -Z₁-Z₂, which moiety may be optionally substituted by one or more substituents.

Typically, Z represents hydrogen, fluoro or trifluoromethyl; or Z represents methyl, ethyl, w-propyl, isopropyl, w-butyl, sec-butyl, isobutyl, iert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, tetrahydrofuranyl, pyrrolidinyl, indoliny, tetrahydropyranyl, piperidinyl, 1,2,3,4-tetrahydroquinolinyl, morpholinyl, azocanyl, thiazolinyl, furyl, thienyl, pyrazolyl, 4,5,6,7-tetrahydroindazolyl, benzoxazolyl, isoxazolyl, thiazolyl, benzothiazolyl, imidazolyl, benzimidazolyl, [1,2,4]triazolo[1,5-a]-pyrimidinyl, tetrazolyl, pyridinyl, quinolinyl, isoquinolinyl, phthalazinyl, pyrimidinyl or pyrazinyl, any of which groups may be optionally substituted by one or more substituents; or Z represents -Z₁-Z₂ or -Z₁-C(0)-Z₂, either of which moieties may be optionally substituted by one or more substituents.

The moiety Z₁ represents a divalent radical derived from an aryl, C₃-7 heterocycloalkyl or heteroaryl group, any of which groups may be optionally substituted by one or more substituents. Typically, the moiety Z₁ represents a divalent radical derived from a phenyl, pyrrolidinyl, piperazinyl, pyrazolyl, thiazolyl, triazolyl, tetrazolyl or pyridinyl group, any of which groups may be optionally substituted by one or more substituents. Typical values of the moiety Z₁ include the groups of formula (Za), (Zb), (Zc), (Zd), (Ze), (Zf), (Zg), (Zh), (Zj) and (Zk):

![Diagram](image-url)
wherein the symbols # represent the points of attachment of the moiety Z1 to the remainder of the molecule; and the asterisks (*) represent the site of attachment of optional substituents. Particular values of the moiety Z1 include the groups of formula (Za), (Zc), (Ze), (Zf), (Zg), (Zh) and (Zj) as depicted above.

The moiety Z2 represents aryl, C\textsubscript{3-7} heterocycloalkyl, C\textsubscript{3-7} heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents. Typically, Z2 represents phenyl, pyrrolidinyl, oxazolidinyl, imidazolidinyl, morpholinyl, imidazolinyl, thiazolyl, imidazolyl, tetrazolyl or pyridinyl, any of which groups may be optionally substituted by one or more substituents.

Examples of optional substituents which may be present on the moiety Z, Z1 or Z2 include one, two or three substituents independently selected from halogen, cyano, nitro, C\textsubscript{i-6} alkyl, trifluoromethyl, oxo, hydroxy, hydroxy(Ci\textsubscript{6})alkyl, C\textsubscript{i-6} alkoxy, difluoromethoxy, trifluoromethoxy, C\textsubscript{i-6} alkylenedioxy, C\textsubscript{i-6} alkylthio, C\textsubscript{i-6} alkylsulfinyl, C\textsubscript{i-6} alkylsulfonyl, amino, C\textsubscript{i-6} alkylamino, di(Ci\textsubscript{6})alkylamino, di(Ci\textsubscript{6})alkylamino(Ci\textsubscript{6})alkyl, C\textsubscript{2-6} alkylcarbonylamino, C\textsubscript{6} alkylosulfonylamino, formyl, C\textsubscript{2-6} alkylcarbonyl, carboxy, C\textsubscript{2-6} alkoxy carbonyl, aminocarbonyl, C\textsubscript{i-6} alkylaminocarbonyl, di(Ci\textsubscript{6})alkylaminocarbonyl, aminosulfonylamino and hydrizinocarbonyl.

Examples of particular substituents on the moiety Z, Z1 or Z2 include fluoro, chloro, bromo, cyano, nitro, methyl, ethyl, isopropyl, trifluoromethyl, oxo, hydroxy, hydroxymethyl, methoxy, difluoromethoxy, trifluoromethoxy, methylenedioxy,
methylthio, methylsulfinyl, methylsulfonyl, amino, methylamino, tert-butylamino, dimethylamino, dimethylnaminoethyl, dimethylaminoethyl, acetylamino, methylsulfonylamino, formyl, acetyl, carboxy, methoxycarbonyl, iert-butoxycarbonyl, aminocarbonyl, methyaminocarbonyl, dimethyaminocarbonyl, aminosulfonylethyl, methylaminosulfonyl, dimethyaminosulfonyl, dimethylaminosulfonyl, aminocarbonylamino and hydrazinocarbonyl.

Typical values of Z include phenyl, hydroxyphenyl, oxopyrrolidinyl, dioxy-pyrrolidinyl, (hydroxy)(oxo)pyrrolidinyl, (amino)(oxo)pyrrolidinyl, (oxo)oxazolidinyl, oximidazolidinyl, morpholinyl, imidazolinyl, methylthiazolyl, formylthiazolyl, imidazolyl, tetrazolyl and pyridinyl.

Selected values of Z include oxopyrrolidinyl and (oxo)oxazolidinyl. In one embodiment, Z represents oxopyrrolidinyl. In another embodiment, Z represents (oxo)oxazolidinyl.

Typical values of Z include hydrogen, fluoro, trifluoromethyl, methyl, ethyl, n-propyl, isopropyl, isobutyl, tert-butyl, cyclopropyl, cyclopentyl, cyclohexyl, oxo-cyclohexyl, phenyl, bromophenyl, cyanophenyl, nitrophenyl, methoxyphenyl, difluoromethoxyphenyl, trifluoromethoxyphenyl, methylenedioxyphenyl, methylsulfonylphenyl, dimethyaminophenyl, acetyaminophenyl, methylsulfonylaminophenyl, carboxyphenyl, aminocarbonylphenyl, methylaminocarbonylphenyl, dimethyaminocarbonylphenyl, aminocarbonylamino-phenyl, tetrahydrofuran-yl, oxopyrrolidinyl, dimethylnopyrroldinyl, iert-butoxycarbonylpyrrolidinyl, indolinyl, tetrahydropyran-yl, piperidinyl, ethylpiperidinyl, iert-butoxycarbonylpiperidinyl, aminocarbonylpiperidinyl, 2-oxo-3,4-dihydroquinolinyl, morpholinyl, azocan, oxothiazolinyl, furyl, hydroxymethylfuryl, thienyl, methylpyrazol, dimethylpyrazolyl, 4,5,6,7-tetrahydroindazolyl, benzoxazolyl, methylisoxazolyl, dimethylisoxazolyl, methylthiazolyl, aminothiazolyl, benzothiazolyl, methylbenzothiazolyl, imidazoxy, methylimidazoxy, methylbenzimidazoxy, dimethyl[1,2,4]triazolo[1,5-a]pyrimidinyl, dimethylaminoethyltetrazolyl, pyridinyl, fluoropyridinyl, chloropyridinyl, cyanopyridinyl, methylpyridinyl, (cyano)-(methyl)pyridinyl, trifluoromethylpyridinyl, oxopyridinyl, methoxypyridinyl, methylsulfonylpyridinyl, dimethyaminomethylpyridinyl, acetylaminopyridinyl, carboxy-pyridinyl, methoxycarbonylpyridinyl, aminocarbonylpyridinyl, (aminocarbonyl)(fluoro)pyridinyl, methylaminocarbonylpyridinyl, dimethyaminocarbonylpyridinyl, hydrazinocarbonylpyridinyl, quinolinyl, isoquinolinyl, (methyl)(oxo)phthalazine, pyrimidinyl, pyrazinyl, oxopyrrolidinylphenyl, dioxopyrrolidinylphenyl, (hydroxy)(oxo)pyrrolidinyl-
phenyl, (amino)(oxo)pyrrolidinylphenyl, (oxo)oxazolidinylphenyl, oximidazolidinyl-phenyl, imidazolinylphenyl, methylthiazolylphenyl, formylthiazolylphenyl, imidazolyl-phenyl, tetrazolylphenyl, phenylpyrrolidinyl, hydroxyphenylpiperazinyl, (methyl)-(phenyl)pyrazolyl, oximidazolidinylthiazolyl, hydroxyphenyltriazolyl, morpholinyl-tetrazolyl, oxopyrrolidinylpyridinyl, (oxo)oxazolidinylpyridinyl, oximidazolidinyl-pyridinyl, pyridinylthiazolyl, pyridinyltetrazolyl and morpholinylcarbonylphenyl.

Particular values of Z include hydrogen, methyl, methylsulfonylphenyl, pyridinyl, methylsulfonylpyridinyl, oxopyrrolidinylphenyl, (hydroxy)(oxo)pyrrolidinylphenyl and (oxo)oxazolidinylphenyl. In a first embodiment, Z represents hydrogen. In a second embodiment, Z represents methyl. In a third embodiment, Z represents methylsulfonyl-phenyl. In one aspect of that embodiment, Z represents 3-(methylsulfonyl)phenyl. In another aspect of that embodiment, Z represents 4-(methylsulfonyl)phenyl. In a fourth embodiment, Z represents pyridinyl. In one aspect of that embodiment, Z represents pyridin-4-yl. In a fifth embodiment, Z represents oxopyrrolidinylphenyl. In one aspect of that embodiment, Z represents 3-(2-oxo-pyrrolidin-1-yl)phenyl. In a sixth embodiment, Z represents (hydroxy)(oxo)pyrrolidinylphenyl. In one aspect of that embodiment, Z represents 3-(3-hydroxy-2-oxopyrrolidin-1-yl)phenyl. In another aspect of that embodiment, Z represents 3-(4-hydroxy-2-oxopyrrolidin-1-yl)phenyl. In a seventh embodiment, Z represents (oxo)oxazolidinylphenyl. In one aspect of that embodiment, Z represents 3-(2-oxo-oxazolidinyl-3-yl)phenyl. In an eighth embodiment, Z represents methylsulfonylpyridinyl.

Suitable values of Z include hydrogen and methyl.

Suitably, R1 and R2 independently represent hydrogen, halogen, cyano, trifluoromethyl or -C02R4; or Cl-C6 alkyl, C2-C6 alkylnyl, aryl, C3-C7 heterocycloalkyl, C3-C7 heterocycloalkenyl, heteroaryl, (C3-C7)heterocycloalkyl(Ci-6)alkyl-aryl-, heteroaryl-(C3-C7)heterocycloalkyl-, (C3-C7)cycloalkyl-heteroaryl-, (C3-C7)cycloalkyl(Ci-6)alkyl-heteroaryl-, (C4-C7)cycloalkenyl-heteroaryl-, (C4-C7)bicycloalkyl-heteroaryl-, (C3-C7)heterocycloalkyl-heteroaryl-, (C3-C7)heterocycloalkenyl-heteroaryl-, (C4-C7)heterobicycloalkyl-heteroaryl- or (C4-C7)spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents.

Examples of optional substituents which may be present on R1 or R2 include one, two or three substituents independently selected from halogen, halo(Ci-6)alkyl, cyano,
cyano(Ci₆)alkyl, nitro, nitro (Ci₆)alkyl, C₁₆ alkyl, difluoromethyl, trifluoromethyl,
difluoroethyl, trifluoroethyl, C₃₋₆ alkenyl, hydroxy, hydroxy (Ci₆)alkyl, C₁₆ alkoxy,
difluoromethoxy, trifluoromethoxy, trifluoroethoxy, carboxy(C₃₋₇)cycloalkylox, Cl₋₃
alkylenedioxy, Cl₋₆ alkoxy (Ci₆)alkyl, Cl₋₆ alkylthio, Cl₋₆ alkylsulphinyl, Cl₋₆ alkyl-
sulphonyl, (Ci₆)alkylsulphonyl (Ci₆)alkyl, oxo, amino, amino (Ci₆)alkyl, C₁₆ alkylamino,
di(Ci₆)alkylamino, hydroxy (Ci₆)alkylamino, C₁₆ alkoxyamino, (C₁₋₆)alkoxy (Ci₁₋₆)alkyl-
amino, [(Ci₆)alkoxy] (hydroxy) (Ci₆)alkylamino, [(Ci₆)alkylthio] (hydroxy) (Ci₆)alkyl-
amino, N-[(Ci₆)alkyl] -N- [hydroxy (Ci₆)alkyl] amino, di(Ci₆)alkylamino (Ci₆)alkylamino,
N- [di(Ci₆)alkylamino (Ci₆)alkyl] -N- [hydroxy (Ci₆)alkyl] amino, hydroxy (Ci₆)alkyl-
(C₃₋₇)cycloalkylamino, (hydroxy) [(C₃₋₇)cycloalkyl (Ci₆)alkyl] amino,
(C₃₋₇)heterocycloalkyl (Ci₆)alkylamino, oxo (C₃₋₇)heterocycloalkyl (Ci₆)alkylamino,
(Ci₆)alkylheteroarylamino, heteroaryl (Ci₆)alkylamino, (Ci₆)alkylheteroaryl (Ci₆)alkyl-
amino, C₂₋₆ alkylcarbonylaminino, N-[(Ci₆)alkyl] -N- [((C₃₋₇)cycloalkylcarbonyl)]amino, (C₂₋₆)alkyl-
carbonylamino (Ci₆)alkyl, C₁₋₆ alkenylcarbonylamino, bis [(C₁₋₆)alkenylcarbonyl] amino, N-
[(Ci₆)alkyl] -N- [((C₃₋₇)cycloalkylcarbonyl)]amino, C₂₋₆ alkoxy carbonylamino, C₂₋₆
alkoxy carbonyl (Ci₆)alkylamino, Cl₋₆ alkyloaminocarbonylamino, Cl₋₆ alkylsulphonyl-
amino, N-[(Ci₆)alkyl] -N- [((Ci₆)alkylsulphonyl)]amino, bis [(Cl₋₆)alkylsulphonyl] amino, N-
[(Cl₋₆)alkyl] -N- [carboxy (Ci₆)alkyl] amino, carboxy (C₃₋₇)cycloalkylamino, carboxy-
(C₃₋₇)cycloalkyl (Ci₆)alkylamino, formyl, C₂₋₆ alkylcarbonyl, (C₂₋₆)cycloalkylcarbonyl,
phenylcarbonyl, (C₂₋₆)alkylcarbonyloxy (Ci₆)alkyl, carboxy, carboxy (Ci₆)alkyl, C₂₋₆
alkoxycarbonyl, C₂₋₆ alkoxy carbonyl (Ci₆)alkyl, morpholinyl (Ci₆)alkoxy carbonyl, C₂₋₆
alkoxycarbonylmethylidenyl, a carboxylic acid isostere or prodrug moiety Ω,
-[(C₁₋₆)alkyl]-Ω, aminocarbonyl, Cl₋₆ alkyloaminocarbonyl, hydroxy (Ci₆)alkylaminocar-
bonyl, di(Ci₆)alkylaminocarbonyl, amino carbonyl (Ci₆)alkyl, amino sulphonyl,
di(Ci₆)alkylaminosulphonyl, (Ci₆)alkylsulphoximinyl and [(Ci₆)alkyl] -N- (Cl₋₆)alkyl-
sulphoximinyl.

By the expression "carboxylic acid isostere or prodrug moiety" is meant any
functional group, structurally distinct from a carboxylic acid moiety, that will be
recognised by a biological system as being similar to, and thus capable of mimicking, a
carboxylic acid moiety, or will be readily convertible by a biological system in vivo into a
carboxylic acid moiety. A synopsis of some common carboxylic acid isosteres is
presented by N.A. Meanwell in J. Med. Chem., 2011. 54, 2529-2591 (cf. in particular
Figures 25 and 26). An alternative carboxylic acid isostere is described by N Pemberton et
al. in ACS Med. Chem. Lett., 2012, 3, 574-578. Typical examples of suitable carboxylic acid isostere or prodrug moieties represented by Ω include the functional groups of formula (i) to (xliii):

(i) \(\text{POH} \)
(ii) \(\text{SOH} \)
(iii) \(\text{N\textsubscript{S}S\textsubscript{R}} \)
(iv) \(\text{N\textsubscript{S}S\textsubscript{R}} \)
(v) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(vi) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(vii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(viii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(ix) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(x) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xi) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xiii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xiv) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xv) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xvi) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xvii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xviii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xix) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xx) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xi) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xiii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xiv) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xv) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xvi) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
(xvii) \(\text{N\textsubscript{O}O\textsubscript{R}} \)
wherein

the asterisk (*) represents the site of attachment to the remainder of the molecule;
n is zero, 1 or 2;

X represents oxygen or sulphur;

R^f represents hydrogen, C_{1-6} alkyl or -CH_2CH(OH)CH_2OH;

R^g represents C_{1-6} alkyl, trifluoromethyl, -CH_2CH_2F, -CH_2CHF_2, -CH_2CF_3 or -CF_2CF_3;
Rh represents hydrogen, cyano or -C0\textsubscript{2}Rd, in which Rd is as defined above; and
Rj represents hydrogen or halogen.

In one embodiment, n is zero. In another embodiment, n is 1. In a further embodiment, n is 2.

In one embodiment, X represents oxygen. In another embodiment, X represents sulphur.

In one embodiment, Rf represents hydrogen. In another embodiment, Rf represents Ci\textsubscript{6} alkyl, especially methyl. In a further embodiment, Rf is -CH\textsubscript{2}CH(Oh)CH\textsubscript{2}OH.

In one embodiment, Rg represents Ci\textsubscript{6} alkyl, especially methyl. In another embodiment, Rg represents trifluoromethyl, -CH\textsubscript{2}CH\textsubscript{2}F, -CH\textsubscript{2}CHF\textsubscript{2}, -CH\textsubscript{2}CF\textsubscript{3} or -CF\textsubscript{2}CF\textsubscript{3}.

In a first aspect of that embodiment, Rg represents trifluoromethyl. In a second aspect of that embodiment, Rg represents -CH\textsubscript{2}CH\textsubscript{2}F. In a third aspect of that embodiment, Rg represents -CH\textsubscript{2}CHF\textsubscript{2}. In a fourth aspect of that embodiment, Rg represents -CH\textsubscript{2}CF\textsubscript{3}. In a fifth aspect of that embodiment, Rg represents -CF\textsubscript{2}CF\textsubscript{3}.

In one embodiment, Rh is hydrogen. In another embodiment, Rh represents cyano. In a further embodiment, Rh represents -C0\textsubscript{2}Rd, especially methoxycarbonyl.

In one embodiment, Rj represents hydrogen. In another embodiment, Rj represents halogen, especially chloro.

In a selected embodiment, Ω represents tetrazolyl, especially a C-linked tetrazolyl moiety of formula (xxiv) or (xxv) as depicted above, in particular a group of formula (xxiv) as depicted above.

In another embodiment, Ω represents Ci\textsubscript{6} alkylsulphonylanilinocarbonyl, i.e. a moiety of formula (iii) as depicted above wherein Rg represents Ci\textsubscript{6} alkyl.

In another embodiment, Ω represents Ci\textsubscript{6} alkyaminsulphonyl, i.e. a moiety of formula (x) as depicted above wherein Rg represents Ci\textsubscript{6} alkyl.

In a further embodiment, Ω represents (Ci\textsubscript{6})alkylcarbonylanilinosulphonyl, i.e. a moiety of formula (v) as depicted above wherein Rg represents Ci\textsubscript{6} alkyl.

Typical examples of optional substituents which may be present on R1 or R2 include one, two or three substituents independently selected from hydroxy(Ci\textsubscript{6}) alkyl.

Examples of particular substituents on R1 or R2 include fluoro, chloro, bromo, fluoromethyl, fluoroisopropyl, cyano, cyanoethyl, nitro, nitromethyl, methyl, ethyl, isopropyl, isobutyl, iert-butyl, difluoromethyl, trifluoromethyl, difluoroethyl, trifluoroethyl, ethenyl, hydroxy, hydroxymethyl, hydroxyisopropyl, methoxy, isoproxy,

Typical examples of particular substituents on \(R^1 \) or \(R^2 \) include hydroxyisopropyl.

Typically, \(R^1 \) represents hydrogen, halogen, cyano or -CO_2R^d; or \(C_{1-6} \) alkyl, \(C_{2-6} \) alkenyl, aryl, \(C_{3-7} \) heterocycloalkyl, \(C_{3-7} \) heterocycloalkenyl, heteroaryl, \(C_{3-7} \) heterocycloalkyl(Ci-6)alkyl-aryl-, heteroaryl(\(C_{3-7} \))heterocycloalkyl-,
\(C_{3-7} \)cycloalkyl-heteroaryl-\(C_{3-7} \)cycloalkyl(\(C_{6} \))alkyl-heteroaryl-\(C_{4-7} \)cyloalkenyl-heteroaryl-\(C_{4-9} \)bicycloalkyl-heteroaryl-\(C_{3-7} \)heterocycloalkyl-heteroaryl-\(C_{3-7} \)heterocycloalkyl(\(C_{6} \))alkyl-heteroaryl-,
(C₄₋₉)heterobicycloalkyl-heteroaryl- or (C₄₋₉)spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents.

Suitably, R₁ represents halogen, cyano or -CO₂R^d; or C₁₋₆ alkyl, C₂₋₆ alkylnyl, aryl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkenyl, heteroaryl, (C₃₋₇)heterocycloalkyl-(Ci₆)alkyl-aryl-, heteroaryl(C₃₋₇)heterocycloalkyl-, (C₃₋₇)cycloalkyl-heteroaryl-, (C₃₋₇)cycloalkyl(Ci₆)alkyl-heteroaryl-, (C₃₋₇)cycloalkyl(Ci₆)alkyl-heterocycloalkyl-heteroaryl-, (C₃₋₇)cycloalkyl-heterocycloalkyl-heteroaryl-, (C₃₋₇)cycloalkyl-heterocycloalkyl-heterocycloalkyl-heteroaryl-, (C₃₋₇)cycloalkenyl-heteroaryl-, (C₄₋₉)cycloalkenyl-heteroaryl-, (C₄₋₉)bicycloalkyl-heteroaryl-, (C₃₋₇)heterocycloalkenyl-heteroaryl- or (C₄₋₉)spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents.

Generally, R₁ represents halogen or cyano; or Ci₁₋₆ alkyl, C₂₋₆ alkylnyl, aryl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkenyl, heteroaryl, (C₃₋₇)heterocycloalkyl(Ci₆)alkyl-aryl-, heteroaryl(C₃₋₇)heterocycloalkyl-, (C₃₋₇)cycloalkyl-heteroaryl-, (C₃₋₇)cycloalkyl-(Ci₆)alkyl-heteroaryl-, (C₃₋₇)cycloalkenyl-heteroaryl-, (C₃₋₇)cycloalkenyl-heteroaryl-, (C₃₋₇)cycloalkyl-heterocycloalkenyl-heteroaryl-, (C₄₋₉)bicycloalkyl-heteroaryl-, (C₃₋₇)heterocycloalkenyl-heteroaryl-, (C₄₋₉)bicycloalkenyl-heteroaryl- or (C₄₋₉)spiroheterocycloalkenyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents.

More generally, R₁ represents halogen; or R₁ represents heteroaryl, which group may be optionally substituted by one or more substituents.

In a first embodiment, R₁ represents hydrogen.

In a second embodiment, R₁ represents halogen. In one aspect of that embodiment, R₁ represents bromo.

In a third embodiment, R₁ represents cyano.

In a fourth embodiment, R₁ represents -CO₂R^d.

In a fifth embodiment, R₁ represents optionally substituted C₁₋₆ alkyl. In one aspect of that embodiment, R₁ represents optionally substituted ethyl.

In a sixth embodiment, R₁ represents optionally substituted C₂₋₆ alkylnyl. In one aspect of that embodiment, R₁ represents optionally substituted butynyl.

In a seventh embodiment, R₁ represents optionally substituted aryl. In one aspect of that embodiment, R₁ represents optionally substituted phenyl.

In an eighth embodiment, R₁ represents optionally substituted C₃₋₇ heterocycloalkyl.
In a ninth embodiment, R¹ represents optionally substituted C₃⁻⁷ heterocycloalkenyl.

In a tenth embodiment, R¹ represents optionally substituted heteroaryl. In selected aspects of that embodiment, R¹ represents benzofuryl, thienyl, indolyl, pyrazolyl, indazolyl, isoxazolyl, thiazolyl, imidazolyl, pyridinyl, quinolinyl, pyridazinyl, pyrimidinyl or pyrazinyl, any of which groups may be optionally substituted by one or more substituents.

In an eleventh embodiment, R¹ represents optionally substituted (C₂⁻⁷) heterocycloalkyl(Ci-6)alkyl-aryl-. In a first aspect of that embodiment, R¹ represents optionally substituted pyrrolidinylmethylphenyl-. In a second aspect of that embodiment, R¹ represents optionally substituted piperazinylmethylphenyl-.

In a twelfth embodiment, R¹ represents optionally substituted heteroaryl(C₃⁻⁷) heterocycloalkyl-. In one aspect of that embodiment, R¹ represents optionally substituted pyridinypiperazinyl-.

In a thirteenth embodiment, R¹ represents optionally substituted (C₃⁻⁷)cycloalkyl-heteroaryl-. In a first aspect of that embodiment, R¹ represents optionally substituted cyclohexylpyrazolyl-. In a second aspect of that embodiment, R¹ represents optionally substituted cyclohexylpyridinyl-. In a third aspect of that embodiment, R¹ represents optionally substituted cyclopropylpyrimidinyl-. In a fourth aspect of that embodiment, R¹ represents optionally substituted cyclobutylpyrimidinyl-. In a fifth aspect of that embodiment, R¹ represents optionally substituted cyclopentylpyrimidinyl-. In a sixth aspect of that embodiment, R¹ represents optionally substituted cyclohexylpyrimidinyl-. In a seventh aspect of that embodiment, R¹ represents optionally substituted cyclohexylpyrazinyl-.

In a fourteenth embodiment, R¹ represents optionally substituted (C₄⁻⁷) cycloalkenyl-heteroaryl-.

In a fifteenth embodiment, R¹ represents optionally substituted (C₃⁻⁷) heterocycloalkyl-heteroaryl-. In a first aspect of that embodiment, R¹ represents optionally substituted pyrrolidinylpyridinyl-. In a second aspect of that embodiment, R¹ represents optionally substituted tetrahydropyranlypyridinyl-. In a third aspect of that embodiment, R¹ represents optionally substituted piperidinlypyridinyl-. In a fourth aspect of that embodiment, R¹ represents optionally substituted piperazinlypyridinyl-. In a fifth aspect of that embodiment, R¹ represents optionally substituted morpholinlypyridinyl-. In
a sixth aspect of that embodiment, \(R^1 \) represents optionally substituted thiomorpholinyl-
pyridinyl-. In a seventh aspect of that embodiment, \(R^1 \) represents optionally substituted diazepanylpyridinyl-. In an eighth aspect of that embodiment, \(R^1 \) represents optionally substituted oxetanopyrimidinyl-. In a ninth aspect of that embodiment, \(R^1 \) represents optionally substituted azetidinylpyrimidinyl-. In a tenth aspect of that embodiment, \(R^1 \) represents optionally substituted tetrahydrofuranylpyrimidinyl-. In an eleventh aspect of that embodiment, \(R^1 \) represents optionally substituted pyrrolidinylpyrimidinyl-. In a twelfth aspect of that embodiment, \(R^1 \) represents optionally substituted tetrahydropyran-
pyrimidinyl-. In a thirteenth aspect of that embodiment, \(R^1 \) represents optionally
substituted piperidinylpyrimidinyl-. In a fourteenth aspect of that embodiment, \(R^1 \)
represents optionally substituted piperazinylpyrimidinyl-. In a fifteenth aspect of that
embodiment, \(R^1 \) represents optionally substituted morpholinylpyrimidinyl-. In a sixteenth
aspect of that embodiment, \(R^1 \) represents optionally substituted thiomorpholinyl-
pyrimidinyl-. In a seventeenth aspect of that embodiment, \(R^1 \) represents optionally
substituted azepanylpyrimidinyl-. In an eighteenth aspect of that embodiment, \(R^1 \)
represents optionally substituted oxazepanylpyrimidinyl-. In a nineteenth aspect of that
embodiment, \(R^1 \) represents optionally substituted diazepanylpyrimidinyl-. In a twentieth
aspect of that embodiment, \(R^1 \) represents optionally substituted thiadiazepanyl-
pyrimidinyl-. In a twenty-first aspect of that embodiment, \(R^1 \) represents optionally
substituted oxetanopyrazinyl-. In a twenty-second aspect of that embodiment, \(R^1 \)
represents optionally substituted piperidinylpyrazinyl-. In a sixteenth embodiment, \(R^1 \)
represents optionally substituted \((C_{3,7})-\)
heterocycloalkyl\((C_{6})\)-alkyl-heteroaryl-. In a first aspect of that embodiment, \(R^1 \)
represents optionally substituted morpholinylmethylthienyl-. In a second aspect of that
embodiment, \(R^1 \) represents optionally substituted morpholinylethylpyrazolyl-. In a
seventeenth embodiment, \(R^1 \) represents optionally substituted \((C_{3,7})-\)
heterocycloalkenyl-heteroaryl-.
In an eighteenth embodiment, \(R^1 \) represents optionally substituted \((C_{4,9})-\)
heterobicycloalkyl-heteroaryl-. In a nineteenth embodiment, \(R^1 \) represents optionally substituted \((C_{4,9})-\)
spiroheterocycloalkyl-heteroaryl-.
In a twentieth embodiment, \(R^1 \) represents optionally substituted \((C_{3-7})\)cycloalkyl-(\(Ci_{6-10} \))alkyl-heteroaryl-. In one aspect of that embodiment, \(R^1 \) represents optionally substituted cyclohexylmethylpyrimidinyl-.

In a twenty-first embodiment, \(R^1 \) represents optionally substituted \((C_{4,9})\)-bicycloalkyl-heteroaryl-.

pyrimidinyl, any of which groups may be optionally substituted by one or more substituents.

Illustratively, R¹ represents bromo; or R¹ represents pyrimidinyl, which group may be optionally substituted by one or more substituents.

Typical examples of optional substituents on R¹ include one, two or three substituents independently selected from halogen, halo(CΗ₆)alkyl, cyano, cyano(CΗ₆)alkyl, nitro(CΗ₆)alkyl, CΗ₆ alkyl, trifluoromethyl, trifluoroethyl, C₆₋₆ alkenyl, hydroxy, hydroxy(CΗ₆)alkyl, CΗ₆ alkoxy, trifluoroethoxy, carboxy(C₃₋₇)cycloalkyloxy, CΗ₆ alkylthio, CΗ₆ alkylsulphonyl, (CΗ₆)alkylsulphonyl(CΗ₆)alkyl, o xo, amino, amino-(CΗ₆)alkyl, CΗ₆ alkylamino, di(CΗ₆)alkylamino, (CΗ₆)alkoxy (CΗ₆)alkylamino, N-[(CΗ₆)alkyl]-N-[hydroxy(CΗ₆)alkyl]amino, (CH₆₋₆)alkylcarbonylamino(CΗ₆)alkyl, CΗ₆ alkylsulphonylamino, N-[(CΗ₆)alkyl]-N-[(CΗ₆)alkylsulphonyl] amino, bis[(CH₆₋₆)alkylsulphonyl] amino, N-[(CΗ₆)alkyl]N-[(carboxy(CΗ₆)alkyl) amino, carboxy(C₃₋₇)cycloalkylamino, carboxy(C₃₋₇)cycloalkyl(CΗ₆)alkylamino, formyl, C₂₋₆ alkylcarbonyl, (CH₆₋₆)alkyl-carbonyloxy(CΗ₆)alkyl, carboxy, carboxy(CΗ₆)alkyl, C₂₋₆ alkoxycarbonyl, C₂₋₆ alkoxy carbonyl(CΗ₆)alkyl, morpholinyl(CΗ₆)alkoxycarbonyl, C₂₋₆ alkoxycarbonylmethylidenyl, a carboxylic acid isostere or prodrug moiety Ω as defined herein, -(CΗ₆)alkyl-Ω, aminocarbonyl, aminosulphonyl, (CΗ₆)alkylsulphoximinyl and [(CΗ₆)alkyl]N-[(CΗ₆)alkyl] sulphoximinyl.

Typical examples of optional substituents on R¹ include one, two or three substituents independently selected from hydroxy(CΗ₆)alkyl.

Typical examples of particular substituents on R¹ include one, two or three substituents independently selected from fluoro, chloro, fluoromethyl, fluoroisopropyl, cyano, cyanoethyl, nitromethyl, methyl, ethyl, isopropyl, trifluoromethyl, trifluoroethyl, ethenyl, hydroxy, hydroxymethyl, hydroxyisopropyl, methoxy, isopropoxy, trifluoroethoxy, carboxyclobutyloxy, methyli tho, methylsulphonyl, methylsulphonyl ethyl, oxo, amino, aminomethyl, aminoisopropyl, methy lamino, dimethylamino, methoxyethylamino, N-(hydroxyethyl)-N-(methyl) amino, acetylam inomethyl, methylsulphonylamino, N-methyl-N-(methylsulphonylamino), bis(methylsulphonylamino), N-(carboxyethyl)-/V-(methyl) amino, carboxycyclopentylamino, carboxycyclopromethylamino, formyl, acetyl, acetoxyisopropyl, carboxy, carboxymethyl, carboxy ethyl, methoxycarbonyl, ethoxycarbonyl, w-butoxycarbonyl, i/e-t-butoxycarbonyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, ethoxycarboxylethyl, morpholinylethoxycarbonyl, ethoxycarbonyl-
methylidenyl, methylsulphonylaminocarbonyl, acetylamino-
carbonyl, tetrazolyl, tetrazolylmethyl, hydroxyoxadiazolyl, aminocarbonyl, aminosulphonyl, methylsulphoximinyl and (methyl)(N -methyl)sulphoximinyl.

Suitable examples of particular substituents on R1 include one, two or three substituents independently selected from hydroxyisopropyl.

In a particular embodiment, R1 is substituted by hydroxy(Ci_6)alkyl. In one aspect of that embodiment, R1 is substituted by hydroxyisopropyl, especially 2-hydroxyprop-2-yl.

Selected values of R1 include hydrogen, bromo, cyano, -C0 _2 R_d, methoxycarbonyl-
ethy, ethoxycarbonylethyl, hydroxybutynyl, chlorophenyl, hydroxyphenyl, methyl-
sulphonylphenyl, aminomethylphenyl, aminoisopropylphenyl, acetylaminomethylphenyl, acetylphenyl, methoxycarbonylphenyl, aminocarbonylphenyl, aminosulphonylphenyl, acetylaminosulphonylphenyl, (methoxycarbonyl)(methyl)pyrrolidinyl, oxopiperidinyl, ethoxycarbonylpiperidinyl, methylsulphonylpiperazinyl, morpholinyl, methylsulphonyl-
1,2,3,6-tetrahydropyridinyl, acetyl-1,2,3,6-tetrahydropyridinyl, iert-butoxycarbonyl-
1,2,3,6-tetrahydropyridinyl, methoxycarbonylmethyl-1,2,3,6-tetrahydropyridinyl,
benzofuryl, thienyl, indolyl, pyrazolyl, methylpyrazolyl, dimethylpyrazolyl, (methyl)N-
-methyl- (methylsulfonyl)amino]pyrazolyl, methylindazolyl, dimethylisoxazolyl,
hydroxyisopropylthiazolyl, methylimidazolyl, dimethylimidazolyl, pyridinyl, fluoro-
pyridinyl, cyanopyridinyl, methylpyridinyl, (cyano)(methyl)pyridinyl, dimethylpyridinyl,
trifluoromethylpyridinyl, ethenylpyridinyl, hydroxyisopropylpyridinyl, methoxy pyridinyl,
(methoxy)(methyl)pyridinyl, isopropoxypyridinyl, trifluoroethoxy pyridinyl, (methyl)-
(trifluoroethoxy)pyridinyl, methylsulphonylpyridinyl, oxopyridinyl, (methyl)(oxo)-
pyridinyl, (dimethyl)(oxo)pyridinyl, aminopyridinyl, methylaminopyridinyl, dimethyl-
aminopyridinyl, methoxyethylaminopyridinyl, N -(hydroxyethyl)-N -(methyl)amino-
pyridinyl, methylsulphonylaminopyridinyl, [bis(methylsulphonyl)amino]pyridinyl,
carboxypyridinyl, quinolinyl, hydroxypridazinyl, pyrimidinyl, fluoroisopropyl-
pyrimidinyl, hydroxyisopropylpyrimidinyl, methoxy pyrimidinyl, carboxycyclobutyl oxy-
pyrimidinyl, methylthiopyrimidinyl, methylsulphonylpyrimidinyl, oxopyrimidinyl,
aminopyrimidinyl, dimethylaminopyrimidinyl, methoxyethylaminopyrimidinyl, N -(carboxyethyl)-N -(methyl)aminopyrimidinyl, carboxycyclopentylaminopyrimidinyl,
carboxycyclopropylmethylaminopyrimidinyl, acetoxyisopropylpyrimidinyl,
ethoxycarbonylethylpyrimidinyl, hydroxyprazinyl, hydroxyisopropylpyrazinyl,
pyrrolidinylmethylphenyl, piperazinylmethylphenyl, pyridinylpiperazinyl, carboxy-
[2.2.1]heptanylpyrimidinyl, carboxy-3-azabicyclo[3.1.1]heptanylpyrimidinyl, carboxy-3-azabicyclo[4.1.0]heptanylpyrimidinyl, carboxy-3-azabicyclo[4.1.0]heptanylpyrimidinyl, methoxycarbonyl-3-azabicyclo[4.1.0]heptanylpyrimidinyl, ethoxycarbonyl-3-azabicyclo[4.1.0]heptanylpyrimidinyl, (hydroxy)(methyl)(oxo)-2-oxabicyclo[2.2.2]octanyl-

Illustrative values of R_1 include bromo and hydroxyisopropylpyrimidinyl.

A specific value of R_1 is hydroxyisopropylpyrimidinyl.

Typically, R^2 represents hydrogen, halogen, trifluoromethyl or -OR; or R^2 represents optionally substituted C_{1-6} alkyl.

Typical examples of optional substituents on R^2 include C_{2-6} alkoxy carbonyl.

Typical examples of particular substituents on R^2 include ethoxycarbonyl.

In a first embodiment, R^2 represents hydrogen. In a second embodiment, R^2 represents halogen. In one aspect of that embodiment, R^2 represents fluoro. In another aspect of that embodiment, R^2 represents chloro. In a third embodiment, R^2 represents trifluoromethyl. In a fourth embodiment, R^2 represents -OR. In a fifth embodiment, R^2 represents optionally substituted C_{1-6} alkyl. In one aspect of that embodiment, R^2 represents unsubstituted methyl. In another aspect of that embodiment, R^2 represents unsubstituted ethyl. In a further aspect of that embodiment, R^2 represents monosubstituted methyl or monosubstituted ethyl.

Typical values of R^2 include hydrogen, fluoro, chloro, trifluoromethyl, -OR, methyl and ethoxycarbonylethyl.

Suitably, R^3 represents hydrogen or methyl.

In a first embodiment, R^3 represents hydrogen. In a second embodiment, R^3 represents C_{1-6} alkyl, especially methyl.
Suitably, R^4 represents hydrogen, methyl or ethyl.

In a first embodiment, R^4 represents hydrogen. In a second embodiment, R^4 represents C$_{1-6}$ alkyl, especially methyl or ethyl. In one aspect of that embodiment, R^4 represents methyl. In another aspect of that embodiment, R^4 represents ethyl.

Typical examples of suitable substituents on R^3, R^b, R^c, R^d or R^e, or on the heterocyclic moiety -NRbRc, include halogen, C$_{1-6}$ alkyl, C$_{1-6}$ alkoxy, difluoromethoxy, trifluoromethoxy, C$_{1-6}$ alkoxy(C$_{1-6}$)alkyl, C$_{1-6}$ alkylthio, C$_{1-6}$ alkylsulphinyl, C$_{1-6}$ alkylsulphonyl, hydroxy, hydroxy(C$_{1-6}$)alkyl, amino(C$_{1-6}$)alkyl, cyano, trifluoromethyl, oxo, C$_{2-6}$ alkylcarbonyl, carboxy, C$_{2-6}$ alkoxy carbonyl, C$_{2-6}$ alkylcarbonyloxy, amino, C$_{1-6}$ alkylamino, di(C$_{1-6}$)alkylamino, phenylamino, pyridinylamino, C$_{2-6}$ alky carbonylamino, C$_{2-6}$ alky carbonylamino(C$_{1-6}$)alkyl, C$_{2-6}$ alkoxy carbonylamino, C$_{1-6}$ alkyl sulphon lamino, aminocarbonyl, C$_{1-6}$ alkylaminocarbonyl and di(C$_{1-6}$)alkylaminocarbonyl.

Typical examples of specific substituents on R^3, R^b, R^c, R^d or R^e, or on the heterocyclic moiety -NRbRc, include fluoro, chloro, bromo, methyl, ethyl, isopropyl, methoxy, isopropoxy, difluoromethoxy, trifluoromethoxy, methoxymethyl, methylthio, ethylthio, methylsulphinyl, methylsulphonyl, hydroxy, hydroxymethyl, hydroxyethyl, aminomethyl, cyano, trifluoromethyl, oxo, acetyl, carboxy, methoxycarbonyl, ethoxycarbonyl, iert-butoxycarbonyl, acetox, amino, methyl amino, ethylamino, dimethylamino, phenylamino, pyridinylamino, acetylamino, ieri-butoxycarbonylamino, acetylaminomethyl, methyl sulphonlamino, aminocarbonyl, methylaminocarbonyl and dimethylaminocarbonyl.

Suitably, R^3 represents C$_{1-6}$ alkyl, aryl(C$_{1-6}$)alkyl or heteroaryl(C$_{1-6}$)alkyl, any of which groups may be optionally substituted by one or more substituents.

Selected values of R^3 include methyl, ethyl, benzyl and isoindolylpropyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on R^3 include C$_{1-6}$ alkoxy and oxo.

Selected examples of specific substituents on R^3 include methoxy and oxo.

In one embodiment, R^3 represents optionally substituted C$_{1-6}$ alkyl. In one aspect of that embodiment, R^3 ideally represents unsubstituted C$_{1-6}$ alkyl, especially methyl. In another aspect of that embodiment, R^3 ideally represents substituted C$_{1-6}$ alkyl, e.g. methoxyethyl. In another embodiment, R^3 represents optionally substituted aryl. In one aspect of that embodiment, R^3 represents unsubstituted aryl, especially phenyl. In another aspect of that embodiment, R^3 represents monosubstituted aryl, especially methylphenyl.
In another embodiment, R^a represents optionally substituted aryl(C₆)alkyl, ideally unsubstituted aryl(C₆)alkyl, especially benzyl. In a further embodiment, R^a represents optionally substituted heteroaryl. In a further embodiment, R^a represents optionally substituted heteroaryl(C₆)alkyl, e.g. dioxoisindolylpropyl.

Specific values of R^a include methyl, methoxyethyl, benzyl and dioxoisindolylpropyl.

In a particular aspect, R^b represents hydrogen or trifluoromethyl; or C₁-₆ alkyl, C₃-₇ cycloalkyl, C₃-₇ cycloalkyl(C₆)alkyl, aryl, aryl(C₆)alkyl, C₃-₇ heterocycloalkyl, C₃-₇ heterocycloalkyl(C₆)alkyl, heteroaryl or heteroaryl(C₆)alkyl, any of which groups may be optionally substituted by one or more substituents.

Selected values of R^b include hydrogen; or C₁-₆ alkyl, aryl(C₆)alkyl, C₃-₇ heterocycloalkyl or C₃-₇ heterocycloalkyl(C₆)alkyl, any of which groups may be optionally substituted by one or more substituents.

Typical values of R^b include hydrogen and C₁-₆ alkyl.

Illustratively, R^b represents hydrogen or trifluoromethyl; or methyl, ethyl, w-propyl, isopropyl, w-butyl, 2-methylpropyl, tert-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, phenyl, benzyl, phenylethyl, azetidinyl, tetrahydrofuryl, tetrahydrothienyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, azetidinylmethyl, tetrahydrofurfurylmethyl, pyrrolidinymethyl, pyrrolidinylethyl, pyrrolidinylpropyl, thiazolidinylmethyl, imidazolidinylethyl, piperidinylmethyl, piperidinylethyl, tetrahydroquinolinylmethyl, piperazinylpropyl, morpholinylmethyl, morpholinylethyl, morpholinypropyl, pyridinyl, indolymethyl, pyrazolylmethyl, pyrazolyylethyl, imidazolylmethyl, imidazolyylethyl, benzimidazolylmethyl, triazolylmethyl, pyridinylmethyl or pyridinylethyl, any of which groups may be optionally substituted by one or more substituents.

Representative values of R^b include hydrogen; or methyl, ethyl, w-propyl, benzyl, pyrrolidinyl or morpholinypropyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on R^b include C₁-₆ alkoxy, C₁-₆ alkylthio, C₆ alkysulphinyl, C₁-₆ alkysulphonyl, hydroxy, cyano, C₂-₆ alkoxy carbonyl, di-(Ci₆)alkylamino and C₂-₆ alkoxy carbonylamino.
Selected examples of specific substituents on R^b include methoxy, methylthio, methylsulphinyl, methylsulphonyl, hydroxy, cyano, iert-butoxycarbonyl, dimethylamino and iert-butoxycarboxylamino.

Specific values of R^b include hydrogen, methyl, methoxylethyl, methylthioethyl, methylsulphinylethyl, methylsulphonylethyl, hydroxyethyl, cyanoethyl, dimethylamino-ethyl, iert-butoxycarboxylaminoethyl, dihydroxypropyl, benzyl, pyrrolidinyl, tert-butoxycarbonylpyrrolidinyl and morpholinylpropyl.

In one embodiment, R^b represents hydrogen. In another embodiment, R^b represents C_{1-6} alkyl, especially methyl.

Selected values of R^c include hydrogen; or C_{1-6} alkyl, C_{3-7} cycloalkyl or C_{3-7} heterocycloalkyl, any of which groups may be optionally substituted by one or more substituents.

In a particular aspect, R^c represents hydrogen, C_{1-6} alkyl or C_{3-7} cycloalkyl.

Representative values of R^c include hydrogen; or methyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyranyl and piperidinyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on R^c include C_{2-6} alkylcarbonyl and C_{2-6} alkoxy carbonyl.

Selected examples of specific substituents on R^c include acetyl and tert-butoxycarbonyl.

Specific values of R^c include hydrogen, methyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyranyl, acetyl piperidinyl and iert-butoxycarboxyl piperidinyl.

Suitably, R^c represents hydrogen or C_{1-6} alkyl. In one embodiment, R^c is hydrogen. In another embodiment, R^c represents C_{1-6} alkyl, especially methyl or ethyl, particularly methyl. In a further embodiment, R^c represents C_{3-7} cycloalkyl, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

Alternatively, the moiety -NRbRc may suitably represent azetidin-1-yl, pyrrolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-2-yl, piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, homopiperidin-1-yl, homomorpholin-4-yl or homopiperazin-1-yl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on the heterocyclic moiety -NRbRc include C_{1-6} alkyl, C_{1-6} alkylsulphonyl, hydroxy, hydroxy(C_{1-6})alkyl, amino(C_{1-6})alkyl,
cyano, oxo, C₂₋₆ alkylcarbonyl, carboxy, C₂₋₆ alkoxy carbonyl, amino, C₂₋₆ alkylcarbonylamino, C₂₋₆ alkoxy carbonylamino(Ci₆)alkyl, C₂₋₆ alkoxy carbonylamino, Ci₆ alkyl sulphonylamino and aminocarbonyl.

Selected examples of specific substituents on the heterocyclic moiety -NR⁻ᴿ²⁻ᴿ³ include methyl, methylsulphonyl, hydroxy, hydroxymethyl, aminomethyl, cyano, oxo, acetyl, carboxy, ethoxycarbonyl, amino, acetylamino, tert-butoxy carbonylamino, methylsulphonylamino and aminocarbonyl.

Specific values of the moiety -NR⁻ᴿ²⁻ᴿ³ include azetidin-1-yl, hydroxyazetidin-1-yl, hydroxymethylazetidin-1-yl, (hydroxy)(hydroxymethyl)azetidin-1-yl, aminomethylazetidin-1-yl, cyanoazetidin-1-yl, carboxyazetidin-1-yl, aminocarboxyazetidin-1-yl, N-substituted azetidin-1-yl.

Other suitable substituents on R are halogen, Ci₆ alkoxycarbonyloxy and di(Ci₆)alkylamino.

Selected examples of particular substituents on R include fluoro, methyl, methoxy, oxo, acetoxy and dimethylamino.

In one embodiment, R represents hydrogen. In another embodiment, R represents optionally substituted Ci₆ alkyl. In one aspect of that embodiment, R ideally represents unsubstituted Ci₆ alkyl, e.g. methyl, ethyl, isopropyl, 2-methylpropyl or tert-butyl, especially methyl. In another aspect of that embodiment, R ideally represents substituted Ci₆ alkyl, e.g. substituted methyl or substituted ethyl, including...
acetoxymethyl, dimethylaminomethyl and trifluoroethyl. In another embodiment, \(R^d \) represents optionally substituted aryl. In one aspect of that embodiment, \(R^d \) represents unsubstituted aryl, especially phenyl. In another aspect of that embodiment, \(R^d \) represents monosubstituted aryl, especially methylphenyl. In a further aspect of that embodiment, \(R^d \) represents disubstituted aryl, e.g. dimethoxyphenyl. In a further embodiment, \(R^d \) represents optionally substituted heteroaryl, e.g. thienyl, chlorothienyl, methylthienyl, methylimidazolyl or thiazolyl. In another embodiment, \(R^d \) represents optionally substituted \(C_{3-7} \) cycloalkyl, e.g. cyclopropyl or cyclobutyl. In a further embodiment, \(R^d \) represents optionally substituted \(C_{3-7} \) heterocycloalkyl, e.g. thiazolidinyl or oxothiazolidinyl.

Selected examples of specific values for \(R^d \) include hydrogen, methyl, acetoxymethyl, dimethylaminomethyl, ethyl, trifluoroethyl, isopropyl, 2-methylpropyl, tert-butyl, cyclopropyl, cyclobutyl, phenyl, dimethoxyphenyl, thiazolidinyl, oxothiazolidinyl, thienyl, chlorothienyl, methylthienyl, methylimidazolyl and thiazolyl.

Suitably, \(R^e \) represents \(C_{1-6} \) alkyl or aryl, either of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on \(R^e \) include \(C_{1-6} \) alkyl, especially methyl.

In one embodiment, \(R^e \) represents optionally substituted \(C_{1-6} \) alkyl, ideally unsubstituted \(C_{1-6} \) alkyl, e.g. methyl or propyl, especially methyl. In another embodiment, \(R^e \) represents optionally substituted aryl. In one aspect of that embodiment, \(R^e \) represents unsubstituted aryl, especially phenyl. In another aspect of that embodiment, \(R^e \) represents monosubstituted aryl, especially methylphenyl. In a further embodiment, \(R^e \) represents optionally substituted heteroaryl.

Selected values of \(R^e \) include methyl, propyl and methylphenyl.

One sub-class of compounds according to the invention is represented by the compounds of formula (IIA) and N-oxides thereof, and pharmaceutically acceptable salts and solvates thereof, and glucuronide derivatives thereof, and co-crystals thereof:
wherein

R$_{11}$ represents halogen or cyano; or R$_{11}$ represents C$_6$-alkyl, C$_2$-alkynyl, ary1.

C$_3$-C_7 heterocycloalkyl, C$_3$-C_7 heterocycloalkenyl, heteroaryl, (C$_3$-C_7)heterocycloalkyl-
(C$_6$)alkyl-aryl-, heteroaryl(C$_3$-C_7)heterocycloalkyl-, (C$_3$-C_7)cycloalkyl-heteroaryl-, (C$_3$-C_7)cycloalkyl(C$_6$)alkyl-heteroaryl-, (C$_4$-C_9)cycloalkenyl -heteroaryl-, (C$_4$-C_9)heterocycloalkyl-
heteroaryl-, (C$_3$-C_7)heterocycloalkyl -heteroaryl-, (C$_3$-C_7)heterocycloalkyl(C$_6$)alkyl-
heteroaryl-, (C$_3$-C_7)heterocycloalkenyl-heteroaryl-, (C$_4$-C_9)heterobicycloalkyl-heteroaryl- or
(C$_4$-C_9)spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally
substituted by one or more substituents;

R$_{12}$ represents represents hydrogen, halogen, trifluoromethyl or optionally
substituted C$_{1-6}$ alkyl;
R$_{15}$ and R$_{16}$ independently represent hydrogen, halogen, cyano, nitro, C$_{1-6}$ alkyl,
trifluoromethyl, hydroxy, C$_{6}$ alkoxy, difluoromethoxy, trifluoromethoxy, C$_{6}$ alkylthio,
C$_{6}$ alkylsulfinyl, C$_{6}$ alkylsulfonyl, amino, C$_{1-6}$ alkylamino, di(C$_{1-6}$)alkylamino,
arylamino, C$_{2-6}$ alkylenecarboxamino, C$_{1-6}$ alkylenecarboxamino, formyl, C$_{2-6}$ alkylcarboxyl,
C$_{3-6}$ cycloalkylcarboxyl, C$_{3-6}$ heterocycloalkylcarboxyl, carboxy, C$_{2-6}$ alkoxy, aminocarboxyl,
C$_{6}$ alkylaminocarboxyl, di(C$_{6}$)alkylaminocarboxyl, aminosulfanyl, C$_{1-6}$
alkylaminosulfanyl or di(C$_{1-6}$)alkylaminosulfanyl; and

E, Q and Z are as defined above.

Examples of optional substituents which may be present on R$_{11}$ include one,
two or three substituents independently selected from halogen, halo(C$_{6}$)alkyl, cyano,
cyano(C$_{6}$)alkyl, nitro, nitro(C$_{6}$)alkyl, C$_{1-6}$ alkyl, difluoromethyl, trifluoromethyl,
difluoroethyl, trifluoroethyl, C$_{2-6}$ alkenyl, hydroxy, hydroxy(C$_{6}$)alkyl, C$_{1-6}$ alkoxy,
difluoromethoxy, trifluoromethoxy, trifluoroethoxy, carboxy(C$_{3-7}$)cycloalkyloxy, C$_{1-3}$
alkylenedioxy, C$_{6}$ alkoxy(C$_{6}$)alkyl, C$_{6}$ alkylthio, C$_{6}$ alkylsulphinyl, C$_{6}$ alkyl-
sulphonyl, (Ci_6)alkylsulphonyl(Ci_6)alkyl, oxo, amino, amino(Ci_6)alkyl, C_1-6 alkylamino,
di(Ci_6)alkylamino, hydroxy(Ci_6)alkylamino, C_1-6 alkoxyamino, (Ci_6)alkoxy(Ci_6)alkyl-
amino, [(Ci_6)alkoxy](hydroxy)(Ci_6)alkylamino, [(Ci_6)alkylthio](hydroxy)(Ci_6)alkyl-
amino, N-[(Ci_6)alkyl]-N- [hydroxy(Ci_6)alkyl] amino, di(Ci_6)alkylamino(Ci_6)alkylamino,
N-[(di(Ci_6)alkylamino)(Ci_6)alkyl]-N- [hydroxy(Ci_6)alkyl] amino, hydroxy(Ci_6)alkyl-
(C_3-7)cycloalkylamino, (hydroxy)[(C_3-7)cycloalkylamino,(Ci_6)alkylamino,
(C_3-7)heterocycloalkylamino(Ci_6)alkylamino, oxo(C_3-7)heterocycloalkylamino(Ci_6)alkylamino,
(Ci_6)alkylheteroarylamino, heteroary(Ci_6)alkylamino, (Ci_6)alkylheteroary(Ci_6)alkyl-
amino, C_2-6 alkylcarbonylamine, N-[(Ci_6)alkyl]N-[(C_2-6)alkylcarbonyl]amino, (C_2-6)alkyl-
carbonylamino(Ci_6)alkyl, C_3-6 alkenylcarbonylamine, bis[(C_3-6)alkenylcarbonyl] amino, N-
[(Ci_6)alkyl]N-[(C_3-6)alkylcarbonyl]amino, C_2-6 alkoxyacarbonylamine, C_2-6 alkoxy-
carbonyl(Ci_6)alkylamino, C_1-6 alkyloxyacarbonylamino, C_1-6 alkyloxycarbonylamino,
(C_3-7)cycloalkyl(Ci_6)alkylamino, formyl, C_2-6 alkylcarbonyl, (C_3-7)cycloalkylcarbonyl,
phenylcarbonyl, (C_3-7)alkylcarbonyloxy(Ci_6)alkyl, carboxy, carboxy(Ci_6)alkyl, C_2-6
alkoxyacarbonyl, C_2-6 alkoxyacarbonyl(Ci_6)alkyl, morpholinyl(Ci_6)alkoxyacarbonyl, C_2-6
alkoxyacarbonylmethylidenyl, a carboxylic acid isostere or prodrug moiety Ω as defined
herein, -(C_1-6)alkyl-Ω, aminocarbonyl, C_1-6 alkylaminocarbonyl, hydroxy(Ci_6)alkylamino-
carbonyl, di(Ci_6)alkylaminocarbonyl, aminocarbonyl(Ci_6)alkyl, amino sulphonyl,
di(Ci_6)alkylaminosulphonyl, (Ci_6)alkylsulphoximinyl and [(Ci_6)alkyl/N-](Ci_6)alkyl-
sulphoximinyl.

Examples of particular substituents on R^{11} include fluoro, chloro, bromo,
fluoromethyl, fluoroisopropyl, cyano, cyanomethyl, nitro, nitromethyl, methyl, ethyl,
isopropyl, isobutyl, tert-butyl, difluoromethyl, trifluoromethyl, difluoroethyl, trifluoro-
ethyl, ethenyl, hydroxy, hydroxymethyl, hydroxyisopropyl, methoxy, isopropoxy,
difluoromethoxy, trifluoromethoxy, trifluoroethoxy, carboxycyclobutyl, methylene-
dioxy, ethylene-dioxy, methoxymethyl, methoxymethyl, methoxyethyl, methylthio, methylsulphinyl,
methylsulphonyl, methylsulphonyl ethyl, oxo, amino, aminomethyl, aminoisopropyl,
methylamino, ethylamino, dimethylamino, hydroxyethylamino, hydroxypropylamino,
(hydroxy)(methyl)propylamino, methoxyamino, methoxyethylamino, (hydroxy)-
(methoxy)(methyl)propylamino, (hydroxy)(methylthio)butylamino, N-[(hydroxyethyl)-N-
(methyl) amino, dimethylaminoethylamino, (dimethylamino)(methyl)propylamino, N-
(dimethylaminoethyl)-N-(hydroxyethyl)amino, hydroxymethylcyclopentylamino, hydroxycyclobutylmethylamino, (cyclopropyl)(hydroxy)propylamino, morpholinylethylamino, oxopyrrolidinylmethylamino, ethyloxadiazolylamino, methylthiadiazolylamino, thiazolylmethylamino, thiazolyethylethylamino, pyrimidinylmethylamino, methylpyrazolylmethylamino, acetylamino, N-acetyl-N-methylamino, N-isopropylcarbonyl-N-methylamino, acetyaminomethyl, ethenylcarbonylamino, bis(ethenylcarbonylamino, tert-butoxycarbonylamino, methoxycarbonylamino, ethyloxadiazolylamino, ethoxycarbonylamino, tert-butoxycarbonylamino, ethoxycarbonylmethyl, ethoxycarbonylmethylethyl, methoxycarbonylmethylidenyl, methylaminocarbonyl, acetylaminosulphonyl, methoxyaminocarbonyl, tetrazolyl, tetrazolylmethyl, hydroxyoxadiazolyl, aminocarbonyl, methylaminocarbonyl, hydroxyethylaminocarbonyl, dimethylaminocarbonyl, aminocarbonylmethyl, aminosulphonyl, methylaminosulphonyl, methoxycarbonylethylamino, ethyloxadiazolylamino, ethoxycarbonylamino, tert-butoxycarbonylamino, ethoxycarbonylmethyl, ethoxycarbonylethyl, morpholinylethoxycarbonyl, ethoxycarbonylmethylidenyl, methylsulphonylamino-carbonyl, acetylaminosulphonyl, methoxymethaniminocarbonyl, tetrazolyl, tetrazolylmethyl, hydroxyoxadiazolyl, aminocarbonyl, methylaminocarbonyl, hydroxyethylaminocarbonyl, dimethylaminocarbonyl, aminocarbonylmethyl, aminosulphonyl, methylaminosulphonyl, dimethylamino sulphonyl, methylsulphoximiny and (methyl)(N-methyl)sulphoximiny.

Generally, \(R_{11} \) represents \(\text{Ci}_6 \) alkyl, \(C_{2-6} \) alkynyl, aryl, \(C_{3-7} \) heterocycloalkyl, \(C_{3-7} \) heterocycloalkenyl, heteroaryl, \((C_{3-7}) \) heterocycloalkyl(Ci_6)alkyl-aryl-, heteroaryl-(\(C_{3-7} \)) heterocycloalkyl-, \((C_{3-7}) \) cycloalkyl-heteroaryl-, \((C_{3-7}) \) cycloalkyl(Ci_6)alkyl-heteroaryl-, \((C_{4-7}) \) cycloalkenyl-heteroaryl-, \((C_{4-9}) \) bicycloclyalkyl-heteroaryl-, \((C_{3-7}) \) heterocycloalkyl-heteroaryl-, \((C_{3-7}) \) heterocycloalkenyl-heteroaryl-, \((C_{4-9}) \) heterocycloalkyl-heteroaryl- or \((C_{4-9}) \) spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents.

More generally, \(R_{11} \) represents halogen; or \(R_{11} \) represents heteroaryl, which group may be optionally substituted by one or more substituents.

In a first embodiment, \(R_{11} \) represents halogen. In one aspect of that embodiment, \(R_{11} \) represents bromo.

In a second embodiment, \(R_{11} \) represents cyano.
In a third embodiment, \(R^{11} \) represents optionally substituted \(C_{1-6} \) alkyl. In one aspect of that embodiment, \(R^{11} \) represents optionally substituted ethyl.

In a fourth embodiment, \(R^{11} \) represents optionally substituted \(C_{2-6} \) alkynyl. In one aspect of that embodiment, \(R^{11} \) represents optionally substituted butynyl.

In a fifth embodiment, \(R^{11} \) represents optionally substituted aryl. In one aspect of that embodiment, \(R^{11} \) represents optionally substituted phenyl.

In a sixth embodiment, \(R^{11} \) represents optionally substituted \(C_{3-7} \) heterocycloalkyl.

In a seventh embodiment, \(R^{11} \) represents optionally substituted \(C_{3-7} \) heterocycloalkenyl.

In an eighth embodiment, \(R^{11} \) represents optionally substituted heteroaryl. In selected aspects of that embodiment, \(R^{11} \) represents benzofuryl, thienyl, indolyl, pyrazolyl, indazolyl, isoxazolyl, thiazolyl, imidazolyl, pyridinyl, quinolinyl, pyridazinyl, pyrimidinyl or pyrazinyl, any of which groups may be optionally substituted by one or more substituents.

In a ninth embodiment, \(R^{11} \) represents optionally substituted \((C_{3-7})\)-heterocycloalkyl(\(C_{1-6} \))alkyl-aryl-. In a first aspect of that embodiment, \(R^{11} \) represents optionally substituted pyrrolidinylmethylphenyl-. In a second aspect of that embodiment, \(R^{11} \) represents optionally substituted piperazinylmethylphenyl-.

In a tenth embodiment, \(R^{11} \) represents optionally substituted heteroaryl(\(C_{3-7} \))-heterocycloalkyl-. In one aspect of that embodiment, \(R^{11} \) represents optionally substituted pyridinylpiperazinyl-. In an eleventh embodiment, \(R^{11} \) represents optionally substituted \((C_{3-7})\)cycloalkyl-heteroaryl-. In a first aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclohexylpyrazolyl-. In a second aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclohexylpyridinyl-. In a third aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclopropylpyrimidinyl-. In a fourth aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclobutylpyrimidinyl-. In a fifth aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclopentylpyrimidinyl-. In a sixth aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclohexylpyrimidinyl-. In a seventh aspect of that embodiment, \(R^{11} \) represents optionally substituted cyclohexyl-pyrazinyl-. In a twelfth embodiment, \(R^{11} \) represents optionally substituted \((C_{4-7})\)cycloalkenyl-heteroaryl-.
In a thirteenth embodiment, R11 represents optionally substituted (C\textsubscript{3-7})- heterocycloalkyl-heteroaryl-. In a first aspect of that embodiment, R11 represents optionally substituted pyrrolidinylpyridinyl-. In a second aspect of that embodiment, R11 represents optionally substituted tetrahydropyranylpyridinyl-. In a third aspect of that embodiment, R11 represents optionally substituted piperidinylpyridinyl-. In a fourth aspect of that embodiment, R11 represents optionally substituted piperazinylpyridinyl-. In a fifth aspect of that embodiment, R11 represents optionally substituted morpholinylpyridinyl-. In a sixth aspect of that embodiment, R11 represents optionally substituted thiomorpholinylpyridinyl-. In a seventh aspect of that embodiment, R11 represents optionally substituted diazepanpyridinyl-. In an eighth aspect of that embodiment, R11 represents optionally substituted oxetanylpyrimidinyl-. In a ninth aspect of that embodiment, R11 represents optionally substituted azetidinylpyrimidinyl-. In a tenth aspect of that embodiment, R11 represents optionally substituted tetrahydrofuranylpyrimidinyl-. In an eleventh aspect of that embodiment, R11 represents optionally substituted pyrrolidinylpyrimidinyl-. In a twelfth aspect of that embodiment, R11 represents optionally substituted tetrahydropyranlypyrimidinyl-. In a thirteenth aspect of that embodiment, R11 represents optionally substituted piperidinylpyrimidinyl-. In a fourteenth aspect of that embodiment, R11 represents optionally substituted piperazinylpyrimidinyl-. In a fifteenth aspect of that embodiment, R11 represents optionally substituted morpholinylpyrimidinyl-. In a sixteenth aspect of that embodiment, R11 represents optionally substituted thiomorpholinylpyrimidinyl-. In a seventeenth aspect of that embodiment, R11 represents optionally substituted azepanpyrimidinyl-. In an eighteenth aspect of that embodiment, R11 represents optionally substituted oxazepanlypyrimidinyl-. In a nineteenth aspect of that embodiment, R11 represents optionally substituted diazepanpyrimidinyl-. In a twentieth aspect of that embodiment, R11 represents optionally substituted thiadiazepanlypyrimidinyl-. In a twenty-first aspect of that embodiment, R11 represents optionally substituted oxetanpyrazinyl-. In a twenty-second aspect of that embodiment, R11 represents optionally substituted piperidinylpyrazinyl-. In a fourteenth embodiment, R11 represents optionally substituted (C\textsubscript{3-7})- heterocycloalkyl(Cl\textsubscript{6})alkyl-heteroaryl-. In a first aspect of that embodiment, R11 represents optionally substituted morpholinylmethylthienyl-. In a second aspect of that embodiment, R11 represents optionally substituted morpholinylethylpyrazolyl-.
In a fifteenth embodiment, \(R_{11} \) represents optionally substituted \((C_{3-7})\)heterocycloalkenyl-heteroaryl-.

In a sixteenth embodiment, \(R_{11} \) represents optionally substituted \((C_{4-9})\)heterobicycloalkyl-heteroaryl-.

In a seventeenth embodiment, \(R_{11} \) represents optionally substituted \((C_{4-9})\)spiroheterocycloalkyl-heteroaryl-.

In an eighteenth embodiment, \(R_{11} \) represents optionally substituted cyclohexylmethylpyrimidinyl-.

In one aspect of that embodiment, \(R_{11} \) represents optionally substituted cyclohexylmethylpyrimidinyl-.

In a nineteenth embodiment, \(R_{11} \) represents optionally substituted \((C_{4-9})\)bicycloalkyl-heteroaryl-.

Appositely, \(R_{11} \) represents bromo or cyano; or \(R_{11} \) represents ethyl, butynyl, phenyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, 1,2,3,6-tetrahydropyridinyl, benzofuryl, thienyl, indolyl, pyrazolyl, indazolyl, isoxazolyl, thiazolyl, imidazolyl, pyridinyl, quinolinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrrolidinylmethylphenyl, piperazinylmethylphenyl, pyridinylpiperazinyl, cyclohexylpyrazolyl, cyclohexylpyridinyl, cyclopropylpyrimidinyl, cyclobutylpyrimidinyl, cyclopentylpyrimidinyl, cyclohexylpyrimidinyl, cyclohexylpyrazinyl, cyclohexylmethylpyrimidinyl, cyclohexenylpyrimidinyl, cyclohexenylpyrimidinyl, bicyclo[3.1.0]hexanylpyrimidinyl, bicyclo[3.1.1]heptanylpyrimidinyl, bicyclo[2.2.2]octanylpyrimidinyl, pyrrolidinylpyridinyl, tetrahydropyranylpyrimidinyl, piperidinylpyridinyl, piperazinyl-pyridinyl, morpholinylpyridinyl, thiomorpholinylpyridinyl, diazepanylpyridinyl, oxetanlypyrimidinyl, azetidinylpyrimidinyl, tetrahydrofuranylpirimidinyl, pyrrolidinylpyrimidinyl, tetrahydropyranylpirimidinyl, piperidinylpyrimidinyl, piperazinyl-pyrimidinyl, hexahydro-[1,2,5]thiadiazolo[2,3-a]pyrazinylpyrimidinyl, morpholinyl-pyrimidinyl, thiomorpholinylpyrimidinyl, azeppanlypyrimidinyl, oxazepanylpyrimidinyl, diazepanlypyrimidinyl, thiazipanlypyrimidinyl, oxetanlypyrazinyl, morpholinylmethylthienyl, morpholinylethylpyrazolyl, 3-azabicyclo[3.1.0]-hexanylpirimidinyl, 3-azabicyclo[3.1.0]hexanylpirimidinyl, 3-azabicyclo[3.1.0]hexanylpirimidinyl, 2-oxa-5-azabicyclo[2.2.1]heptanylpyrimidinyl, 3-azabicyclo[3.1.1]heptanlypyrimidinyl, 3-azabicyclo[4.1.0]heptanylpirimidinyl, 3-azabicyclo[4.1.0]heptanlypyrimidinyl, 2-oxabicyclo[2.2.2]octanlypyrimidinyl, 3-azabicyclo[3.2.1]octanlypyrimidinyl, 8-azabicyclo[3.2.1]octanlypyrimidinyl, 3-oxa-8-azabicyclo[3.2.1]octanly-
pyrimidinyl, 3,6-diazabicyclo[3.2.2]nonanylpyrimidinyl, 3-oxa-7-azabicyclo[3.3.1]-
nonanylpyrimidinyl, 5-azaspiro[2.3]hexanylpyrimidinyl, 5-azaspiro[2.4]heptanyl-
pyrimidinyl, 2-azaspiro[3.3]heptanylpyrimidinyl, 2-oxa-6-azaspiro[3.3]heptanyl-
pyrimidinyl, 2-oxa-6-azaspiro[3.4]octanylpyrimidinyl, 2-oxa-6-azaspiro[3.5]nonanyl-
pyrimidinyl, 2-oxa-7-azaspiro[3.5]nonanylpyrimidinyl or 2,4,8-triazaspiro[4.5]decanyl-
pyrimidinyl, any of which groups may be optionally substituted by one or more
substituents.

Illustratively, R^1 represents bromo; or R^1 represents pyrimidinyl, which group
may be optionally substituted by one or more substituents.

Typical examples of optional substituents on R^1 include one, two or three
substituents independently selected from halogen, halo(Ci_6)alkyl, cyano, cyano(Ci_6)alkyl,
nitro(Ci_6)alkyl, Cy group, trifluoromethyl, trifluoroethyl, C_{2-6} alkenyl, hydroxy,
hydroxy(Ci_6)alkyl, Ci_6 alkoxy, trifluoroethoxy, carboxy(C_3\gamma)cycloalkyloxy, Ci_6
alkylthio, Ci_6 alkysulphonyl, (Ci_6)alkysulphonyle, oxo, amino, amino-
(Ci_6)alkyl, Ci_{1-6} alkylamino, di(Ci_6)alkylamino, (Ci_6)alkoxy (Ci_6)alkylamino,
N-[[(Ci_6)alkyl]N]-[hydroxy(Ci_6)alkyl]amino, (C_{2-6})alkylcarbonylamino(Ci_6)alkyl, Ci_6
alkylsulphonylamino, N-[(Ci_{1-6})alkyl]-N-[(Ci_{1-6})alkylsulphonyl] amino, bis [(Ci_{1-6})alkyl-
sulphonyl] amino, N-[(Ci_6)alkyl]J-N-[carboxy(Ci_6)alkyl] amino, carboxy(C_3\gamma)cycloalkyl-
amino, carboxy(C_3\gamma)cycloalkyl(Ci_6)alkylamino, formyl, C_{2-6} alkylcarbonyl, (C_{2-6})alkyl-
carbonyloxy(Ci_6)alkyl, carboxy, carboxy(Ci_6)alkyl, C_{2-6} alkoxycarbonyl, C_{2-6}
alkoxycarbonyl(Ci_6)alkyl, morpholinyl(Ci_6)alkoxycarbonyl, C_{2-6} alkoxycarbonyl-
methylidenyl, a carboxylic acid isostere or prodrug moiety Ω as defined herein,
-(C_{1-6})alkyl-Ω, aminocarbonyl, aminosulphonyl, (Ci_6)alkylsulphoximinyl and
[(Ci_{1-6})alkyl] N-(C_{1-6})alkyl sulphonyliminyl.

Suitable examples of optional substituents on R^1 include one, two or three
substituents independently selected from hydroxy(Ci_6)alkyl.

Typical examples of particular substituents on R^1 include one, two or three
substituents independently selected from fluoro, chloro, fluoromethyl, fluoroisopropyl,
cyano, cyanoethyl, nitromethyl, methyl, ethyl, isopropyl, trifluoromethyl, trifluoroethyl,
ethenyl, hydroxy, hydroxymethyl, hydroxyisopropyl, methoxy, isopropoxy, trifluoro-
ethoxy, carboxycyclobutyloxy, methylthio, methylsulphonyl, methylsulphonylethyl, oxo,
aminooxymethyl, aminoisopropyl, methylamino, dimethylamino, methoxymethyl,
N-(hydroxyethyl)-N-(methyl) amino, acetylaminomethyl, methylsulphonylamino, N-
methyl-N-(methylsulphonyl)amino, bis(methylsulphonyl)amino, N-(carboxyethyl)-N-(methyl)amino, carboxycyclopentylamino, carboxycyclopropylmethylamino, formyl, acetyl, acetoxyisopropyl, carboxy, carboxymethyl, carboxyethyl, methoxycarbonyl, ethoxycarbonyl, w-butoxycarbonyl, iet-/butoxycarbonyl, methoxycarbonylmethyl, ethoxy-
carbonylmethyl, ethoxycarbonylethyl, morpholinylethoxycarbonyl, ethoxycarbonyl-
methylidenyl, methylsulphonylaminocarbonyl, acetylaminosulphonyl, methoxy,
sulphonyl, methylsulphoximinyl and (methyl)(N-methyl)sulphoximinyl.

Suitable examples of particular substituents on R11 include one, two or three
substituents independently selected from hydroxyisopropyl.

In a particular embodiment, R11 is substituted by hydroxy(Ci_6)alkyl. In one aspect
of that embodiment, R11 is substituted by hydroxyisopropyl, especially 2-hydroxyprop-2-
yl-

Selected values of R11 include bromo, cyano, methoxycarbonylethyl,
ethoxycarbonylethyl, hydroxybutynyl, chlorophenyl, hydroxyphenyl, methylsulphonyl-
phenyl, aminomethylphenyl, aminoisopropylphenyl, acetylaninomethylphenyl,
acetylphenyl, methoxycarbonylphenyl, aminocarbonylphenyl, aminosulphonylphenyl,
acetylasulphonylphenyl, (methoxycarbonyl)(methyl)pyrrolidinyl, oxopiperidinyl,
ethoxycarbonylpiperidinyl, methylsulphonylpiperazinyl, morpholinyl, methylsulphonyl-
1,2,3,6-tetrahydropyridinyl, acetyl-1,2,3,6-tetrahydropyridinyl, iet-butoxycarbonyl-
1,2,3,6-tetrahydropyridinyl, methoxycarbonylmethyl-1,2,3,6-tetrahydropyridinyl,
benzofuryl, thienyl, indolyl, pyrazolyl, methylpyrazolyl, dimethylpyrazolyl, (methyl)(N-
methyl-N-(methylsulfonyl)amino)pyrazolyl, methylindazolyl, dimethylisoaxazolyl,
hydroxyisopropylthiazolyl, methylimidazolyl, dimethylimidazolyl, pyridinyl, fluoropyridinyl,
cyanoypyridinyl, methylpyridinyl, (cyano)(methyl)pyridinyl, dimethylpyridinyl,
trifluoromethylpyridinyl, ethenylpyridinyl, hydroxyisopropylpyridinyl, methoxypyridinyl,
(methoxy)(methyl)pyridinyl, isopropoxypyridinyl, trifluoroethoxy.pyridinyl, (methyl)-
(trifluoroethoxy)pyridinyl, methylsulphonylpyridinyl, oxopyridinyl, (methyl)(oxo)-
pyridinyl, (dimethyl)(oxo)pyridinyl, aminopyridinyl, methylaminopyridinyl, dimethyl-
aminopyridinyl, methoxyethylaminopyridinyl, N-(hydroxyethyl)-N-(methyl)amino-
pyridinyl, methylsulphonylaminopyridinyl, [bis(methylsulphonyl)amino]pyridinyl,
carboxypyridinyl, quinolinyl, hydroxy.pyridazinyl, pyrimidinyl, fluoroisopropyl-
pyrimidinyl, hydroxyisopropylpyrimidinyl, methoxy.pyrimidinyl, carboxycyclobutyl o-
pyrazinyl, (ethoxycarbonyl)(methyl)piperidinylpyrazinyl, morpholinylmethylthienyl,
morpholinylethylpyrazolyl, carboxy-3-azabicyclo[3.1.0]hexanylpyridinyl, carboxy-3-
azabicyclo[3.1.0]hexanylpyridazinyl, carboxy-3-azabicyclo[3.1.0]hexanyleliminylpyrimidinyl,
(carboxy)(methyl)-3-azabicyclo[3.1.0]hexanyleliminylpyrimidinyl, methoxycarbonyl-3-
pyrimidinyl, carboxy-3-azabicyclo[3.2.1]octanylpyrimidinyl, methoxycarbonyl-3-azabicyclo-
[3.2.1]octanylpyrimidinyl, ethoxycarbonylmethylidenyl-8-azabicyclo[3.2.1]octanylpyrimidinyl, 3-oxa-8-azabicyclo-
[3.2.1]octanylpyrimidinyl, oxo-8-azabicyclo[3.2.1]octanylpyrimidinyl, oxo-3,6-diazabicyclo[3.2.2]nonanyl-
pyrimidinyl, carboxy-2-azaspiro[3.3]heptanylpyrimidinyl, 2-oxa-6-azaspiro[3.3]heptanyl-
pyrimidinyl, 2-oxa-6-azaspiro[3.4]octanylpyrimidinyl, 2-oxa-6-azaspiro[3.5]nonanyl-
pyrimidinyl, 2-oxa-7-azaspiro[3.5]nonanylpyrimidinyl and (dioxo)(methyl)-2,4,8-
triazaspiro[4.5]decanylnylpyrimidinyl.

Illustrative values of R^11 include bromo and hydroxyisopropylpyrimidinyl.
A specific value of R^11 is hydroxyisopropylpyrimidinyl.
Typical examples of optional substituents on R^12 include C_{26} alkoxycarbonyl.
Typical examples of particular substituents on R^12 include ethoxycarbonyl.

In a first embodiment, R^12 represents hydrogen. In a second embodiment, R^12 represents halogen. In one aspect of that embodiment, R^12 represents fluoro. In another aspect of that embodiment, R^12 represents chloro. In a third embodiment, R^12 represents trifluoromethyl. In a fourth embodiment, R^12 represents optionally substituted C_{6} alkyl. In one aspect of that embodiment, R^12 represents unsubstituted methyl. In another aspect of that embodiment, R^12 represents unsubstituted ethyl. In a further aspect of that embodiment, R^12 represents mono-substituted methyl or mono-substituted ethyl.

Typical values of R^12 include hydrogen, fluoro, chloro, trifluoromethyl, methyl and ethoxycarbonyl-ethyl.
Typically, R^{15} and R^{16} may independently represent hydrogen, fluoro, chloro, bromo, cyano, nitro, methyl, isopropyl, trifluoromethyl, hydroxy, methoxy, difluoromethoxy, trifluoromethoxy, methylthio, methylsulfinyl, methylsulfonyl, amino, methylamino, tert-butylamino, dimethylamino, phenylamino, acetylamino, methylsulfonylamino, formyl, acetyl, cyclopropylcarbonyl, azetidinylcarbonyl, piperidinylcarbonyl, piperazinylcarbonyl, morpholinylcarbonyl, carboxy, methoxycarbonyl, aminocarbonyl, methylaninocarbonyl, dimethylaminocarbonyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfanyl.

Typical values of R^{15} include hydrogen, halogen, C_{1-6} alkyl, trifluoromethyl, C_{1-6} alkoxy, difluoromethoxy and trifluoromethoxy.

In a first embodiment, R^{15} represents hydrogen. In a second embodiment, R^{15} represents halogen. In a first aspect of that embodiment, R^{15} represents fluoro. In a second aspect of that embodiment, R^{15} represents chloro. In a third embodiment, R^{15} represents C_{1-6} alkyl. In one aspect of that embodiment, R^{15} represents methyl. In a fourth embodiment, R^{15} represents trifluoromethyl. In a fifth embodiment, R^{15} represents C_{1-6} alkoxy. In one aspect of that embodiment, R^{15} represents methoxy. In a sixth embodiment, R^{15} represents difluoromethoxy. In a seventh embodiment, R^{15} represents trifluoromethoxy.

Selected values of R^{15} include hydrogen, fluoro, chloro, methyl, trifluoromethyl, methoxy, difluoromethoxy and trifluoromethoxy.

Typical values of R^{16} include hydrogen, halogen, cyano, C_{1-6} alkyl, trifluoromethyl, difluoromethoxy and amino.

In a first embodiment, R^{16} represents hydrogen. In a second embodiment, R^{16} represents halogen. In a first aspect of that embodiment, R^{16} represents fluoro. In a second aspect of that embodiment, R^{16} represents chloro. In a third embodiment, R^{16} represents cyano. In a fourth embodiment, R^{16} represents C_{1-6} alkyl. In one aspect of that embodiment, R^{16} represents methyl. In a fifth embodiment, R^{16} represents trifluoromethyl. In a sixth embodiment, R^{16} represents difluoromethoxy. In a seventh embodiment, R^{16} represents amino.

Selected values of R^{16} include hydrogen, fluoro, chloro, cyano, methyl, trifluoromethyl, difluoromethoxy and amino.

In a particular embodiment, R^{16} is attached at the $/?$ara-position of the phenyl ring relative to the integer R^{15}.
A particular sub-group of the compounds of formula (IIA) above is represented by the compounds of formula (IIB) and N-oxides thereof, and pharmaceutically acceptable salts and solvates thereof, and glucuronide derivatives thereof, and co-crystals thereof:

wherein

V represents C-R^{22} or N;
R^{21} represents hydrogen, halogen, halo(C_{6})alkyl, cyano, C_{6} alkyl, trifluoromethyl, C_{2,6} alkenyl, C_{2,6} alkynyl, hydroxy, hydroxy(C_{6})alkyl, C_{6} alkoxy, (C_{6})alkoxy-(C_{6})alkyl, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, carboxy(C_{3,7})cycloalkyl-oxo, C_{6} alkythio, C_{6} alkylsulphonyl, (C_{6})alkylsulphonyl(C_{6})alkyl, amino, amino-(C_{6})alkyl, C_{6} alkylamino, di(C_{6})alkylamino, (C_{6})alkoxy(C_{6})alkylamino, N-[(C_{6})alkyl]-N-[hydroxy(C_{6})alkyl]amino, C_{2,6} alkylcarbonylaminono, (C_{2,6})alkylcarbonylaminono(C_{6})alkyl, C_{2,6} alkoxy carbonylaminono(C_{6})alkyl, N-[(C_{6})alkyl]-N-[carboxy(C_{6})alkyl]amino, carboxy(C_{3,7})cycloalkylamino, carboxy(C_{3,7})cycloalkyl(C_{6})alkylamino, C_{6} alkyl sulphonylaminono, C_{6} alkysulphonylamino(C_{6})alkyl, formyl, C_{2,6} alkylcarbonyl, (C_{2,6})alkylcarbonyloxy(C_{6})alkyl, carboxy, carboxy(C_{6})alkyl, C_{2,6} alkoxy carbonyl, morpholinyl(C_{6})alkoxy carbonyl, C_{2,6} alkoxy carbonyl(C_{6})alkyl, C_{2,6} alkoxy carbonylmethylidenyl, aminocarbonyl, C_{6} alkyaminocarbonyl, di(C_{6})alkylaminocarbonyl, aminosulphonyl, C_{6} alkyaminosulphonyl, di(C_{6})alkylaminosulphonyl, (C_{6})alkyl sulphonylimino or [(C_{6})alkyl]N-(C_{6})alkyl sulphonylimino; or R^{21} represents (C_{3,7})cycloalkyl, (C_{3,7})cycloalkyl(C_{6})alkyl, (C_{4,9})cycloalkenyl, (C_{4,9})bicycloalkyl, (C_{3,7})heterocycloalkyl, (C_{3,7})heterocycloalkenyl, (C_{4,9})heterobicycloalkyl or (C_{4,9})spiroheterocycloalkyl, any of which groups may be optionally substituted by one or more substituents;

R^{22} represents hydrogen, halogen or C_{6} alkyl;
R^{23} represents hydrogen, C_{6} alkyl, trifluoromethyl or C_{6} alkoxy; and
E, Q, Z, R

12, R 15 and R 16 are as defined above.

In one embodiment, V represents C-R 2 2 . In another embodiment, V represents N.

Typically, R 21 represents hydrogen, halogen, halo(Ci_6)alkyl, cyano, Ci_6 alkyl, trifluoromethyl, C 2 6 alkenyl, hydroxy, hydroxy(Ci_6)alkyl, Ci_6 alkoxy, trifluoroethoxy, carboxy(C 3 7)cycloalkyloxy, Ci_6 alkylthio, Ci_6 alkylsulphonyl, amino, Ci_6 alkylamino, di(Ci_6)alkylamino, (Ci_6)alkoxy(Ci_6)alkylamino, N-[(Ci_6)alkyl] -N-[hydroxy (Ci_6)alkyl]-amino, N-[(Ci_6)alkyl]-N- [carboxy(Ci_6)alkyl] amino, carboxy(C 3 7)cycloalkylamino, carboxy(C 3 7)cycloalkyl(Ci_6)alkylamino, Ci_6 alkylsulphonylamino, (C 2 5)alkylcarbonyl- oxy(Ci_6)alkyl, carboxy, morpholiny(Ci_6)alkoxycarbonyl, C 2 6 alkoxycarbonyl(Ci_6)alkyl or C 2 5 alkoxy carbonylmethylidenyl; or R 21 represents (C 3 7)cycloalkyl, (C 3 7)cycloalkyl-(Ci_6)alkyl, (C 4 7)cycloalkenyl, (C 4 9)bicycloalkyl, (C 3 7)heterocycloalkyl, (C 4 9)heterobicycloalkyl or (C 4 9)spiroheterocycloalkyl, any of which groups may be optionally substituted by one or more substituents.

Where R 21 represents an optionally substituted (C 3 7)cycloalkyl group, typical values include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, any of which groups may be optionally substituted by one or more substituents.

Where R 21 represents an optionally substituted (C 3 7)cycloalkyl(Ci_6)alkyl group, a typical value is cyclohexylmethyl, which group may be optionally substituted by one or more substituents.

Where R 21 represents an optionally substituted (C 4 7)cycloalkenyl group, typical values include cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl, any of which groups may be optionally substituted by one or more substituents.

Where R 21 represents an optionally substituted (C 4 9)bicycloalkyl group, typical values include bicyclo[3.1.0]hexanyl, bicyclo[4.1.0]heptanyl and bicyclo[2.2.2]octanyl, any of which groups may be optionally substituted by one or more substituents.

Where R 21 represents an optionally substituted (C 3 7)heterocycloalkyl group, typical values include oxetanyl, azetidinyl, tetrahydrofuranyl, pyrrolidinyl, tetrahydropyranyl, piperidinyl, piperazinyl, hexahydro-[1,2,5]thiadiazolo[2,3-a]pyrazinyl, morpholinyl, thiomorpholinyl, azepanyl, oxazepanyl, diazepanyl and thiadiazepanyl, any of which groups may be optionally substituted by one or more substituents.

Where R 21 represents an optionally substituted (C 3 7)heterocycloalkenyl group, a typical value is optionally substituted 1,2,3,6-tetrahydropyridinyl.
Where R represents an optionally substituted (C4_9)heterobicycloalkyl group, typical values include 3-azabicyclo[3.1.0]hexanyl, 2-oxa-5-azabicyclo[2.2.1]heptanyl, 3-azabicyclo[3.1.1]heptanyl, 3-azabicyclo[4.1.0]heptanyl, 2-oxa-5-azabicyclo[2.2.2]octanyl, quinuclidinyl, 2-oxa-5-azabicyclo[2.2.2]octanyl, 3-azabicyclo[3.2.1]octanyl, 8-azabicyclo[3.2.1]octanyl, 3-oxa-8-azabicyclo[3.2.1]octanyl, 3,8-diazabicyclo[3.2.1]octanyl, 3-oxa-7-azabicyclo[3.3.1]nonanyl and 3,9-diazabicyclo[4.2.1]nonanyl, any of which groups may be optionally substituted by one or more substituents.

Where R represents an optionally substituted (C4_9)spiroheterocycloalkyl group, typical values include 5-azaspiro[2.3]hexanyl, 5-azaspiro[2.4]heptanyl, 2-oxa-6-azaspiro[3.3]heptanyl, 2-oxa-6-azaspiro[3.4]octanyl, 2-oxa-6-azaspiro[3.5]nonanyl, 2-oxa-7-azaspiro[3.5]nonanyl and 2,4,8-triazaspiro[4.5]-decanyl, any of which groups may be optionally substituted by one or more substituents.

Illustratively, R represents hydroxy, hydroxy(Ci_6)alkyl, methoxy, carboxycyclobutyloxy, methylthio, methylsulphonyl, methylamino, N-[carboxyethyl]-/β-methylamino, carboxycyclopentylamino, carboxycyclopropylmethylamino or ethoxycarbonyl-ethyl; or R represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexylmethyl, cyclohexenyl, bicyclo[3.1.0]hexanyl, bicyclo[4.1.0]heptanyl, bicyclo[2.2.2]-octanyl, oxetanyl, azetidinyl, tetrahydrofuranyl, pyrrolidinyl, tetrahydropyrylan, piperidinyl, piperazinyl, hexahydro-[1,2,5]thiadiazolo[2,3-a]pyrazinyl, morpholinyl, thiomorpholinyl, azepanyl, oxazepanyl, diazepanyl, thiadiazepanyl, 3-azabicyclo[3.1.0]-hexanyl, 2-oxa-5-azabicyclo[2.2.1]heptanyl, 3-azabicyclo[3.1.1]heptanyl, 3-azabicyclo[4.1.0]heptanyl, 2-oxabicyclo[2.2.2]octanyl, 3-azabicyclo[3.2.1]octanyl, 8-azabicyclo[3.2.1]octanyl, 3-oxa-8-azabicyclo[3.2.1]octanyl, 3,6-diazabicyclo[3.2.2]nonanyl, 3-oxa-7-azabicyclo[3.3.1]nonanyl, 5-azaspiro[2.3]hexanyl, 5-azaspiro[2.4]heptanyl or 2-azaspiro[3.3]heptanyl, any of which groups may be optionally substituted by one or more substituents.

Examples of optional substituents which may be present on R include one, two or three substituents independently selected from halogen, halo(Ci_6)alkyl, cyano, cyano-(Ci_6)alkyl, nitro, nitro(Ci_6)alkyl, Ci_6 alkyl, trifluoromethyl, trifluoroethyl, C_2-6 alkenyl, hydroxy, hydroxy(Ci_6)alkyl, Ci_6 alkoxy, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, Ci_6 alkylthio, Ci_6 alkylsulphonyl, (Ci_6)alkylsulphonyl(Ci_6)alkyl, oxo, amino, Ci_6 alkylamino, di(Ci_6)alkylamino, C_2-6 alkylcarbonylamino, (C_2-6)alkylcarbonylamino-
(Ci_6)alkyl, C_{2-6} alkoxy carbonylamino, C_{1-6} alkyl sulphonylamino, formyl, C_{2-6} alkyl carbonyl, carboxy, carboxy(Ci_6)alkyl, C_{2-6} alkoxy carbonyl, morpholinyl-(Ci_6)alkoxy carbonyl, C_{2-6} alkoxy carbonyl(Ci_6)alkyl, C_{2-6} alkoxy carbonylmethylidenyl, a carboxylic acid isostere or prodrug moiety Ω as defined therein, -(C_{1-6})alkyl-Ω, amino carbonyl, C_{1-6} alkylaminocarbonyl, di(Ci_6)alkylaminocarbonyl, aminosulphonyl, di(Ci_6)alkylaminosulphonyl, (Ci_6)alkylsulphoximinyl and [(Ci_6)alkyl]N-(Ci_6)alkyl-sulphoximinyl.

Suitable examples of optional substituents on R^{21} include one, two or three substituents independently selected from fluoro, fluoromethyl, chloro, bromo, cyano, cyanomethyl, cyanoethyl, nitro, nitromethyl, methyl, ethyl, isopropyl, trifluoromethyl, trifluoroethyl, ethenyl, hydroxy, hydroxymethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, trifluorooxyethoxy, methylthio, methylsulphonyl, methylsulphonyl methyl, methylsulphonyl ethyl, amino, methylamino, dimethylamino, acetyl amido, acetylaminomethyl, methoxycarbonylamino, ethoxycarbonylamino, methylsulphonylamino, formyl, acetyl, carboxy, carboxymethyl, carboxyethyl, methoxycarbonyl, ethoxycarbonyl, w-butoxycarbonyl, ie/t-butoxycarbonyl, morpholinyl-ethoxycarbonyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, ethoxycarbonyl methylidenyl, acetylamino sulphonyl, methoxynaminocarbonyl, tetrazolyl, tetrazolyl methyl, hydroxyoxadiazolyl, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, methylsulphonylaminocarbonyl, aminosulphonyl, methylaminosulphonyl, dimethylamino sulphonyl, methylsulphoximinyl and (methyl)(N-methyl)sulphoximinyl.

Typically, R^{21} represents hydrogen, fluoro, fluoroisopropyl, cyano, methyl, trifluoromethyl, ethenyl, hydroxy, hydroxysopropyl, methoxy, isoproxy, trifluoro ethoxy, carboxycyclobutoxy, methylthio, methylsulphonyl, amino, methylamino, dimethylamino, methoxyethylamino, N-(hydroxyethyl)-/V-(methyl) amino, N-[carboxyethyl]-N-methylamino, carboxycyclopentylamino, carboxycyclopropylmethylamino, methylsulphonylamino, acetoxyisopropyl, carboxy, ethoxycarbonyl ethyl, fluoromethyl cyclopropyl, acetylaminoethylcyclopropyl, hydroxycyclobutyl, carboxycyclopentyl, carboxycyclohexyl, (carboxy)(methyl)cyclohexyl, (carboxy)(hydroxy)cyclohexyl, carboxymethylcyclohexyl, ethoxycarbonylcyclohexyl, (methoxycarbonyl) (methyl)cyclohexyl, (ethoxycarbonyl)(methyl)cyclohexyl, carboxycyclohexylmethyl, carboxycyclohexenyl, ethoxycarbonylcyclohexenyl, carboxybicyclo[3. 1.0]hexanyl, ethoxycarbonylbicyclo[3. 1.0]hexanyl, carboxybicyclo[4. 1.0]heptanyl, carboxybicyclo-
[2.2.2]octanyl, fluoro, oxetanyl, hydroxyoxetanyl, hydroxyazetidinyl, (hydroxy)(methyl)-azetidinyl, carboxyazetidinyl, (i-ert-butoxycarbonyl)(hydroxy)azetidinyl, tetrazolyl-
azetidinyl, hydroxytetrahydrofuranyl, pyrrolidinyl, hydroxypyrrolidinyl, carboxy-
pyrrolidinyl, (carboxy)(methyl)pyrrolidinyl, carboxymethylpyrrolidinyl, ethoxycarbonyl-
pyrrolidinyl, fluorotetrahydropyranyl, hydroxytetrahydropyranyl, piperidinyl, difluoro-
piperidinyl, (cyano)(methyl)piperidinyl, (hydroxy)(nitromethyl)piperidinyl, (hydroxy)-
(carboxy)piperidinyl, (hydroxy)(trifluoromethyl)piperidinyl, (hydroxymethyl)(methyl)-
piperidinyl, methylsulphonylpiperidinyl, oxopiperidinyl, (formyl)(methyl)piperidinyl,
acetyl piperidinyl, carboxypiperidinyl, (carboxy)(fluoro)piperidinyl, (carboxy)(methyl)-
piperidinyl, (carboxy)(ethyl)piperidinyl, (carboxy)(trifluoromethyl)piperidinyl, (carboxy)-
(carboxy)piperidinyl, (carboxy)(hydroxymethyl)piperidinyl, (carboxy)(methoxy-
piperidinyl, (amino)(carboxy)piperidinyl, carboxymethylpiperidinyl, methoxycarbonylpiperidinyl, (methoxycarbonyl)(methyl)piperidinyl, (ethyl)(methoxycarbonyl)piperidinyl,
(isopropyl)(methoxycarbonyl)piperidinyl, (methoxy)(methoxycarbonyl)piperidinyl,
(carboxy)(methoxycarbonyl)piperidinyl, ethoxycarboxylpiperidinyl, (ethoxycarbonyl)-(fluoropiperidinyl, (ethoxycarbonyl)(methyl)piperidinyl, (ethoxycarbonyl)(trifluoro-
methyl)piperidinyl, (ethoxycarbonyl)(hydroxymethyl)piperidinyl, (w-butoxycarbonyl)-
(methyl)piperidinyl, (methyl)(morpholinylethoxycarbonyl)piperidinyl, ethoxycarbonylmethylpiperidinyl, methylsulphonylaminocarbonylpiperidinyl, acetylaminosulphonylpiperidinyl, methoxyaminocarboxylpiperidinyl, tetrazolylpiperidinyl, hydroxyoxadiazolypiperidinyl, aminosulphonylpiperidinyl, piperazinyl, cyanoethylpiperazinyl, trifluoroethyl-
piperazinyl, methylsulphonylpiperazinyl, methylsulphonylpiperazinyl, oxopiperazinyl, acetylpiperazinyl, carboxypiperazinyl, iert-butoxycarbonylpiperazinyl, carboxymethylpiperazinyl, carboxylethylpiperazinyl, ethoxycarbonylmethylpiperazinyl, ethoxycarbonylethylpiperazinyl, tetrazolylmethylpiperazinyl, trioxohexahydro-
[1,2,5]thiadiazolo[2,3-a]pyrazinyl, morpholinyl, dimethylmorpholinyl, hydroxymethyl-
morpholinyl, carboxymorpholinyl, (carboxy)(methyl)morpholinyl, carboxymethyl-
morpholinyl, thiomorpholinyl, oxothiomorpholinyl, dioxothiomorpholinyl, carboxy-
azepanyl, carboxyoxazepanyl, oxazepanyl, (methyl)(oxo)diazepanyl, dioxo-
thiazepanyl, carboxy-3-azabicyclo[3.1.0]hexanyl, (carboxy)(methyl)-3-azabicyclo-
[3.1.0]hexanyl, methoxycarbonyl-3-azabicyclo[3.1.0]hexanyl, ethoxycarbonyl-3-
azabicyclo[3.1.0]hexanyl, 2-oxa-5-azabicyclo[2.2.1]heptanyl, carboxy-2-oxa-5-
azabicyclo[2.2.1]heptanyl, carboxy-3-azabicyclo[3.1.0]heptanyl, carboxy-3-azabicyclo-

In a particular embodiment, R_{21} represents hydroxy(C$_{6}$)alkyl. In one aspect of that embodiment, R_{21} represents hydroxyisopropyl, especially 2-hydroxyprop-2-yl.

Generally, R_{22} represents hydrogen or C$_{6}$ alkyl.

Suitably, R_{22} represents hydrogen, chloro or methyl.

Typically, R_{22} represents hydrogen or methyl.

In one embodiment, R_{22} represents hydrogen. In another embodiment, R_{22} represents C$_{6}$ alkyl, especially methyl. In a further embodiment, R_{22} represents halogen.

In one aspect of that embodiment, R_{22} represents fluoro. In another aspect of that embodiment, R_{22} represents chloro.

Generally, R_{23} represents hydrogen or C$_{6}$ alkyl.

Suitably, R_{23} represents hydrogen, methyl, trifluoromethyl or methoxy.

Typically, R_{23} represents hydrogen or methyl.

In one embodiment, R_{23} represents hydrogen. In another embodiment, R_{23} represents C$_{6}$ alkyl, especially methyl. In a further embodiment, R_{23} represents trifluoromethyl. In an additional embodiment, R_{23} represents C$_{6}$ alkoxy, especially methoxy.

Particular sub-groups of the compounds of formula (IIB) above are represented by the compounds of formula (IIC), (IID), (HE), (IIF), (IIG), (IIJ), (IJK) and (IIL), and N-oxides thereof, and pharmaceutically acceptable salts and solvates thereof, and glucuronide derivatives thereof, and co-crystals thereof:
wherein

T represents -CH\textsubscript{2} or -CH\textsubscript{2}CH\textsubscript{2};

U represents C(O) or S(0)\textsubscript{2};

W represents O, S, S(O), S(0)\textsubscript{2}, S(0)(NR\textsubscript{4}), N(R\textsubscript{1}) or C(R\textsubscript{2})(R\textsubscript{3});

-M- represents -CH\textsubscript{2} or -CH\textsubscript{2}CH\textsubscript{2};
R^{31} represents hydrogen, cyano(C_i_6)alkyl, C_{1-6} alkyl, trifluoromethyl, trifluoroethyl, C_{1-6} alkylsulphonyl, (C_i_6)alkylsulphonyl(C_i_6)alkyl, formyl, C_{2-6} alkylcarbonyl, carboxy, carboxy(C_i_6)alkyl, C_{2-6} alkoxy carbonyl, C_{2-6} alkoxy carbonyl(C_i_6)alkyl, a carboxylic acid isostere or prodrug moiety Ω, -(C_{1-6})alkyl-Ω, aminocarbonyl, C_{1-6} alkylaminocarbonyl, di(C_{1-6})alkylaminocarbonyl, amino sulphonyl or di(C_{1-6})alkylaminosulphonyl;

R^{32} represents hydrogen, halogen, cyano, hydroxy, hydroxy(C_i_6)alkyl, C_{1-6} alkylsulphonyl, formyl, C_{2-6} alkylcarbonyl, carboxy, carboxy(C_i_6)alkyl, C_{2-6} alkoxy carbonyl, C_{2-6} alkoxy carbonyl(C_i_6)alkyl, amino sulphonyl, (C_{1-6})alkyl-sulphoximiny, [(C_i_6)alkyl]/N-(C_{1-6})alkyl)sulphoximiny, a carboxylic acid isostere or prodrug moiety Ω, or -(C_{1-6})alkyl-Ω;

R^{33} represents hydrogen, halogen, C_{1-6} alkyl, trifluoromethyl, hydroxy, hydroxy-(C_i_6)alkyl, C_{1-6} alkoxy, amino or carboxy;

R^{34} represents hydrogen, halogen, halo(C_{1-6})alkyl, hydroxy, C_{1-6} alkoxy, C_{1-6} alkylthio, C_{1-6} alkylsulphinyl, C_{1-6} alkylsulphonyl, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, (C_{2-6})alkylcarbonylamino, (C_{2-6})alkylcarbonylamino(C_{1-6})alkyl, (C_{1-6})alkyl-sulphonylamino or (C_{1-6})alkylsulphonylamino(C_{1-6})alkyl; and

V, E, Q, Z, R^4, R^{12}, R^{15}, R^{16}, R^{23} and Ω are as defined above.

In a first embodiment, T represents -CH_2-. In a second embodiment, T represents -CH_2CH_2-.

In a first embodiment, U represents C(O). In a second embodiment, U represents S(0)_2.

Generally, W represents O, S(0)_2, N(R^{31}) or C(R^{32})(R^{33}).

In a first embodiment, W represents O. In a second embodiment, W represents S.

In a third embodiment, W represents S(O). In a fourth embodiment, W represents S(0)_2.

In a fifth embodiment, W represents S(0)(NR^4). In a sixth embodiment, W represents N(R^{31}). In a seventh embodiment, W represents C(R^{32})(R^{33}).

In one embodiment, -M- represents -CH_2-. In another embodiment, -M- represents -CH_2CH_2-.

Typically, R^{31} represents hydrogen, cyano(C_{1-6})alkyl, C_{1-6} alkyl, trifluoromethyl, trifluoroethyl, C_{1-6} alkylsulphonyl, (C_{1-6})alkylsulphonyl(C_{1-6})alkyl, formyl, C_{2-6} alkylcarbonyl, carboxy, carboxy(C_{1-6})alkyl, C_{2-6} alkoxy carbonyl, C_{2-6} alkoxy carbonyl(C_{1-6})alkyl, tetrazolyl(C_{1-6})alkyl, aminocarbonyl, C_{1-6} alkylaminocarbonyl, di(C_{1-6})alkyl-
aminocarbonyl, aminosulphonyl, C₁₋₆ alkylamino sulphonyl or di(Ci_6)alkylamino-sulphonyl.

Typical values of R³¹ include hydrogen, cyanoethyl, methyl, ethyl, isopropyl, trifluoromethyl, trifluoroethyl, methylsulphonyl, methylsulphonylethyl, formyl, acetyl, carboxy, carboxymethyl, carboxyethyl, methoxycarbonyl, ethoxycarbonyl, tert-butoxy-carbonyl, ethoxycarboxymethyl, ethoxycarboxylethyl, tetrazolylmethyl, aminocarbonyl, methylamino-carbonyl, dimethylaminocarbonyl, aminosulphonyl, methylamino sulphonyl and dimethylamino sulphonyl.

A particular value of R³¹ is hydrogen.

Generally, R³² represents halogen, carboxy, carboxy(Ci_6)alkyl, C₂₋₆ alkoxy carbonyl, C₂₋₆ alkoxy carbonyl(Ci_6)alkyl, a carboxylic acid isostere or prodrug moiety Ω, or -(C₁₋₆)alkyl-Ω.

Typically, R³² represents hydrogen, halogen, cyano, hydroxy, hydroxy(Ci_6)alkyl, Ci-6 alkylsulphonyl, formyl, carboxy, carboxy(Ci_6)alkyl, C₂₋₆ alkoxy carbonyl, C₂₋₆ alkoxy carbonyl(Ci_6)alkyl, aminosulphonyl, (Ci_6)alkylsulphoximinyl, [(Ci_6)alkyl]^{-N-}(Ci_6)alkyl] sulphoximinyl, (Ci_6)alkylsulphonylaminocarbonyl, (C₂₋₆)alkylcarbonylamino-sulphonyl, (Ci_6)alkoxyaminocarbonyl, tetrazolyl or hydroxyoxadiazolyl.

Typical values of R³² include hydrogen, fluoro, cyano, hydroxy, hydroxymethyl, methylsulphonyl, formyl, carboxy, carboxymethyl, carboxyethyl, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, methoxycarboxymethyl, methoxycarboxylethyl, ethoxycarboxymethyl, ethoxycarboxylethyl, aminosulphonyl, methylsulphoximinyl, (methyl ψ-methyl) sulphoximinyl, methylsulphonylaminocarbonyl, acetylaminosulphonyl, methoxyaminocarbonyl, tetrazolyl and hydroxyoxadiazolyl.

In a selected embodiment, R³² represents carboxy.

Generally, R³³ represents hydrogen, halogen or Ci-6 alkyl.

Suitably, R³³ represents hydrogen or C₁₋₆ alkyl.

Selected values of R³³ include hydrogen, fluoro, methyl, ethyl, isopropyl, trifluoromethyl, hydroxy, hydroxymethyl, methoxy, amino and carboxy.

In a first embodiment, R³³ represents hydrogen. In a second embodiment, R³³ represents halogen. In one aspect of that embodiment, R³³ represents fluoro. In a third embodiment, R³³ represents C₁₋₆ alkyl. In a first aspect of that embodiment, R³³ represents methyl. In a second aspect of that embodiment, R³³ represents ethyl. In a third aspect of that embodiment, R³³ represents isopropyl. In a fourth embodiment, R³³ represents...
trifluoromethyl. In a fifth embodiment, R^{33} represents hydroxy. In a sixth embodiment, R^{33} represents hydroxy(C$_6$)alkyl. In one aspect of that embodiment, R^{33} represents hydroxymethyl. In a seventh embodiment, R^{33} represents C_i_6 alkoxy. In one aspect of that embodiment, R^{33} represents methoxy. In an eighth embodiment, R^{33} represents amino. In a ninth embodiment, R^{33} represents carboxy.

In a first embodiment, R^{34} represents hydrogen. In a second embodiment, R^{34} represents halogen. In one aspect of that embodiment, R^{34} represents fluoro. In a third embodiment, R^{34} represents halo(C$_6$)alkyl. In one aspect of that embodiment, R^{34} represents fluoromethyl. In a fourth embodiment, R^{34} represents hydroxy. In a fifth embodiment, R^{34} represents C_{1-6} alkoxy, especially methoxy. In a sixth embodiment, R^{34} represents C_i_6 alkylthio, especially methylthio. In a seventh embodiment, R^{34} represents C_i_6 alkylsulphinyl, especially methylsulphinyl. In an eighth embodiment, R^{34} represents Ci_6 alkylsulphonyl, especially methylsulphonyl. In a ninth embodiment, R^{34} represents amino. In a tenth embodiment, R^{34} represents C_{1-6} alkylamino, especially methylamino.

In an eleventh embodiment, R^{34} represents di(C$_6$)alkylamino, especially dimethylamino. In a twelfth embodiment, R^{34} represents (C$_{2-6}$)alkylcarbonylamino, especially acetylamino. In a thirteenth embodiment, R^{34} represents (C$_{2-6}$)alkylcarbonylamino(C$_6$)alkyl, especially acetylaminomethyl. In a fourteenth embodiment, R^{34} represents (Ci$_6$)alkylsulphonylamino, especially methyl sulphonylamino. In a fifteenth embodiment, R^{34} represents (Ci$_6$)alkylsulphonylamino(Ci$_6$)alkyl, especially methylsulphonylaminomethyl.

Typically, R^{34} represents hydrogen, halogen, halo(C$_6$)alkyl, hydroxy or (C$_{2-6}$)alkylcarbonylamino(Ci$_6$)alkyl.

Selected values of R^{34} include hydrogen, fluoro, fluoromethyl, hydroxy, methoxy, methylthio, methylsulphinyl, methylsulphonyl, amino, methylamino, dimethylamino and acetylaminomethyl.

Particular values of R^{34} include hydrogen, fluoro, fluoromethyl, hydroxy and acetylaminomethyl.

Suitably, R^{34} represents hydrogen or hydroxy.

An alternative sub-class of compounds according to the invention is represented by the compounds of formula (IIM) and N-oxides thereof, and pharmaceutically acceptable salts and solvates thereof, and glucuronide derivatives thereof, and co-crystals thereof:
wherein

\(E, Q, Z, W, R_{12}, R_{15}, R_{16} \) and \(R_{21} \) are as defined above.

With specific reference to formula (IIM), the integer \(W \) is suitably 0, S or N-R\(^{31} \), especially S or N-R\(^{31} \).

Specific novel compounds in accordance with the present invention include each of the compounds whose preparation is described in the accompanying Examples, and pharmaceutically acceptable salts and solvates thereof, and co-crystals thereof.

The compounds in accordance with the present invention are beneficial in the treatment and/or prevention of various human ailments. These include autoimmune and inflammatory disorders; neurological and neurodegenerative disorders; pain and nociceptive disorders; cardiovascular disorders; metabolic disorders; ocular disorders; and oncological disorders.

Inflammatory and autoimmune disorders include systemic autoimmune disorders, autoimmune endocrine disorders and organ-specific autoimmune disorders. Systemic autoimmune disorders include systemic lupus erythematosus (SLE), psoriasis, psoriatic arthropathy, vasculitis, polymyositis, scleroderma, multiple sclerosis, systemic sclerosis, ankylosing spondylitis, rheumatoid arthritis, non-specific inflammatory arthritis, juvenile inflammatory arthritis, juvenile idiopathic arthritis (including oligoarticular and polyarticular forms thereof), anaemia of chronic disease (ACD), Still's disease (juvenile and/or adult onset), Beliefs disease and Sjogren's syndrome. Autoimmune endocrine disorders include thyroiditis. Organ-specific autoimmune disorders include Addison's disease, haemolytic or pernicious anaemia, acute kidney injury (AKI; including cisplatin-induced AKI), diabetic nephropathy (DN), obstructive uropathy (including cisplatin-induced obstructive uropathy), glomerulonephritis (including Goodpasture's syndrome, immune complex-mediated glomerulonephritis and antineutrophil cytoplasmic antibodies
(ANCA)-associated glomerulonephritis), lupus nephritis (LN), minimal change disease, Graves' disease, idiopathic thrombocytopenic purpura, inflammatory bowel disease (including Crohn's disease, ulcerative colitis, indeterminate colitis and pouchitis), pemphigus, atopic dermatitis, autoimmune hepatitis, primary biliary cirrhosis, autoimmune pneumonitis, autoimmune carditis, myasthenia gravis, spontaneous infertility, osteoporosis, osteopenia, erosive bone disease, chondritis, cartilage degeneration and/or destruction, fibrosing disorders (including various forms of hepatic and pulmonary fibrosis), asthma, rhinitis, chronic obstructive pulmonary disease (COPD), respiratory distress syndrome, sepsis, fever, muscular dystrophy (including Duchenne muscular dystrophy) and organ transplant rejection (including kidney allograft rejection).

Neurological and neurodegenerative disorders include Alzheimer's disease, Parkinson's disease, Huntington's disease, ischaemia, stroke, amyotrophic lateral sclerosis, spinal cord injury, head trauma, seizures and epilepsy.

Cardiovascular disorders include thrombosis, cardiac hypertrophy, hypertension, irregular contractility of the heart (e.g. during heart failure), and sexual disorders (including erectile dysfunction and female sexual dysfunction). Modulators of TNFa function may also be of use in the treatment and/or prevention of myocardial infarction (see J.J. Wu et al, JAMA, 2013, 309, 2043-2044).

Metabolic disorders include diabetes (including insulin-dependent diabetes mellitus and juvenile diabetes), dyslipidemia and metabolic syndrome.

Ocular disorders include retinopathy (including diabetic retinopathy, proliferative retinopathy, non-proliferative retinopathy and retinopathy of prematurity), macular oedema (including diabetic macular oedema), age-related macular degeneration (ARMD), vascularisation (including corneal vascularisation and neovascularisation), retinal vein occlusion, and various forms of uveitis and keratitis.

Oncological disorders, which may be acute or chronic, include proliferative disorders, especially cancer, and cancer-associated complications (including skeletal complications, cachexia and anaemia). Particular categories of cancer include haematological malignancy (including leukaemia and lymphoma) and non-haematological malignancy (including solid tumour cancer, sarcoma, meningioma, glioblastoma multiforme, neuroblastoma, melanoma, gastric carcinoma and renal cell carcinoma). Chronic leukaemia may be myeloid or lymphoid. Varieties of leukaemia include lymphoblastic T cell leukaemia, chronic myelogenous leukaemia (CML), chronic...
lymphocytic/lymphoid leukaemia (CLL), hairy-cell leukaemia, acute lymphoblastic leukaemia (ALL), acute myelogenous leukaemia (AML), myelodysplasia syndrome, chronic neutrophilic leukaemia, acute lymphoblastic T cell leukaemia, plasmacytoma, immunoblastic large cell leukaemia, mantle cell leukaemia, multiple myeloma, acute megakaryoblastic leukaemia, acute megakaryocyte leukaemia, promyelocytic leukaemia and erythroleukaemia. Varieties of lymphoma include malignant lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma, follicular lymphoma, MALT1 lymphoma and marginal zone lymphoma. Varieties of non-haematological malignancy include cancer of the prostate, lung, breast, rectum, colon, lymph node, bladder, kidney, pancreas, liver, ovary, uterus, cervix, brain, skin, bone, stomach and muscle. Modulators of TNFα function may also be used to increase the safety of the potent anticancer effect of TNF (see F.V. Hauwermeiren et al., J. Clin. Invest., 2013, 123, 2590-2603).

The present invention also provides a pharmaceutical composition which comprises a compound in accordance with the invention as described above, or a pharmaceutically acceptable salt or solvate thereof, in association with one or more pharmaceutically acceptable carriers.

Pharmaceutical compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical, ophthalmic or rectal administration, or a form suitable for administration by inhalation or insufflation.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methyl cellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogenphosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium glycollate); or wetting agents (e.g. sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles or preservatives. The preparations may
also contain buffer salts, flavouring agents, colouring agents or sweetening agents, as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

The compounds of formula (I) may be formulated for parenteral administration by injection, e.g. by bolus injection or infusion. Formulations for injection may be presented in unit dosage form, e.g. in glass ampoules or multi-dose containers, e.g. glass vials. The compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.

In addition to the formulations described above, the compounds of formula (I) may also be formulated as a depot preparation. Such long-acting formulations may be administered by implantation or by intramuscular injection.

For nasal administration or administration by inhalation, the compounds according to the present invention may be conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of a suitable propellant, e.g. dichlorodifluoromethane, fluorotrichloromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack or dispensing device may be accompanied by instructions for administration.

For topical administration the compounds of use in the present invention may be conveniently formulated in a suitable ointment containing the active component suspended or dissolved in one or more pharmaceutically acceptable carriers. Particular carriers include, for example, mineral oil, liquid petroleum, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax and water. Alternatively, the compounds of use in the present invention may be formulated in a suitable lotion containing the active component suspended or dissolved in one or more pharmaceutically acceptable carriers. Particular
carriers include, for example, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, benzyl alcohol, 2-octyldodecanol and water.

For ophthalmic administration the compounds of use in the present invention may be conveniently formulated as micronized suspensions in isotonic, pH-adjusted sterile saline, either with or without a preservative such as a bactericidal or fungicidal agent, for example phenylmercuric nitrate, benzylalkonium chloride or chlorhexidine acetate. Alternatively, for ophthalmic administration compounds may be formulated in an ointment such as petrolatum.

For rectal administration the compounds of use in the present invention may be conveniently formulated as suppositories. These can be prepared by mixing the active component with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and so will melt in the rectum to release the active component. Such materials include, for example, cocoa butter, beeswax and polyethylene glycols.

The quantity of a compound of use in the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound chosen and the condition of the patient to be treated. In general, however, daily dosages may range from around 10 ng/kg to 1000 mg/kg, typically from 100 ng/kg to 100 mg/kg, e.g. around 0.01 mg/kg to 40 mg/kg body weight, for oral or buccal administration, from around 10 ng/kg to 50 mg/kg body weight for parenteral administration, and from around 0.05 mg to around 1000 mg, e.g. from around 0.5 mg to around 1000 mg, for nasal administration or administration by inhalation or insufflation.

If desired, a compound in accordance with the present invention may be co-administered with another pharmaceutically active agent, e.g. an anti-inflammatory molecule such as methotrexate or prednisolone.

The compounds of formula (I) above may be prepared by a process which comprises reacting a compound of formula (III) with a compound of formula (IV):
wherein E, Q, Y, Z, R\textsubscript{1} and R\textsubscript{2} are as defined above, and L\textsubscript{1} represents a suitable leaving group.

The leaving group L\textsubscript{1} is typically a halogen atom, e.g. bromo.

The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. a C\textsubscript{1-4} alkanol such as ethanol, or a cyclic ether such as 1,4-dioxane.

The compounds of formula (I) above wherein E represents -C(O)\textsubscript{-} may be prepared by a process which comprises reacting a compound of formula (V) with a compound of formula (VI):

\[
\begin{align*}
\text{(V)} & \\
\text{(VI)} &
\end{align*}
\]

wherein Q, Y, Z, R\textsubscript{1} and R\textsubscript{2} are as defined above, R\textsubscript{x} represents a C\textsubscript{i-4} alkyl group, e.g. methyl, and L\textsubscript{2} represents a suitable leaving group.

The leaving group L\textsubscript{2} is typically a halogen atom, e.g. bromo.

The reaction is conveniently effected at ambient or elevated temperature in a suitable solvent, e.g. a dipolar aprotic solvent such as N,N\textsubscript{-}dimethylformamide, a hydrocarbon solvent such as toluene, or a C\textsubscript{i-4} alkanol such as ethanol.

The intermediates of formula (V) above may be prepared by reacting a compound of formula (III) as defined above with a compound of formula (VII):

\[
\begin{align*}
\text{(VII)}
\end{align*}
\]

wherein Q, Z and R\textsubscript{x} are as defined above, and R\textsubscript{y} represents a C\textsubscript{i-4} alkyl group, e.g. methyl.
The reaction is conveniently effected at ambient or elevated temperature in a suitable solvent, e.g. a hydrocarbon solvent such as toluene, or a C\textsubscript{1-4} alkanol such as methanol.

The compounds of formula (I) above wherein E represents -CH(OH)- may be prepared by a process which comprises reacting a compound of formula Y-MgHal with a compound of formula (VIII):

![Diagram](image)

wherein Q, Y, Z, R\textsubscript{1} and R\textsubscript{2} are as defined above, and Hal represents a halogen atom.

The halogen atom Hal is typically bromo.

The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. a cyclic ether such as tetrahydrofuran.

The intermediates of formula (VIII) above may be prepared by treating a compound of formula (IX):

![Diagram](image)

wherein Q, Z, R\textsubscript{1} and R\textsubscript{2} are as defined above; with (chloromethylene)dimethyliminium chloride (Vilsmeier reagent).

The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. a dipolar aprotic solvent such as N,N-dimethylformamide.

The compounds of formula (I) above wherein E represents -CH\textsubscript{2}- and Y represents optionally substituted aryl or heteroaryl may be prepared by a process which comprises reacting a compound of formula Y1-H with a compound of formula (X):
wherein Q, Z, R1 and R2 are as defined above, and Y1 represents aryl or heteroaryl, either of which groups may be optionally substituted by one or more substituents; in the presence of a sulfonic acid derivative.

The sulfonic acid derivative of use in the foregoing reaction is suitably an organic sulfonic acid derivative such as methanesulfonic acid. The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. water.

The intermediates of formula (X) above may be prepared by treating a compound of formula (IX) as defined above with formaldehyde. The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. water.

The intermediates of formula (IX) above may be prepared by reacting a compound of formula (III) as defined above with a compound of formula (XI):

\[
\begin{align*}
\text{(XI)} \\
\text{wherein Q, Z and L}^1 \text{ are as defined above; under conditions analogous to those described above for the reaction between compounds (III) and (IV).}
\end{align*}
\]

The compounds of formula (I) above wherein -Q-Z represents -CH\textsubscript{2}OH may be prepared by a process which comprises treating a compound of formula (XII):

\[
\begin{align*}
\text{(XII)} \\
\end{align*}
\]
wherein E, Y, R₁ and R² are as defined above, and R³ represents a C₁₋₄ alkyl group, e.g. methyl; with a reducing agent.

The reducing agent of use in the foregoing reaction is suitably an alkali metal borohydride such as lithium borohydride. The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. a cyclic ether such as tetrahydrofuran, or a C₁₋₄ alkanol such as methanol, or a mixture thereof.

Alternatively, the reducing agent of use in the foregoing reaction may suitably be diisobutylaluminium hydride. The reaction is conveniently effected at a temperature in the region of 0°C in a suitable solvent, e.g. a cyclic ether such as tetrahydrofuran.

The intermediates of formula (XII) above may be prepared by reacting a compound of formula (III) as defined above with a compound of formula (XIII):}

```
wherein E, Y, R² and L¹ are as defined above; under conditions analogous to those described above for the reaction between compounds (III) and (IV).

The compounds of formula (I) above wherein E represents -N(H)- may be prepared by a process which comprises reacting a compound of formula (III) as defined above with an isocyanide derivative of formula Y-NC and an aldehyde derivative of formula OHC-Q-Z; in the presence of a transition metal catalyst.

The transition metal catalyst of use in the foregoing reaction is suitably a zirconium derivative, e.g. a zirconium halide such as zirconium(IV) chloride. The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. a C₁₋₄ alkanol such as w-butanol.

The compounds of formula (I) above wherein Q represents -CH₂N(H)- may be prepared by a process which comprises reacting a compound of formula Z-NH₂ with a compound of formula (XIV):
wherein \( 
\begin{align*} \text{E, Y, R}_1 \text{ and } \text{R}_2 & \text{ are as defined above; in the presence of a reducing agent.} \\
\text{The reducing agent of use in the above reaction is suitably sodium borohyride.} 
\end{align*}
\)

The intermediates of formula (XIV) may be prepared from the corresponding compound of formula (I) wherein \( \text{Q-Z} \) represents \(-\text{CH}_2\text{OH}\) by treatment with an oxidising agent such as Dess-Martin periodinane.

Where they are not commercially available, the starting materials of formula (III), (IV), (VI), (VII), (XI) and (XIII) may be prepared by methods analogous to those described in the accompanying Examples, or by standard methods well known from the art.

It will be understood that any compound of formula (I) initially obtained from any of the above processes may, where appropriate, subsequently be elaborated into a further compound of formula (I) by techniques known from the art. By way of example, a compound of formula (I) wherein \( \text{E} \) represents \( -\text{C(O)} - \) may be converted into the corresponding compound wherein \( \text{E} \) represents \( -\text{CH(OH)} - \) by treatment with a reducing agent such as sodium borohydrider.

A compound of formula (I) wherein \( \text{E} \) represents \( -\text{CH(OH)} - \) may be converted into the corresponding compound wherein \( \text{E} \) represents \( -\text{CH}_2 - \) by heating with elemental iodine and phosphinic acid in acetic acid; or by treating with triethylsilane and an acid, e.g. an organic acid such as trifluoroacetic acid, or a Lewis acid such as boron trifluoride diethyl etherate; or by treating with chlorotrimethylsilane and sodium iodide; or by a two-step procedure which comprises: (i) treatment with thionyl bromide; and (ii) treatment of the product thereby obtained with a transition metal catalyst, e.g. (2,2'-bipyridine)dichlororuthenium(II) hydrate, in the presence of diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (Hantzsch ester) and a base, e.g. an organic base such as \( \text{N,N-diisopropyl-ethylamine} \).
A compound of formula (I) wherein E represents -CH₂- may be converted into the corresponding compound wherein E represents -CH(CH₃)- by treatment with a methyl halide, e.g. methyl iodide, in the presence of a base such as lithium hexamethyldisilazide. A compound of formula (I) which contains a hydroxy group may be alkylated by treatment with the appropriate alkyl halide in the presence of a base, e.g. sodium hydride, or silver oxide. A compound of formula (I) wherein -Q-Z represents -CH₂OH may be arylated in a two-step procedure which comprises: (i) treatment with thionyl chloride; and (ii) treatment of the chloro derivative thereby obtained with the appropriate aryl or heteroaryl hydroxide. A compound of formula (I) wherein -Q-Z represents -CH₂S-Z via a two-step procedure which comprises: (i) treatment with thionyl chloride; and (ii) treatment of the chloro derivative thereby obtained with a compound of formula Z-SH, typically in the presence of a base, e.g. an inorganic base such as potassium carbonate. A compound of formula (I) wherein -Q-Z represents -CH₂OH may be converted into the corresponding compound of formula (I) wherein -Q-Z represents -CH₂-CN via a two-step procedure which comprises: (i) treatment with thionyl chloride; and (ii) treatment of the chloro derivative thereby obtained with a cyanide salt such as sodium cyanide. A compound of formula (I) which contains hydroxy may be converted into the corresponding fluoro-substituted compound by treatment with diethylamino sulfur trifluoride (DAST) or bis(2-methoxyethyl)amino sulfur trifluoride (BAST). A compound of formula (I) which contains hydroxy may be converted into the corresponding difluoro-substituted compound via a two-step procedure which comprises: (i) treatment with an oxidising agent, e.g. manganese dioxide; and (ii) treatment of the carbonyl-containing compound thereby obtained with DAST.

A compound of formula (I) which contains an N-H moiety may be alkylated by treatment with the appropriate alkyl halide, typically at an elevated temperature in an organic solvent such as acetonitrile; or at ambient temperature in the presence of a base, e.g. an alkali metal carbonate such as potassium carbonate or cesium carbonate, in a suitable solvent, e.g. a dipolar aprotic solvent such as Ν,Ν-dimethylformamide.

Alternatively, a compound of formula (I) which contains an N-H moiety may be alkylated by treatment with the appropriate alkyl tosylate in the presence of a base, e.g. an inorganic base such as sodium hydride, or an organic base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
A compound of formula (I) which contains an N-H moiety may be methylated by treatment with formaldehyde in the presence of a reducing agent, e.g. sodium triacetoxyborohydride.

A compound of formula (I) which contains an N-H moiety may be acylated by treatment with the appropriate acid chloride, e.g. acetyl chloride, or with the appropriate carboxylic acid anhydride, e.g. acetic anhydride, typically at ambient temperature in the presence of a base, e.g. an organic base such as triethylamine.

A compound of formula (I) which contains an N-H moiety may be converted into the corresponding compound wherein the nitrogen atom is substituted by C_{1-6} alkylsulphonyl, e.g. methylsulphonyl, by treatment with the appropriate C_{1-6} alkylsulphonic acid anhydride, e.g. methanesulphonic anhydride, typically at ambient temperature in the presence of a base, e.g. an organic base such as N,N-disopropylethylamine.

A compound of formula (I) substituted by amino (-NH₂) may be converted into the corresponding compound substituted by C_{1-6} alkylsulphonylamino, e.g. methylsulphonylamino, or bis[(Ci₆)alkylsulphonyl]amino, e.g. bis(methylsulphonyl)amino, by treatment with the appropriate Ci₆ alkylsulphonyl halide, e.g. a Ci₆ alkylsulphonyl chloride such as methanesulphonyl chloride. Similarly, a compound of formula (I) substituted by hydroxy (-OH) may be converted into the corresponding compound substituted by C_{1-6} alkylsulphonyloxy, e.g. methylsulphonyloxy, by treatment with the appropriate Ci₆ alkylsulphonyl halide, e.g. a Ci₆ alkylsulphonyl chloride such as methanesulphonyl chloride.

A compound of formula (I) containing the moiety -S- may be converted into the corresponding compound containing the moiety -S(O)- by treatment with 3-chloroperoxybenzoic acid. Likewise, a compound of formula (I) containing the moiety -S(O)- may be converted into the corresponding compound containing the moiety -S(0)₂⁻ by treatment with 3-chloroperoxybenzoic acid. Alternatively, a compound of formula (I) containing the moiety -S- may be converted into the corresponding compound containing the moiety -S(0)₂⁻ by treatment with Oxone® (potassium peroxymonosulfate).

A compound of formula (I) containing an aromatic nitrogen atom may be converted into the corresponding N-oxide derivative by treatment with 3-chloroperoxybenzoic acid.

A bromophenyl derivative of formula (I) may be converted into the corresponding optionally substituted 2-oxopyrrolidin-1-ylphenyl or 2-oxooxazolidin-3-ylphenyl derivative by treatment with pyrrolidin-2-one or oxazolidin-2-one, or an appropriately
substituted analogue thereof. The reaction is conveniently effected at an elevated temperature in the presence of copper(I) iodide, \( n \) \( \text{NS}^{-N} \) \( \text{dimethylcyclohexane-1}^{-} \text{diamine} \) and an inorganic base such as potassium carbonate.

A compound of formula (I) wherein \( R^1 \) represents halogen, e.g. bromo, may be converted into the corresponding compound wherein \( R^1 \) represents an optionally substituted aryl or heteroaryl moiety by treatment with the appropriately substituted aryl or heteroaryl boronic acid or a cyclic ester thereof formed with an organic diol, e.g. pinacol, 1,3-propanediol or neopentyl glycol. The reaction is typically effected in the presence of a transition metal catalyst, e.g. \([1,1']\text{-bis(diphenylphosphino)ferrocene} \) \( \text{dichloropalladium(II)} \), tetrakis(triphenylphosphine)palladium(0), or \( \text{bis[3-} \text{(diphenylphosphanyl)cyclopenta-2,4-dien-1-yl]} \) \text{iron-dichloropalladium-dichloromethane complex} \) and a base, e.g. an inorganic base such as sodium carbonate or potassium carbonate, or potassium phosphate.

A compound of formula (I) wherein \( R^1 \) represents halogen, e.g. bromo, may be converted into the corresponding compound wherein \( R^1 \) represents an optionally substituted aryl, heteroaryl or heterocycloalkenyl moiety via a two-step procedure which comprises: (i) reaction with \( \text{bis(pinacolato)diboron} \) or \( \text{bis(neopentyl glycolato)diboron} \); and (ii) reaction of the compound thereby obtained with an appropriately functionalised halo- or tosylxy-substituted aryl, heteroaryl or heterocycloalkenyl derivative. Step (i) is conveniently effected in the presence of a transition metal catalyst such as \([1,1']\text{-bis-} \text{(diphenylphosphino)ferrocene} \) \( \text{dichloropalladium(II)} \), or \( \text{bis[3-} \text{(diphenylphosphanyl)cyclopenta-2,4-dien-1-yl]} \) \text{iron-dichloropalladium-dichloromethane complex} \). Step (ii) is conveniently effected in the presence of a transition metal catalyst such as tetrakis(triphenylphosphine)palladium(0), or \( \text{bis[3-} \text{(diphenylphosphanyl)cyclopenta-2,4-dien-1-yl]} \) \text{iron-dichloropalladium-dichloromethane complex} \) and a base, e.g. an inorganic base such as sodium carbonate or potassium carbonate.

A compound of formula (I) wherein \( R^1 \) represents halogen, e.g. bromo, may be converted into the corresponding compound wherein \( R^1 \) represents an optionally substituted \( \text{C}_{26} \text{alkynyl moiety} \) by treatment with an appropriately substituted alkyne derivative, e.g. 2-hydroxybut-3-yne. The reaction is conveniently accomplished with the assistance of a transition metal catalyst, e.g. tetrakis(triphenylphosphine)palladium(0), typically in the presence of copper(I) iodide and a base, e.g. an organic base such as triethylamine.
A compound of formula (I) wherein \( R^1 \) represents halogen, e.g. bromo, may be converted into the corresponding compound wherein \( R^1 \) represents an optionally substituted imidazol-1-yl moiety by treatment with the appropriately substituted imidazole derivative, typically in the presence of copper(II) acetate and an organic base such as \( N,N,N',N' \)-tetramethylethylenediamine (TMEDA).

A compound of formula (I) wherein \( R^1 \) represents halogen, e.g. bromo, may be converted into the corresponding compound wherein \( R^1 \) represents 2-(methoxycarbonyl)-ethyl via a two-step procedure which comprises: (i) reaction with methyl acrylate; and (ii) catalytic hydrogenation of the alkenyl derivative thereby obtained, typically by treatment with a hydrogenation catalyst, e.g. palladium on charcoal, under an atmosphere of hydrogen gas. Step (i) is typically effected in the presence of a transition metal catalyst, e.g. palladium(II) acetate or bis(dibenzylideneacetone)palladium(0), and a reagent such as tri(ori/io-tolyl)phosphine.

In general, a compound of formula (I) containing a \(-\text{C}\equiv\text{C}\-\) functionality may be converted into the corresponding compound containing a \(-\text{CH-CH-}\-\) functionality by catalytic hydrogenation, typically by treatment with a hydrogenation catalyst, e.g. palladium on charcoal, under an atmosphere of hydrogen gas, optionally in the presence of a base, e.g. an alkali metal hydroxide such as sodium hydroxide.

A compound of formula (I) wherein \( R^1 \) represents 6-methoxypyridin-3-yl may be converted into the corresponding compound wherein \( R^1 \) represents 2-oxo-1,2-dihydropyridin-5-yl by treatment with pyridine hydrochloride; or by heating with a mineral acid such as hydrochloric acid. By utilising similar methodology, a compound of formula (I) wherein \( R^1 \) represents 6-methoxy-4-methylpyridin-3-yl may be converted into the corresponding compound wherein \( R^1 \) represents 4-methyl-2-oxo-1,2-dihydropyridin-5-yl; and a compound of formula (I) wherein \( R^1 \) represents 6-methoxy-5-methylpyridin-3-yl may be converted into the corresponding compound wherein \( R^1 \) represents 3-methyl-2-oxo-1,2-dihydropyridin-5-yl.

A compound of formula (I) wherein \( R^1 \) represents 2-oxo-1,2-dihydropyridin-5-yl may be converted into the corresponding compound wherein \( R^1 \) represents 2-oxopiperidin-5-yl by catalytic hydrogenation, typically by treatment with gaseous hydrogen in the presence of a hydrogenation catalyst such as platinum(IV) oxide.

A compound of formula (I) containing an ester moiety, e.g. a \( C_2-6 \) alkoxy carbonyl group such as methoxycarbonyl or ethoxycarbonyl, may be converted into the
corresponding compound containing a carboxy (-CO₂H) moiety by treatment with an acid, e.g. a mineral acid such as hydrochloric acid.

A compound of formula (I) containing an N-(1-ethyloxy-carbonyl) moiety may be converted into the corresponding compound containing an N-H moiety by treatment with an acid, e.g. a mineral acid such as hydrochloric acid, or an organic acid such as trifluoroacetic acid.

A compound of formula (I) containing an ester moiety, e.g. a C₂₋₆ alkoxy carbonyl group such as methoxycarbonyl or ethoxycarbonyl, may alternatively be converted into the corresponding compound containing a carboxy (-CO₂H) moiety by treatment with a base, e.g. an alkali metal hydroxide selected from lithium hydroxide, sodium hydroxide and potassium hydroxide; or an organic base such as sodium methoxide or sodium ethoxide.

A compound of formula (I) containing a carboxy (-CO₂H) moiety may be converted into the corresponding compound containing an amide moiety by treatment with the appropriate amine in the presence of a condensing agent such as 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide.

A compound of formula (I) containing a carbonyl (C=O) moiety may be converted into the corresponding compound containing a -C(CH₃)(OH)- moiety by treatment with methylmagnesium bromide. Similarly, a compound of formula (I) containing a carbonyl (C=O) moiety may be converted into the corresponding compound containing a -C(CF₃)(OH)- moiety by treatment with (trifluoromethyl)trimethylsilane and cesium fluoride. A compound of formula (I) containing a carbonyl (C=O) moiety may be converted into the corresponding compound containing a -C(CH₂NO₂)(OH)- moiety by treatment with nitromethane.

A compound of formula (I) containing a hydroxymethyl moiety may be converted into the corresponding compound containing a formyl (-CHO) moiety by treatment with an oxidising agent such as Dess-Martin periodinane. A compound of formula (I) containing a hydroxymethyl moiety may be converted into the corresponding compound containing a carboxy moiety by treatment with an oxidising agent such as tetrapropylammonium perruthenate.

A compound of formula (I) wherein R¹ represents a substituent containing at least one nitrogen atom, which substituent is linked to the remainder of the molecule via a nitrogen atom, may be prepared by reacting a compound of formula (I) wherein R¹ represents halogen, e.g. bromo, with the appropriate compound of formula R¹-H [e.g. 1-
(pyridin-3-yl)piperazine or morpholine]. The reaction is conveniently effected with the assistance of a transition metal catalyst, e.g. tris(dibenzylideneacetone)dipalladium(0), in the presence of an amination ligand such as 2-dicyclohexylphosphino-2',4',6'-triisopropyl-biphenyl (XPhos) or 2,2'-bis(diphenylphosphino)-1', 1'-binaphthalene (BINAP) and a base, e.g. an inorganic base such as sodium tert-butoxide. Alternatively, the reaction may be effected using palladium diacetate, in the presence of a reagent such as [2',6'-bis(propan-2-yloxy)biphenyl-2-yl](dicyclochexyl)phosphone and a base, e.g. an inorganic base such as cesium carbonate.

A compound of formula (I) containing an oxo moiety can be converted into the corresponding compound containing an ethoxycarbonylmethylidene moiety by treatment with triethyl phosphonoacetate in the presence of a base such as sodium hydride.

A compound of formula (IIB) wherein R^{21} represents ethenyl may be prepared by reacting a compound of formula (IIB) wherein R^{21} represents halogen, e.g. chloro, with potassium vinyl trifluoroborate. The reaction is typically effected in the presence of a transition metal catalyst, e.g. [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II), and a base, e.g. an organic base such as triethylamine.

A compound of formula (IIB) wherein R^{21} represents halogen, e.g. chloro, may be converted into the corresponding compound wherein R^{21} represents an optionally substituted C_{4-7} cycloalkenyl moiety by treatment with the appropriately substituted cycloalkenyl boronic acid or a cyclic ester thereof formed with an organic diol, e.g. pinacol, 1,3-propanediol or neopentyl glycol. The reaction is typically effected in the presence of a transition metal catalyst, e.g. bis[3-(diphenylphosphanyl)cyclopenta-2,4-dien-1-yl]iron-dichloropalladium-dichloromethane complex, and a base, e.g. an inorganic base such as potassium carbonate.

A compound of formula (IIB) wherein R^{21} represents a substituent containing at least one nitrogen atom, which substituent is linked to the remainder of the molecule via a nitrogen atom, may be prepared by reacting a compound of formula (IIB) wherein R^{21} represents halogen, e.g. chloro, with the appropriate compound of formula R^{21}-H [e.g. 2-methoxyethylamine, N-methyl-L-alanine, 2-aminocyclopentanecarboxylic acid, 3-aminocyclopentane-3-carboxylic acid, 1-(aminomethyl)cyclopropanecarboxylic acid, methyl azetidine-3-carboxylate, pyrrolidin-3-ol, pyrrolidine-3-carboxylic acid, piperidine-2-carboxylic acid, piperidine-3-carboxylic acid, 4-[(1H-tetrazol-5-yl)piperidine, pipervazine, 1-(methylsulfonyl)piperazine, pipervazin-2-one, 2-(pipervazin-1-yl)propanoic acid,
morpholine, morpholine-2-carboxylic acid, thiomorpholine, thiomorpholine 1,1-dioxide, 1,4-diazepan-5-one, 2-oxa-5-azabicyclo[2.2.1]heptane or an appropriately substituted azaspiroalkane], optionally in the presence of a base, e.g. an organic base such as triethylamine or N,N-diisopropylethylamine and/or 1-methyl-2-pyrrolidinone, or pyridine, or an inorganic base such as potassium carbonate.

Where a mixture of products is obtained from any of the processes described above for the preparation of compounds according to the invention, the desired product can be separated therefrom at an appropriate stage by conventional methods such as preparative HPLC; or column chromatography utilising, for example, silica and/or alumina in conjunction with an appropriate solvent system.

Where the above-described processes for the preparation of the compounds according to the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques. In particular, where it is desired to obtain a particular enantiomer of a compound of formula (I) this may be produced from a corresponding mixture of enantiomers using any suitable conventional procedure for resolving enantiomers. Thus, for example, diastereomeric derivatives, e.g. salts, may be produced by reaction of a mixture of enantiomers of formula (I), e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base. The diastereomers may then be separated by any convenient means, for example by crystallisation, and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt. In another resolution process a racemate of formula (I) may be separated using chiral HPLC. Moreover, if desired, a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above. Alternatively, a particular enantiomer may be obtained by performing an enantiomer-specific enzymatic biotransformation, e.g. an ester hydrolysis using an esterase, and then purifying only the enantiomerically pure hydrolysed acid from the unreacted ester antipode.

Chromatography, recrystallisation and other conventional separation procedures may also be used with intermediates or final products where it is desired to obtain a particular geometric isomer of the invention.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in *Protective Groups in Organic Chemistry*, ed. J.F.W. McOmie, Plenum Press, 1973; and
The following Examples illustrate the preparation of compounds according to the invention.

The compounds in accordance with this invention potently inhibit the binding of a fluorescence conjugate to TNFa when tested in the fluorescence polarisation assay described below. Moreover, certain compounds in accordance with this invention potently inhibit TNFa-induced NF-κB activation in the reporter gene assay described below.

**Fluorescence Polarisation Assay**

*Preparation of Compound (A)*

1-(2,5-Dimethylbenzyl)-6-[4-(piperazin-1-ylmethyl)phenyl]-2-(pyridin-4-ylmethyl)-1H-benzimidazole - hereinafter referred to as "Compound (A)" - can be prepared by the procedure described in Example 499 of WO 2013/186229 (published 19 December 2013); or by a procedure analogous thereto.

*Preparation of fluorescence conjugate*

Compound (A) (27.02 mg, 0.0538 mmol) was dissolved in DMSO (2 mL). 5-(6) Carboxy-fluorescein succinimyl ester (24.16 mg, 0.0510 mmol) (Invitrogen catalogue number: C131-1) was dissolved in DMSO (1 mL) to give a bright yellow solution. The two solutions were mixed at room temperature, the mixture turning red in colour. The mixture was stirred at room temperature. Shortly after mixing a 20 µL aliquot was removed and diluted in a 80:20 mixture of AcOH:H₂O for LC-MS analysis on the 1200RR-6140 LC-MS system. The chromatogram showed two closely eluting peaks at retention times of 1.42 and 1.50 minutes, both with mass (M+H)⁺ = 860.8 amu, corresponding to the two products formed with the 5- and 6-substituted carboxyflourescein group. A further peak at retention time 2.21 minutes had a mass of (M+H)⁺ = 502.8 amu, corresponding to Compound (A). No peak was observed for unreacted 5(-6) carboxyfluorescein succinimyl ester. The peak areas were 22.0%, 39.6% and 31.4% for the three signals, indicating a 61.6% conversion to the two isomers of the desired fluorescence conjugate at that time-point. Further 20 µL aliquots were extracted...
after several hours and then after overnight stirring, diluted as before and subjected to LC-MS analysis. The percentage conversion was determined as 79.8% and 88.6% respectively at these time-points. The mixture was purified on a UV-directed preparative HPLC system. The pooled purified fractions were freeze-dried to remove excess solvent. After freeze-drying, an orange solid (23.3 mg) was recovered, equivalent to 0.027 mmol of fluorescence conjugate, corresponding to an overall yield of 53% for the reaction and preparative HPLC purification.

**Inhibition of binding of fluorescence conjugate to TNFa**

Compounds were tested at 10 concentrations starting from 25 µM in a final assay concentration of 5% DMSO, by pre-incubation with TNFa for 60 minutes at ambient temperature in 20 mM Tris, 150 mM NaCl, 0.05% Tween 20, before addition of the fluorescence conjugate and a further incubation for 20 hours at ambient temperature. The final concentrations of TNFa and the fluorescence conjugate were 10 nM and 10 nM respectively in a total assay volume of 25 µL. Plates were read on a plate reader capable of detecting fluorescence polarisation (e.g. an Analyst HT plate reader; or an Envision plate reader). An IC₅₀ value was calculated using XLfit™ (4 parameter logistic model) in ActivityBase.

When tested in the fluorescence polarisation assay, the compounds of the accompanying Examples were all found to exhibit IC₅₀ values of 50 µM or better.

**Reporter Gene Assay**

**Inhibition of TNFa-induced NF-κB activation**

Stimulation of HEK-293 cells by TNFa leads to activation of the NF-κB pathway. The reporter cell line used to determine TNFa activity was purchased from InvivoGen. HEK-Blue™ CD40L is a stable HEK-293 transfected cell line expressing SEAP (secreted embryonic alkaline phosphatase) under the control of the IENB minimal promoter fused to five NF-KB binding sites. Secretion of SEAP by these cells is stimulated in a dose-dependent manner by TNFa, with an EC50 of 0.5 ng/mL for human TNFa. Compounds were diluted from 10 mM DMSO stocks (final assay concentration 0.3% DMSO) to generate a 10-point 3-fold serial dilution curve (e.g. 30,000 nM to 2 nM final concentration). Diluted compound was preincubated with TNFa for 60 minutes prior to addition to a 384-well microtitre plate and incubated for 18 h. The final TNFa
concentration in the assay plate was 0.5 ng/mL. SEAP activity was determined in the supernatant using a colorimetric substrate, e.g. QUANTI-Blue™ or HEK-Blue™ Detection media (InvivoGen). Percentage inhibitions for compound dilutions were calculated between a DMSO control and maximum inhibition (by excess control compound) and an IC$_{50}$ value calculated using XLfit™ (4 parameter logistic model) in ActivityBase.

When tested in the reporter gene assay, certain compounds of the accompanying Examples were found to exhibit IC$_{50}$ values of 50 μM or better.

**EXAMPLES**

**Abbreviations**

DCM: dichloromethane  
EtOAc: ethyl acetate  
MeOH: methanol  
DMSO: dimethylsulfoxide

h: hour  
M: mass  
HPLC: High Performance Liquid Chromatography  
LCMS: Liquid Chromatography Mass Spectrometry  
ES+: Electrospray Positive Ionisation  
RT: retention time

**Nomenclature**

Compounds were named with the aid of ACD/Name Batch (Network) version 11.01, and/or Accelrys Draw 4.0.

**Analytical Conditions**

**Analytical HPLC**

Column: Waters, X Bridge, 20 x 2.1 mm, 2.5 μm

Mobile Phase A: 10 mM ammonium formate in water + 0.1% ammonia

Mobile Phase B: acetonitrile + 5% solvent A + 0.1% ammonia

Injection Volume: 5.0 μL

Flow Rate: 1.00 mL/minute

Gradient program: 5% B to 95% B in 4 minutes; hold till 5.00 minutes; at 5.10 minutes B cone, is 5% up to 6.5 minutes
**INTERMEDIATE 1**

6-Bromo-1,2,4-triazin-3-amine

To a stirred solution of 1,2,4-triazin-3-amine (2.0 g, 20.8 mmol) in methanol:

- 20 mL water (2:1) was added a solution of bromine (3.29 g, 20.8 mmol) in methanol.
- The reaction mixture was stirred at room temperature for 2 h. The solvent was evaporated *in vacuo*, then the residue was quenched with saturated aqueous NaHCO₃ solution and extracted with DCM (3 x 50 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated *in vacuo*. The crude residue was washed with diethyl ether, to give the *title compound* (1.4 g, 38%) as a yellow solid.

\[ \delta_H (400 \text{ MHz, DMSO-d}_6) 8.39 (s, 1H), 7.46 (\text{br s, } 2\text{H}) \]

LCMS (ES+) 174.9 (M+H)+, RT 1.30 minutes.

**INTERMEDIATE 2**

N'-(6-Bromo-1,2,4-triazin-3-yl)-N,N-dimethylacetamidine

To a stirred solution of Intermediate 1 (1.4 g, 8.04 mmol) in toluene (20 mL) was added N,N-dimethylacetamide dimethyl acetal (1.07 g, 8.04 mmol), and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was concentrated *in vacuo*, then the crude residue was washed with saturated aqueous NaOH solution and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated *in vacuo*. The crude material was purified by column chromatography (1% methanol in dichloromethane) to give the *title compound* (640 mg, 33%) as a brown gum.

\[ \delta_H (400 \text{ MHz, DMSO-d}_6) 8.64 (s, 1H), 3.10 (d, 6\text{H, } J 13.2 \text{ Hz}), 2.11 (s, 3\text{H}) \]

LCMS (ES+) 246 (M+H)+, RT 1.57 minutes.

**INTERMEDIATE 3**

2-Bromo-1-r2-(difluoromethoxy)phenylethanone

To a stirred solution of 2-(difluoromethoxy)acetophenone (5 g, 27.9 mmol) in MeOH (15 mL) was added a solution of bromine (1.38 mL, 27.9 mmol) in MeOH (10 mL). The reaction mixture was stirred at room temperature for 5-10 minutes before being heated at 75°C for 1 h. The reaction mixture was concentrated *in vacuo*, then the residue
was diluted with DCM (20 mL) and washed with aqueous sodium bicarbonate solution (20 mL). The aqueous layer was back-extracted with DCM (2 x 20 mL), then the combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated in vacuo, to afford the title compound (6.6 g, 92%) as a pale yellow oil. δH (500 MHz, CDC13) 7.83 (m, 1H), 7.58 (td, 1H, J 8.3, 1.7 Hz), 7.34 (m, 1H), 7.20 (d, 1H, J 8.3 Hz), 6.64 (t, 1H, 772.9 Hz), 4.53 (s, 2H). HPLC-MS: MH+ mlz 265/267, RT 1.32 minutes.

**INTERMEDIATE 4**

(2-Bromo-6-methylimidazol-2-yl)[1,2,4,1triazin-7-yl]2-(difluoromethoxy)phenyllmethanone

A solution of Intermediate 2 (2.50 g, 10.2 mmol) and Intermediate 3 (2.70 g, 10.2 mmol) in ethanol (20 mL) was heated at 100°C for 4 h under microwave irradiation. The solvent was evaporated under vacuum, then the crude residue was diluted with water and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The resulting crude material was purified by column chromatography (30% EtOAc in hexane) to give the title compound (800 mg, 20%) as a yellow solid. δH (400 MHz, CDC13) 8.51 (s, 1H), 7.60 (t, 2H, J 7.0 Hz), 7.39 (t, 1H, J1A Hz), 7.19 (d, 1H, J 8.8 Hz), 6.34 (t, 1H, 773.2 Hz), 2.71 (s, 3H). LCMS (ES+) 383 (M+H)+, RT 2.47 minutes.

**INTERMEDIATE 5**

(2-Bromo-6-methylimidazol-2-yl)[1,2,4,1triazin-7-yl]2-(difluoromethoxy)phenyllmethanol

To a stirred solution of Intermediate 4 (1.0 g, 2.6 mmol) and CeCl3 (1.93 g, 7.8 mmol) in ethanol (15 mL) at 0°C was added, in one portion, sodium borohydride (0.15 g, 3.9 mmol), and the reaction mixture was stirred at 0°C for 4 h. The reaction mixture was then quenched with aqueous ammonium chloride solution (20 mL) and concentrated in vacuo. The residue was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The crude material was purified by column chromatography (30% EtOAc in hexane) to
give the title compound (0.26 g, 26%) as a yellow solid. δH (400 MHz, CDCl₃) 8.35 (s, 1H), 7.82 (d, 1H, J 1.2 Hz), 7.35 (t, 1H, 77.8 Hz), 7.30 (t, 1H, 77.6 Hz), 7.07 (d, 1H, J 8.0 Hz), 6.71 (br s, 1H), 6.41 (t, 1H, 774.2 Hz), 3.09 (br s, 1H), 2.39 (s, 3H). LCMS (ES+) 385 (M+H)⁺, RT 2.24 minutes.

**INTERMEDIATE 6**

2-Bromo-7-{r2-(difluoromethoxy)phenyllmethyl|-6-methylimidazori,2 -biri,2,41triazine

A mixture of Intermediate 5 (0.20 g, 0.52 mmol) and sodium iodide (0.78 g, 5.20 mmol) in acetonitrile (4 mL) was heated at 100°C under nitrogen. Chlorotrimethylsilane (0.57 g, 5.2 mmol) was added dropwise and the reaction mixture was stirred at 100°C for 2 h, after which time the reaction mixture was concentrated in vacuo. The residue was extracted with ethyl acetate (3 x 20 mL) and washed with saturated sodium bicarbonate solution (-20 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The crude material was purified by column chromatography (20-30% EtOAc in hexane) to give the title compound (0.1 g, 50%). δH (400 MHz, DMSO-d₆) 8.55 (s, 1H), 7.31 (t, 1H, 77.6 Hz), 7.22 (t, 1H, 774.2 Hz), 7.20-7.12 (m, 3H), 4.31 (s, 2H), 2.39 (s, 3H). LCMS (ES+) 371 (M+H)⁺, RT 2.66 minutes.

**EXAMPLE 1**

2-(5- {7-r2-(Difluoromethoxy)benzyl]-6-methylimidazor 1,2-bi[1,2,41triazin-2-yl } -pyrimidin-2-yl]-propan-2-ol

Intermediate 6 (102 mg, 0.28 mmol), 2-(l-hydroxy- l-methylene)pyrimidine-5-boronic acid pinacol ester (111 mg, 0.42 mmol) and 1,1'-bis(diphenylphosphino)-ferrocene-palladium(II) dichloride dichloromethane complex (9.4 mg, 0.012 mmol) were suspended in 1,4-dioxane (7 mL) and 2M aqueous sodium carbonate solution (1 mL). The reaction mixture was degassed (3 x vacuurn/N₂), then heated under nitrogen at 100°C for 2 h. The reaction mixture was allowed to cool to room temperature, then partitioned with EtOAc (25 mL) and water (25 mL). The layers were separated and the aqueous layer was back-extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The crude material was purified by column chromatography (SiO₂, 25-100% EtOAc/hexane
followed by 0-20% MeOH/EtOAc), and the resulting material was further purified by preparative HPLC, to give the title compound (39 mg, 33%) as a yellow solid. $\delta$(400 MHz, DMSO-$d_6$) 9.42 (s, 2H), 9.15 (s, IH), 7.42 (d, IH, 77.6 Hz), 7.29-7.35 (m, IH), 7.25 (t, IH, J 74.0 Hz), 7.15-7.22 (m, 2H), 5.22 (s, IH), 4.44 (s, 2H), 2.39 (s, 3H), 1.56 (s, 6H). pH 10 long: M+H 427, RT 1.98 minutes. pH 3 long: M+H 427, RT 2.02 minutes.
Claims:

1. A compound of formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof:

   ![Chemical Structure](image)

   (I)

   wherein

   E represents a covalent bond; or E represents -0-, -S-, -S(O)-, -S(0) 2- or -N(R 5)-; or E represents an optionally substituted straight or branched C1-4 alkylene chain;

   Q represents a covalent bond; or Q represents -0-, -S-, -S(O)-, -S(0) 2-, -S(0)(NR 4)-, -N(R 4)-, -C(0)N(R 4)-, -N(R 4)C(0)-, -S(0) 2N(R 4)- or -N(R 4)S(0) 2-; or Q represents an optionally substituted straight or branched C1-6 alkylene chain optionally comprising one, two or three heteroatom-containing linkages independently selected from -0-, -S-, -S(O)-, -S(0) 2-, -S(0)(NR 4)-, -N(R 4)-, -C(0)N(R 4)-, -N(R 4)C(0)-, -S(0) 2N(R 4)- and -N(R 4)S(0) 2-;

   Y represents C3-7 cycloalkyl, aryl, C3-7 heterocycloalkyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents;

   Z represents hydrogen, halogen or trifluoromethyl; or Z represents C1-6 alkyl, C3-7 cycloalkyl, aryl, C3-7 heterocycloalkyl, C3-7 heterocycloalkenyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; or Z represents -Z 1-Z 2 or -Z 1-C(0)-Z 2, either of which moieties may be optionally substituted by one or more substituents;

   Z 1 represents a divalent radical derived from an aryl, C3-7 heterocycloalkyl or heteroaryl group;

   Z 2 represents aryl, C3-7 heterocycloalkyl, C3-7 heterocycloalkenyl or heteroaryl;

   R 1 and R 2 independently represent hydrogen, halogen, cyan, nitro, hydroxy, trifluoromethyl, trifluoromethoxy, -OR a, -SR a, -SOR a, -SO 2R a, -SF 5, -NR bR c, -NR bCOR d,
-NR²C₀²Rᵈ, -NHCONR³Rᵇ, -NR³SO₂Rᵀ, -N(S₀₂Rᵀ)₂, -NS₂NR³Rᵇ, -CORᵈ, -C₀₂Rᵈ,
-CONR³Rᵇ, -CON(OR a)Rᵇ, -SO₂NR³Rᵇ or -S(0)(NR³)Rᵈ; or C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₄₋₇ cycloalkenyl, C₃₋₇ cycloalkyl(C₆)alkyl, aryl, aryl(C₆)-alkyl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkyl(C₆)alkyl, C₃₋₇ heterocycloalkenyl, C₄₋₉ heterobicycloalkyl, heteroaryl, heteroaryl(C₆)alkyl, (C₃₋₇)heterocycloalkyl(C₆)alkyl-aryl-, heteroaryl(C₃₋₇)heterocycloalkyl-, (C₃₋₇)cycloalkyl-heteroaryl-, (C₃₋₇)cycloalkenyl(C₆)alkyl-heteroaryl-, (C₄₋₇)cycloalkenyl-heteroaryl-, (C₄₋₇)bicycloalkyl-heteroaryl-, (C₃₋₇)heterocycloalkenyl-heteroaryl-, (C₃₋₇)heterocycloalkenyl(C₆)alkyl-heteroaryl-, (C₃₋₇)heterocycloalkenyl-heteroaryl-, (C₄₋₇)bicycloalkyl-heteroaryl- or (C₄₋₇)spiroheterocycloalkyl-heteroaryl-, any of which groups may be optionally substituted by one or more substituents;

R³ and R⁴ independently represent hydrogen or Ci₋₆ alkyl;

R⁸ represents C₁₋₆ alkyl, aryl, aryl(C₆)alkyl, heteroaryl or heteroaryl(C₆)alkyl, any of which groups may be optionally substituted by one or more substituents;

R⁹ and R₅ independently represent hydrogen or trifluoromethyl; or Ci₋₆ alkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl(C₆)alkyl, aryl, aryl(C₆)alkyl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkyl(C₆)alkyl, heteroaryl or heteroaryl(C₆)alkyl, any of which groups may be optionally substituted by one or more substituents; or

R³ and R₅, when taken together with the nitrogen atom to which they are both attached, represent azetidin-1-yl, pyrrolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-2-yl, piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, homopiperidin-1-yl, homomorpholin-4-yl or homopiperazin-1-yl, any of which groups may be optionally substituted by one or more substituents;

Rᵈ represents hydrogen; or Ci₋₆ alkyl, C₃₋₇ cycloalkyl, aryl, C₃₋₇ heterocycloalkyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; and

R⁶ represents C₁₋₆ alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

2. A compound as claimed in claim 1 wherein Y represents phenyl, which group may be optionally substituted by one or more substituents.
3. A compound as claimed in claim 1 represented by formula (IIA) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof:

![Chemical Structure](image)

(IIA)

wherein

- $R^{11}$ represents halogen or cyano; or $R^{11}$ represents $C_{1-6}$ alkyl, $C_{2-6}$ alkenyl, aryl, $C_{3-7}$ heterocycloalkyl, $C_{3-7}$ heterocycloalkenyl, heteroaryl, $(C_{3-7})$heterocycloalkyl-
- $(C_{6})$alkyl-aryl-, heteroaryl$(C_{3-7})$heterocycloalkyl-, $(C_{3-7})$cycloalkyl-heteroaryl-
- $(C_{3-7})$cycloalkyl$(C_{6})$alkyl-aryl-, $(C_{4-7})$cycloalkyl-aryl-
- $(C_{3-7})$heterocycloalkenyl-heteroaryl-, $(C_{4-7})$bicycloalkyl-heteroaryl-
- $(C_{3-7})$heterocycloalkenyl-heteroaryl-, $(C_{4-7})$heterobicycloalkyl-heteroaryl- or $(C_{4-7})$spiroheterocycloalkyl-heteroaryl-; any of which groups may be optionally substituted by one or more substituents;

- $R^{12}$ represents represents hydrogen, halogen, trifluoromethyl or optionally substituted $C_{1-6}$ alkyl;

- $R^{15}$ and $R^{16}$ independently represent hydrogen, halogen, cyano, nitro, $C_{1-6}$ alkyl, trifluoromethyl, hydroxy, $C_{1-6}$ alkoxy, difluoromethoxy, trifluoromethoxy, $C_{1-6}$ alkylthio, $C_{1-6}$ alklysulfinyl, $C_{1-6}$ alklysulfonyl, amino, $C_{1-6}$ alkylamino, di$(C_{1-6})$alkylamino, arylamino, $C_{2-6}$ alkylcarbonylamino, $C_{1-6}$ alkyldisulfonamido, formyl, $C_{2-6}$ alkyldisulfonamido, $C_{3-6}$ cycloalkylcarbonyl, $C_{3-6}$ heterocycloalkylcarbonyl, carboxy, $C_{2-6}$ alkoxycarbonyl, aminocarbonyl, $C_{1-6}$ alkaminocarbonyl, di$(C_{1-6})$alkylaminocarbonyl, aminosulfonyl, $C_{1-6}$ alkylaminosulfonyl or di$(C_{1-6})$alkylaminosulfonyl; and

E, Q and Z are as defined in claim 1.
4. A compound as claimed in claim 3 wherein $R^{11}$ represents heteroaryl, which group may be optionally substituted by one or more substituents.

5. A compound as claimed in claim 3 represented by formula (IIB) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof:

![Chemical Structure](Image)

$\text{(IK)}$

10. wherein

- V represents C-R$^{22}$ or N;
- $R^{21}$ represents hydrogen, halogen, halo(Ci_6)alkyl, cyano, Ci$_{-6}$ alkyl, trifluoromethyl, C$_{2-6}$ alkenyl, C$_{2-6}$ alkynyl, hydroxy, hydroxy(Ci$_{6}$)alkyl, Ci$_{-6}$ alkoxy, (Ci$_{6}$)alkoxy(Ci$_{6}$)alkyl, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, carboxy(C$_{3-7}$)cycloalkyl-oxo, Ci$_{6}$ alkythio, C$_{1-6}$ alkylsulphonyl, (Ci$_{6}$)alkylsulphonyl(Ci$_{6}$)alkyl, amino, amino-(Ci$_{6}$)alkyl, Ci$_{-6}$ alkylamino, di(Ci$_{6}$)alkylamino, (C$_{1-6}$)alkoxy(Ci$_{6}$)alkylamino, N-[(C$_{1-6}$)-alkyl-N-[hydroxy(Ci$_{6}$)alkyl]amino, C$_{2-6}$ alkylcarbonylamino, (C$_{2-6}$)alkylcarbonylamino, (C$_{1-6}$)alkyl, C$_{2-6}$ alkoxycarbonylamino, N-{[(C$_{6}$)alkyl]-N-[(carboxy(Ci$_{6}$)alkyl]amino, carboxy(C$_{3-7}$)cycloalkylamino, carboxy(C$_{3-7}$)cycloalkyl(Ci$_{6}$)alkylamino, C$_{1-6}$ alkyl-sulphoximinyl or [(C$_{1-6}$)alkyl]-[(C$_{1-6}$)alky]-sulphoximinyl; or $R^{21}$ represents (C$_{3-7}$)cycloalkyl, (C$_{3-7}$)cycloalkyl(C$_{1-6}$)alkyl, (C$_{4-7}$)cycloalkenyl, (C$_{4-9}$)bicycloalkyl, (C$_{3-7}$)heterocycloalkyl, (C$_{3-7}$)heterocycloalkenyl, (C$_{4-9}$)heterobicycloalkyl or
spiroheterocycloalkyl, any of which groups may be optionally substituted by one or more substituents;

R^{22} represents hydrogen, halogen or C_{1-6} alkyl;

R^{23} represents hydrogen, C_{1-6} alkyl, trifluoromethyl or C_{1-6} alkoxy;

E, Q and Z are as defined in claim 1; and

R^{12}, R^{15} and R^{16} are as defined in claim 3.

6. A compound as claimed in claim 5 wherein R^{21} represents hydroxy(C_{1-6})alkyl.

7. A compound as claimed in claim 5 represented by formula (IIC), (IID), (HE), (IIF), (IIG), (IIH), (IIJ), (IIK) or (IIL) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof:
wherein

T represents -CH₂ or -CH₂CH₂⁻;

U represents C(O) or S(0)₂;

W represents O, S, S(O), S(0)₂, ..., hydrogen, halogen, C₆ alkyl, trifluoromethyl, hydroxy, hydroxy(C₆)alkyl, C₆ alkoxy, amino or carboxy;

-M- represents -CH₂ or -CH₂CH₂⁻;

R³¹ represents hydrogen, cyano(C₆)alkyl, C₆ alkyl, trifluoromethyl, trifluoro-ethyl, C₆ alkylsulphonyl, (C₆)alkylsulphonyl(C₆)alkyl, formyl, C₂₆ alkylcarbonyl, carboxy, carboxy(C₆)alkyl, C₂₆ alkoxy carbonyl, a carboxylic acid isostere or prodrug moiety Ω, -(C₁₋₆)alkyl-Ω, aminocarbonyl, C₆ alkylaminocarbonyl, di(C₆)alkylaminocarbonyl, amino sulphonyle or di(C₆)alkylaminosulphonyl;

R³² represents hydrogen, halogen, cyano, hydroxy, hydroxy(C₆)alkyl, C₆ alkylsulphonyl, formyl, C₂₆ alkylcarbonyl, carboxy, carboxy(C₆)alkyl, C₂₆ alkoxy carbonyl, a carboxylic acid isostere or prodrug moiety Ω, -(C₁₋₆)alkyl-Ω;

R³³ represents hydrogen, halogen, C₆ alkyl, trifluoromethyl, hydroxy, hydroxy(C₆)alkyl, C₆ alkoxy, amino or carboxy;
R represents hydrogen, halogen, halo(C\textsubscript{i-6})alkyl, hydroxy, C\textsubscript{1-6} alkoxy, C\textsubscript{1-6} alkylthio, C\textsubscript{1-6} alkylsulphinyl, C\textsubscript{1-6} alkylsulphonyl, amino, C\textsubscript{1-6} alkylamino, di(C\textsubscript{1-6})alkylamino, (C\textsubscript{2-6})alkylcarbonylamino, (C\textsubscript{2-6})alkylcarbonylamino(C\textsubscript{1-6})alkyl, (C\textsubscript{1-6})alkylsulphonylamino or (C\textsubscript{1-6})alkylsulphonylamino(C\textsubscript{1-6})alkyl;

E, Q, Z and R\textsuperscript{4} are as defined in claim 1;
R\textsuperscript{12}, R\textsuperscript{15} and R\textsuperscript{16} are as defined in claim 3; and
V and R\textsuperscript{23} are as defined in claim 5.

8. A compound as claimed in claim 3 represented by formula (IIM) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof:

![Formula (IIM)](image)

wherein
E, Q and Z are as defined in claim 1;
R\textsuperscript{12}, R\textsuperscript{15} and R\textsuperscript{16} are as defined in claim 3;
R\textsuperscript{21} is as defined in claim 5; and
W is as defined in claim 7.

9. A compound as claimed in any one of the preceding claims wherein E represents -CH\textsubscript{2}-.

10. A compound as claimed in any one of claims 3 to 9 wherein R\textsuperscript{15} represents difluoromethoxy.

11. A compound as herein specifically disclosed in any one of the Examples.
12. A compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for use in therapy.

13. A compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for use in the treatment and/or prevention of disorders for which the administration of a modulator of TNFα function is indicated.

14. A compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for use in the treatment and/or prevention of an inflammatory or autoimmune disorder, a neurological or neurodegenerative disorder, pain or a nociceptive disorder, a cardiovascular disorder, a metabolic disorder, an ocular disorder, or an oncological disorder.

15. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, in association with a pharmaceutically acceptable carrier.

16. A pharmaceutical composition as claimed in claim 15 further comprising an additional pharmaceutically active ingredient.

17. The use of a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof, for the manufacture of a medicament for the treatment and/or prevention of disorders for which the administration of a modulator of TNFα function is indicated.

18. The use of a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide
derivative thereof, or a co-crystal thereof, for the manufacture of a medicament for the treatment and/or prevention of an inflammatory or autoimmune disorder, a neurological or neurodegenerative disorder, pain or a nociceptive disorder, a cardiovascular disorder, a metabolic disorder, an ocular disorder, or an oncological disorder.

19. A method for the treatment and/or prevention of disorders for which the administration of a modulator of TNFα function is indicated which comprises administering to a patient in need of such treatment an effective amount of a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof.

20. A method for the treatment and/or prevention of an inflammatory or autoimmune disorder, a neurological or neurodegenerative disorder, pain or a nociceptive disorder, a cardiovascular disorder, a metabolic disorder, an ocular disorder, or an oncological disorder, which comprises administering to a patient in need of such treatment an effective amount of a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, or a glucuronide derivative thereof, or a co-crystal thereof.
**INTERNATIONAL SEARCH REPORT**

International application No
PCT/EP2014/076841

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D487/04 A61K31/5025 A61P29/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Claim 3, pages 87-88</td>
<td>4-9, 11</td>
</tr>
<tr>
<td></td>
<td>Compounds in preparations 6, 9(1), 9(2) and 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Claim 1, examples 1-3, 7-8, 13-14, 20, 94-162, 192-193, 202-205 ; page 30, 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-21</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "X" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search: 12 February 2015
Date of mailing of the international search report: 23/02/2015

Name and mailing address of the ISA/Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Sahagun Krause, H
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 02/38568 A1 (MERCK SHARP &amp; DOHME [GB]; BETTATI MICHELA [GB]; BLURTON PETER [GB]; CA) 16 May 2002 (2002-05-16) claim 1, all examples; page 3, line 20-page 4, line 17</td>
<td>1-3, 12-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 03/048132 A1 (MERCK SHARP &amp; DOHME [GB]; BETTATI MICHELA [GB]; CHAMBERS MARK STUART [GB]) 12 June 2003 (2003-06-12) claim 1, examples 3-4, 7-9, 13-15, 17, 22-24 and those in pages 49-51; page 4, line 27-page 5, line 14</td>
<td>1-3, 12-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 2011/162835 A1 (INCYTE CORP [US]; ZHUO JIN [US]; HE CHUNHONG [US]; YA0 WENQING [US]) 29 December 2011 (2011-12-29) claim 1, examples; page 9, lines 1-6</td>
<td>1-3, 1-9, 12-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 03/093272 A1 (MERCK SHARP &amp; DOHME [GB]; BETTATI MICHELA [GB]; CHAMBERS MARK STUART [GB]) 13 November 2003 (2003-11-13) claim 1, examples; page 3, line 20-page 4, line 17</td>
<td>1-3, 1-9, 12-20</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 104 762 A1 (S A L V A T LAB SA [ES]) 6 June 2001 (2001-06-06) claim 1, compounds (Ilaa) - (Ihh); paragraphs [0026] - [0028]</td>
<td>1-3, 1-9, 12-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2007015866 A2</td>
<td>08-02-2007</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9212154 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007323725 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PIQ719333 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2669991 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 200703341 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101641093 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103208833 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6210810 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 10841 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2099447 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200970501 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP099400 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2099447 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2497470 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2398843 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1136489 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR P20130106 T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5572388 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010510319 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090094299 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 577127 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2099447 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS 52677 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200835481 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008167287 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 201136781 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013324515 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2008064157 A</td>
</tr>
<tr>
<td>wo 0238568 A1</td>
<td>16-05-2002</td>
<td>AT 310740 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1253002 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002212530 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2427779 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60115282 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60115282 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1343788 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2251518 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004513171 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004023964 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 0238568 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002343110 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2468893 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60219672 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1451161 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2284941 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005518369 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006040940 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 03048132 A</td>
</tr>
</tbody>
</table>

Form PCT/SA/210 (patent family annex) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2011162835 AI 29-12-2011</td>
<td></td>
<td>US 2011082147 Al</td>
<td>07-04-20 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011011712 Al</td>
<td>27-01-20 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 20111269788 Al</td>
<td>23-08-20 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2788398 Al</td>
<td>29-12-20 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102612027 A</td>
<td>05-12-20 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201290744 Al</td>
<td>28-02-20 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2531509 Al</td>
<td>12-12-20 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013518887 A</td>
<td>23-05-20 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120125301 A</td>
<td>14-11-20 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111212967 Al</td>
<td>01-09-20 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013345224 Al</td>
<td>26-12-20 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 20111162835 Al</td>
<td>29-12-20 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2484162 Al</td>
<td>13-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1504007 Al</td>
<td>09-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005529909 A</td>
<td>06-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005165023 Al</td>
<td>28-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03093272 Al</td>
<td>13-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 749770 B2</td>
<td>04-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4782499 A</td>
<td>28-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 105299 A</td>
<td>30-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9912968 A</td>
<td>08-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2339187 Al</td>
<td>17-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1321157 A</td>
<td>07-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20010433 A3</td>
<td>15-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69903046 D</td>
<td>24-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69903046 T2</td>
<td>22-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1104762 T3</td>
<td>21-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1104762 Al</td>
<td>06-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2140354 Al</td>
<td>16-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2182546 T3</td>
<td>01-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1037629 Al</td>
<td>02-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0103004 A2</td>
<td>28-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID 28539 A</td>
<td>31-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20025222438 A</td>
<td>23-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PAO1001332 A</td>
<td>29-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20010568 A</td>
<td>02-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 510196 A</td>
<td>27-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA 11592 A</td>
<td>30-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 345804 Al</td>
<td>02-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1104762 E</td>
<td>29-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 1662001 A3</td>
<td>06-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 200100359 T2</td>
<td>21-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6670365 BI</td>
<td>30-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0008024 Al</td>
<td>17-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YU 7401 A</td>
<td>31-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200101632 A</td>
<td>30-06-2001</td>
</tr>
</tbody>
</table>