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(57) Abstract: A method for analysis of cardiac thythms and the clinical status of a patient, based on calculations of entropy and
moments of time series intervals. An optimal determination is made of segments of data that demonstrate statistical homogeneity,
specifically with regard to moments and entropy. The invention also involves calculating moments and entropy on each interval
segments with the goal of diagnosis of cardiac rhythm. More specifically, an absolute entropy measurement is calculated, provid-
ing dynamic information of fundamental importance in diagnosis and analysis.
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TITLE OF THE INVENTION

SYSTEM, METHOD AND COMPUTER PROGRAM PRODUCT FOR DETECTION OF
CHANGES IN HEALTH STATUS AND RISK OF IMMINENT ILLNESS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit under 35 U.S.C. § 119(e) to
United States Provisional Patent Application Serial Number
61/025,989 filed on February 4, 2008, and Serial Number
61/043,598 filed on April 9, 2008, which are hereby incorporated

by reference in their entireties.

This application is also related to PCT application No.
PCT/US2008/060021, which is hereby incorporated by reference in

its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0001] This invention was not made in the course of federally

sponsored research or development.

THE NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT

[0002] This invention was not made in the course of joint

research agreement.

BACKGROUND OF THE INVENTION

[0003] The present invention generally relates to the field
of cardiology and in particular to detection and analysis of
cardiac function. There is a serious need for detection of
normal and abnormal cardiac rhythms as well as evaluation of the

clinical status of the patient, e.g., detection of severe or
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worsening congestive heart failure, using heart rate (HR) or
interbeat interval series.

[0004] A problem of enormous and growing concern in health
care in America is hospitalization for worsening congestive
heart failure (CHF). New medical therapies have prolonged the
life of many with CHF, and implantable cardiac devices -
implantable cardioverter-defibrillators (ICDs) and biventricular
pacemakers - have been especially effective in prolonging life
and reducing symptoms. ICDs are small battery-powered
electrical impulse generators that are implanted in at-risk
patients and are programmed to detect cardiac arrhythmia and
correct it by delivering a jolt of electricity to the heart
muscle. Most patients with single lead ICDs have reduced Left
Ventricle (LV) function, and thus either have or are at risk for
CHF syndromes. Other than heart rate and heart rate
variability, and in some cases trans-thoracic impedance, no
measures are currently available to gauge the degree of CHF over
time. There is, however, potentially a great deal of clinical

utility in doing so.

[0005] A new role for ICDs is as diagnostic monitors that
might allow early detection of incipient volume overload. For
example, modern pacemakers and defibrillators store several
dimensions of physiological data representative of the
functional status or physiological signals of the patient,

including:

- heart rate (HR)

- heart rate variability (HRV)

- amount of pacing in the atrium and the ventricle
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- patient activity, in hours per day

- atrial fibrillation burden (only in devices with atrial

leads)

- arrhythmia log

- respiration

- trans-thoracic impedance, a measure of pulmonary vascular

congestion

- and any other relevant physiological signals

[0006] The hope is that all of these parameters will yield
clinically useful information about the status of the
cardiovascular system and in particular the possibility of
imminent decompensation. The presumption is that very early
detection of volume overload can be treated at home with
increased doses of medications, averting severe symptoms and the

need for hospitalization.

[0007] These parameters, however, are currently presented to
the physician for review without presenting any interpretation,
and there are few studies of how these data can be of clinical
use. It has been demonstrated that hospitalizations for heart
disease 1s associated with a reduction in heart rate variability
(HRV, a well-established measure of risk of cardiac events)
measured by the standard deviation of 5-minute median A-A
intervals (SDAAM) (the time between sensed, that is, non-paced,
atrial depolarizations), reduction in patient activity, and
increased heart rate (HR) at night. Although a patient with CHF
may exhibit low HRV, there are usually a few beats that are

distinct from the rest and will occur prematurely, followed by
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an extended pause so that the heart can catch-up to where it
should have been absent the premature beat. These are termed

premature ventricular beats or contractions (PVCs).

[0008] Although atrial fibrillation (AF) can be discerned
using coefficient of sample entropy (COSEn), attempts at
developing a diagnostic tool that distinguishes normal sinus
rhythm (NSR) in patients with CHF from other patients with NSR
using only very short heart rate time series have so far not
succeeded. Such a method would be very useful in patients with
ICDs, where the risk of CHF is high but the ability to do
extended calculations is low. The long-felt need for a new
method that addresses the limitations, disadvantages, and
problems discussed above is evidenced by the many databases
available for development and testing of new arrhythmia
detection algorithms. Several of these databases, such as the
MIT-BIH database, have been used during the development and

testing of embodiments of the present disclosure.

[0009] Detection of AF can be accomplished with very high
degrees of accuracy if an intra-atrial cardiac electrogram from
an implanted pacing lead or a conventional EKG signal from skin
electrodes is available. Neither is as non-obtrusive as a
device that records the time from one arterial pulse waveform to
the next, but such a non-invasive device can provide only the
heart rate time series with no information about cardiac
electrical activity. Thus, an algorithm and computer method for
detecting arrhythmia or the clinical status of a patient using

only a heart rate or pulse rate series is a desirable goal.

[0010] There is currently exists no single parameter to
inform clinicians and patients of imminent problems such as CHF.

Yet such an approach is sensible - combinations of data values

4
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may define specific profiles of clinical status. For example, a
measure that combines an HRV measure, patient activity and
nocturnal heart rate is very likely to be more useful than any
of the measures alone. An aspect of an embodiment of the
present invention comprises among other things, combining

multiple data streams using optimized mathematical technigues.

BRIEF SUMMARY OF INVENTION

[0011] We have developed a new measure of heart rate entropy
that changes in proportion to the degree of CHF. It is related
to, but distinct from, sample entropy (SampEn) or the
coefficient of sample entropy (COSEn) that we have previously
developed. We find that we can distinguish CHF patients from

normals using only an analysis of 12 beats every 30 minutes.

[0012] Aspects of various embodiments of the present
disclosure comprise, but are not limited to, the following:
systems and methods for analyses of physiological time series
recorded by implanted cardiac devices, and for analyses of
multiple simultaneously recorded series. While the embodiments
are used herein for detection of incipient congestive heart
failure episodes and atrial fibrillation using information from
implanted pacemakers and cardioverter-defibrillators, other
embodiments are contemplate to extend to other kinds of signals
from internal and external measurement devices and monitors, and

to other states of health and disease.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0013] FIG. 1 is an illustrative diagram of a computer
system.
[0014] FIG. 2 depicts two charts showing the efficacy of

parameters used in the SampEn algorithm.
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[0015] FIG. 3 depicts histograms of expected interval
matches for different matching
probabilities.

[0016] FIG. 4 illustrates histogram from an analysis of
patients in the MIT-BIH database determining
a number of matching intervals on average in
500 interval time series.

[0017] FIG. 5 depicts a histogram of average results from
an analysis of patients from the MIT-RIH
database, the histogram is very similar to
that of FIG. 4, but only 12 instead of 500
interval time series were examined.

[0018] FIG. © is a scatter plot distinguishing between
patients with AF, NSF and CHF.

[0019] FIG. 7 illustrates results from a regression model
using data from an embodiment of the present
disclosure and COSEn in a scatter plot
showing differentiation of patients with AF,
NSEF and CHF.

[0020] FIG. 8 illustrates a box plot showing a trend for
higher diagnostic values in more severe

class III and IV CHF patients.

DETAILED DESCRIPTION OF THE INVENTION

[0021] Aspects of various embodiments of the present
disclosure comprise, but are not limited to, the following:
comparing time series representing periods of a cardiac rhythm
with other series to generate numbers of matches to provide an
entropy estimate. The numbers of matches may further be
processed to generate a diagnostic output representative of a

patient’s abnormal cardiac rhythm and clinical status. No

6
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existing approaches employ optimized estimates of time series
entropy or combine measurements across different kinds of time

series data from implantable cardiac devices.

[0022] One embodiment of the present disclosure focuses on
entropy estimation of time series time domain HRV data types.
Generally speaking, this is a measure of the predictability or
regularity of a time series. Entropy estimation of heart rate
has been well-described for a number of years, and can
distinguish normal long heart rate records from those of
patients with CHF. For example, sample Entropy (SampEn) is a
robust estimator of entropy in short biological and
physiological time series. Multiscale entropy can be described
based on sample entropy measure to accomplish this task.
Entropy estimation of other measures listed above has not been
described, but may hold important clinical information. For
example, a current concept is that illness leads to reduced
coupling among physiological systems, altering the entropy

content of physiological signals.

[0023] An aspect of the present disclosure is to use
optimized entropy calculations of time series information
present in implantable devices to make early diagnosis of sub-
acute, potentially catastrophic illness such as CHF. Each of
the physiological signals listed above (e.g., HR, HRV, ect.) can
be assessed in some way for its regularity or predictability
using an entropy calculation. It has been found that illness
leads to a reduction in complexity of physiological processes.
Thus, time series of heart rate, heart rate variability
parameters themselves (such as the standard deviation of short
thoracic impedance, and intracardiac pressures) should show

changes in entropy as clinical status changes. Of these, heart
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rate has been well-studied. An interesting finding is that
patients with CHF have been reported to have increased entropy
of heart rate time series, a finding that does not fit well with
current knowledge. This apparent discrepancy has been resolved
by showing that a multiscale entropy calculation demonstrated
lower entropy in CHF patients, suggesting that too short a time
scale fails to capture the predictability of normal heart rate

control.

[0024] Embodiments discussed throughout the disclosure
improve the detection of CHF. Various embodiments of the
present disclosure may be based on several fundamental
differences between the RR interval time series in CHF and in
other clinical settings as well as important supplemental
information provided by physiologic signals measuring activity,
blood pressure, and respiration. Measurements of the RR
interval series used to classify cardiac rhythms and clinical
status fall into two basic categories of estimates of the
moments and estimates of entropy rate to characterize heart rate
dynamics. For analysis of multiple simultaneous signals,
mathematical approaches to detect CHF can be placed into 3
categories: 1) moments; 2) entropy and entropy rate; and 3)

cross-correlation and cross-entropy measures.

[0025] The first category includes measurements that are
associated with established statistical methods, such as the
mean, standard deviation, and coefficient of wvariation. The
second category includes the family of Renyi entropy (or g-
entropy) rates. The third category consists of measures of the
association and interaction between the various physiologic
signals. These include results from standard cross-spectral

analysis including pair-wise correlations between signals at
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varying time-lags.

[0026] Embodiments of the present disclosure detect cardiac
rhythms and clinical status of a patient based on a series of RR
intervals or other physiological signals, which arise from a
complex combination of both deterministic and stochastic

physiological processes.

[0027] Sample entropy (SampEn) is a measure derived from
chaos theory that reports on deterministic properties of time
series. SampEn has better statistical properties than
approximate entropy and has been utilized successfully on
neonatal HR data to aid in the prediction of sepsis. SampEn has
also been used as part of a promising new multiscale entropy
(MSE) analysis technique to better discriminate adult HR data
among normal, atrial fibrillation, and congestive heart failure

patients.

[0028] For purposes of comparison, sample entropy is
considered a deterministic approach to measuring complexity and
order in heart rate variability. A complementary approach
included in some embodiments is to consider HR and other
physiological data sufficiently stochastic to model it as a
random process. We have developed stochastic Renyi entropy rate
measures that can be reliably estimated with a known family of
statistical properties. An appropriate member of the family to
emphasize is differential or quadratic entropy rates (g=2) which
is denoted by Q and calculated using the SampEn algorithm with

optimized values for the parameters m and r.

[0029] These measures can be interpreted in ways that are
analogous to the deterministic concepts of complexity and order.

While developed under a stochastic framework, the algorithms are
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easily modified to compute deterministic approach measures that
include both Approximate Entropy (ApEn) and SampEn. There are
several basic differences between the stochastic approach and
the deterministic approaches, and each has potential application
to detection of congestive heart failure. The deterministic
approach, for example, involves calculating probabilities while
the stochastic approach calculates probability densities. The
probabilities involve matching intervals of length m within a

tolerance r and converting them to densities by dividing by the

i
volume of the matching region, which is (2r) . This simply

reduces to adding a factor of log(2r) to ApEn or SampEn. The
stochastic approach becomes viable when the values converge as r

tends to 0 and the deterministic approach is diverging.

[0030] With deterministic approaches, the values of m and r
are fixed for all the analysis (sometimes signal length is also
constant). This is done to enable comparison of a wider variety
of processes, but has several disadvantages. The choices of m
and r vary from study to study and comparison of results is not
always possible. Optimal parameters can be chosen for other
clinical settings. In one embodiment, we use both fixed wvalue
of r = 50 msec as well as r = £(5.D.). With fixed wvalues, there
is always the possibility of encountering data that results in
highly inaccurate entropy estimates, so included in this
embodiment is the continued development of absolute entropy
measures independent of m and r that are statistically reliable

and allow for comparison between a wide range of HR data sets.

[0031] With the stochastic approach, the goal is to estimate
a theoretical limiting value as r goes to zero. The value of r
for estimation does not need to be fixed and can be optimized

for each signal. 1In addition, for longer records we include in

10



WO 2009/100133 PCT/US2009/033082

one embodiment the option of not fixing m and instead estimating
the theoretical limiting value as m tends to infinity. One
advantage of this general philosophy is that tolerances and
interval lengths can be selected individually for each signal to
ensure accurate estimates. Even if it is advantageous or
necessary to compare signals at the same value of r, this
embodiment flexibility allows using different tolerances for

estimating and applying a correction factor.

[0032] This idea is particularly important in the current
setting of estimating entropies of quantized RR intervals
obtained from coarsely sampled EKG waveforms, as quantization of
the signal can occur when the sampling rate is low. These
scenarios mean that all tolerances r within the resolution will
result in the exact same matches and the issue becomes what
value r should be used to calculate the entropy rate. The
proper choice is to pick the value midway between the quantized
values of r. For example, the EKG signal was sampled at 250Hz
for some signals in the CHF database, and thus the RR intervals
are at a resolution of 4 ms. In this case, all tolerances
between, say, 12 and 16 milliseconds would be considered 14 for
the log(2r) term. Different values are needed for signals from
the NSR database and other signals in the CHF database that were
sampled at 128Hz and at a resolution of 7.8 msec. This
continuity correction can be nontrivial when tolerances are
close to the resolution of the data. Some embodiments optimize
the accuracy and discriminating capability of the entropy
measures. Undersampling can occur with other physiologic
signals as well, and the embodiments robustly and accurately

estimate entropy in spite of this problem.

[0033] As an example, we describe the use of entropy measures

11
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to discern abnormal cardiac rhythm and clinical status in RR
interval time series from the canonical MIT-BIH CHF and NSR
databases employing multivariable logistic regression and its

variations. These databases are available at www.physicnet.,org

and are described in Table 1. Most, if not all, of the rhythms
are sinus with varying degrees of premature ventricular beats,

or ventricular ectopy.

12
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Table 1. MIT-BIH databases
Database NSR CHF class CHF class
1-2 3-4
Patients 72 29 15
Age 20 to 76 34 to 79 22 to 63
Male 49% not known 73%
Duration (72) (24)=1 | (29) (24)=6 | (15) (24)=3
(hours) 728 96 60
Sampling (Hz) 128 128 250

NSR = normal sinus rhythm, CHF = congestive heart failure

[0034] We determined optimal values of m and r by calculating
the error of the SampEn estimate for a wide range of both
parameters. The results for distinguishing normal subjects with
NSR from CHF patients with NSR using the MIT data bases are
shown in the FIG. 2.

Here, we analyzed non-overlapping 500

point segments of RR intervals.

[0035] In the maps of FIG. 2, the gray areas 10 represent

favorable characteristics of the m, r pair - accurate entropy

estimates in the left and middle panels, and good discrimination

(measured as the receiver-operating characteristic, or ROC,

area) in the right hand panel. Black areas 11 show m, r pairs

where no matches were found and thus entropy could not be
calculated. The area to the left of and below zigzag line 12
shows an m, r space where SampEn cannot be accurately determined
in atrial fibrillation. This is a sensible result - that area
of the plot requires long intervals that match closely, which is
not the case for AF. These results demonstrate both the general
method for optimal selection of m and r and specific findings

for detecting CHF - m should be 1 or 2, and r should be about 20

msec. With these settings, SampkEn alone provides distinction

13
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with ROC areas around 0.8.

[0036] In implanted devices, computing power and memory are
currently limited, and analysis of 500 point segments is
currently prohibitive. Therefore, a reduced sampling of
parameters from a patient is beneficial. Thus, for the next
analysis, we studied non-overlapping l6-point segments. Moment
and entropy rate parameters described above were estimated for
each record, and CHF detectors were developed using
multivariable logistic regression analysis and an optimal subset
of variables. With multiple physiologic signals, this approach
would be expanded to include moment and entropy rate variables

from each individual.

[0037] In this embodiment, an optimal subset of wvariables for
detecting CHF were the quadratic or differential entropy rate
(Q), the natural logarithm (1ln) of the mean (u), and the log of
the standard deviation (o) of the RR intervals. This model has
an ROC area of .750, which is highly significant as are each of
the coefficients. The entropy rate is calculated using the
SampEn algorithm with parameters m=1 and a tolerance r selected
to ensure a number of matches in the numerator of at least the
record length (in this case 16). This result aided in the
development COSEn, which is described in more detail in PCT
application No. PCT/US2008/060021. We also compare these

results with the coefficient of variation CV=0o/yu.

[0038] The results for other models are summarized below in
Table 2. Subsets of parameters are evaluated using the
significances of individual coefficients and of the overall
model using the Wald statistic adjusted for repeated measures.
The overall significance of the model can be converted to a Wald

Z-statistic, which can be used to make a fair comparison among

14
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models with varying number of parameters. The results clearly
demonstrate that the proposed approach that includes entropy
measures as part of a multivariate model enhances the detection
performance of CHF. Additional improvements are anticipated
with the inclusion of entropy and cross-entropy measures from

other available physiological signals.

Table 2. Model Performances on MIT NSR and CHF data bases

Parameters CHF Wald Wald Z
ROC

log (1) .708 21.4 14.5

log (o) .659 9.2 5.8

log (CV) .638 5.1 2.9

log(n),log (o) 712 33.6 15.8

0 .741 17.8 11.9

Q,1n(u),log (o) . 750 62.6 24.3
[0039] As discussed above, one way of quantifying one period
of a cardiac rhythm is by its length (m). The length can be

determined by, for example, sampling points on an EKG during one
interval of the cardiac rhythm. A longer interval will have a
greater number of samples than a shorter interval. An interval
can be one period of the rhythm, for example an RR or AA

interval, but it could also be any arbitrary size.

[0040] Once the intervals of a cardiac rhythm are quantified,
they may be compared to determine whether the numbers of samples
for each interval match. The intervals may be divided up into,
for example, 12 interval series. Next, each interval may be

compared with each other interval to determine the number of

15
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times that each interval matches another interval of the same
series. FEach interval therefore has a corresponding number of
matches associated with it. For example, 7 intervals may have
matched 0 times, 4 may match 1 time, and 1 may have matched 2
times. A resulting histogram of these values would appear

similar to the left-most histogram of FIG. 3.

[0041] Histograms created in the method just described will
have a predictable appearance depending on the entropy of the
cardiac rhythm. To illustrate, as the tolerance r goes to zero,
the distribution of interval match counts approximates the
distribution of a random variable f(X) where X is a random RR
interval of length m and f is the probability density function
of X, e.g., left-most histogram of FIG. 3. For Gaussian random
numbers, we expect -2 In(interval match counts) to have a
shifted chi-square distribution with m degrees of freedom, e.g.,
middle histogram of FIG. 3. If the RR intervals are
independent, then the distribution of interval match counts (not
including self-matches) is approximately binomial with n-m
trials and success probability p equal to the probability of any
interval matching within the tolerance r. FIG. 3 shows the
expected results of interval match counts for 12-beat segments

and p(match) = 0.05, 0.50 and 0.95.

[0042] In the case of a rhythm with high entropy, as would be
found in a patient with AF, it would be expected that there
would be a low number of matches. This result corresponds to
the left-most histogram of FIG. 3. As is well known in the art,
a patient with CHF has low entropy, i.e., low HRV. Therefore,
it would be expected that a high number of intervals would
match. A resulting histogram would appear similar to the right-

most histogram illustrated in FIG. 3.

16
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[0043] FIG. 4 shows histograms representing entropy measures
for normal (top), CHF (middle) and AF (bottom) patients in the
MIT-BITH databases. In each n-beat segment, the general method
is to count the number of matches that were found for each
interval. For m=1, for example, there are n intervals, and each
can find as many as n-1 matches. To examine the results, we
made histograms of the frequency of intervals having specified
numbers of matches. Each 24-hour record was divided into 500
intervals, and the histograms were averaged. m=2 and r=20 msec.
There are large phenotypic differences. FIG. 7 illustrates how
AF, NSR and CHF patients in the MIT-BIH database are
distinguished using the two measures COSEn and the matching
algorithm disclosed herein, which is based on the histograms on
the left. These results are from an analysis of 12-beat samples
every 30 minutes from 24-hour Holter monitor recordings, and
improve greatly over existing measures such as heart rate and

heart rate variability, results of which are shown in Figure 6.

[0044] Thus, the disclosed matching algorithm should provide
an accurate estimate of the degree of CHF burden in patients
with single lead ICDs, and should be useful in early detection
of deterioration and impending CHF hospitalization. 1In
addition, it can be used to calculate an AF burden in
conjunction with or separate from COSEn analysis. Both COSEn
and the disclosed matching algorithm are computationally
efficient (only a few extra steps are required to employ the
disclosed matching algorithm), and together they offer new
opportunities for informing clinicians about AF and CHF burdens

in at-risk patients.

[0045] Entropy estimation is limited by the fact that it is

fundamentally a ratio of 2 counts (expressed as the negative

17
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log), the numbers of matches of intervals of length m and m+l.
While we have emphasized the importance of adeguate numbers of
counts of both types, we have not until now investigated the
counts themselves. When given an entropy result of 0.693, we
can tell that the ratio of the counts is 0.5, but we cannot tell
whether the counts themselves were 5/10 or 50,000/100,000. It
is conceivable that two time series with the same entropy result
might have very different properties. This is especially
possible in the case of RR interval time series where clinicians
seek to detect CHF among patients with NSR. This is because
patients with CHF can have much lower heart rate variability
(HRV) than normals even though both groups have NSR. Indeed,
many measures of HRV that can distinguish CHF from normals are
based on aspects of reduced variability as measured in the time-
and frequency-domains. Thus, low HRV should increase the number
of matching intervals, and a strategy that employs a count of
matching intervals as well as other measures of entropy should

have increased diagnostic performance.

[00406] FIGS. 4 and 5 use the same records; however, FIG. 5
was analyzed much more sparsely - 12 intervals at a time every
2400 beats, or about every 30 minutes (i.e., m=1 and r=20 msec).

The differences between the histograms remain.

[0047] More specifically, FIGS. 4 and 5 show interval match
count histograms for three groups of representative 24-Holter
recordings from the MIT-BIH databases. From top to bottom of
FIG. 4, the datasets were 500-beat segments from the NSR, CHF
and AF databases. In each, the y-axis is the frequency of
intervals of length m=2 that have the match count given on the
x-axis. The left-most bin, for example, is the frequency of

intervals in the 24hour recording that each found 0 to 10

18
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matches. The right-most bin is the frequency of intervals that
matched 490 to 499 of the other intervals. The total of all the
frequencies is the number of points in the 24-hour records, as

each point is an interval.

[0048] The histograms look very different:

[0049] Histograms from NSR records are characterized by very

few intervals that match the majority of points.

[0050] CHF records have relatively larger numbers of
intervals in the left-most bins, representing intervals with a
small numbers of matches. We ascribe these to premature
ventricular or atrial beats. CHF records, on the other hand,
have much larger numbers of intervals in the right-most bins.
We ascribe these to intervals in a low variability baseline,

where p(match) is high.

[0051] AF records are strikingly different. Most intervals
have very few matches, as expected from the high variability of

the RR interval time series and corresponding low p(match).

[0052] Thus, the observed interval match count histograms
generally follow the theoretical results of FIG. 1, additional
information important to discriminating CHF from NSR is

available in the details of specific interval match count bins.

[0053] The large phenotypic differences between the
histograms indicate that good distinction is possible. Since
one of our goals is to implement the matching algorithms in
implanted devices, where computing power is precious, we also

examined these histograms for much shorter segments. The number

19



WO 2009/100133 PCT/US2009/033082

2
of operations scales with n, so an effective diagnostic strategy

using shorter segment lengths has appeal. In FIG. 5, we show
results for 12-beat segments. In order to prepare for real-

world implementation in implanted devices, where stored energy

th
is at a premium, we only analyzed every 200 segment, or every

2400 beats. This is about every 30 to 35 minutes, depending on
the heart rate. For COSEn, we used m=1 and r = 20 msec. (The
justification for r= 20 msec is that this led to the smallest
proportion of intervals that were degenerate, that is, that
found either no matches or matched every other interval.) Even
at this sparse sampling, large phenotypic differences remain.
It may be that even sparser sampling schemes have equally good

results.

[0054] We used these phenotypic changes in interval match
count histograms to develop a detection scheme based on
multivariable regression. Table 3 shows diagnostic performance
of detection algorithms based on conventional HR and HRV
measures, and on the new measures COSEn and the interval match
counts. Results are based on logistic regression models trained
to distinguish the MIT-BIH NSR records from the MIT-RIH CHF
records, and the ROC (receiver-operating characteristic) curve
area is given. “Match counts” refers to the output of a
regression model utilizing parameters extracted from the match
count histogram. In this example, we used the average number of
intervals having 0, 1, or 11 matches, and we used the average
number of matches per interval. Other kinds of schemes also
give good results. 1In particular, adding the mean RR interval

to the match counts gave the highest diagnostic performance.

Table 3. Performance of multivariable predictive models
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predictor 1 predictor 2 ROC pl P2
S.D. 0.60 *
mean RR 0.78 *
S.D. mean RR 0.79 *
COSEn 0.78 *
match counts model 0.92 *
COSEn match counts model 0.89 *
average counts model |match counts model 0.91 *
match counts model mean RR 0.93
[0055] Predictors 1 and 2 are predictor variables in the

multivariable regression models; ROC is receiver-operating
characteristic curve area; pl and 2 are the p-values on the
coefficients of predictors 1 and 2, respectively, in the
regression models, and * denotes p<0.05 for addition of

independent information.

[0056] It is important to note that COSEn, which we developed
to distinguish AF from NSR, does not add information to the new
measures in detecting CHF. We implemented these predictive
models in the MIT-BIH databases, and represented each Holter
monitor record as a single measure based on analysis of 12 beats
every 2400 beats. For the MIT-BIH AF records, we found that
several had paroxysmal AF and fewer than 40 measures were
available from the record. Accordingly, we added 20 24-hour
Holter monitors from the University of Virginia (UVA) Heart

Station that showed only AF,.

[0057] FIGS. 6 and 7 show scatter plots of old and new
measures. AF records are shown in black squares and combine
records from the MIT-BIH AF database and from our own UVA Holter
database. The other symbols are all from the MIT-BIH databases
- NSR (red dots) and the CHF databases, containing 32 patients
with severe CHF (classes III and IV, right-side up green

triangles) and 12 patients with somewhat less severe CHF
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(classes I and II, upside down blue triangles).

[0058] FIG. 6 illustrates a scatter plot of conventional HRV
measures for 12-beat segments sampled every 2400 beats for
records in MIT-BIH AF, NSR and CHF databases, and 20 AF records
from UVA. The scatter plot includes the results of standard
measures of heart rate (x-axis, mean RR interval) and heart rate
variability (mean of the standard deviation). Though HRV has
been known for years to distinguish among these clinical

conditions, we find little useful information in these settings.

[0059] FIG. 7 shows improved distinction using COSEn (y-axis)
and a new measure, the average of a predictive model based on

interval match count histograms.

[0060] As we have previously disclosed, COSEn separates AF
well from the other records, which all are NSR but with varying
degrees of CHF by clinical criteria. COSEn is not as effective,

however, in detecting CHF.

[0061] In FIG. 7, there is good distinction among the NSR and
CHF groups, consistent with the idea that the matching algorithm
sorts records into a hierarchy along a gradient from no CHF to
severe symptoms. AF is also distinguished on the y-axis due to

the incorporation of COSEn data into the regression model.

[0062] To further test the idea that the new measure changed
smoothly over a range of CHF severity, we compared records of
patients from the MIT-BIH database with NYHA class I/II or class
III/IV CHF. The box plot of FIG. 8 shows that there was a trend
for higher values for the new algorithm in the more severe class

IIT and IV CHF patients.

[0063] New entropy-based measures of RR interval time series
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give information on the presence and degree of CHF. Remarkably
good diagnostic performance is available from only sparsely
sampled data sets - 12 beats every 30 minutes. This new set of
measures should be useful in implanted devices with even a

single ventricular lead to help monitor CHF in patients at risk.

[0064] Turning to FIG. 1, it is contemplated that embodiments
of the invention may be practiced using a computer system. FIG.
1 is an illustrative block diagram for a computer system 100 for
implementation of an exemplary embodiment or portion of an
embodiment of present invention. For example, a method or
system of an embodiment of the present invention may be
implemented using hardware, software or a combination thereof
and may be implemented in one or more computer systems or other
processing systems, such as personal digit assistants (PDAs). In
an example embodiment, the invention was implemented in software
running on a general purpose computer 100 as illustrated in FIG.
1. The computer system 100 may includes one or more processors,
such as processor 104. The Processor 104 is connected to a
communication infrastructure 106 (e.g., a communications bus,
cross-over bar, or network). The computer system 100 may
include a display interface 102 that forwards graphics, text,
and other data from the communication infrastructure 106 (or
from a frame buffer not shown) for display on the display unit

830.

[0065] The computer system 10 may also include a main memory
108, preferably random access memory (RAM), and may include a
secondary memory 110. The secondary memory 110 may include, for
example, a hard disk drive 112 and/or a removable storage drive
114, representing a floppy disk drive, a magnetic tape drive, an

optical disk drive, a flash memory, etc. The removable storage
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drive 114 reads from and/or writes to a removable storage unit
118 in a well known manner. Removable storage unit 118,
represents a floppy disk, magnetic tape, optical disk, etc.
which is read by and written to by removable storage drive 114.
As will be appreciated, the removable storage unit 118 includes
a computer usable storage medium having stored therein computer

software and/or data.

[0066] In alternative embodiments, secondary memory 110 may
include other means for allowing computer programs or other
instructions to be loaded into computer system 100. Such means
may include, for example, a removable storage unit 122 and an
interface 120. Examples of such removable storage
units/interfaces include a program cartridge and cartridge
interface (such as that found in video game devices), a
removable memory chip (such as a ROM, PROM, EPROM or EEPROM) and
associated socket, and other removable storage units 122 and
interfaces 120 which allow software and data to be transferred

from the removable storage unit 122 to computer system 100.

[0067] The computer system 100 may also include a
communications interface 124. Communications interface 124
allows software and data to be transferred between computer
system 100 and external devices. Examples of communications
interface 824 may include a modem, a network interface (such as
an Ethernet card), a communications port (e.g., serial or
parallel, etc.), a PCMCIA slot and card, a modem, etc. Software
and data transferred via communications interface 124 are in the
form of signals 828 which may be electronic, electromagnetic,
optical or other signals capable of being received by
communications interface 124. Signals 128 are provided to

communications interface 124 via a communications path (i.e.,
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channel) 126. Channel 126 (or any other communication means or
channel disclosed herein) carries signals 128 and may be
implemented using wire or cable, fiber optics, blue tooth, a
phone line, a cellular phone link, an RF link, an infrared link,

wireless link or connection and other communications channels.

[0068] In this document, the terms “computer program medium”
and “computer usable medium” are used to generally refer to
media or medium such as removable storage drive 114, a hard disk
installed in hard disk drive 112, and signals 128. These
computer program products are means for providing software to
computer system 100. The computer program product may comprise
a computer useable medium having computer program logic thereon.
The invention includes such computer program products. The
“computer program product” and “computer useable medium” may be

any computer readable medium having computer logic thereon.

[0069] Computer programs (also called computer control logic
or computer program logic) may be stored in main memory 108
and/or secondary memory 110. Computer programs may also be
received via communications interface 124. Such computer
programs, when executed, enable computer system 100 to perform
the features of the present invention as discussed herein. In
particular, the computer programs, when executed, enable
processor 104 to perform the functions of the present invention.
Accordingly, such computer programs represent controllers of

computer system 100.

[0070] In an embodiment where the invention is implemented
using software, the software may be stored in a computer program
product and loaded into computer system 100 using removable
storage drive 114, hard drive 112 or communications interface

124. The control logic (software), when executed by the
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processor 104, causes the processor 104 to perform the functions

of the invention as described herein.

[0071] In another embodiment, the invention is implemented
primarily in hardware using, for example, hardware components
such as application specific integrated circuits (ASICs).
Implementation of the hardware state machine to perform the
functions described herein will be apparent to persons skilled

in the relevant art(s).

[0072] In yet another embodiment, the invention is

implemented using a combination of both hardware and software.

[0073] In an example software embodiment of the invention,
the methods described above may be implemented in SPSS control
language or C++ programming language, but could be implemented
in other various programs or other programs known to those

skilled in the art.

[0074] Embodiments of the present disclosure may extend the
entropy estimation to two or more simultaneous time series of
parameters measured by the device. The present disclosure
relates cross-entropy measures optimized for simultaneous time
series for data using a different scale and of a different
character. These cross-entropy approaches may be extended to
multiple simultaneous time series recorded by implantable
devices, and require optimizations because of the differences in
sampling rates, scales, and dynamics inherent in the recordings
of HR, HR parameters (especially the entropy measures developed
elsewhere in this specification), patient activity, body
temperature, AF and other arrhythmia burden, trans-thoracic

impedance, and intra-cardiac pressures.
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[0075] Thus, a part of some embodiments is to not only
include entropy rate estimates of RR intervals and other
physiologic signals, but to incorporate global measures of
entropy rate for the entire collection of series. We developed

multidimensional entropy estimates for this task.

[0076] For the case of two signals, measures of entropy rate
have already been developed that extend SampEn to Cross-SampEn.
This method requires that the two signals have similar scale and
location, which can be achieved by first standardizing each
signal by subtracting the mean and dividing by the standard
deviation. This step then allows candidate match intervals from
the first signal to be sought in the second signal. By
accumulating the total number of cross-matches of wvarious
interval lengths m, conditional probabilities and densities can
be calculated and natural logarithms taken in the same manner as
SampEn and differential or quadratic entropy rate. One approach
to analyzing more than two signals for detecting CHF is to

calculate all pair-wise combinations of the cross-entropy rate.

[0077] Some embodiments include several enhancements to
estimating entropy rate for p signals, where p>1. First, the
idea of an interval vector of length m can be extended to a
interval matrix of size m times p. In this case, each column
represents the corresponding standardized signal value at a
particular time. In an analogous way to SampEn, interval matrix
matches will regquire that all elements be within a specified
tolerance r. Proceeding in this way leads to a global measure of

entropy rate.

[0078] A second approach is to use ways of determining
matches using distance measures other than a simple tolerance

requirement component by component, for example Euclidean
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distance (the square root of the sum of the component distances
squared). This approach recognizes that simply standardizing
the signals has limitations and does not incorporate the
correlations among the signals. An improved distance measure
(used previously in nearest-neighbor analysis) between the p
signals at two particular times can be achieved using the
Mahalanobis distance which specifically accounts for the
correlation. This distance first multiplies the signal vector
by a matrix that makes the components uncorrelated and then

taking the Euclidean distance.

[0079] In implanted cardiac devices and in many other kinds
of monitors, signals are sampled at different rates. For the
multidimensional entropy measures reported here, the signal
information is summarized at specified time increments (hourly,
for example) for inclusion on the mathematical calculations
described. The summarization may be a robust marker of the
central value such as the median, or detect abnormalities of
interest. Since, for example, reduced HRV is associated with

illness but may visit many levels of variability in the course

th
of an hour, a suitable summary measure is the 10 percentile

lowest value observed. Thus, the summarization strategies play

key roles in the multidimensional detection schemes.

[0080] Some of the measures may vary by time of day, so clock
time is another important dimension to include in the final
predictive schemes. Patients known to have episodes of
arrhythmia such as atrial fibrillation may generate misleading
monitoring results if AF is not detected and quantified, as
naive measures of HRV will return spuriously normal results.
Thus, families of predictive algorithms tailored for past

findings are required.
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[0081] Those of ordinary skill may vary the methods and
apparatus for detecting an abnormal cardiac rhythm and patient
clinical status without varying from the scope of the invention

as defined in the appended claims.
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What 1s claimed is:

1. A method of detecting abnormal cardiac rhythms and
clinical status of a patient comprising:

obtaining physiological data from a subject comprising one
or more series of intervals;

calculating entropy data based the series of intervals; and

generating a diagnostic output based on the entropy data.

2. The method of claim 1, wherein the entropy data based on

the series of intervals comprises numbers of matching intervals.

3. The method of claim 2, wherein generating the diagnostic
output comprises using a regression model to combine the numbers

of matching intervals.

4. The method of claim 1, wherein the physiological data
comprises two or more series of intervals obtained

simultaneously from different physiological signals.

5. The method of claim 1 further comprising separating the
series of intervals into a plurality of subsets of the series of

intervals.
6. The method of claim 5, wherein calculating the entropy
data further comprises averaging entropy data from each of the

plurality of the subsets of the series of intervals.

7. The method of claim 5, wherein the subsets of the series

of intervals comprise less than 13 intervals.
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8. The method of claim 1, wherein generating the
diagnostic result further comprises using the coefficient of

sample entropy (COSEn).

9. The method of claim 1 further comprising producing an
output to a medical care provider to diagnose abnormal cardiac

rhythms and clinical status of the subject.

10. The method of claim 1, wherein the interval data
comprises a number of samples during one period of a cardiac

rhythm.

11. The method of claim 1, wherein calculating entropy data
based on the numbers of matching intervals further comprises a
tolerance value (r) for determining whether two or more

intervals match.

12. The method of claim 1, wherein the data from the
cardiac rhythm of a patient comprises samples from an EKG

waveform.

13. A method of detecting abnormal cardiac rhythms and
clinical status of a patient comprising:

obtaining physiological data from a subject;

separating the physiological data into intervals;

grouping the intervals into one or more sets of segments of
intervals;

determining numbers of matching intervals within each
segment; and

generating a diagnostic output based on the numbers of
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matching intervals.

14. The method of claim 13, wherein the diagnostic output
determines whether the subject has an abnormal cardiac rhythm

and the subject’s clinical status.

15. The method of claim 13, wherein generating the
diagnostic output further comprises running a regression model

on the numbers of matching intervals.

16. The method of claim 13 further comprising calculating

an absolute entropy measurement.

17. The method of claim 16, wherein the absolute entropy

measurement is a coefficient of sample entropy (COSEn).

18. An apparatus for detecting abnormal cardiac rhythms and
clinical status of a patient comprising:

a sampling device for obtaining physiological data from a
subject comprising a one or more series of intervals;

a computer processing device configured for processing the
physiological data from the subject into entropy data and
producing a diagnostic result; and

an output device for rendering the diagnostic output.

19. The apparatus of claim 18, wherein the sampling device

comprises an EKG machine.

20. The apparatus of claim 18, wherein producing the

diagnostic output comprises running a regression model on the
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entropy data.

21. The apparatus according to claim 18, wherein the

physiological data is representative of a cardiac rhythm and

clinical status of the subject.
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