(19)
 (12) Patent Application Publication Saunders et al.

(10) Pub. No.: US 2011/0166370 A1
(43)

Pub. Date:
Jul. 7, 2011
(54) SCATTERED BRANCHED-CHAIN FATTY ACIDS AND BIOLOGICAL PRODUCTION THEREOF

(76) Inventors: Charles Winston Saunders,

 Fairfield, OH (US); Jun Xu, Mason, OH (US); Leo Timothy Laughlin, II, Mason, OH (US); Zubin Sarosh Khambatta, Fairfield, OH (US); Phillip Richard Green, Wyoming, OH (US)(21) Appl. No.: $13 / 004,077$
(22) Filed:

Jan. 11, 2011
Related U.S. Application Data
(60) Provisional application No. 61/294,274, filed on Jan. 12, 2010.

Publication Classification
(51) Int. Cl.

C07C 53/126	(2006.01)
C12P 7/64	(2006.01)
C12N 1/00	(2006.01)
C12N 1/21	(2006.01)

(52) U.S. Cl. 554/1; 435/134; 435/243; 435/252.33

ABSTRACT

Methods and cells for producing scattered branched-chain fatty acids are provided. For example, the invention provides a method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons. The method comprises culturing a cell comprising an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of pro-pionyl-CoA to methylmalonyl-CoA and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA, under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid. The cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s). A cell that produces branched-chain fatty acid and the branched-chain fatty acid also are provided.

Figure 1: mutA nucleotide sequence (SEQ.ID NO: 1)
ATGGCAAGCACGGACCAGGGTACCAACCCGGCAGACACCGACGACCTGACGCCAACCACT CTGAGTCTGGCGGGCGATTTTCCGAAAGCAACCGAAGAACAGTGGGAGCGCGAAGTGGAG AAAGTTCTGAACCGTGGCCGTCCGCCGGAGAAACAGCTGACGTTTGCGGAATGTCTGAAA CGCCTGACGGTCCACACAGTAGACGGCATTGACATTGTGCCAATGTATCGCCCGAAAGAT GCGCCGAAGAAACTGGGTTACCCAGGCGTTGCCCCATTTACACGTGGGACCACGGTTCGT AATGGCGATATGGACGCATGGGATGTCCGTGCACTGCATGAAGATCCGGATGAGAAATTT ACGCGCAAAGCGATTCTGGAAGGGCTGGAACGCGGGGTTACATCTCTGCTGCTGCGTGTG GACCCGGACGCTATTGCTCCAGAACACCTGGATGAAGTGCTGTCTGACGTGCTGCTGGAG ATGACCAAAGTAGAAGTCTTTAGTCGTTACGATCAAGGCGCCGCTGCCGAGGCGCTGGTA TCTGTGTACGAGCGCAGCGATAAACCGGCTAAGGACCTGGCTCTGAATCTGGGTCTGGAC CCGATCGCCTTCGCGGCACTGCAGGGGACGGAACCTGATCTGACTGTCCTGGGTGATTGG GTGCGTCGCCTGGCAAAATTTAGCCCAGATTCTCGTGCAGTGACCATCGATGCGAACATT TATCATAATGCGGGTGCGGGCGATGTAGCAGAGCTGGCTTGGGCCCTGGCTACCGGTGCG GAATATGTTCGTGCACTGGTAGAACAAGGTTTTACGGCGACCGAGGCGTTCGATACGATT AACTTTCGTGTGACCGCAACCCATGATCAGTTTCTGACAATCGCGCGTCTGCGCGCACTG CGTGAGGCGTGGGCGCGCATTGGGGAGGTATTTGGGGTTGATGAGGATAAACGTGGCGCC CGTCAAAATGCGATCACGAGTTGGCGCGATGTGACACGCGAGGACCCGTATGTGAATATC CTGCGCGGGAGCATCGCTACATTTTCTGCAAGCGTGGGTGGGGCCGAAAGTATTACAACT CTGCCTTTTACCCAGGCACTGGGTCTGCCAGAAGACGATTTTCCGCTGCGTATCGCTCGT AATACCGGTATCGTTCTGGCCGAAGAAGTGAACATCGGTCGTGTTAATGATCCGGCCGGC gGTAGCTATTACGTGGAAAGTCTGACTCGTAGTCTGGCCGATGCAGCGTGGAAAGAGTTC CAAGAAGTGGAGAAACTGGGCGGCATGAGCAAGGCGGTGATGACGGAACATGTAACGAAA GTGCTGGATGCCTGCAATGCAGAACGCGCGAAACGCCTGGCCAATCGCAAACAGCCGATT ACCGCAGTAAGCGAATTTCCTATGATTGGGGCGCGCTCTATCGAAACGAAACCTTTTCCT gCcGCACCGGCCCGTAAAGGTCTGGCATGGCATCGCGACAGTGAAGTATTCGAACAACTG ATGGATCGCAGCACCAGTGTGAGTGAACGTCCAAAGGTTTTCCTGGCGTGCCTGGGCACA CGTCGTGACTTCGGTGGTCGTGAGGGTTTTAGCAGCCCAGTGTGGCATATCGCAGGCATT GACACCCCACAGGTTGAGGGTGGCACAACCGCAGAAATCGTAGAAGCATTCAAGAAATCT GGGGCACAAGTTGCGGATCTGTGCTCTAGCGCCAAAGTGTACGCTCAGCAGGGTCTGGAG GTGGCCAAAGCTCTGAAAGCAGCTGGCGCCAAAGCCCTGTATCTGAGCGGTGCCTTTAAG GAGTTCGGCGATGATGCGGCTGAGGCGGAGAAACTGATCGATGGTCGCCTGTTTATGGGT ATGGATGTGGTTGACACTCTGTCTAGTACGCTGGACATTCTGGGTGTAGCAAAGTAA

Figure 2: mutB nucleotide sequence (SEQ.ID NO: 2)
ATCACT
ACACTGCCTCGTTTTGACTCTGTTGACCTGGGGAACGCGCCTGTTCCGGCGGATGCGGCC CGTCGCTTCGAGGAACTGGCGGCAAAAGCGGGCACGGGTGAGGCGTGGGAGACCGCGGAG CAGATTCCGGTTGGTACACTGTTCAATGAAGACGTTTACAAAGATATGGACTGGCTGGAC ACGTACGCCGGGATTCCGCCATTCGTTCACGGCCCGTACGCGACGATGTACGCTTTCCGT CCGTGGACAATTCGTCAATACGCCGGGTTTAGCACGGCGAAAGAAAGTAATGCTTTCTAC CGCCGIAACCIGGCGGCGGGGCAAAAGGGTCIGTCIGIGGCAITCGACCIGCCGACCCAO cGCGGTTACGATAGCGATAATCCGCGCGTGGCAGCGGACGTGGGTATGGCCGGGGTGGCC ATCGACAGTATTTACGACATGCGTGAACTGTTTGCAGGCATTCCGCTGGACCAGATGAGC GTGAGTATGACGATGAATGGTGCCGTCCTGCCGATTCTGGCACTGTATGTGGTTACAGCC GAAGAACAAGGTGTGAAGCCGGAACAGCTGGCTGGCACCATCCAGAACGATATTCTGAAG GAGTTCATGGIGCGTAACACCTATATCTATCCGCCGCAACCGTCTATGCGCATCATCAGI GAGATCTTTGCGTATACTAGTGCAAATATGCCGAAGTGGAACTCTATCAGTATTAGTGGC TATCACATGCAGGAGGCGGGCGCCACTGCCGATATCGAAATGGCCTATACGCTGGCCGAT GGCGIPGATMATATHCGTGCAGGCGAAAGCGTCGGHCIGAACGTGGACCAGTHCGCCCCG CGTCTGAGCTTCTTTTGGGGTATTGGCATGAATTTCTTTATGGAAGTCGCAAAACTGCGT GCCGCCCGCATGCTGTGGGCCAAACTGGTGCACCAATTCGGCCCGAAGAACCCGAAGAGC ATGAGCCTGCGCACGCACAGTCAAACCAGCGGCTGGAGCCTGACCGCGCAGGACGTATAT AACAACGTAGTTCGCACCTGTATTGAGGCGATGGCAGCCACCCAGGGTCACACCCAGAGC CTGCATACAAACTCTCTGGACGAGGCCATCGCACTGCCGACAGACTTCAGCGCCCGCATC GCGCGTAATACTCAACTGTTTCTGCAACAGGAAAGCGGTACTACCCGTGTGATCGATCCG TGGTCTGGCAGTGCATATGTCGAGGAACTGACCTGGGATCTGGCCCGTAAAGCGTGGGGI СATATCCAGGAAGTCGAGAAAGTGGGTGGTATGGCTAAAGCAATPGAGAAAGGCATCCCG AAAATGCGCATTGAAGAAGCGGCAGCGCGCACCCAAGCACGCATCGACAGCGGTCGCCAG CCGCTGATTGGCGTGAACAAATATCGCCTGGAACATGAACCGCCACTGGATGTTCTGAAA GTAGATAACTCTACCGTCCTGGCGGAGCAGAAAGCGAAACTGGTTAAGCTGCGTGCGGAA CGCGATCCTGAGAAAGTTAAAGCGGCGCTGGATAAAATCACTTGGGCCGCGGGCAACCCG GATGATAAAGACCCAGACCGTAATCTGCTGAAGCTGTGTATTGACGCGGGTCGTGCTATG GCGACTGTCGGCGAAATGAGCGATGCGCTGGAGAAAGTATTTGGTCGTTATACCGCGCAA ATTCGTACPATPHCTGGTGTCIAPAGCAAGGAAGTHAAGAATACPCCAGAAGTAGAAGAA GCGCGTGAACTGGTAGAAGAATTTGAGCAGGCTGAAGGTCGCCGTCCACGCATTCTGCTG GCCAAAATGGGCCAGGATGGCCATGATCGCGGTCAGAAAGTTATTGCTACTGCTTATGCT GATCTGGGCTTCGATGITGATGTCGGCCCTCTGTTCCAGACTCCAGAGGAAACTGCCCGC CAGGCTGTTGAAGCTGACGTCCATGTCGTTGGCGTTAGCTCTCTGGCTGGCGGCCATCTG ACCCTGGTCC工TGCTCTGCGCAAGGAACTGGATAAGCTGGGCCGCCCTGARATTCTGATT ACTGTCGGCGGCGTCATTCCTGAACAGGATTTCGATGAACTGCGCAAGGATGGCGCTGTC GAAATTTATAOCCCTGGCACCGTCATTCCTGAATCTGCTATTTCTCTGGTCAAGAAGCTG CGCGCTACCCTGCATCCCTAACTCCAG

Figure 3: MutA protein sequence (SEQ.ID NO: 3)

MARTYAGHSSAAASNALYRRNLAKGQTGLSVAFDLPTQTGYDPDHVIARGEVGKVGVPISHTGDMRALEDQ TPTIGQMNTSMTTNATAMNT,T,AMYQVAAFDQATAADFDPASVVKATGGTTQNDTTKFYT,SRGTYVFAPAPS IRIITDMVSVTVSDIPKNNPINICSYHLQEAGATPVQEIAYAMSTAIAVLDAVRDAGQVPQEREGEVVAR ISEEVNAGVREVEEMCKMRAEVELWDELTRERYGVTDAKQRRERYGVQVNSLGLTEAQPENNVQRIVLEM LAVTLSKGARARAVQLPAWNEALGLPRPNDQQWSLRMQQVLAYESDLIEYEDLFEGSAVVEAKVAELVAG AKAEIARVAELGGAVAAVESGYMKSALVASHALRRQRIEAGEDIVVGVNKFETIEPNPLTADLDIAIOSV DAGVEAAAAKAVREWRETRDADPVKRERAVAALARLKAAAQTDENLMEASIECARAEVTTGEWAQALREV FGEFRAPTGVTGTVGLTGGAAGAELSAVRERVAGLRDELGETLRVIVGKPGLDGASNGAEQIAVRARDAG FEVIYQGIRLTPEQIVAAAVSEDVHLVGISILSGSHMETIEEVLDRTREAGAGDIPVIVGGIIPESDAAK LKATGVAEVFTPKDFGLNDIMGRFVDVIRDSRLTTAAETV

Figure 4：MutB protein sequence（SEQ．ID NO：4）

Abstract

MTVAPERPAAMT工AAHEEERTQEQWRDLVACVVNKCRPEDQELSCDDAVATVRSHLEGGEDIEPLYMKSSDPVPICVP GAMPHTRGRAWRDADVENDVRQVHDDEDAAATRQLVLADLENGVISVNLHVGADGLAPNDVAEALAEVRLELAPVVVS SWDDQTAAADALYAVLSGSRASSGNLGHDPLGAAARTGSAPDLAPLADAVRRLADHGEIRAITVDTRVHGDAGVTVTD EVAFALATGVAVTRHLESEGVDVAEAERNIEEEVSATADQELTAAALRATRRANARIGESVGVPETSRGAETHAVTSG RIETRDDAWRN－LRSTLATEGASLGGADAITVLPEDTVSGLETPESRRIARNTOILLAEESNVARVTDEAGGSNYVET LTDDVAKAANETFQEIESAGGNVAALANGLVAQRIGAAVAERDAALATRSTPITGVSTEPLAGEXPLERVVRAELPVQ PNALAPHRDSA FWALRDRSAAYATEEGIAPRVSVPTLDVPRAADRRIDAVNLLTVAGUDAVDGDTESAAALTGTDKG YEGVAKDMDVVAFLSDLLDTIGAPA

Figure 5：Methylmalonyl－CoA epimerase nucleotide sequence（SEQ．ID NO：5）

$$
\begin{aligned}
& \text { GAATTCAGGAGGTCCTTCCADTATGCTGACCCGCATCGATCACATTGGCATCGCATGCTTIGAT }
\end{aligned}
$$

GTAAACGAAGAACAGGGCGTGCGTGAAGCCATGCTGAAAZTCAACGAAACTAGTGATGGT
GGGGCGAGCRATCTGCAACTGCTGGAACCGACACGCCCGGACTCTACAGTTGCTAAGTGG
CTGGACAAGAATGGCGAAGGCGTTCATCACATTGCGTTCGGTACGGCTGATGTGGATCAA
GACGCGGCAGATATTAAAふATAAGGGTGTGCGTGTTCTGTACGAGGAGCCACGCCGTGGT
AGCATGGGTAGCCGTATTACGTTCCTGCACCCTAAAGACTGTCATGGTGTGCTGACTGAG
CTGGTCACCPCTGCCCCGGTCGAAAGTCCGGAACATTAAAAGCTT

Figure 6：Methylmalonyl－CoA epimerase protein sequence（SEQ．ID NO：6） MLTRIDHIG－ACFDLDKTVEFYRATYGFEVFHSEVNEEQGVREAMLKTNETSDGGASYLQLEEPTRPDSTVAKNLDKM

GEGVHFIAFGTADVDQDAADIKDKGVEVLYEEPREGSMGSRITELHPKDCHGVLTELVTSAPVESPEH

Figure 7：DNA sequence for $a c c A 1$（AF113603．1）（SEQ．ID NO：7）

GTGCGCAAGGTGCTCATCGCCZATCGTGGCGARATCGCIGTCCGCGTGGCCCGGGCOIGCCGGGACGCCG GGATCGCGnGCGTGGCCGTCZACGOGGRTCCGGACCGGGACGCGTTGOKCGICCGT＇GCCGOTGATGAGGO GTTCGCCOTGGGTGGTGACACCCCCGCGACCAGCTATCTGGACATCGOCAAEGTCCRCAAAGCCECGCGC GAGTGGGCGCGGACGCOMCCACOCCGGCTACGGATTCOTCTCGGAGZACGCCGAGTPCGCGCAGGCGO TCCTGGASGCCGGCCIGATC．GGA．CGGCCCGCCCCCGCACGCCATCCGCGACCGTGGCGA AAAGGTCGC
 GACGAGGRCGTOGCCTTCGCOA GGAGCACGGCOTGCOCATCGCCATCAAGOCCGCOTTCOGCGGCGGCO GGCGCGGCCTCAZGGTCGCCOGCAOCCTCGAAGAGGTGCOGGAGCTHRCGACTCOGCCGZCCGOGAGGO CGTGGCCGCCTラCGGCCGCGGGGAGTGCT CGTCGAGCGCTACCTCGACAAECCCCGCCACGTGGAGACC CA今TGCCTGGCOGACACCCACGGCAACGTGGTCGTCGTCTCCACCCGUGACIGCTCOCTCCAGCGCCGCO ACCARAAGCTCGTCGACGAGOCCCOCGCGCOCTTTCTCTCCGAGGOCOAGAOCGACOAGC－CTACTOATO CTOOAAGGCCAワOCTGAAGGAGGCCGGCTACGGCGGCGCCGGCACCGTGGAGTTCCZCGTOGGCATGGAC
 GCATCGAOTTGGTCCGCGAGATGTMCCGCATCGCOGACGGCGAGGAAOTCGETTACGACGACCCOGCCC－ OCOCGGCORCTOCTTCOAGTZCOGOATCAACGOCOACGACCCOGGOCOCOGCTTCOZCCOCOOCCOCGOC ACOGTCACCCTCTTCGACGCGCCCACCGGCCCOEGCGTCCGCCTGGACGCCEGCGTCGRG＝CCGGCTCCG
 CCAGCGCSCGGCOCGCOCCC－GGACGAGT CACOGTCGAGGGCATGGOCACOGCCA－CCCOTTCCACCGO
 GGTGGAIMGAGACGGAGTTCGTCAACGAGATCAAGCCCTHCACCRGGCCCGDCGACACCGAGACGGACGA
 CTEGGCATGTCCCTGCCCCGOACCOGCCTGGCCGOCGGSGCCCGCCCCAAGCGCCGOGCGGCCAAGAAG－
 GGAAGGCOAGGAAGTCCAGGARGGCGACCDCATCGTCGTACTGGAGGOGATGARGADGGAACAGCCCCTO AACGCCCACAGGLCCGGCACCALCAAGGGCOLCADCGCCGAGGHCGGOGCCHCCCHCACC－CCGECGCCG CCATCTGCGAGATCAAGGACIGA

Figure 8: DNA sequence for $p c c B$ (AF113605.1) (SEQ.ID NO: 8)

Abstract

ATGTCCGAGCCGGAAGAGCAGCAGCCCGACATCCACACGACCGCGGGCAAGCTCGCGGATCTCAGGCGCC GTATCGAGGAAGCGACGCACGCCGGTTCCGCACGCGCCGTCGAGAAGCAGCACGCCAAGGGCAAGCTGAC GGCTCGTGAACGCATCGACCTCCTCCTCGACGAGGGTTCCTTCGTCGAGCTGGACGAGTTCGCCCGGCAC CGCTCCACCAACTTCGGCCTCGACGCCAACCGCCCCTACGGCGACGGCGTCGTCACCGGCTACGGCACCG TCGACGGCCGCCCCGTGGCCGTCTTCICCCAGGACTTCACCGTCTTCGGCGGCGCGCTGGGCGAGGTCTA CGGCCAGAAGATCGTCAAGGTGATGGACTTCGCCCTCAAGACCGGCTGCCCGGTCGTCGGCATCAACGAC TCCGGCGGCGCCCGCATCCAGGAGGGCGTGGCCTCCCTCGGCGCCTACGGCGAGATCTTCCGCCGCAACA CCCACGCCTCCGGCGTGATCCCGCAGATCAGCCTGGTCGTCGGCCCGTGTGCGGGCGGCGCGGTGTACTC CCCCGCGATCACCGACTTCACGGTGATGGTGGACCAGACCAGCCACATGTTCATCACCGGTCCCGACGTC ATCAAGACGGTCACCGGCGAGGACGTCGGCTTCGAGGAGCTGGGCGGCGCCCGCACCCACAACTCCZCCT CGGGCGTGGCCCACCACATGGCCGGCGACGAGAAGGACGCGGTCGAGTACGTCAAGCAGCTCCTGTCGTA CCTGCCGTCCAACAACCTCTCCGAGCCCCCCGCCTTCCCGGAGGAGGCGGACCTCGCGGTCACGGACGAG GACGCCGAGCTGGACACGATCGTCCCGGACTCGGCGAACCAGCCCTACGACATGCACTCCGTCATCGAGC ACGTCCTGGACGACGCCGAGTTCTTCGAGACGCAACCCCTCTTCGCGCCGAACATCCTCACCGGCTTCGG CCGCGTGGAGGGCCGCCCGGTCGGCATCGTCGCCAACCAGCCCATGCAGTTCGCCGGCTGCCTGGACATC ACGGCCPCCGAGAAGGCGGCCCGCTTCGTGCGCACCTGCGACGCCTTCAACGTCCCCGTCCTCACCTTCG TGGACGTCCCCGGCTTCCTGCCCGGCGTCGACCAGGAGCACGACGGCATCATCCGCCGCGGCGCCAAGCT GATCTICGCCTACGCCGAGGCCACGGTGCCGCTCATCACGGTCATCACCCGCAAGGCCTTCGGCGGCGCC TACGACGTCATGGGCTCCAAGCACCTGGGCGCCGACCTCAACCTGGCCTGGCCCACCGCCCAGATCGCCG TCATGGGCGCCCAAGGCGCGGTCAACATCCTGCACCGCCGCACCATCGCCGACGCCGGTGACGACGCCGA GGCCACCCGGGCCCGCCTGATCCAGGAGTACGAGGACGCCCTCCTCAACCCCTACACGGCGGCCGAACGC gGCTACGTCGACGCCGTGATCATGCCCTCCGACACTCGCCGCCACATCGTCCGCGGCCTGCGCCAGCTGC GCACCAAGCGCGAGTCCCTGCCCCCGAAGAAGCACGGCAACATCCCCCTGTAA

Figure 9: Protein sequence for AccA1 (SEQ.ID NO: 9)

MRKVLIANRGEIAVRVARACRDAGTASVAVYADPDRDALHVRAADEAFALGGDTPATSYL DIAKVLKAARESGADAIHPGYGFLSENAEFAQAVLDAGLIWIGPPPHAIRDRGEKVAARH IAQRAGAPLVAGDPDPVSGADEVVAFAKEHGLPIAIKAAFGGGGRGLKVARTLEEVPELY DSAVREAVAAFGRGECFVERYLDRPRHVETQCLADTHGNVVVVSTRDCSLQRRHQKLVEE APAPFLSEAQTEQLYSSSKAILKEAGYGGAGTVEFLVGMDGTIFELEVNTRLQVEHPVTE EVAGIDLVREMFRIADGEELGYDDPAIRGHSEEFRINGEDPGRGFLPAPGTVTLEDAPTG PGVRLDAGVESGSVIGPAWDSLIAKLIVTGRTRAEALQRAARALDEFTVEGMATAIPEHR TVVRDPAFAPELTGSTDPFTVHTRWIETEFVNEIKPFTTPADTETDEESGRETVVVEVGG KRLEVSLPSSLGMSLARTGLAAGARPKRRAAKKSGPAASGDTLASPMQGTIVKIAVEEGQ EVQEGDLIVVLEAMKMEQPLNAHRSGTIKGLTAEVGASLTSGAAICEIKD*

Figure 10: Protein sequence for PccB (SEQ.ID NO: 10)

MSEPEEQQPDIHTTAGKLADLRRRIEEATHAGSARAVEKQHAKGKLTARERIDLLLDEGS FVELDEEARHRSTNEGLDANRPYGDGVVTGYGTVDGRPVAVFSQDFTVEGGALGEVYGQK IVKVMDEALKTGCPVVGINDSGGARIQEGVASLGAYGEIFRRNTHASGVIPQISLVVGPC AGGAVYSPAITDFTVMVDQTSHMFITGPDVTKTVTGEDVGFEEIGGARTHNSTSGVAHHM AGDEKDAVEYVKQLISYLPSNNLSEPPAFPEEADLAVTDEDAELDTIVPDSANQPYDMHS VIEHVLDDAEFEETQPEFAPNILTGEGRVEGRPVGIVANQPMQEAGCLDITASEKAAREV RTCDAFNVPVLTFVDVPGFLPGVDQEHDGTIRRGAKLIFAYAEATVPLTTVITRKAFGGA YDVMGSKHLGADLNLAWPTAQIAVMGAQGAVNILHRRTIADAGDDAEATRARLIQEYEDA. LLNPYTAAERGYVDAVIMPSDTRRHIVRGLRQLRTKRESLPPKKHGNIPL*

Figure 11: Element 1: PlacO1 sequence + phage T7 genel 0 ribosome binding site (SEQ.ID NO: 11)
aattgtgagcggataacaattgacattgtgagcggataacaagatactgagcacatcagcaggacgcactgaccgaattcaataat tttgtttaactttaagaaggagatatacat

Figure 12: Element 2: Optimized accAl gene sequence (SEQ.ID NO: 12)

Abstract

atgcgcaaagtgctgatcgcgaaccgtggtgaantcgccgttcgtgtggcacgcgcgtgtcgtgetgcacgtattgcaagtgttgcggagtatgccg atccggatcgcgatgcgctgcatgttcgtgcggccgatgaagcctttgcactgggcggtge accccoggeaacgagctazctggatat=gceaaagt gctganagcagegcgcgaaagcggtgcgga-gccatcca-ccgggctacggttt.ctgtotgaabatgcagaattgcacaggcggttrtggatgca ggtctgatttggatcggtccgcogccgcatgcazttcgtgatctgggcgateaacgtggcogcacgccacatcgcccagcgtgcaggcgcgccgctgg ttgcgggcaccccggacccggtttctggtgcagatgaag-ggttgcgtttgccaacgaacatggcetgccgattgcgatcaaagcagcattcggcgg attgctctctgcaacgtcgccaccagaaac-ggtggaagaagcaccggcgccgtttctgagcgaagcccagaccgaacagctgtatagctctagtaa ctgcaagttgajcatccggtgaccgaagaagttgcgggcattcatctggtgcgcgaaatgttcotatcccagatggccaagaactgggttacgatg atccggcgctgegcggtcacagctttgaat-tcytattactggcgaagatccgggcegtggetttctgecggcgccggccaccgtgacgctettcga tgcaccgaccggtccgggegttcgtctgga-gceggtgtggazagtggtagcgttattggcecggcatgegatagcetcctggcgaaactgatcgtt accggtcgtacgcgcgcogaagcgctgcaecgtgcagcacotqccctggatgaatttacogeggaaggcatggcgacgccoattccgt-tcatcgca ccgtggttcgtgatccggcattcgcgccggaactgaccggctctaccgatccgttcaccgtgcacacgcgctggatcgaaaccgaattzgttaacga aatcaaaccgttcaccacgceggcggataccgabacgga-ga三gaaagtggtcgcgaaacggtggttgtcgaagtgggcggtaaacgtctggaagtt tctctgccgagaagcotgggtatgegtctcgcgcgtacoggtctggcggccggcgccogtocgauacgtcgcgcagcgaaaaaatctggtccggoco caইgcggtgateccctggccagtccgatgcagggcacgattgtgaanatcgcagtggaageaggtcaggaagtgcaggaaggcgatctgattgttgt gctggaagcgatgaaaatggaacagccgctgaatgccca-cgtagcqgcaccatcaaaggoctgacggcogaagtgggtgcatctctgaccagtgga gcggccatttgegaaatcaaagattaa

Figure 13: Element3: Spacer sequence (Restriction sites and phage T7 gene 10 ribosome binding site) (SEQ.ID NO. 13)

agatctgcggccgcatotagaaataatttgtttaactttagaaggagatatattc

Figure 14: Element4: Optimized pccB (SEQ.ID NO: 14)
atgagtgaaccggaagaacagcagccggatattcataccacgqcaggcaaactggcggatotgcgtcgccgtatcgaacaagcaacccatgcaggta gcgcacgtgcagtggaaaacoagcacgcgaaaggtaaacagacggccogcgaacgtatcgavctgctgctggatgaagccagttttgtagaactgga tgeatttgcacgccaccgtagcaccaactt-ggtctgga-gcgaatcgcccgtatggcgatggtgtggttaccggttacggtacggtggatggtcgt ccggtggcagttettagccaggattttaccgtgttcggcggtgcactgggcgaagtttacggtcagaaaatcgtgaaagutatggattucgcgctga aa ecgggetgcocggtggttggtattancgatagcggeggtgrecgeatceaggaaggtgt-gcotctctgggcgcgta-ggcgaaatctttcgecg taetacccatgcgagtggcgtgattccgcagatcagcctggtzgttggtccgtgtgcgggaggtgccgtttactctccggccattaccgattttacg gtgatggttgatcagaccagtcacatgttcattacgggcccggatgtgatcaaaaccgttrcgggcgaagatgtgggttztgaagaaczgggcggtg cacgtacccaceacagcacgtctgqcgttccgcetcaca-ggrogqtgatgeabangatgecctqgantatgttanacagctgctgagetacctged gagcaacaatctgtctgaacegcoggcgttcccggaagaagcagacotggcggtgaccgatgaagatgcogaactggatacgatcgttccggattct gcaaatcagccgtacgatatgcacegtgtgattgaacacgttctggatgatgcggaattttecgeaacccagccgctgt-tgccccgaacattctga cgggtttoggtegtgtggaaggtogtcogg-gggtatcg=tgcaaatcagcogatgcagtttgcgggttocctggatat-acogcctcagaaaags ggcccgctttgtgcgtacctgtgatgcgttcaacgtgcoggttctgacgtttgtggatgttccgggcttoctgccgggtgttgatcaggaacatgat ggcattatccgecgtggtgcgaaactgatt-ttgcgtatgccgaagcaaccgtgccgctgattaccgttatcacgcgcaaagcattcggcgetgcgt
 tctgcacegccgtaccategcagatgcage-gatgatgcagaßgcgacgcgcgcacgtctgattcaggaatatgaagatgcgctgctgaaccogtat accgcagcggaecgtggttacgtggatgcggttattatgccgegcgataccogccgtcatetcgtgcgtcgtctgcgtcagctgcgtacgaeacgtg aatctctgccgecgaaaaaacacggtaata=tccgctgtaa

Figure 15：Entire synthetic sequence for propionyl－CoA carboxylase gene expression．（SEQ．ID NO：15）
aattgtgagcggataacaattgacet．tgtgagcggataacaagatactgagcacat．cagceggacgcactgaccgaat．caataatt．gtt．taact tteagaaggagetatacatatgcgcaaagtgctgattgcgaacogtggtgaeatcgccgttcgtgeggcacgcgcgtgtcgtgatgcaggt attgca agtgttgcggtgtatgccgatccggatcgcgatgcgctgcatzttcgtgcggccgatgaagcctttgcactgggcggteataccceggcaacgagct
 aceqgcqgttctqqatqcagqtctqatttcqatcqgtccqccrccqcatqceattcotqatctqgqcqataaaqtqgccqcacqccacatcccccaq cgtgcaggcgcgccgctggttgcgggcaccccggacccggtttctggtgcagatgaagtggttgcgtttgccaaagaacatggcctgccgattgcga tceatgcagcattoggoggtggcggtcgecgtotgaday－ggcocgtacoctggadgadgtecoggadetgtatgatacegcagttogegazgeggt ggcagcgtttggccgtggtgaatgcttcgtggaəcgctacctsgataaaccgcgtcatgttgaaacccactgtctggccgatacgcacggcaacgtg gttgtggttagcacccgcgattgctctctgcaacgtcgccaccagaaactggtggaagaagcaccggcgecgtttctgagcgaagccoagaccgaaj agctgtatagctctagtaaagcgattctgaaagaagccggttacgtgggcgcoggtacggt－gaatttctggtgggcatggatggcaccattagctt tctggaagttaacaccogtctgcaagttgaacatccggtgaccqaagaagttgcgggcattgatctggtccgcgaaato $t t c q t a t c q c a r a t g g o$ gazgaactgggttacgatgatcoggcgctccgcggtcacagctttgaatttcgtattaatggcgaagatocgggccgtggttttctgocggcgccgg gceccgtgacgetgttcgatgcaccgacccgtccgggcg－tcgtctggatgccggtgtggeaagtggtagcgttattgccccggcatgggatagcet gctggegaaactqatcgttaccggtcgtacgcgogceqaagcqctgcaacgtgcagcacgtgccctggatgaatttacegtggaaggcatggcgacg gccattecgtttcatcgcacegtggttcgtgatccggca＝tcecgccggaactgaccggctctacegatecgttcaccg－gcacacgegctegatcg aaeccgatttgttaacgaaatcacaccgt＿caccacgccggcggataccgaaacggatgeagaeagtgetcgcgaaacggtggttgtggazgtggg cggtaadcgtctggaagtttctctgccgaccagectggg＝ateagtctggcgcgtaccggtctggeggceggcgcccgtccgaaacgtcgcecagcg
 aaggcgatctgettgttgtgctggaagcga－gajaatggaac三gccgetgaztgcccatcgtagcggcaccatcaaagecctgacggecga三gtgge tgcatctctgaccagtggcgeggccatttgcgajatcaaagattaaagatctgcggccgce vctagaaataattttgtt＝aactttaagaaggagat

 actggatgaatt gcacgccaccgtagcaccaactttggwctggatgagaatcgcccgtatggcgatggtgtggttaceggttacggtacgetggat

 tcgccgtaatacccatgcgagtggcgtgat＝ccgcagatcagcctggtggttggtccgtgtgcgggcggtgccgtttac＝ctccggccattaccgat tttacggtgatggttgatuagacuagtoauatgttcattacgegcocggatgtgatuadazocgttacgggcgadgatgegggttttgadgadetgg gcggtgcacgtacccacaacagcacgtctcgcgttgcgcatcacatggccggtgatgaaaəagatgccqtggaatatgt－aaacagctgctcagtta cctgccgagcaacaatctgtotgaccogccggcgttcccggaagaagoagacctggoggtgaccgatgaegatgcoganctggatacgatcgttccg gattctgcaaatcagccgtacgatatgcacagtgtgattgaacacgttctggatgatgcggaatttttcgaaacccagccgctgtttgccccgaaca ttctgacgggtt cog tcgtgtggeaggtcqtccggtgggtatcqttgcaastcagcogatgcagtetgcgggttgcctggatattaccgcctctga
 catgatggcattatccgccgtggtgcgaaactgatttttgcgtatgcogaagcaacegtgccgctgattaccgttatcacgcgcaaagcattcggcg gtgcgtacgatgegatgggcagcacacatc－gggtgccgatctgaacotggcatggccgaccgcacagatcgcagtgatgggcgcgcagggtgccgt ta $\begin{gathered}\text { tat totgcercgcrgtaccatcgcaga－gcaggtgargatgcagaagcgacgcgegeecgtotgattcaggantatgangatgcgctgctgan }\end{gathered}$ cogtataccgcegcggaacgtggttacgtggatgcggttattatgcogagcgatacccgecgtcatatcetgcgtggtcagcgtcagc－gcgtacga aacgtgaatctotgcogcogaaaaacaccgtaatattcogotgtaa

Figure 16：Forward primer for PrpE（SEQ．ID NO：16）
AAACTGCAGAGGAGGACAGCTATGTCTTTTAGCGAATTTTATCAG
Figure 17：Reverse primer for PrpE（SEQ．ID NO 17）

AAAGGATCCCTATTCTTCGATCGCCTGGCGAATTTG

Figure 18：MMAT domain sequence from Mycobacterium bovis BCG（SEQ．ID NO：18）

[^0]Figure 19：Protein sequence for the Mycobacterium bovis BCG MAS（YP 979046）（SEQ．ID NO：19）

MESRVTPVAVIGMGCRL2GGINSPDKLNESLLRGDDLVTEIPPDRWDADDYYDPEPGVPGRSVSRWGGFL DDVAGFDAFFFGTSEREATSTDPQQRTTETSNEATEHAGTDPABTAGSSTAVFTGTTHEDYTVLTMTAG GLASPYVVIGLNNSVASGRIAHTLGLHGPAMHELTACSSGLMAVILLACRSLHDGEADLALAGGCAVLLEP FACVAASAQGMLSSTGRCHSEDADADGEVZSEGCAMVLLKRLPDALRDGNRIEAVVRGTATNQDGRTETL TMPSEDAQVAVYRAAIAAAGVQPETVGVVZAHETGTPIGDPIEYRSIARVYGAGTPCALGSARSNMGHST ASAGTVGLIKAILSLRHGVVPPLLHFNRLPDELSDVETGLFVPQAVTFWPNGNDHTPKRVAVSSFGMSGT NVHAIVEEAPAEASAPESSPGDAEVGPRLEMLSSTSSDALRQTARQLATWVEEHQDCVAASDIAYTLARG RAHRPVRTAVVAANLPEIVEGLREVADGDAIYDAAVGHGDRGPVWVESGQGSQWAAMGTQIIASEPVFAA TIAKLEPVIZRESGESVIEAITAQQTVIGIDKVQPAVFAVQVALAATMEQTYGVRPGRVVGHSMGESAAA VVAGALSLEDAARVICRRSKLMTRIAGAGAMGSVELPAKQVNSELMARGIDDVVVSVVASPQSTVIGGTS DTVRLLIARWEQRDVMAREVAVDVASISPQVDPILDDLAAALADIAPMTPKVPYYSATLPDPREQPVCDG AYWVLNLRNTVQFAAAVQAAMEDGYRVFAヨLSEHPLLTHAVEQTGRS二DMSVAALAGMRREQELPHGLRG LLTELHRAGAALDYSALYPAGRLVDAPLPAWTHARLFIDDDGQEQRAQGACT－TVHPLLGSHVRLTEEPE RHVWQGDVGTSVLSNLSDHQVHNVAALEGAAYCEMALAAAAEVEGEAAEVRD－TFEQMLLIDEQTPIDAV ASIDAPGVVNFTVETNRDGETTRHATAALマAAEDDCPPPGYDITAL工GAHPHAVNGTAMRESFAERGVIL GAAFGGLTTAHTAEAGAATVLAEVALPASIREQCGAYRIHPALLDACFQSVGAGVQAGTATGGLILPLGV RELRAYGPTRNARYCYTRLITKAFNDGTRGGEADLDVLDEHGTVLLAVRGLRMGTGTSERDERDRLVSERL LTLGWQQRALPEVGDGEAGSWLLIDTSNAVDTPLMLASTLTDALKSHGPQGTECASLSNSVQDTPPNDQA GLEKLGSQLRGRDGVVIVYGPRVGDPDEHSLLAGREQVRHLVRITRE－AEFEGELPRLEVVTRQAQIVKP FDCGERANLEOAGLRGLIRVISSEHPMLRTTLILVDEHTDVERVAOQ－LSGSEEDETANRNGDWYVARLT PSPLGHEERRTAVLDPDHDGMRVOVRRPGDIQTIEFVASDRVPEGPGQIEVAVSMSSINEADVLIAFGRF PIIDDREPOLGMDEVGVVTAVGEGVTGHOVGDRVGGESEGGCNRTELTCDANLAVTLEPGLTDEOATTAA TAHAMAWVGLNDLAOLKAGDKVL＿HSAIGGVCGAALSLARAKGAELHALAGNPAKRAMLRDMCVEHVYDS RSVEFAEQIRRDTDGYGVLIVINSLTGAAQRAGLELLAFGGREVEIGKADVYGNTRLGLFPIRRGLTFYY LDIATMSVTQPDRVRコLIATVERLTADGVLTAPCCTHYPLAEAADATRAMSNAEHTGKLVIDVPRSGRRS VAVIEEQAPLYRRDGSYIITGGLGGLGLFFASKIAAAGCGRIVLTARSQPNPKARQTIEGLRAAGADIVV ECGNIAEPDTADRLVSAATATGLPLRGVLESAAVVEDATITNITDELIDRDWSPKVFGSWNLHRATLGQP IDWFCLFSSGAALGGSGQGAYAAANSWVDVEAHWRRAQGTPVSAIAWGAWGEVGRATELAEGGETMITP EEGAYAFETLVRHDRAYSGYIPILGAPWLADLVRRSPWGEMEASTGQRSRGPSKERMELLSLEQDEWAGR LRRLIVEQASVILRRTIDADRSFIEYGLDSLGMEEMRTHVETETGIR－TPKV＝ATNNTARALAQYLADTL AEEQAAAPAAS

Figure 20：Codon－optimized MMAT domain DNA sequence from Mycobacterium bovis BCG （SEQ．ID NO：20）
 CGTGGMCCGGTTTGGGTGTRTAGCGGCCAGGGTTCTCAGTGGGCAGCGATGGGCACCCAGCTGOTGGCAMGCGAA
 ATTACGGCGCAGCAGACCGMGACGGGTATCGATAAAGTGCAGCCGGCCGTTRTCGCAGTTCAGGTGGCGCTGGCA GCGACGATGGAACAGACGTACGGCGTTCGTCGGGGTGCRGTGGTTGGTCACAGTATGGGTGAAAGCGCCGCAGCG GTGGTRGCAGGCGCCCTGAGTCTGGAAGATGCCGCACGTGTGATTTGCCGTCGCAGCAAACTGATGACCCGTATC GCAGGRGCAGGTGCGATGGGCAGCGTGGAACTGCOGGCAAAACAGGTTAACRCTGAACPGATGGCGOGCGGTATT GATGATGTGGTTGTGTCTG？TETGGCGTCTCCGCAGAGTACCGTGATTGGCGGCACCAGTCATACGGTTCGTGAT
 GTTGADCCGATTCTGGATGATCTGGCGGCGGCACTGGCAGATATTGCACCGATGACCCCGAAAGTGCCGTATTAC AGCSCGACGCTGTTTGATCCGCGTGAACAGCCGGTGTGTGATGGCGCOTATHGGGTTGATAACOTGCGCAATACC GTGCAGTTRGCGGCGGCAGrTCAGGCGGCGATGGAAGATGGTRACCGTGTGRTCGCGGAACTGTCZCCGCATCCG
 GAZCAGCCGCTGCCGCATGGCCTGCGTGGTCTGCTGACCGAACTGCACCGTGCAGGTGCAGCACTGGATTATAGC GCAOTGTACCOGGCAGGTCGTCTGGTGGATGOACCGCTGCCGGCATGGACGCACGCACGTOTGTPCATCGATGAT GATGGCCAGGZACRGCGCGCACAGGGTGCG

Figure 21: Alignment of a codon-optimized MMAT domain from Mycobacterium bovis BCG with the original sequence:


```
Optimized 961 ATGCGTCGCGAACAGCCGCTGCCGCATGGCCTGCGTGGTCTGCTGACCGAACTGCACCGT
    |||| || || |||| ||||||||| |||| || |||||| || |||||||
Original 961 ATGCGGCGAGAGCAGCCTCTGCCGCATGGTCTGCGCGGCTTGCTGACGGAGCTGCACCGC
Optimized 1021 GCAGGTGCAGCACTGGATTATAGCGCACTGTACCCGGCAGGTCGTCTGGTGGATGCACCG
    || || || || ||| ||| || |||| || || || || ||||||||| |||
Original 1021 GCGGGCGCCGCTtTGGACTATTCGGCGCTGTATCCCGCTGGGCGGCTGGTGGATGCGCCG
Optimized 1081 CTGCCGGCATGGACGCACGCACGTCTGTTCATCGATGATGATGGCCAGGAACAGCGCGCA
    |||||| |||| |||| || || |||||| |||||| || ||||||| ||
Original 1081 CTGCCGGCGTGGACCCACGCCCGCCTATTCATCGACGATgATGGGCAAGAACAGCGGGCA
Optimized 1141 CAGGGTGCG
    || ||||
Original 1141 CAAGGTGCC
```

Figure 22: Protein sequence of Salmonella enterica propionyl CoA synthase PrpE (AAC44817) (SEQ.ID NO. 21)

MSESEFYQRSINEPEAFWAEQARRIDWRQPETQTLDHSRPPFARWECGGTTNLCHNAVDRNRDKQPEALA LIAVSSETDEERTETFSQLHDEVNIVAAMLLSLGVQRGDRVLVYMPMIAEAQITLLACARIGAIHSVVFG GEASHSVAARIDDARPALIVSADAGARGGKILEVKKLLDDAIAQAQHOFKHVLLVDRGLAKMAWVDGRDL DEATLRQQHLGASVPVAWLESNETSCILYTSGTTGKPKGVQRDVGGYAVALAISMDTIFGGKAGGVEECA SDIGWVVGHSY TVYAPLIAGMAIIVYFGLPIYPDCGVWWK IVHKYQVNRMFSAP'IAIRVLKKFPUAQIRN HDLSSLEALYLAGEPLDEPTASWVTETLGVPVIDNYWQTESCWPIMALARALDDRESRLCSPGVPMYCYM VQLLNEVTGEPCGINEKGMLV EGPLPPGCIQTWGDDARFVKTYWSLFNRQVYATFDWGIRDAEGYYEI LGRTDDVINIAGHRLGTREIEESISSYPNVAEVAVVGIKDALKGQVAVAFVIPKQSDTLADREAARDEEN AIMALVDNQIGHEGRPAHVWEVSOLPKTRSGKMLRRTIQAICEGRDPGDLTTIDDEASLQQIRQAIEE

Figure 23: DNA sequence of Salmonella enterica propionyl CoA synthase PrpE (SEQ.ID NO. 22)

ATGTCTTTTAGCGAATTTTATCAGCGTTCCATTAACGAACCGGAGGCGTTCTGGGCCGAG CAgGCCCGGCGTATCGACTGGCGACAGCCGTTTACGCAGACGCTGGATCATAGCCGTCCA CCGTTTGCCCGCTGGTTTTGCGGCGGCACCACTAACTTATGTCATAACGCCGTCGACCGC TGGCGGGATAAACAGCCGGAGGCGCTGGCGCTGATHGCCGTUTCATCAGAGACCGATGAA GAGCGCACATTTACOTTCAGCCAGTTGCATGATGAAGTCAACATTGTGGCCGCCATGTTG CTGTCGCTGCGCGTGCAGCGTCOCGATCGCOTATTGGTCTATATGCCGATGATTGCCGAA GCGCAGATAACCCTGCTGGCCTGCGCGCGCATTGGCGCGATCCATTCGGTGGTCTTIGGC gGTTTIGCCTCGCACAGCGTGECGGCGCGCATTGACGATGCCAGACCGGCGCTGATTGTG TCGGCGGATGCCGGAGCGCGGGGCGGTAAAATCCTGCCGTATAAAAAGCTGCTCGATGAC GCTATIGCGCAGGCGCAGCATCAGCCGAAACACGTTCTGCTGGTGGACAGAGGGCTGGCG
 GGCGCGAGCGTGCOGGTGGCGTGGCTGGAATCCAACGAAACOTCGTGCATTCTTTACACC TCCGGCACTACCGGCAAACCGAAAGGCGTCCAGCGCGACGTCGGCGGTTATGCGGTGGCG CTGGCAACCTCGATGGACACCATTTTTGGCGGCAAGGCGGGCGGCGTATTCTTTTGCGCA TCGGATATCGGCTGGGTCGTCGGCCACTCCTATATCGTTTACGCGCCGTTGCTGGCAGGC ATGGCGACTATTGTTTACGAAGGACTGCCGACGTACCCGGACTGCGGGGTCTGGTGGAAA ATMGTCGAGAAATACCAGGTTAACCGGATGTTTTCCGCCCCGACCGCGATTCGCGTGCTG AAAAAATTCCOGACGGCGCAAATCCGOAATCACGATCTCTCCTCGCTGGAGGCGCTTTAT CTGGCCGGTCAGCCGCTGGACCAGCCGACGGCCAGTTGGGTAACGGAGACGCTGGGCGTA CCGGTCATCGACAATTATTGGCAGACGGAGTCCGGCTGGCCGATCATGGCGCTGGCCCGC GCGCTGGACGACAGGCCGTCGCGTCTGGGAAGTCCCGGCGTGCCGATGTACGGTTATAAC GTCCAGCTACTCAATGAAGTCACCGGCGAACCTTGCGGCATAAATGAAAAGGGGATGCTG GTGATCGAAGGGCCGCTGCCGCCGGGCTGTATTCAGACTATTTGGGGCGACGATGCGCGT "M"GHGAAGAOL"ACHGGICGCHGL"HAACCGLCAGG'H"LALGCCACL"LCGACHGGGGA ATCOGCGACGCCGAGGGGTATTACTTTATTCTGGGCOGTACOGATGATGTGATTAATATT GCGGGTCATCGGCTGGGGACGCGAGAAATAGAAGAAAGTATCTCCAGCTACCCGAACGTA gCGGAAGTGGCGGTAGTGGGGATAAAAGACGCTCTGAAAGGGCAGGTAGCGGTGGCGTTT GTCATICCGAAGCAGAGCGATACGCTGGCGGATCGCGAGGCGGCGCGCGACGAGGAAAAC GCGATTATGGCGCTGGTGGACAACCAGATCGGTCACTITGGICGTCCGGCGCATGTCTGG TTTGTITCGCAGCTCCCCAAAACGCGTTCOGGAAAGATGCTTCGCCGCACGATCCAGGCG ATCTGCGAAGGCCGCGATCCGGGCGATCTGACAACCATTGACGATCCCGCGTCGTTGCAG CAAATTCGCCAGGCGATCGAACAA

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

SCATTERED BRANCHED-CHAIN FATTY ACIDS AND BIOLOGICAL PRODUCTION THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS AND INCORPORATION BY REFERENCE

[0001] This application claims priority to U.S. Provisional Patent Application No. 61/294,274, filed Jan. 12, 2010, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The invention relates to cells and methods for producing fatty acids, and more particularly relates to cells and methods for producing scattered branched-chain fatty acids.

BACKGROUND OF THE INVENTION

[0003] Branched-chain fatty acids are carboxylic acids with a methyl or ethyl branch on one or more carbons that can be either chemically synthesized or isolated from certain animals and bacteria. While certain bacteria, such as Escherichia coli, do not naturally produce branched-chain fatty acids, some bacteria, such as members of the genera Bacillus and Streptomyces, can naturally produce these fatty acids. For example, Streptomyces avermitilis and Bacillus subtilis both produce branched-chain fatty acids with from 14 to 17 total carbons, with the branches in the iso and anteiso positions (Cropp et al., Can. J. Microbiology 46: 506-14 (2000); De Mendoza et al., Biosynthesis and Function of Membrane Lipids, in Bacillus subtilis and Other Gram-Positive Bacteria, Sonenshein and Losick, eds., American Society for Microbiology (1993)). However, these organisms do not produce branched-chain fatty acids in amounts that are commercially useful. Another limitation of these natural organisms is that they apparently do not produce medium-chain branchedchain fatty acids, such as those with 11 or 13 carbons. In addition, if fatty acids having particular chain lengths, branches on particular carbons, or branches at positions other than the iso and anteiso positions are desired, these fatty acids may not be available or easily isolated from a natural organism in meaningful quantities.
[0004] As such, there remains a need for commercially useful, bacterially-produced, branched-chain fatty acids. In addition, there remains a need for a method of producing such branched-chain fatty acids.

SUMMARY OF THE INVENTION

[0005] Methods and cells for producing scattered branched-chain fatty acids are provided. In certain embodiments, the method for producing branched-chain fatty acids in a cell includes expressing in the cell one or more recombinant polypeptides that catalyze the conversion of methyl-malonyl-CoA to methylmalonyl-ACP; and culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.
[0006] Also provided is a method for producing branchedchain fatty acids in a cell, the method including expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.
[0007] In certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the method including expressing in the cell a polypeptide that has pro-pionyl-CoA synthetase activity; inhibiting propionylation of the propionyl-CoA synthetase; and culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.
[0008] Further provided is a method for producing branched-chain fatty acids in a cell, the method including expressing in the cell a polypeptide that has methylmalonylCoA mutase activity; expressing in a cell a polypeptide that has methylmalonyl-CoA epimerase activity; and culturing the cell under conditions suitable for producing the polypeptides, such that branched-chain fatty acids are produced.
[0009] A composition comprising a mixture of biologi-cally-produced branched-chain fatty acids is also provided. The composition can include branched-chain fatty acids having a chain length of C 12 to C 16 and from about 1 to about 3 methyl branches positioned on one or more even-numbered carbons.
[0010] In certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the method including expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonylCoA in the cell; expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.
[0011] In addition, in certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the method including expressing in the cell one or more recombinant polypeptides that increase the production of methyl-malonyl-CoA in the cell; expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonylCoA to methylmalonyl-ACP; expressing in the cell a recombinant thioesterase; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.
[0012] Also provided is a method for producing branchedchain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon. The method includes modifying the cell to increase carbon flow to methylmalonyl-CoA; and culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced. In certain embodiments, the branching can be on the fourth, sixth, eighth, tenth, or twelfth carbon.
[0013] In certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the branchedchain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon. The method includes modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced. In certain embodiments, the branching can be on the fourth, sixth, eighth, tenth, or twelfth carbon.
[0014] A method for producing modified fatty acids in a cell is also provided, the method including providing a cell
having type II fatty acid synthase activity; expressing in the cell one or more recombinant polypeptides that catalyze formation of at least one intermediate metabolite, wherein the at least one intermediate metabolite is incorporated by the type II fatty acid synthase; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that modified fatty acids are produced.
[0015] Further provided is an Escherichia cell that produces branched-chain fatty acids having a chain length from about 10 to about 18 carbons and comprising one or more methyl branches on one or more even-numbered carbons.
[0016] The invention further provides a method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons. The method comprises culturing a cell comprising (aa) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or (bb) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of suc-cinyl-CoA to methylmalonyl-CoA. The cell is cultured under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid. Optionally, the method further comprises extracting from the culture the branched-chain fatty acid or a product of the branched-chain fatty acid. Also provided is a cell comprising (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase, which are expressed in the cell. The cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).
[0017] The following numbered paragraphs each succinctly define one or more exemplary variations of the invention:
[0018] 1. A method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons, the method comprising culturing a cell comprising
[0019] (aa) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl- CoA to methylma-lonyl-CoA and/or (bb) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA, under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid, wherein the cell produces more fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).
[0020] 2. The method of paragraph 1 further comprising extracting from culture the branched-chain fatty acid or a product of the branched-chain fatty acid.
[0021] 3. The method of paragraph 1 or paragraph 2 , wherein the polypeptide that catalyzes the conversion of pro-pionyl-CoA to methylmalonyl-CoA is a propionyl-CoA carboxylase and/or the polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA is a methylmalonylCoA mutase.
[0022] 4. The method of paragraph 3, wherein (i) the pro-pionyl-CoA carboxylase is Streptomyces coelicolor PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalo-nyl-CoA mutase is Janibacter sp. HTCC2649 methylmalo-nyl-CoA mutase, S. cinnamonensis MutA and MutB, or E. coli Sbm .
[0023] 5. The method of paragraph 3, wherein (i) the meth-ylmalonyl-CoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionyl-CoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.
[0024] 6. The method of any one of paragraphs 3-5, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.
[0025] 7. The method of any one of paragraphs 1-6, wherein the cell further comprises an exogenous or overexpressed polynucleotide encoding an acyl transferase lacking polyketide synthesis activity and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a thioesterase.
[0026] 8. The method of paragraph 7, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of Mycobacterium mycocerosic acid synthase.
[0027] 9. The method of any one of paragraphs 1-8, wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylma-lonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.
[0028] 10. The method of any one of paragraphs 1-9, wherein the cell produces a Type II fatty acid synthase.
[0029] 11. The method of any one of paragraphs 1-10, wherein the cell is Escherichia coli.
[0030] 12. A branched-chain fatty acid produced by the method of any one of paragraphs 1-11.
[0031] 13. A cell comprising: (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propio-nyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase, wherein the polynucleotide(s) are expressed and the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).
[0032] 14. The cell of paragraph 13 , wherein (i) the propio-nyl-CoA carboxylase is Streptomyces coelicolor PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalonylCoA mutase is Janibacter sp. HTCC2649 methylmalonylCoA mutase, S. cinnamonensis MutA and MutB, or E. coli Sbm.
[0033] 15. The cell of paragraph 13, wherein (i) the meth-ylmalonyl-CoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionyl-CoA carboxylase comprises an amino acid
sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10
[0034] 16 . The cell of any one of paragraphs $13-15$, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a meth-ylmalonyl-CoA mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.
[0035] 17. The cell of any one of paragraphs 13-16, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of Mycobacterium mycocerosic acid synthase.
[0036] 18. The cell of any one of paragraphs 13-17, wherein the cell further comprises an exogenous or overexpressed polynucleotide comprises a nucleic acid sequence encoding a thioesterase.
[0037] 19.The cell of any one of paragraphs $13-18$, wherein the cell has been modified to attenuate endogenous methyl-malonyl-CoA mutase activity, endogenous methylmalonylCoA decarboxylase activity, and/or endogenous acyl transferase activity.
[0038] 20. The cell of any one of paragraphs 13-19, wherein the cell is Escherichia coli.
[0039] 21. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that catalyze the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and b. culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.
[0040] 22. The method of paragraph 21, wherein the polypeptide is an acyl transferase.
[0041] 23. The method of paragraph 21, wherein the polypeptide is encoded by fabD.
[0042] 24. The method of paragraph 22, wherein the polypeptide is a polyketide synthase or a portion thereof.
[0043] 25. The method of paragraph 21, wherein the polypeptide is a Mycobacterium mycocerosic acid synthase or a portion thereof
[0044] 26. The method of paragraph 21, wherein the polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 19.
[0045] 27. The method of paragraph 21, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.
[0046] 28 . The method of paragraph 21, wherein the cell is an Escherichia cell.
[0047] 29. The method of paragraph 21, wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.
[0048] 30. The method of paragraph 21, wherein the branched-chain fatty acids comprise one or more methyl branches.
[0049] 31. The method of paragraph 30, wherein the one or more methyl branches are on even numbered carbons.
[0050] 32. The method of paragraph 21, wherein the branched-chain fatty acids are not naturally produced in the cell.
[0051] 33. Branched-chain fatty acids produced by the method of paragraph 21.
[0052] 34. A cell comprising at least one recombinant polypeptide that catalyzes the conversion of methylmalonylCoA to methylmalonyl-ACP, wherein the cell comprising the
recombinant polypeptide produces more branched-chain fatty acids than an otherwise similar cell that does not comprise the recombinant polypeptide.
[0053] 35. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; and b. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.
[0054] 36. The method of paragraph 35, wherein expression of the polypeptide results in increased propionyl-CoA synthetase activity in the cell.
[0055] 37. The method of paragraph 35, wherein the polypeptide has propionyl-CoA carboxylase activity
[0056] 38. The method of paragraph 35, wherein the polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 10.
[0057] 39. The method of paragraph 35, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.
[0058] 40. The method of paragraph 35, wherein the cell is an Escherichia cell.
[0059] 41. The method of paragraph 35 , wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.
[0060] 42. The method of paragraph 35, wherein the branched-chain fatty acids comprise one or more methyl branches.
[0061] 43. The method of paragraph 42 , wherein the one or more methyl branches are on even numbered carbons.
[0062] 44. The method of paragraph 35, wherein the branched-chain fatty acids are not naturally produced in the cell.
[0063] 45. Branched-chain fatty acids produced by the method of paragraph 35 .
[0064] 46. A cell comprising at least one recombinant polypeptide that increases the production of methylmalonylCoA in the cell, wherein the cell comprising the recombinant polypeptide produces more branched-chain fatty acids than an otherwise similar cell that does not comprise the recombinant polypeptide.
[0065] 47. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell a polypeptide that has propionyl-CoA synthetase activity; b. inhibiting propionylation of the propionyl-CoA synthetase; and c. culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.
[0066] 48. The method of paragraph 47, wherein the polypeptide does not include a lysine that is subject to propionylation.
[0067] 49. The method of paragraph 47, wherein step c) includes providing a source of resveratrol into a culture medium used to culture the cell.
[0068] 50. The method of paragraph 47, wherein the cell does not include an N -acetyltransferase enzyme responsible for propionylation of the propionyl-CoA synthetase.
[0069] 51. The method of paragraph 47, wherein the polypeptide has at least about 60% sequence identity to the protein encoded by SEQ ID NO: 22.
[0070] 52. The method of paragraph 47, wherein the cell contains increased enzymatic activity for removal of propionyl groups from one or more lysine residues of propionylCoA synthetase.
[0071] 53. The method of paragraph 47, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.
[0072] 54. The method of paragraph 47, wherein the cell is an Escherichia cell.
[0073] 55. The method of paragraph 47, wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.
[0074] 56. The method of paragraph 47, wherein the branched-chain fatty acids comprise one or more methyl branches.
[0075] 57. The method of paragraph 56, wherein the one or more methyl branches are on even numbered carbons.
[0076] 58. The method of paragraph 47, wherein the branched-chain fatty acids are not naturally produced in the cell.
[0077] 59. Branched-chain fatty acids produced by the method of paragraph 47.
[0078] 60. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell a polypeptide that has methylmalonyl-CoA mutase activity; b. expressing in a cell a polypeptide that has methylmalonyl-CoA epimerase activity; and c. culturing the cell under conditions suitable for producing the polypeptides, such that branchedchain fatty acids are produced.
[0079] 61 . The method of paragraph 60 , wherein the meth-ylmalonyl-CoA mutase polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 3 or SEQ ID NO: 4.
[0080] 62. The method of paragraph 60 , wherein the meth-ylmalonyl-CoA epimerase polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 6.
[0081] 63. The method of paragraph 60, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.
[0082] 64 . The method of paragraph 60 , wherein the cell is an Escherichia cell.
[0083] 65 . The method of paragraph 60 , wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.
[0084] 66. The method of paragraph 60 , wherein the branched-chain fatty acids comprise one or more methyl branches.
[0085] 67. The method of paragraph 66, wherein the one or more methyl branches are on even numbered carbons.
[0086] 68. The method of paragraph 60 , wherein the branched-chain fatty acids are not naturally produced in the cell.
[0087] 69. Branched-chain fatty acids produced by the method of paragraph 60.
[0088] 70. A cell comprising recombinant polypeptides having methylmalonyl-CoA mutase activity and methylma-lonyl-CoA epimerase activity, wherein the cell comprising the recombinant polypeptides produces more branched-chain fatty acids than an otherwise similar cell that does not comprise the recombinant polypeptide.
[0089] 71.A composition comprising a mixture of biologi-cally-produced branched-chain fatty acids, the branchedchain fatty acids having a chain length of C12 to C16 and from about 1 to about 3 methyl branches positioned on one or more even-numbered carbons.
[0090] 72. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; b. expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and c. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.
[0091] 73. The method of paragraph 72, wherein the cell has a deletion in a gene for a methylmalonyl-CoA decarboxylase.
[0092] 74. The method of paragraph 72, wherein the cell additionally produces a recombinant polypeptide with a 3-ke-toacyl-ACP synthase activity that recognizes methylmalonylACP as a substrate.
[0093] 75. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; b. expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; c. expressing in the cell a recombinant thioesterase; and d. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.
[0094] 76. The method of paragraph 75, wherein the cell has a deletion in a gene for a methylmalonyl-CoA decarboxylase.
[0095] 77. The method of paragraph 75, wherein the cell additionally produces a recombinant polypeptide with a 3-ke-toacyl-ACP synthase activity that recognizes methylmalonylACP as a substrate.
[0096] 78. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branchedchain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced. [0097] 79. The method of paragraph 78, wherein the branching at the second carbon is a methyl branch.
[0098] 80. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the fourth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branchedchain fatty acids having a chain length from about 10 to about 18 carbons and branching at the fourth carbon are produced. [0099] 81. The method of paragraph 80, wherein the branching at the fourth carbon is a methyl branch.
[0100] 82. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the sixth carbon, the method comprising: a. modifying the cell to
increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methyl-malonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the sixth carbon are produced.
[0101] 83. The method of paragraph 82, wherein the branching at the sixth carbon is a methyl branch.
[0102] 84. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 12 to 18 carbons and branching at the eighth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branchedchain fatty acids having a chain length from about 12 to about 18 carbons and branching at the eighth carbon are produced. [0103] 85. The method of paragraph 84, wherein the branching at the eighth carbon is a methyl branch.
[0104] 86. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 14 to 18 carbons and branching at the tenth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methyl-malonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 14 to about 18 carbons and branching at the tenth carbon are produced.
[0105] 87. The method of paragraph 86, wherein the branching at the tenth carbon is a methyl branch.
[0106] 88. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 16 to 18 carbons and branching at the twelfth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branchedchain fatty acids having a chain length from about 16 to about 18 carbons and branching at the twelfth carbon are produced.
[0107] 89. The method of paragraph 88, wherein the branching at the twelfth carbon is a methyl branch.
[0108] 90. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalony1-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced.
[0109] 91. The method of paragraph 90 , wherein the branching at the second carbon is a methyl branch.
[0110] 92. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the fourth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the fourth carbon are produced.
[0111] 93. The method of paragraph 92, wherein the branching at the fourth carbon is a methyl branch.
[0112] 94. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the sixth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b . culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the sixth carbon are produced.
[0113] 95. The method of paragraph 94, wherein the branching at the sixth carbon is a methyl branch.
[0114] 96. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 12 to 18 carbons and branching at the eighth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 12 to about 18 carbons and branching at the eighth carbon are produced.
[0115] 97. The method of paragraph 96, wherein the branching at the eighth carbon is a methyl branch.
[0116] 98. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 14 to 18 carbons and branching at the tenth carbon, the method comprising: a. modifying the cell to generate methylmalony1-ACP from methylmalonyl-CoA; and b . culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 14 to about 18 carbons and branching at the tenth carbon are produced.
[0117] 99. The method of paragraph 98, wherein the branching at the tenth carbon is a methyl branch.
[0118] 100. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 16 to 18 carbons and branching at the twelfth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b . culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 16 to about 18 carbons and branching at the twelfth carbon are produced.
[0119] 101. The method of paragraph 100, wherein the branching at the twelfth carbon is a methyl branch.
[0120] 102. A method for producing modified fatty acids in a cell comprising: a. providing a cell having type II fatty acid synthase activity; b. expressing in the cell one or more recombinant polypeptides that catalyze formation of at least one intermediate metabolite, wherein the at least one intermediate metabolite is incorporated by the type II fatty acid synthase; and c . culturing the cell under conditions suitable for producing the recombinant polypeptide, such that modified fatty acids are produced.
[0121] 103. The method of paragraph 102, wherein the cell is an Escherichia cell.
[0122] 104. The method of paragraph 102, wherein the intermediate metabolite is methylmalonyl-ACP.
[0123] 105. The method of paragraph 102, wherein the polypeptide(s) catalyze the conversion of methylmalonylCoA to methylmalonyl-ACP.
[0124] 106. The method of paragraph 102, wherein the cell produces higher levels of modified fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.
[0125] 107. The method of paragraph 102, wherein the modified fatty acids comprise one or more methyl branches on even-numbered carbons.
[0126] 108. The method of paragraph 102, wherein the polypeptide is an acyl transferase.
[0127] 109. The method of paragraph 102, wherein the polypeptide is encoded by fabD.
[0128] 110. The method of paragraph 102, wherein the polypeptide is a polyketide synthase or a portion thereof.
[0129] 111. The method of paragraph 102, wherein the polypeptide is a Mycobacterium mycocerosic acid synthase or a portion thereof.
[0130] 112. An Escherichia cell that produces branchedchain fatty acids having a chain length from about 10 to about 18 carbons and comprising one or more methyl branches on one or more even-numbered carbons.

BRIEF DESCRIPTION OF THE DRAWINGS

[0131] FIG. 1 is a mutA nucleotide sequence (SEQ ID NO: 1).
[0132] FIG. 2 is a mutB nucleotide sequence (SEQ ID NO: 2).
[0133] FIG. 3 is a MutA protein sequence (SEQ ID NO: 3).
[0134] FIG. 4 is a MutB protein sequence (SEQ ID NO: 4).
[0135] FIG. 5 is a methylmalonyl-CoA epimerase nucleotide sequence (SEQ ID NO: 5).
[0136] FIG. 6 is a methylmalonyl-CoA epimerase protein sequence (SEQ ID NO: 6).
[0137] FIG. 7 is a DNA sequence for accA1 (GenBank Accession No. AF113603.1) (SEQ ID NO: 7).
[0138] FIG. 8 is a DNA sequence for pccB (GenBank Accession No. AF113605.1) (SEQ ID NO: 8).
[0139] FIG. 9 is a protein sequence for AccAl (SEQ ID NO: 9).
[0140] FIG. 10 is a protein sequence for PccB (SEQ ID NO: 10).
[0141] FIG. 11 shows element 1 including the $\mathrm{P}_{\text {Llaco-1 }}$ sequence and the phage T7 gene10 ribosome binding site (SEQ ID NO: 11).
[0142] FIG. 12 shows element 2 including the optimized accA1 gene sequence (SEQ ID NO: 12).
[0143] FIG. 13 shows element 3 including the spacer sequence (SEQ ID NO: 13).
[0144] FIG. 14 shows element 4 including the optimized pccB sequence (SEQ ID NO: 14).
[0145] FIG. 15 is a synthetic sequence for propionyl-CoA carboxylase gene expression (SEQ ID NO: 15).
[0146] FIG. 16 is the forward primer sequence for PrpE (SEQ ID NO: 16).
[0147] FIG. 17 is the reverse primer sequence for PrpE (SEQ ID NO: 17).
[0148] FIG. 18 is the MMAT domain sequence from Mycobacterium bovis BCG (SEQ ID NO: 18).
[0149] FIG. 19 is a protein sequence for the Mycobacterium bovis BCG MAS (GenBank Accession No. YP_979046) (SEQ ID NO: 19).
[0150] FIG. 20 is a codon-optimized MMAT domain DNA sequence from Mycobacterium bovis BCG (SEQ ID NO: 20).
[0151] FIG. 21 is an alignment of a codon-optimized MMAT domain from Mycobacterium bovis BCG with the original sequence (SEQ ID NOs: 20 and 21).
[0152] FIG. 22 is the protein sequence of Salmonella enterica propionyl CoA synthase PrpE (GenBank Accession No. AAC44817) (SEQ ID NO: 22).
[0153] FIG. 23 is the DNA sequence of Salmonella enterica propionyl CoA synthase PrpE (SEQ ID NO. 23).
[0154] FIG. 24 is a bar graph illustrating methylmalonylCoA production ($\mathrm{ng} / \mathrm{ml}$) in E. coli strain K27-Z1 harboring $\mathrm{p} \operatorname{TrcHisA} \mathrm{pZA} 31$ (control), pZA31 mutAB Ss epi (MutAB Epi), pTrcHisA Ec sbm (Sbm), or pTrcHisA Ec sbm pZA31 Mb mmat (Sbm/Mmat). No methylmalonyl-CoA was identified in the control sample; the figure indicates the background level of detection.
[0155] FIG. 25 is a bar graph illustrating methylmalonylCoA production ($\mathrm{ng} / \mathrm{ml}$) in E. coli BW25113 (control) and BW25113 harboring pZA31-accA1-pccB (Pcc). No methyl-malonyl-CoA was identified in the control sample; the figure indicates the background level of detection. Two biological replicates are represented.
[0156] FIG. 26 is a two-dimensional (2D) representation of the 2D Total Ion Chromatogram resulting from a sample of fatty acid produced by BL21 Star (DE3) E. coli harboring pTrcHisA Ec sbm So ce epi pZA31 mmat. Light areas on the figure indicate the presence of sample material. Peak names and arrows indicate samples that were further characterized by mass spectrometry.
[0157] FIG. 27 is a two-dimensional (2D) representation of the 2D Total Ion Chromatogram resulting from a sample produced by a control strain, BL21 Star (DE3) E. coli harboring p TrcHisA pZA 31 . No branched-chain fatty acid was detected. Arrows indicate the presence of straight-chain fatty acid derivatives of the indicated chain length.
[0158] FIG. 28 is a representation of the mass spectra of peaks 54, 55, and 57 identified in FIG. 26. Eight- and tencarbon branched-chain fatty acids are depicted in the top two profiles and were identified by the almost complete absence of the circled fragment. A twelve-branched fatty acid was tentatively identified and is depicted in the third profile.

DETAILED DESCRIPTION OF THE INVENTION

[0159] The invention relates to improved biological production of scattered branched-chain fatty acids. In addition, in certain embodiments, the invention provides improved compositions of biologically produced scattered branchedchain fatty acids having defined chain lengths with methyl branches at one or more even-numbered carbons within the fatty acid. In addition, in certain embodiments, the fatty acid length can be tailored to a predetermined length, such as, for example, to produce fatty acids with a backbone of C12 to C16. In certain embodiments, the methods and/or cells can produce a mixture of fatty acids having varied numbers of methyl branches, varied positions of the methyl branches, and varied length of the fatty acids, such as, for example, a mixture of fatty acids having a chain length of C12 to C16 and from about 0 to about 3 methyl branches positioned on one or more even-numbered carbons
[0160] As used herein, "amplify," "amplified," or "amplification" refers to any process or protocol for copying a polynucleotide sequence into a larger number of polynucleotide molecules, e.g., by reverse transcription, polymerase chain reaction, and ligase chain reaction.
[0161] As used herein, an "antisense sequence" refers to a sequence that specifically hybridizes with a second polynucleotide sequence. For instance, an antisense sequence is a DNA sequence that is inverted relative to its normal orientation for transcription. Antisense sequences can express an RNA transcript that is complementary to a target mRNA molecule expressed within the host cell (e.g., it can hybridize to target mRNA molecule through Watson-Crick base pairing).
[0162] As used herein, "cDNA" refers to a DNA that is complementary or identical to an mRNA, in either single stranded or double stranded form.
[0163] As used herein, the carbons in fatty acids are numbered with the first carbon as part of the carboxylic acid group, and the second carbon (C2) adjacent to the first. The numbers continue so that the highest number carbon is farthest from the carboxylic acid group. "Even number" carbons include C2, C4, C6, C8, C10, C12, C14, and so on.
[0164] As used herein, "complementary" refers to a polynucleotide that can base pair with a second polynucleotide. Put another way, "complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, a polynucleotide having the sequence 5^{\prime}-GTCCGA- 3^{\prime} is complementary to a polynucleotide with the sequence 5^{\prime}-TCGGAC- 3^{\prime}.
[0165] As used herein, a "conservative substitution" refers to the substitution in a polypeptide of an amino acid with a functionally similar amino acid. Put another way, a conservative substitution involves replacement of an amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art, and include amino acids with basic side chains (e.g., lysine, arginine, and histidine), acidic side chains (e.g., aspartic acid and glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, and cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, and tryptophan), betabranched side chains (e.g., threonine, valine, and isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, and histidine).
[0166] As used herein, "encoding" refers to the inherent property of nucleotides to serve as templates for synthesis of other polymers and macromolecules. Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.
[0167] As used herein, "endogenous" refers to polynucleotides, polypeptides, or other compounds that are expressed naturally or originate within an organism or cell. That is, endogenous polynucleotides, polypeptides, or other compounds are not exogenous. For instance, an "endogenous" polynucleotide or peptide is present in the cell when the cell was originally isolated from nature.
[0168] As used herein, "expression vector" refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. For example, suitable expression vectors include, without limitation, autonomously replicating vectors or vectors integrated into the chromosome. In some instances, an expression vector is a viral-based vector.
[0169] As used herein, "exogenous" refers to any polynucleotide or polypeptide that is not naturally expressed or
produced in the particular cell or organism where expression is desired. Exogenous polynucleotides, polypeptides, or other compounds are not endogenous.
[0170] As used herein, "hybridization" includes any process by which a strand of a nucleic acid joins with a complementary nucleic acid strand through base-pairing. Thus, the term refers to the ability of the complement of the target sequence to bind to a test (i.e., target) sequence, or vice-versa. [0171] As used herein, "hybridization conditions" are typically classified by degree of "stringency" of the conditions under which hybridization is measured. The degree of stringency can be based, for example, on the melting temperature (T_{m}) of the nucleic acid binding complex or probe. For example, "maximum stringency" typically occurs at about $\mathrm{T}_{m}-5^{\circ} \mathrm{C}$. (5° below the T_{m} of the probe); "high stringency" at about $5-10^{\circ} \mathrm{C}$. below the T_{m}, "intermediate stringency" at about $10-20^{\circ}$ below the T_{m} of the probe; and "low stringency" at about $20-25^{\circ} \mathrm{C}$. below the T. Alternatively, or in addition, hybridization conditions can be based upon the salt or ionic strength conditions of hybridization and/or one or more stringency washes. For example, $6 \times \mathrm{SSC}=$ very low stringency; $3 \times \mathrm{SSC}=1$ low to medium stringency; $1 \times \mathrm{SSC}=$ medium stringency; and $0.5 \times \mathrm{SSC}=$ high stringency. Functionally, maximum stringency conditions may be used to identify nucleic acid sequences having strict (i.e., about 100%) identity or near-strict identity with the hybridization probe; while high stringency conditions are used to identify nucleic acid sequences having about 80% or more sequence identity with the probe.
[0172] As used herein, "identical" or percent "identity" in the context of two or more polynucleotide or polypeptide sequences refers to two or more sequences that are the same or have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using sequence comparison algorithms or by visual inspection.
[0173] As used herein, "long-chain fatty acids" refers to fatty acids with aliphatic tails longer than 14 carbons. In some embodiments of the invention, long-chain fatty acids are provided that comprise $15,16,17,18,19,20,21$, or 22 carbons in the carbon backbone.
[0174] As used herein, "medium-chain fatty acids" refers to fatty acids with aliphatic tails between 6 and 14 carbons. In certain embodiments, the medium-chain fatty acids can have from 11 to 13 carbons.
[0175] As used herein, "naturally-occurring" refers to an object that can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.
[0176] As used herein, "operably linked," when describing the relationship between two DNA regions or two polypeptide regions, means that the regions are functionally related to each other. For example, a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation; and a signal sequence is operably linked to a peptide if it functions as a signal sequence, such as by participating in the secretion of the mature form of the protein.
[0177] As used herein, "overexpression" refers to expression of a polynucleotide to produce a product (e.g., a polypeptide or RNA) at a higher level than the polynucleotide is
normally expressed in the host cell. An overexpressed polynucleotide is generally a polynucleotide native to the host cell, the product of which is generated in a greater amount than that normally found in the host cell. Overexpression is achieved by, for instance and without limitation, operably linking the polynucleotide to a different promoter than the polynucleotide's native promoter or introducing additional copies of the polynucleotide into the host cell.
[0178] As used herein, "polynucleotide" refers to a polymer composed of nucleotides. The polynucleotide may be in the form of a separate fragment or as a component of a larger nucleotide sequence construct, which has been derived from a nucleotide sequence isolated at least once in a quantity or concentration enabling identification, manipulation, and recovery of the sequence and its component nucleotide sequences by standard molecular biology methods, for example, using a cloning vector. When a nucleotide sequence is represented by a DNA sequence (i.e., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which " U " replaces "T." Put another way, "polynucleotide" refers to a polymer of nucleotides removed from other nucleotides (a separate fragment or entity) or can be a component or element of a larger nucleotide construct, such as an expression vector or a polycistronic sequence. Polynucleotides include DNA, RNA and cDNA sequences.
[0179] As used herein, "polypeptide" refers to a polymer composed of amino acid residues which may or may not contain modifications such as phosphates and formyl groups.
[0180] As used herein, "recombinant expression vector" refers to a DNA construct used to express a polynucleotide that encodes a desired polypeptide. A recombinant expression vector can include, for example, a transcriptional subunit comprising (i) an assembly of genetic elements having a regulatory role in gene expression, for example, promoters and enhancers, (ii) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (iii) appropriate transcription and translation initiation and termination sequences. Recombinant expression vectors are constructed in any suitable manner. The nature of the vector is not critical, and any vector may be used, including plasmid, virus, bacteriophage, and transposon. Possible vectors for use in the invention include, but are not limited to, chromosomal, nonchromosomal and synthetic DNA sequences, e.g., bacterial plasmids; phage DNA; yeast plasmids; and vectors derived from combinations of plasmids and phage DNA, DNA from viruses such as vaccinia, adenovirus, fowl pox, baculovirus, SV40, and pseudorabies.
[0181] As used herein, "primer" refers to a polynucleotide that is capable of specifically hybridizing to a designated polynucleotide template and providing a point of initiation for synthesis of a complementary polynucleotide when the polynucleotide primer is placed under conditions in which synthesis is induced.
[0182] As used herein, "recombinant polynucleotide" refers to a polynucleotide having sequences that are not naturally joined together. A recombinant polynucleotide may be included in a suitable vector, and the vector can be used to transform a suitable host cell. A host cell that comprises the recombinant polynucleotide is referred to as a "recombinant host cell." The polynucleotide is then expressed in the recombinant host cell to produce, e.g., a "recombinant polypeptide."
[0183] As used herein, "specific hybridization" refers to the binding, duplexing, or hybridizing of a polynucleotide preferentially to a particular nucleotide sequence under stringent conditions.
[0184] As used herein, "stringent conditions" refers to conditions under which a probe will hybridize preferentially to its target subsequence, and to a lesser extent to, or not at all to, other sequences.
[0185] As used herein, "short-chain fatty acids" refers to fatty acids having aliphatic tails with fewer than 6 carbons.
[0186] As used herein, "substantially homologous" or "substantially identical" in the context of two nucleic acids or polypeptides, generally refers to two or more sequences or subsequences that have at least $40 \%, 60 \%, 80 \%, 90 \%, 95 \%$, $96 \%, 97 \%, 98 \%$ or 99% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using sequence comparison algorithms or by visual inspection. The substantial identity can exist over any suitable region of the sequences, such as, for example, a region that is at least about 50 residues in length, a region that is at least about 100 residues, or a region that is at least about 150 residues. In certain embodiments, the sequences are substantially identical over the entire length of either or both comparison biopolymers.
[0187] In one embodiment, the invention relates to a novel method of producing scattered branched-chain fatty acids (or products derived from scattered branched-chain fatty acid) using bacteria. In general, the method includes increasing the supply of methylmalonyl-CoA and/or the conversion of methylmalonyl-CoA to methylmalonyl-ACP within the cell, incorporating the branch from the methylmalonyl-CoA into the fatty acid, and, optionally, using a thioesterase to specify the range of size of the fatty acids. In certain embodiments, the method provides branched-chain fatty acids having a chain length of C12 to C16. In addition, in certain embodiments, the branched-chain fatty acids have from about 0 to about 3 methyl branches, such as from about 1 to about 3 methyl branches, such as, for example, from about 1 to about 2 methyl branches, or 1,2 , or 3 methyl branches positioned on one or more carbons. In certain embodiments, the methyl branches are positioned on even-numbered carbons.
[0188] In one embodiment, scattered branched-chain fatty acid production is increased by increasing the production of methylmalonyl-CoA within the cell via, e.g., propionyl-CoA and/or succinyl-CoA intermediates. Thus, in one aspect, the invention provides a method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons. The method comprises culturing a cell comprising an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonylCoA. The cell is cultured under conditions allowing expression of the polynucleotide(s) and production of the branchedchain fatty acid. The cell produces more branched-chain fatty acid comprising a methyl branch on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s) (e.g., a cell of the same cell type or derived from the same organism that does not comprise the polynucleotide(s)). Propionyl-CoA is converted to methyl-malonyl-CoA by, e.g., the action of a propionyl-CoA carboxylase. Any propionyl-CoA carboxylase that catalyzes the
conversion of propionyl-CoA to methylmalonyl-CoA is suitable for use in the inventive method. An exemplary propionylCoA carboxylase is a carboxylase from Streptomyces coelicolor, which comprises two heterologous subunits encoded by pccB and by either accA1 or accA2. In certain embodiments, the cell of the inventive method is engineered to produce PccB and AccA1 or PccB and AccA2. In one aspect, the cell comprises one or more polynucleotides encoding polypeptide(s) comprising an amino acid sequence at least about 80% identical (e.g., $85 \%, 90 \%, 95 \%$, or 100% identical) to the amino acid sequences set forth in SEQ ID NO: 9 and/or 10.Additional, non-limiting examples of polypeptides that catalyze the conversion of propionyl-CoA to methylma-lonyl-CoA are propionyl-CoA carboxylases from Mycobacterium smegmatis, Homo sapiens, Acinetobacter baumannii, Brucella suis, Saccharopolyspora erythraea, Burkholderia glumae, and Aedes aegypti, as well as the propionyl-CoA carboxylases set forth in Table A.
nucleotide encoding lactate dehydrogenase, lactate CoA transferase, lactyl-CoA dehydratase, and/or acrylyl-CoA reductase.
[0191] In addition, in any aspect of the invention, carbon flow to branch pathways not contributing to formation of the desired branched-chain fatty acid is minimized by attenuation of endogenous enzyme activity responsible for the diversion of carbon. Complete abolishment of endogenous activity is not required; any reduction in activity is suitable in the context of the invention. Enzyme activity is attenuated (i.e., reduced or abolished) by, for example, mutating the coding sequence for the enzyme to create a non-functional or reduced-function polypeptide, by removing all or part of the coding sequence for the enzyme from the cellular genome, by interfering with translation of an RNA transcript encoding the enzyme (e.g., using antisense oligonucleotides), or by manipulating the expression control sequences influencing expression of the enzyme. For example, in one aspect, the cell

TABLE A

	GenBank Accession	Description	SEQ ID NO:	
Organism	YP_507303	Propionyl-CoA carboxylase alpha subunit (PCCA)	51	
Ehrlichia chaffeensis	Phrlichia chaffeensis	YP_507410	Propionyl-CoA carboxylase beta subunit (PCCB)	52
Agrobacterium vitis	YP_002547482	Propionyl-CoA carboxylase alpha subunit (PCCA)	53	
Agrobacterium vitis	YP_002547479	Propionyl-CoA carboxylase beta subunit (PCCB)	54	
Methylobacterium extorquens Methylobacterium extorquens Sinorhizobium metiloti	YP_003069256	Propionyl-CoA carboxylase alpha subunit (PCCA)	55	
Sinorhizobium meliloti	NP_4379887	Propionyl-CoA carboxylase beta subunit (PCCB) Propionyl-CoA carboxylase alpha subunit (PCCA) Propionyl-CoA carboxylase beta subunit (PCCB) Propionyl-CoA carboxylase alpha subunit (PCCA)	56	
Ruegeria pomeroyi	YP_166352	59		
Ruegeria pomeroyi	YP_166345	Pronyl-CoA carboxylase beta subunit (PCCB)	60	

[0189] Optionally, the cell is modified to increase carbon flow to propionyl-CoA (and then onward to methylmalonylCoA) by, for example, increasing expression of (i.e., overexpressing) prpE or other propionyl-CoA synthetase genes. Alternatively or in addition, an exogenous polynucleotide comprising a nucleic acid sequence encoding a propionylCoA synthetase is introduced into the host cell to upregulate propionyl-CoA production. Additionally, feeding host cells (e.g., microbes) large amounts of methionine, isoleucine, valine, threonine, propionic acid, and/or odd-chain length fatty acids (such as valeric acid) increases production of the propionyl-CoA precursor of methylmalonyl-CoA.
[0190] Methylmalonyl-CoA production via propionylCoA also is increased utilizing the metabolic pathway that converts pyruvate to propionyl-CoA, with lactate, lactoylCoA, and acrylyl-CoA as intermediates. Carbon flow to pro-pionyl-CoA is upregulated by overproducing the enzymes of the pathway, producing exogenous enzymes catalyzing one or more conversions of the pathway, and/or by providing pyruvate or lactate in larger amounts than normally found in the host cell. For example, in any embodiment of the invention, the cell comprises an exogenous or overexpressed poly-
is modified to prevent methylmalonyl-CoA degradation, thereby increasing the amount of methylmalonyl-CoA available for conversion to methylmalonyl-ACP. MethylmalonylCoA degradation is reduced by, for example, deleting or inactivating methylmalonyl-CoA decarboxylase from the host. Put another way, the cell is modified to attenuate endogenous methylmalonyl-CoA decarboxylase activity. In E. coli, for example, methylmalonyl-CoA decarboxylase activity is attenuated by, for example, deleting or mutating ygfG. Optionally, endogenous acyl transferase activity is attenuated. Alternatively or in addition, methylmalonyl-CoA production within the cell is increased by preventing alternative metabolism of propionyl-CoA to succinyl-CoA, such as, for example, by deleting or otherwise reducing (attenuating) the activity of an endogenous methylmalonyl-CoA mutase gene. Optionally, methylmalonyl-CoA levels are increased by increasing the degradation of valine directly to methylmalo-nyl-CoA. Valine degradation comprises the following intermediates: α-ketoisovalerate, isobutyryl-CoA, methacrylylCoA, β-hydroxyisobutyryl-CoA, β-hydroxyisobutyrate, and methylmalonate semialdehyde. Optionally, methylmalonate semialdehyde is converted directly to methylmalonyl-CoA or
indirectly through a propionyl-CoA intermediate. In an exemplary embodiment, the cell of the invention comprises an overexpressed or exogenous polynucleotide comprising a nucleic acid sequence encoding one or more of the following enzymes: L-valine:2-oxoglutarate aminotransferase, 2-oxoisovalerate dehydrogenase, isobutyryl-CoA:FAD oxidoreductase, 3-hydroxy-isobutyryl-CoA hydro-lyase, 3-hy-droxyisobutyryl-CoA hydrolase, 3-hydroxyisobutyrate dehydrogenase, and/or methylmalonate-semialdehyde dehydrogenase. Methylmalonate-semialdehyde dehydrogenase catalyzes the production of propanoyl-CoA, which can be converted to methylmalonyl-CoA by propanoyl-CoA carboxylase.
[0192] In one aspect, the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA. An exemplary polypeptide that catalyzes the reaction is methylmalonylCoA mutase. In any embodiment of the invention, the cell is engineered to overexpress a methylmalonyl-CoA mutase gene, such as, for example, sbm (encoding Sleeping Beauty mutase) in E. coli. Alternatively or in addition, an exogenous polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase is expressed in the cell. Exemplary methylmalonyl-CoA mutases include, but are not limited to, Sbm from E. coli, MutA and/or MutB from Streptomyces cinnamonensis, and methylmalonyl-CoA mutases from Janibacter sp. HTCC2649, Corynebacterium glutamicum, Euglena gracilis, Homo sapiens, Propionibacterium shermanii, Bacillus megaterium, and Mycobacterium smegmatis. Additional, non-limiting examples of polypeptides that catalyze the conversion of succinyl-CoA to meth-ylmalonyl-CoA are provided in Table B.
[0194] Depending on the substrate specificity of the fatty acid synthase produced by the cell, a methylmalonyl-CoA epimerase also may be desired to facilitate use of methylma-lonyl-CoA as a precursor in fatty acid synthesis. Thus, in one aspect, the cell further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase. MethylmalonylCoA epimerases suitable for use in the invention include, but are not limited to, Sorangium cellulosum So ce 56 methylma-lonyl-CoA epimerase, Streptomyces sviceus ATCC 29083 methylmalonyl-CoA epimerase, Kribbella flavida DSM 17836 methylmalonyl-CoA epimerase, and methylmalony1CoA epimerases from Homo sapiens, Bacillus megaterium, and Mycobacterium smegmatis.
[0195] Production of branched-chain fatty acid comprising a methyl branch on one or more even number carbons also is enhanced by upregulating conversion of methylmalonyl-CoA to methylmalonyl-ACP. In one or more embodiments, conversion of methylmalonyl-CoA to methylmalonyl-ACP is increased in the cell by engineering the cell to produce an acyl transferase (such as the acyl transferase encoded by fabD in E. coli) to catalyze the formation of methylmalonyl-ACP from methylmalonyl-CoA. Put another way, in one aspect, the cell further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase. Any suitable acyl transferase can be used, such as, for example and without limitation, an acyl transferase domain from a polyketide synthase, such as those involved in the synthesis of monensin, epothilone, amphotericin, candicidin, nystatin, pimaricin, ascomycin, rapamycin, avermiectin, spinosad, mycinamicin, niddamycin, oleandomycin, megalomicin, nanchangmycin, picromycin, rifamycin, oligomycin erythromycin, polyenes, and macrolides, and an acyl

TABLE B

Organism	GenBank Accession	Description	SEQ ID NO.
Bacillus megaterium	YP_003564880	methylmalonyl-CoA mutase small subunit (mutA)	61
Bacillus megaterium	YP_003564879	methylmalonyl-CoA mutase large subunit (mutB)	62
Mycobacterium tuberculosis	YP_001282809	methylmalonyl-CoA mutase small subunit (mutA)	63
Mycobacterium tuberculosis	YP_001282810	methylmalonyl-CoA mutase large subunit (mutB)	64
Corynebacterium glutamicum	YP_225814	methylmalonyl-COA mutase small subunit (mutA)	65
Corynebacterium glutamicum	YP_225813	methylmalonyl-CoA mutase large subunit (mutB)	66
Rhodococcus erythropolis	YP_002766535	methylmalonyl-CoA mutase small subunit (mutA)	67
Rhodococcus erythropolis	YP_002766536	methylmalonyl-CoA mutase large subunit (mutB)	68
Porphyromonas gingivalis	NP_905776	methylmalonyl-CoA mutase small subunit (mutA)	69
Porphyromonas gingivalis	NP_905777	methylmalonyl-CoA mutase large subunit (mutB)	70

[0193] In one aspect, the cell comprises one or more polynucleotides encoding polypeptide(s) comprising an amino acid sequence at least about 80% identical (e.g., $85 \%, 90 \%$, 95%, or 100% identical) to the amino acid sequences set forth in SEQ ID NO: 3, 4, and/or 28 . The cell can comprise polynucleotides encoding a methylmalonyl-CoA mutase, a pro-pionyl-CoA carboxylase, or both.
transferase domain from Mycobacterium mycocerosic acid synthase. Acyl transferase domains from larger fatty acid synthase enzymes, such as Mycobacterium mycocerosic acid synthase, act upon methylmalonyl-CoA in the absence of other enzymatic domains of the larger synthase. Optionally, the acyl transferase lacks polyketide synthesis activity. By "polyketide synthesis activity" is meant enzymatic activity,
other than acyl transferase activity, that catalyzes the production of polyketides in a host cell, such as, for example and without limitation, acyltransferase activity, ketoacyl synthase activity, ketoacyl reductase activity, dehydratase activity, enoyl reductase activity, acyl carrier protein activity, and thioesterase activity
[0196] Alternatively, or in addition, in certain embodiments, a 3-ketoacyl-ACP synthase domain, such as, for example, a domain from a polyketide synthase or a mycocerosic acid synthase, is added to the fatty acid synthase of the host cell. In certain embodiments, the host cell (e.g., microbe) is engineered to include both acyl transferase and 3-ketoacylACP synthase domains that can recognize methylmalonylCoA. In addition, in certain embodiments, genes for the endogenous acyl transferase and/or 3-ketoacyl-ACP synthase activities can be attenuated (e.g., deleted) to minimize the amount of malonyl-CoA incorporation in fatty acid synthesis.
[0197] In certain embodiments, the invention includes use of a thioesterase to specify the chain length of the fatty acid, such as, for example, to produce medium-chain fatty acids. In certain embodiments, the host cell further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a thioesterase. In one aspect, the host cell (e.g., bacteria) is engineered to produce a thioesterase that assists in the production of medium-chain branchedchain fatty acids. Alternatively, the host cell is engineered to produce (or overproduce) a thioesterase that assists in the production of long-chain branched-chain fatty acids. Exemplary thioesterases include, for example, the mallard uropygial gland thioesterase, the California bay thioesterase, the rat mammary gland thioesterase II, E. coli TesA, the Cuphea wrightii thioesterase, and other thioesterases suitable for production of the desired chain-length fatty acids.
[0198] Optionally, the cell is modified to produce (or increase the production of) branched acyl-CoA, which is a substrate for elongase in the production of long chain fatty acid. In this regard, in an exemplary embodiment of the invention, the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid encoding a coenzyme-A synthetase, which converts branched-chain fatty acid to branched acyl-CoA. Examples of coenzyme-A synthetases include, but are not limited to, the coenzyme-A synthetase from Leishmania braziliensis (GenBank Accession No. XP_001561614), and the coenzyme-A synthetase from Escherichia coli (GenBank Accession No. YP_541006). Optionally, the cell comprises exogenous or overexpressed polynucleotide(s) comprising a nucleic acid sequence encoding an elongase to increase the length of the carbon backbone. Elongases are enzyme complexes that exhibit 3-ketoacylCoA synthase, 3-ketoacyl-CoA reductase, 3-hydroxyacylCoA dehydratase, and enoyl-CoA reductase activities, and generally utilize malonyl-CoA as an extension unit for extending the carbon chain. When a methyl-malonyl CoA is used as an extension unit by the enzyme complex, additional methyl branches are introduced at even carbon positions. Exemplary elongases include, but are not limited to, elongases comprising the one or more of the following subunits: Saccharomyces cerevisiae 3-ketoacyl-CoA synthase (GenBank Accession No. NP_013476), 3-ketoacyl-CoA reductase (GenBank Accession No. NP_009717), 3-hydroxyacylCoA dehydratase (GenBank Accession No. NP_012438) and enoyl-CoA reductase (GenBank Accession No. NP_010269); and Arabidopsis thaliana col 3-ketoacyl-CoA synthase (GenBank Accession No. NP_849861), 3-ketoacyl-

CoA reductase (GenBank Accession No. NP_ 564905), 3-hy-droxyacyl-CoA dehydratase (GenBank Accession No NP_193180), and enoyl-CoA reductase (GenBank Accession No. NP_191096).
[0199] Any suitable cell or organism, such as, for example, bacterial cells and other prokaryotic cells, and yeast cells, can be used in the context of the invention. In one aspect, the invention relates to cells, such as Escherichia cells (e.g., E. coli), which naturally produce Type II fatty acid synthase and/or do not naturally produce scattered branched-chain fatty acid (i.e., branched-chain fatty acid comprising a methyl branch on one or more even numbered carbons). These cells are engineered to produce the branched-chain fatty acids as described herein. Alternatively, the cell naturally produces branched-chain fatty acid and is modified as described herein to produce higher levels of branched-chain fatty acid (or different proportions of different types of branched-chain fatty acid) compared to an unmodified cell. In certain embodiments, fatty acid is manufactured using bacteria known to make the methylmalonyl-CoA precursor, such as Streptomyces, Mycobacterium or Corynebacterium. These bacteria are, in one aspect, engineered to produce (i) an acyl transferase to increase carbon flux to methylmalonyl-ACP that is incorporated in the fatty acid synthesis pathway and/or (ii) a thioesterase to control the chain length.
[0200] Exemplary bacteria that are suitable for use in the invention include, but are not limited to, Spirochaeta aurantia, Spirochaeta littoralis, Pseudomonas maltophilia, Pseudomonas putrefaciens, Xanthomonas campestris, Legionella anisa, Moraxella catarrhalis, Thermus aquaticus, Flavobacterium aquatile, Bacteroides asaccharolyticus, Bacteroides fragilis, Succinimonas amylolytica, Desulfovibrio africanus, Micrococcus agilis, Stomatococcus mucilaginosus, Planococcus citreus, Marinococcus albusb, Staphylococcus aureus, Peptostreptococcus anaerobius, Ruminococcus albus, Sarcina lutea, Sporolactobacillus inulinus, Clostridium thermocellum, Sporosarcina ureae, Desulfotomaculum nigrificans, Listeria monocytogenes, Brochothrix thermosphacta, Renibacterium salmoninarum, Kurthia zopfii, Corynebacterium aquaticum, Arthrobacter radiotolerans, Brevibacterium fermentans, Propionibacterium acidipropionici, Eubacterium lentum, Cytophaga aquatilis, Sphingobacteriuma multivorumb, Capnocytophaga gingivalis, Sporocytophaga myxococcoides, Flexibacter elegans, Myxococcus coralloides, Archangium gephyra, Stigmatella aurantiaca, Oerskovia turbata, Escherichia coli, Bacillus subtilis, Salmonella typhimurium, Corynebacterium glutamicum, Streptomyces coelicolor, Streptomyces lividans, Clostridium thermocellum and Saccharomonospora viridis.
[0201] In one aspect, the fatty acid produced by the inventive cell comprises about 80% to about 100% (wt.) (e.g., about 85%, about 90%, or about 95%) linear and branchedchain fatty acid. Of the linear and branched-chain fatty acids produced by the cell, approximately 1% to approximately 95% or more (e.g., $5 \%, 10 \%, 15 \%, 20 \%, 30 \%, 50 \%, 60 \%$, $75 \%, 85 \%$, or 100%) is branched-chain fatty acid comprising a methyl group on one or more even carbons. In some embodiments, the cell does not produce, or produces only trace amounts of, fatty acid comprising methyl branching on odd numbered carbons. By "trace amount" is meant less than 1% of the total fatty acid content produced by the cell. Alternatively or in addition, in one aspect, the mixture of fatty acids produced by the cell comprises no more than 50% end-termi-nal-branched fatty acid (i.e., fatty acids that contain branch-
ing on a carbon atom that is within 40% of the non-functionalized terminus of the longest carbon chain). Optionally, the inventive cell is modified to preferentially produce branchedchain fatty acid with desired chain lengths, e.g., about six to about 18 carbons or more in the carbon backbone (not including the methyl branch(es)). In some embodiments, the host cell preferentially generates long chain fatty acid, mediumlength chain fatty acid, short chain fatty acid, or a desired combination fatty acids (e.g., $60 \%, 70 \%, 80 \%, 85 \%, 90 \%$, 95% or more of the branched-chain fatty acid produced by the cell comprises the desired number of carbons). In addition, in certain embodiments, the engineered cells tolerate large amounts of branched-chain fatty acid in the growth medium, plasma membrane, or lipid droplets, and/or produce branched-chain fatty acid more economically than an unmodified cell by, e.g., using a less expensive feedstock, requiring less fermentation time, and the like.
[0202] The polynucleotide(s) encoding one or more polypeptides that catalyze the reaction(s) for producing branched-chain fatty acid may be derived from any source. Depending on the embodiment of the invention, the polynucleotide is isolated from a natural source such as bacteria, algae, fungi, plants, or animals; produced via a semi-synthetic route (e.g., the nucleic acid sequence of a polynucleotide is codon-optimized for expression in a particular host cell, such as E. coli); or synthesized de novo. In certain embodiments, it is advantageous to select an enzyme from a particular source based on, e.g., the substrate specificity of the enzyme, the type of branched-chain fatty acid produced by the source, or the level of enzyme activity in a given host cell. In one aspect of the invention, the enzyme and corresponding polynucleotide are naturally found in the host cell and overexpression of the polynucleotide is desired. In this regard, in some instances, additional copies of the polynucleotide are introduced in the host cell to increase the amount of enzyme available for fatty acid production. Overexpression of a native polynucleotide also is achieved by upregulating endogenous promoter activity, or operably linking the polynucleotide to a more robust promoter. Exogenous enzymes and their corresponding polynucleotides also are suitable for use in the context of the invention, and the features of the biosynthesis pathway or end product can be tailored depending on the particular enzyme used. If desired, the polynucleotide(s) is isolated or derived from the branched-chain fatty acid-producing organisms described herein.
[0203] In certain embodiments, the cell produces an analog or variant of a polypeptide described herein. Amino acid sequence variants of the polypeptide include substitution, insertion, or deletion variants, and variants may be substantially homologous or substantially identical to the unmodified polypeptides as set out above. In certain embodiments, the variants retain at least some of the biological activity, e.g., catalytic activity, of the polypeptide. Other variants include variants of the polypeptide that retain at least about 50%, preferably at least about 75%, more preferably at least about 90%, of the biological activity.
[0204] Substitution variants typically exchange one amino acid for another at one or more sites within the protein. Substitutions of this kind can be conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; isoleucine to
leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine.
[0205] In some instances, the recombinant cell comprises an analog or variant of the exogenous or overexpressed polynucleotide(s) described herein. Nucleic acid sequence variants include one or more substitutions, insertions, or deletions, and variants may be substantially homologous or substantially identical to the unmodified polynucleotide. Polynucleotide variants or analogs encode mutant enzymes having at least partial activity of the unmodified enzyme. Alternatively, polynucleotide variants or analogs encode the same amino acid sequence as the unmodified polynucleotide. Codon-optimized sequences, for example, generally encode the same amino acid sequence as the parent/native sequence but contain codons that are preferentially expressed in a particular host organism.
[0206] A polypeptide or polynucleotide "derived from" an organism contains one or more modifications to the native amino acid sequence or nucleotide sequence and exhibits similar, if not better, activity compared to the native enzyme (e.g., at least 70%, at least 80%, at least 90%, at least 95%, at least 100%, or at least 110% the level of activity of the native enzyme). For example, enzyme activity is improved in some contexts by directed evolution of a parent/native sequence. Additionally or alternatively, an enzyme coding sequence is mutated to achieve feedback resistance. Thus, in one or more embodiments of the invention, the polypeptide encoded by the exogenous polynucleotide is feedback resistant and/or is modified to alter the activity of the native enzyme. A polynucleotide "derived from" a reference polynucleotide encompasses, but is not limited to, a polynucleotide comprising a nucleic acid sequence that has been codon-optimized for expression in a desired host cell.
[0207] The cell of the invention may comprise any combination of polynucleotides described herein to produce branched-chain fatty acid comprising a methyl branch on one or more even number carbons. For example, the invention provides a cell comprising (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase, wherein the polynucleotide(s) are expressed and the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s). Recombinant cells can be produced in any suitable manner to establish an expression vector within the cell. The expression vector can include the exogenous polynucleotide operably linked to expression elements, such as, for example, promoters, enhancers, ribosome binding sites, operators and activating sequences. Such expression elements may be regulatable, for example, inducible (via the addition of an inducer). Alternatively or in addition, the expression vector can include additional copies of a polynucleotide encoding a native gene product operably linked to expression elements. Representative examples of useful promoters include, but are not limited to: the LTR (long terminal 35 repeat from a retrovirus) or SV40 promoter, the E. coli lac,
tet, or trp promoter, the phage Lambda P_{L} promoter, and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. In one aspect, the expression vector also includes appropriate sequences for amplifying expression. The expression vector can comprise elements to facilitate incorporation of polynucleotides into the cellular genome. Introduction of the expression vector or other polynucleotides into cells can be performed using any suitable method, such as, for example, transformation, electroporation, microinjection, microprojectile bombardment, calcium phosphate precipitation, modified calcium phosphate precipitation, cationic lipid treatment, photoporation, fusion methodologies, receptor mediated transfer, or polybrene precipitation. Alternatively, the expression vector or other polynucleotides can be introduced by infection with a viral vector, by conjugation, by transduction, or by other any other suitable method.
[0208] Cells, such as bacterial cells, containing the polynucleotides encoding the proteins described herein can be cultured under conditions appropriate for growth of the cells and expression of the polynucleotides. Cells expressing the protein can be identified by any suitable methods, such as, for example, by PCR screening, screening by Southern blot analysis, or screening for the expression of the protein. In certain embodiments, cells that contain the polynucleotide(s) can be selected by including a selectable marker in the DNA construct, with subsequent culturing of cells containing a selectable marker gene, under conditions appropriate for survival of only those cells that express the selectable marker gene. The introduced DNA construct can be further amplified by culturing genetically modified cells under appropriate conditions (e.g., culturing genetically modified cells containing an amplifiable marker gene in the presence of a concentration of a drug at which only cells containing multiple copies of the amplifiable marker gene can survive). Cells that contain and express polynucleotides encoding the exogenous proteins can be referred to herein as genetically modified cells. Bacterial cells that contain and express polynucleotides encoding the exogenous protein can be referred to as genetically modified bacterial cells.
[0209] Exemplary cells of the invention include E. coli BW25113 comprising pTrcHisA mmat and pZA31-accA1pccB , which was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE], and E. coll BL21 Star (DE3) comprising pTrcHisA Ec sbm So ce epi and pZA31 mmat which was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE]. The invention also includes variants or progeny of the cells described herein that retain the phenotypic characteristics of the recombinant microbe. A substantially pure monoculture of the cell described herein (i.e., a culture comprising at least 80% or at least 90% of a desired cell) also is provided.
[0210] Any cell culture conditions appropriate for growing a host cell and synthesizing branched-chain fatty acid is suitable for use in the inventive method. Addition of fatty acid
synthesis intermediates, precursors, and/or co-factors for the enzymes associated with branched-chain fatty acid synthesis to the culture is contemplated herein. In certain embodiments, the genetically modified cells (such as genetically modified bacterial cells) have an optimal temperature for growth, such as, for example, a lower temperature than normally encountered for growth and/or fermentation. For example, in certain embodiments, incorporation of branched-chain fatty acids into the membrane may increase membrane fluidity, a property normally associated with low growth temperatures. In addition, in certain embodiments, cells of the invention may exhibit a decline in growth at higher temperatures as compared to normal growth and/or fermentation temperatures as typically found in cells of the type.
[0211] The inventive method optionally comprises extracting branched-chain fatty acid from the culture. Fatty acids can be extracted from the culture medium and measured using any suitable manner. Suitable extraction methods include, for example, methods as described in: Bligh et al., A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol. 37:911-917 (1959). In certain embodiments, production of fatty acids in the culture supernatant or in the membrane fraction of recombinant cells can be measured. In this embodiment, cultures are prepared in the standard manner, although nutrients (e.g., 2-methylbutyrate, isoleucine) that may provide a boost in substrate supply can be added to the culture. Cells are harvested by centrifugation, acidified with hydrochloric or perchloric acid, and extracted with chloroform and methanol, with the fatty acids entering the organic layer. The fatty acids are converted to methyl esters, using methanol at $100^{\circ} \mathrm{C}$. The methyl esters are separated by gas chromatography (GC) and compared with known standards of fatty acids (purchased from Larodan or Sigma). Confirmation of chemical identity is carried out by combined GC/mass spec, with further mass spec analysis of fragmented material carried out if necessary.
[0212] In one embodiment, the cell utilizes the branchedchain fatty acid as a precursor to make one or more other products. Products biosynthesized (i.e., derived) from branched-chain fatty acid include, but are not limited to, phospholipids, triglycerides, alkanes, olefins, wax esters, fatty alcohols, and fatty aldehydes. Some host cells naturally generate one or more products derived from branched-chain fatty acid; other host cells are genetically engineered to convert branched-chain fatty acid to, e.g., an alkane, olefin, wax ester, fatty alcohol, phospholipid, triglyceride, and/or fatty aldehyde. Organisms and genetic modifications thereof to synthesize products derived from branched-chain fatty acids are further described in, e.g., International Patent Publication Nos. WO 2007/136762, WO 2008/151149, and WO 2010/ 062480, and U.S. Patent Application Publication US 2010/ 0298612, all of which are hereby incorporated by reference in their entirety. In one aspect, the inventive method comprises extracting a product derived from branched-chain fatty acid (phospholipid, triglyceride, alkane, olefin, wax ester, fatty alcohol, and/or fatty aldehyde synthesized in the cell from branched-chain fatty acid) from the culture. Any extraction method is appropriate, including the extraction methods described in International Patent Publication Nos. WO 2007/ 136762, WO 2008/151149, and WO 2010/062480, and U.S. Patent Application Publication Nos. US 2010/0251601, US 20100242345 , US 20100105963, and US 2010/0298612.
[0213] The inventive cell preferably produces more branched-chain fatty acid comprising a methyl branch on one
or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s). Methods of measuring fatty acid released into the fermentation broth or culture media or liberated from cellular fractions are described herein. Branched-chain fatty acid production is not limited to fatty acid accumulated in the culture, however, but also includes fatty acid used as a precursor for downstream reactions yielding products derived from branched-chain fatty acid. Thus, products derived from branched-chain fatty acid (e.g., phospholipids, triglycerides, fatty alcohols, olefins, wax esters, fatty aldehydes, and alkanes) are, in some embodiments, surrogates for measuring branched-chain fatty acid production in a host cell. Methods of measuring fatty acid content in phospholipid in the cell membrane are described herein. Similarly, measurement of degradation products of branched-chain fatty acids also is instructive as to the amount of branched-chain fatty acid is produced in a host cell. Depending on the particular embodiment of the invention, the inventive cell produces at least 3%, at least 5%, at least 10%, at least 20%, at least 25%, or at least 50% more branched-chain fatty acid than an otherwise similar cell that does not comprise the polynucleotide(s).
[0214] The invention further provides a composition comprising the branched-chain fatty acids described herein. For example, the invention provides a composition comprising a branched-chain fatty acid comprising between 10-18 carbons in the carbon backbone, such as fatty acids comprising between 10 and 16 carbons (e.g., fatty acids comprising 10, $11,12,13,14,15$, or 16 carbons), with branching on one or more even numbered carbons (e.g., C2, C4, C6, C8, C10, C12, C14, and/or C16). A composition comprising longerchain fatty acid also is provided, such as a composition comprising between 19 and 22 carbons in the longest carbon chain. A composition comprising a combination of any of the fatty acids described herein also is provided (e.g., a composition comprising fatty acids of varying lengths and/or branch locations along the carbon backbone).
[0215] The following examples further describe and demonstrate embodiments within the scope of the invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the invention, as many variations thereof are possible without departing from the spirit and scope of the invention.

Example 1

Construction of Methylmalonyl-CoA Mutase
 Expression Vector

[0216] There are numerous genes annotated to encode the two subunits of methylmalonyl-CoA mutase. Janibacter sp. HTCC2649 encodes two such genes. Synthetic versions of these genes were prepared, with the codon usage altered to match that used by many E. coli genes (i.e., the coding sequence was codon-optimized for expression in E. coli). By analogy to other methylmalonyl-CoA mutase genes, these synthetic genes were named mutA (SEQ ID NO: 1) and mutB (SEQ ID NO: 2), corresponding to the MutA (SEQ ID NO: 3) and MutB (SEQ ID NO: 4) protein subunits. In the synthetic DNA, an extra three base pairs were added (encoding an alanine residue immediately after the initiation methionine) in mutA to facilitate introduction of an NcoI site. An XhoI restriction site was also placed after the coding sequence of mutB for insertion into the pBAD vector (Invitrogen). The $\mathrm{NcoI} / \mathrm{XhoI}$ fragment was cloned into pBAD .

Example 2
 Construction of Methylmalonyl-CoA Epimerase Expression Vector

[0217] There are numerous genes annotated to encode methylmalonyl-CoA mutase. One such gene is from Streptomyces sviceus. A synthetic gene can be constructed (SEQ ID NO: 5) using codon usage similar to E. coli genes and with EcoRI and Hind III sites flanking the coding region. An E. coli Shine-Dalgarno sequence can be added between the EcoRI site and the initiation codon for the epimerase gene. The predicted protein product is the same as the predicted protein product from the S. sviceus gene (SEQ ID NO: 6). The epimerase gene can be cloned into the $\mathrm{pBAD}-m u t \mathrm{AB}$ construct using the EcoRI and Hind III restriction sites (downstream of $m u t B$) to form the $\mathrm{pBAD}-\mathrm{mutAB}$-epimerase gene plasmid. E. coli cultures can be grown at $27^{\circ} \mathrm{C}$. after induction with arabinose and supplemented with hydroxycobalamin to achieve expression of functional methylmalonyl-CoA mutase and branched-chain fatty acid production.

Example 3

Construction of Propionyl-CoA Carboxylase Expression Vector

[0218] Nucleotide sequences (SEQ ID NO: 7 and SEQ ID NO: 8) encoding the two propionyl-CoA carboxylase subunits AccA1 (GenBank Accession NO. AF113603.1; SEQ ID NO: 9) and PccB (GenBank Accession No. AF113605.1; SEQ ID NO: 10)), respectively, from the Streptomyces coelicolor A3(2) propionyl-CoA carboxylase (Rodriguez E., Gramajo H., Microbiology. 1999 November, 145:3109-19), were codon-optimized for E. coli expression. A gene construct for expressing propionyl-CoA carboxylase was constructed with the following elements sequentially 1) $\mathrm{P}_{\text {Llac0-1 }}$ promoter and operator plus T7 gene10 ribosomal binding site (SEQ ID NO: 11);2) optimized accA1 (SEQ ID NO: 12);3) three restriction site sequences including BgIII, NotI and XbaI and a T7 gene10 ribosome binding site (SEQ ID NO: 13); and 4) codon-optimized pccB (SEQ ID NO: 14). The synthesized DNA fragments were cloned into the XhoI and PstI sites of expression vector pZA31-MCS (Expressys, Ruelzheim, Germany), resulting in plasmid pZA31-accA1-pccB (SEQ ID NO: 15).

Example 4
 Construction of Propionyl-CoA Synthetase Expression Vector

[0219] The Salmonella enterica propionyl-CoA synthetase gene, prpE, was amplified using PCR and the primers set forth in SEQ ID NO: 16 and SEQ ID NO: 17, and placed behind a Shine-Dalgarno sequence in the plasmid pZA31-accA1pccB (SEQ ID NO: 15) using the restriction enzymes Pstl and BamHI. Enhanced propionyl-CoA synthetase production is expected to increase synthetic flux to propionyl-CoA.

Example 5

Reduction of Propionylation of Propionyl-CoA Syn-

 thetase[0220] In S. enterica, propionyl-CoA synthetase is subject to inhibition by propionylation at lysine 592 when propionylCoA levels accumulate. (Garrity et al, J. Biol. Chem., Vol.

282, Issue 41, 30239-30245, Oct. 12, 2007). Similar enzyme modulation may occur in other species, although the position of the modified lysine may be different. Several strategies to overcome this inhibition will be tested and compared. First, the propionyl-CoA synthetase gene will be mutated to change the coding capacity from lysine (at the site of propionylation) to arginine or other amino acids to prevent propionylation. Second, a source of resveratrol or other sirtuin activators will be introduced into the culture medium to activate sirtuin to depropionylate PrpE. Third, the endogenous N -acetyltransferase enzyme responsible for the propionylation reaction will be knocked out. For example, if working with S. enterica, pat could be deleted. As another example, if working with B. subtilis, acuA could be deleted. Fourth, the flux of propionylCoA into fatty acid synthesis will be increased by increasing propionyl-CoA carboxylase activity to keep free propionylCoA levels down. Fifth, the sirtuin activity will be increased, thus increasing deacetylation of propionyl-CoA carboxylase. For example, the S. enterica cobB expression could be increased.

Example 6

Creation of an Expression Vector Comprising the Coding Sequence of the MMAT (MethylmalonylCoA Acyl Transferase) Domain from Mycobacterium Mycocerosic Acid Synthase (MAS).
[0221] Mycobacterium MAS is a multifunctional protein that catalyzes the synthesis of mycocerosic acid and that contains a domain with MMAT activity. The MMAT domain (amino acids 508-890) (SEQ ID NO: 18) of MAS from Mycobacterium bovis BCG (YP_979046) (SEQ ID NO: 19) was codon optimized for E. coli expression (SEQ ID NO: 20). The optimized sequence was synthesized and cloned into vector $\mathrm{p} \operatorname{TrcHisA}$ (Invitrogen) between the BamHI and HindIII sites. The resulting construct fused the MMAT domain with the His tag leader peptide encoded by the vector. The expression vector was introduced into a recombinant E. coli host that produces methylmalonyl-CoA. MMAT activity catalyzes the formation of methylmalonyl-ACP, which subsequently can be incorporated into the type II fatty acid synthesis pathway to form methyl branches at even positions of the fatty acid chain.

Example 7

Method for Detecting Acyl-CoA

[0222] This example describes an exemplary method for detecting and quantifying an acyl-CoA (e.g., methylmalonylCoA) in a sample, such as a sample of recombinant host cells producing branched-chain fatty acid.
[0223] A stable, labeled (deuterium) internal standard-containing master mix was prepared comprising $\mathrm{d}_{3}-3$-hydroxym-ethylglutaryl-CoA ($200 \mu 1$ of $50 \mu \mathrm{~g} / \mathrm{ml}$ stock in 10 ml of 15% trichloroacetic acid). An aliquot ($500 \mu \mathrm{l}$) of the master mix was added to a 2 ml tube. Silicone oil (AR200; Sigma catalog number $85419 ; 800 \mu 1$) was layered onto the master mix. An E. coli culture ($800 \mu \mathrm{l}$) was layered gently on top of the silicone oil, and the resulting sample was subjected to centrifugation at $20,000 \times \mathrm{g}$ for five minutes at $4^{\circ} \mathrm{C}$. in an Eppendorf 5417 C centrifuge. A portion ($300 \mu \mathrm{l}$) of the master mix-containing layer was transferred to an empty tube and frozen on dry ice for 30 minutes.
[0224] The acyl-CoA content of samples was determined using HPLC/MS/MS. Individual coenzyme-A standards
(propionyl-CoA, methylmalonyl-CoA, succinyl-CoA, malo-nyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA) were purchased from Sigma Chemical Company (St. Louis, Mo.) and prepared as $500 \mu \mathrm{~g} / \mathrm{ml}$ stocks in methanol. The analytes were pooled, and standards with all of the analytes were prepared by dilution with 15% trichloroacetic acid. Standards for regression were prepared by transferring $500 \mu \mathrm{l}$ of the working standards to an autosampler vial containing 10 $\mu \mathrm{L}$ of the $50 \mu \mathrm{~g} / \mathrm{ml}$ internal standard. Sample peak areas (or heights) were normalized to the stable-labeled internal standard (d_{3}-3-hydroxymethylglutaryl-CoA, Cayman Chemical Co.). Samples were assayed by HPLC/MS/MS on a Sciex API5000 mass spectrometer in positive ion Turbo Ion Spray Separation was carried out by reversed-phase high performance liquid chromatography using a Phenomenex Onyx Monolithic C18 column ($2 \times 50 \mathrm{~mm}$) and mobile phases of (1) 5 mM ammonium acetate, 5 mM dimethylbutylamine, 6.5 mM acetic acid and (2) acetonitrile with 0.1% formic acid, with the gradient set forth in Table C.

TABLE C

	Mobile Phase A $(\%)$	Mobile Phase B $(\%)$
Time	97.5	2.5
0 min	97.5	2.5
1.0 min	91.0	9.0
2.5 min	45	55
5.5 min	45	55
6.0 min	97.5	2.5
6.1 min	-	-
7.5 min	End Run	
9.5 min		

[0225] The conditions on the mass spectrometer were: DP 160, CUR 30, GS1 65, GS2 65, IS 4500, CAD 7, TEMP 650 C. The transitions set forth in Table D were used for the multiple reaction monitoring (MRM).

TABLE D

Compound	Precursor Ion*	Product Ion*	Collision Energy	CXP
n-Propionyl-CoA	824.3	317.2	41	32
Methylmalonyl-CoA	868.1	317.1	42	31
Succinyl-CoA	868.2	361.1	49	38
Malonyl-CoA	854.2	347.2	41	36
Isobutyryl-CoA	838.3	345.2	45	34
Isovaleryl-CoA	852.2	345.2	45	34
Acetyl-CoA	810.3	303.2	43	30
d3-3-Hydroxymethylglutaryl-	915.2	408.2	49	13
CoA				

*Energy (Volts) for MS/MS analysis

Example 8

Analysis of Fatty Acids Produced by Host Cells

[0226] This example illustrates a method of analyzing branched-chain fatty acids produced by cells (e.g., recombinant microbes).
[0227] Cell cultures (approximately 1.5 ml) were frozen in 2.0 ml glass vials and stored at $-20^{\circ} \mathrm{C}$. until ready for processing. Samples were chilled on dry ice for 30 minutes and lyophilized overnight (-16 hours) until dry. A $10 \mu 1$ aliquot of internal standard (glyceryl trinonadecanoate (Sigma catalog number T4632-1G)) was added to each vial, followed by 400
$\mu \mathrm{L}$ of 0.5 N NaOH (in methanol). The vial was capped and vortexed for 10 seconds. Samples were incubated at $65^{\circ} \mathrm{C}$. for $30-50$ minutes. Samples were then removed from the incubator, and $500 \mu \mathrm{l}$ of boron trifluoride reagent (Aldrich catalog number B1252) was added. The samples were vortexed again for 10 seconds, incubated at $65^{\circ} \mathrm{C}$. for $10-15$ minutes, and cooled to room temperature (approximately 20 minutes). Hexane ($350 \mu \mathrm{l}$) was added, and the samples were again vortexed for 10 seconds. If the phases did not separate, 50-100 $\mu \mathrm{l}$ of saturated salt solution (5 g NaCl to 5 ml water) was added, and the sample was vortexed for 10 seconds. At least $100 \mu 1$ of the top hexane layer was placed into the gas chromatography vial. The vial was capped and stored at $4^{\circ} \mathrm{C}$. until analyzed by gas chromatography.
[0228] Gas chromatography was performed as described in Table E below. A bacterial acid methyl ester standard (Sigma catalog number 47080-U) and a fatty acid methyl ester standard (Sigma catalog number 47885-U) were used to identify peaks in samples. A sample check standard using glyceryl tripalmitate (Sigma catalog number T5888-1G) was used to confirm esterification of samples. A blank standard (internal standard only) was used to assess background noise.

TABLE E

Gas Chromatograph	HP 5890 GC Series II					
Detector	FID $360^{\circ} \mathrm{C} .40 \mathrm{ml} / \mathrm{min}$ Hydrogen, $400 \mathrm{ml} / \mathrm{min}$ Air					
Carrier Gas	Helium					
Quantitative	GC Chemstation A.09.03. (Agilent)					
Program						
Column	VF- $5 \mathrm{~ms} 15 \mathrm{M} \times 0.150 \mathrm{~mm} \times 0.15 \mu \mathrm{~m}$ Varian catalog number CP9035					
Injection Liner	Gooseneck (with glass wool packing)					
Injector	HP 7673					
Injection Syringe	$10 \mu \mathrm{~L}$					
Injection Mode	Split 25:1					
Injection volume Pre Injection Solvent	$4 \mu \mathrm{~L}$ (Plunger Speed = fast; 5 sample pumps)					
	Pre Injection Solvent 2 samples Washes					
Post Injection	3 for both acetone and hexane					
Solvent Washes						
Injector Temperature Total Program Time	$\begin{aligned} & 325^{\circ} \mathrm{C} \text {. } \\ & 16 \text { minutes } \end{aligned}$					
	Initial	Initial		Final	Final	
	Temp. (${ }^{\circ} \mathrm{C}$.)	Time (min)	Rate (${ }^{\circ} \mathrm{C} . \mathrm{min}$)	Temp (${ }^{\circ} \mathrm{C}$.)	Time (min)	
Thermal Program	90	0.75	20.0	325	1.0	
			25.0	350	2.5	

Example 9

Construction of Expression Vectors Comprising S.
Cinnamonensis mutA and mutB and S. sviceus epi.
[0229] A synthetic DNA construct was generated comprising Streptomyces cinnamonensis mutA (SEQ ID NO: 24) (GenBank Accession No. AAA03040.1), S. cinnamonensis mutB (SEQ ID NO: 25) (GenBank Accession No. AAA03041.1), and a Streptomyces sviceus ATCC 29083 methylmalonyl-CoA epimerase gene (SEQ ID NO: 26) (GenBank Accession No. ZP_06919825.1). The genes were codon-optimized for expression in E. coli. An EcoRI restriction site was placed on the 5 ' end, and a BamHI site was placed on the 3^{\prime} end of the synthesized gene construct. These sites were subsequently used for cloning into a pZA31 vector (Expressys, Ruelzheim, Germany). A ribosome binding
sequence and spacer was placed before the mutA and epimerase gene start codons (SEQ ID NO: 27). The plasmid was designated pZA31 mutAB Ss epi.

Example 10

Construction of Expression Vectors Comprising Sbm and $\mathrm{malE} / \mathrm{sbm}$ Polynucleotides

[0230] Sleeping beauty mutase (Sbm) (also known as methylmalonyl-CoA mutase (MCM)) is an enzyme that catalyzes the rearrangement of succinyl-CoA to L-methylmalo-nyl-CoA. The enzyme is vitamin B12 (cobalamin) dependent. Methylmalonyl-CoA is a building block for scattered branch-chain fatty acids (SBCFA) (i.e., branched-chain fatty acid comprising a methyl branch on one or more even number carbons of the fatty acid backbone). Plasmids comprising a polynucleotide encoding Sbm were generated to introduce multiple copies of the Sbm coding sequence, downstream of a regulatable promoter, into E. coli host cells.
[0231] A polynucleotide was synthesized based on the sequence of E. coli sbm (SEQ ID NO: 28) (GenBank Accession No. NP_417392.1) from E. coli strain MG1655. The nucleic acid sequence was codon-optimized to match the pattern of highly expressed E. coli genes while maintaining the native amino acid sequence of the enzyme. The generated nucleic acid sequence is set forth in SEQ ID NO: 29. A BamHI and an XbaI site were added at the 5^{\prime} end of the synthetic Sbm coding sequence with the sequence GGATCCATGTCTAGA (SEQ ID NO: 49) adjacent to the ATG translation initiation sequence. A Sacl restriction site sequence was added to the 3^{\prime} ' end of the synthetic Sbm coding sequence. The gene was synthesized, cloned into a pUC57 vector, and sequenced (GenScript, Piscataway, N.J.). The synthetic sbm was then released from pUC57 by restriction enzymes BamHI and Sad, and sub-cloned into plasmid pTrcHisA (Invitrogen, Carlsbad, Calif.) in frame with the poly-histidine sequence (GenScript, Piscataway, N.J.). The plasmid was designated p TrcHisA Ec sbm. The sequence was confirmed by sequencing (GenScript, Piscataway, N.J.). The recombinant protein encoded by the sequence contained a poly-histidine sequence (Met-Gly-Gly-Ser-His-His-His-His-His-His-Gly-Met-Ala-Ser-Met-Thr-Gly-Gly-Gln-Gln-Met-Gly-Arg-Thr-Asp-Asp-Asp-Asp-Lys-Asp-Arg-Trp-Gly-Ser (SEQ ID NO: 50)) and a full-length native Sbm amino acid sequence. [0232] A recombinant methylmalonyl-CoA mutase has been reported to be insoluble in E. coli (Korotkova, N., and M. E. Lidstrom. J. Biological Chemistry 279: 13652-8 (2004)). Translation fusion with maltose-binding protein (MBP, encoded by malE) prevents aggregation of recombinant proteins (Kapust, R. B., and D. S. Waugh. Protein Science 8: 1668-74 (1999)). A recombinant construct was generated by inserting malE upstream of sbm. The malE polynucleotide was synthesized based on the sequence of maltose binding protein (E. coli MG1655 GenBank NC_000913.2 (GenScript, Piscataway, N.J.)). A BamHI site was placed adjacent to the translation initiation codon of malE, and an XbaI site was placed immediately 5^{\prime} to the stop codon of the malE sequence (SEQ ID NO: 30). Also, one nucleotide was changed (T438 to C438) to remove a restriction site recognition sequence for BglIII .
[0233] The MalE coding sequence (SEQ ID NO: 30) was first synthesized and cloned into a pUC57 plasmid. After confirming its sequence, the malE polynucleotide was released using restriction enzymes BamHI and XbaI. The
released malE was then re-cloned into plasmid $\mathrm{pTrcHisA} E c$ sbm at BamHI and XbaI sites (GenScript, Piscataway, N.J.). The resulting plasmid was designated p TrcHisA Ec malE Ec sbm. The recombinant protein encoded by pTrcHisA Ec malE Ec sbm contains three peptides: the poly-histidine tag, fulllength MBP, and full-length Sbm.

Example 11

Construction of a Recombinant Expression Vector Comprising a Polynucleotide Encoding the Methyl-malonyl-CoA Acyl Transferase (MMAT) Domain from Mycobacterium Mycocerosic Acid Synthase (MAS).
[0234] Mycobacterium MAS is a multifunctional protein containing MMAT activity that catalyzes the synthesis of mycocerosic acid. The nucleic acid sequence encoding the MMAT domain (amino acids 508-890) (SEQ ID NO: 18) of MAS from Mycobacterium bovis BCG (GenBank Accession No.YP_979046) (SEQ ID NO: 19) was codon-optimized for E. coli expression (SEQ ID NO: 20). The optimized sequence, designated "mmat," was synthesized and cloned into vector pTrcHisA (Invitrogen) between the BamHI and HindIII sites. The resulting construct fused the MMAT domain with the poly-histidine tag encoded by the vector. The expression vector (p TrcHisA mmat) was introduced into a recombinant E. coli host that produces methylmalonyl-CoA. MMAT activity catalyzes the formation of methylmalonylACP, which is incorporated by Type II fatty acid synthase into fatty acid, forming methyl branches at even positions of the fatty acid chain.
[0235] An expression vector encoding Mycobacterium bovis BCG fused to a poly-histidine tag also was generated. The pTrcHisA mmat plasmid DNA described above was amplified by PCR using oligonucleotides synthesized to include 5^{\prime}-KpnI (SEQ ID NO: 31) and 3^{\prime}-HindIII restriction sites (SEQ ID NO: 32) (Integrated DNA Technologies, Inc., Coralville, Iowa). PCR was run on samples having $1 \mu \mathrm{l}$ (2 ng) $\mathrm{p} \operatorname{TrcHisA}$ mmat DNA, $1.5 \mu \mathrm{l}$ of a $10 \mu \mathrm{M}$ stock of each primer, $5 \mu \mathrm{l}$ of $10 \times$ Pfx reaction mix (Invitrogen Carlsbad, Calif.), 0.5 $\mu \mathrm{l}$ of Pfx DNA polymerase (1.25 units), and $41 \mu \mathrm{l}$ of water. PCR conditions were as follows: the samples were initially incubated at $95^{\circ} \mathrm{C}$. for three minutes, followed by 30 cycles at $95^{\circ} \mathrm{C}$. for 30 seconds (strand separation), $58^{\circ} \mathrm{C}$. for 30 seconds (primer annealing), and $68^{\circ} \mathrm{C}$. primer extension for 1.5 minutes. Following the cycles, the samples were incubated for 10 minutes at $68^{\circ} \mathrm{C}$., and the samples were then held at $4^{\circ} \mathrm{C}$.
[0236] The PCR products were purified using a QIAquick ${ }^{(B)}$ PCR Purification Kit (Qiagen), digested with restriction enzymes KpnI and HindIII and ligated (Fast-Link Epicentre Biotechnologies, Madison, Wis.) with KpnI/Hin-dIII-digested pZA31MCS (Expressys, Ruelzheim, Germany). The ligation mix was used to transform E. coli DHS ${ }^{\text {TM }}$ (Invitrogen Carlsbad, Calif.). Isolated colonies were screened by PCR using a sterile pipette tip stab as an inoculum into a reaction tube containing only water, followed by addition of the remaining PCR reaction cocktail (AccuPrime ${ }^{\mathrm{TM}}$ SuperMixII, Invitrogen Carlsbad, Calif.) and primers as described above.
[0237] Recombinant plasmids were isolated and purified using the QIAPrep ${ }^{(1)}$ Spin Miniprep Kit (Qiagen) and characterized by restriction enzyme digestion (DraI, KpnI and HindIII from New England Biolabs, Beverly, Mass.). The
plasmids were subsequently used to transform BW25113 (E. coli Genetics Stock Center, New Haven, Conn.) made competent using the calcium chloride method. Transformants were selected on Luria agar plates containing $34 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. Plasmid DNA was isolated and purified using the QIAfilter ${ }^{\text {TM }}$ Plasmid Midi Kit (Qiagen). DNA sequencing confirmed that the insert was mmat (SEQ ID NO: 34). The resulting plasmid incorporating a poly-histidine tag was designated pZA31 mmat.

Example 12

Method of Generating a Recombinant Host Cell

 Comprising an Exogenous Polynucleotide Encoding a Propionyl-CoA Carboxylase and an Exogenous Polynucleotide Encoding a Methylmalonyl-CoA Acyl Transferase (MMAT) Domain from Mycobacterium Mycocerosic Acid Synthase (MAS).[0238] This example describes an exemplary method for making a cell comprising an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalo-nyl-CoA and an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonylACP. The method entails co-transduction of E. coli with plasmids containing a propionyl-CoA carboxylase gene from Streptomyces coelicolor and a gene encoding a MMAT domain from Mycobacterium MAS.
[0239] E. coli BW25113 cells (E. coli Genetic Stock Center, New Haven, Conn.) were made chemically competent for plasmid DNA transformation by a calcium chloride method. Actively growing 50 ml E. coli cultures were grown to an optical density (at 600 nm) of ~ 0.4. Cultures were quickly chilled on ice, and the bacteria were recovered by centrifugation at $2700 \times g$ for 10 minutes. The supernatant was discarded and pellets were gently suspended in 30 ml of an ice-cold 80 $\mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM} \mathrm{CaCl} \mathrm{C}_{2}$ solution. Cells were again recovered by centrifugation at $2700 \times \mathrm{g}$ for 10 minutes. The supernatant was discarded and pellets were gently resuspended in 2 ml of an ice-cold $0.1 \mathrm{M} \mathrm{CaCl}_{2}$ solution.
[0240] Cells were transformed on ice in pre-chilled 14 ml round-bottom centrifuge tubes. Approximately 25 ng of each of pTrcHisA mmat and pZA31-accA1-pccB (described above) was incubated on ice with $100 \mu \mathrm{l}$ of competent cells for 30 minutes. The cells were heat shocked at $42^{\circ} \mathrm{C}$. for 90 seconds and immediately placed on ice for two minutes. Pre-warmed SOC medium (500μ 1; Invitrogen, Carlsbad, Calif.) was added and the cells allowed to recover at $37^{\circ} \mathrm{C}$. with 225 rpm shaking. A portion $(50 \mu \mathrm{l})$ of the transformed cell mix was spread onto selective LB agar $100 \mathrm{mg} / \mathrm{ml}$ ampicillin and $34 \mathrm{mg} / \mathrm{ml}$ chloramphenicol plates to select for cells carrying the p TrcHisA mmat and $\mathrm{pZA} 31 / 32$-accA1-pccB plasmids. Individual colonies were picked from each plate and streaked onto LB agar (with ampicillin and chloramphenicol) to confirm the antibiotic resistance phenotype. Restriction endonuclease digestion analysis of isolated plasmid DNA with HaeII verified the plasmid DNA pool for each strain. A sample of E. coli BW25113 comprising pTrcHisA mmat and pZA31-accA1-pccB was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the

Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE].

Example 13

Construction of an Expression Vector Encoding Sorangium Cellulosum So ce 56 Methylmalonyl-CoA

Epimerase
[0241] A S. cellulosum methylmalonyl-CoA epimerase synthetic gene (So ce epi) was designed and synthesized (SEQ ID NO: 37). The coding sequence was codon-optimization for expression in E. coli and modified to remove restriction sites (GenScript, Piscataway, N.J.). The nucleic acid sequence was flanked with a SacI site and a synthetic ribosome binding site from the pBAD vector (Invitrogen, Carlsbad, Calif.) adjacent to the translation initiation sequence (SEQ ID NO: 39). The synthetic gene was cloned as a Sacl/Pstl fragment into pTrcHisA Ec sbm and pTrcHisA Ec malE Ec sbm, with the resulting plasmids designated as pTrcHisA Ec sbm So ce epi and pTrcHisA Ec malE Ec sbm So ce epi, respectively.

Example 14

Construction of an Expression Vector Encoding Kribbella Flavida DSM 17836 Methylmalony1-CoA Epimerase

[0242] A K. flavida methylmalonyl-CoA epimerase gene (Kfepi) was designed and synthesized (SEQ ID NO: 35). The coding sequence was optimized for expression in E. col i and restriction sites were removed (GenScript, Piscataway, N.J.). The gene was flanked with a Sad site and a synthetic ribosome binding site from the pBAD vector adjacent to the translation initiation sequence (SEQ ID NO: 39). The synthetic gene was cloned as a SacI/PstI fragment into pTrcHisA Ec sbm and pTrcHisA Ec malE Ec sbm. The resulting plasmids were designated p TrcHisA Ec sbm Kf epi and pTrcHisA Ec malE Ec sbm Kf epi, respectively.

Example 15

Production of Host Cells Producing Branched-Chain Fatty Acid

[0243] This example describes the production of branchedchain fatty acid using a recombinant host cell (e.g., E. coli) expressing polynucleotides encoding a propionyl-CoA carboxylase or a methylmalonyl-CoA mutase and a methylma-lonyl-CoA epimerase, in some instances in conjunction with a polynucleotide encoding an acyl transferase and/or thioesterase.
[0244] It is useful to have the capacity to tailor the fatty acid chain length. Branched fatty acids of different lengths have different physical properties suitable for different commercial applications. To demonstrate the capacity to tailor the chain length of branched fatty acids, E. coli 'TesA (Cho, H., and J. E. Cronan, Jr. J. Biological Chemistry 270: 4216-9 (1995)) was incorporated into expression vectors described above and inserted into host cells. To create a pTrc Ec 'tesA expression vector, a truncated E. coli tesA ('tesA) cDNA (SEQ ID NO: 40) was created by PCR amplification of the E. coli tes A gene (GenBank Accession No. L06182). A 5 ' primer (SEQ ID NO: 41) was designed to anneal after the 26 th codon of tesA, modifying the 27 th codon from an alanine to a
methionine and creating a NcoI restriction site. A 3^{\prime} primer (SEQ ID NO: 43) incorporating a BamHI restriction site was designed. PCR was performed with $50 \mu \mathrm{l}$ of Pfu Ultra II Hotstart $2 \times$ master mix (Agilent Technologies, Santa Clara, Calif.), $1 \mu 1$ of a mix of the two primers (10μ moles of each), $1 \mu 1$ of E. coli BW 25113 genomic DNA, and $48 \mu 1$ of water. PCR began with a two minute incubation at $95^{\circ} \mathrm{C}$., followed by 30 cycles of 20 seconds at $95^{\circ} \mathrm{C}$. for denaturation, 20 seconds for annealing at $58^{\circ} \mathrm{C}$., and 15 seconds at $72^{\circ} \mathrm{C}$. for extension. The sample was incubated at $72^{\circ} \mathrm{C}$. for three minutes and then held at $4^{\circ} \mathrm{C}$. The PCR product (Ec 'tesA) was purified using a QIAquick ${ }^{(B)}$ PCR Purification Kit (Qiagen, Valencia, Calif.). The bacterial expression vector p TreHisA and the 'tesA PCR product were digested with NcoI and BamHI. The digested vector and insert were ligated using Fast-Link (Epicentre Biotechnologies, Madison, Wis.). The ligation mix was then used to transform E. coli TOP 10 cells (Invitrogen, Carlsbad, Calif.). Recombinant plasmids were isolated using a QIAPrep0 Spin Miniprep Kit (Qiagen) and characterized by gel electrophoresis of restriction digests with HaeII. DNA sequencing confirmed that the 'tesA insert had been cloned and that the insert encoded the expected amino acid sequence (SEQ ID NO: 45). The resulting plasmid was designated pTrc Ec 'tesA.
[0245] To limit gene expression, the truncated E. coli'tesA gene was subcloned into the low-copy bacterial expression vector pZS21-MCS (Expressys, Ruelzheim, Germany). The expression vector pTrc Ec 'tesA was a template in a PCR reaction using a 5 ' primer designed to create a flanking XhoI restriction site and include the pTrcHisA lac promoter (to replace the $\mathrm{pZS} 21-\mathrm{MCS}$ vector tet promoter) (SEQ ID NO: 46) and a 3^{\prime} primer incorporating a HindIII restriction site (SEQ ID NO: 47). PCR was performed with $50 \mu 1$ of Pfu Ultra II Hotstart $2 \times$ master mix (Agilent Technologies, Santa Clara, Calif.), $1 \mu 1$ of a mix of the two primers (10μ moles of each), 1μ of pTrc Ec 'tesA plasmid DNA (6 ng), and $48 \mu \mathrm{l}$ of water. PCR began with a two minute incubation at $95^{\circ} \mathrm{C}$., followed by 30 cycles of 20 seconds at $95^{\circ} \mathrm{C}$. for denaturation, 20 seconds for annealing at $57^{\circ} \mathrm{C}$., and 20 seconds at $72^{\circ} \mathrm{C}$. for extension. The sample was incubated at $72^{\circ} \mathrm{C}$. for three minutes and then held at $4^{\circ} \mathrm{C}$. The PCR product was purified using a QIAquick® PCR Purification Kit (Qiagen, Valencia, Calif.). The bacterial expression vector $\mathrm{p} Z \mathrm{~S} 21-\mathrm{MCS}$ and the Ec 'tesA PCR product were digested with XhoI and HindIII. The digested vector and insert were ligated using Fast-Link (Epicentre Biotechnologies, Madison, Wis.). The ligation mix was then used to transform E. coli TOP10 cells (Invitrogen, Carlsbad, Calif.). Recombinant plasmids were isolated using a QIAPrep ${ }^{\circledR}$ Spin Miniprep Kit (Qiagen) and characterized by gel electrophoresis of restriction digests with HaeII. DNA sequencing confirmed that the 'tesA insert had been cloned and that the insert encoded the expected amino acid sequence (SEQ ID NO: 45). The resulting plasmid was designated pZS22 Ec 'tesA.
[0246] An E. coli strain deficient in fatty acid degradation (Voelker, T. A., and H. M. Davies. J. Bacteriology 176: $7320-7$ (1994)) and able to regulate transcription of recombinant genes was generated as follows. An E. coli K-12 strain (K27) defective in fadD lacks the fatty acyl-CoA synthetase responsible for an initial step in fatty acid degradation. The strain K27 (F-, tyrT58(AS), fadD88, mel-1; CGSC Strain \#5478) was obtained from the E. coli Genetic Stock Center (New Haven, Conn.). A genomic regulation cassette from strain DH5aZ1 [lac1 ${ }^{q}$, PN25-tetR, Sp ${ }^{R}$, deoR, supE44, Δ (lac-

ZYA-argFV169), $\phi 80$ lacZAM15 (Expressys, Ruelzheim, Germany)] was introduced into the host strain. The transducing phage P1vir was charged with DH5 2 Z 1 DNA as follows. A logarithmically growing culture (5 ml LB broth containing 0.2% glucose and 5 mM CaCl 2) of donor strain, $\mathrm{DH} 5 \alpha \mathrm{Z} 1$, was infected with a $100 \mu 1$ of a lysate stock of P1vir phage. The culture was further incubated three hours for the infected cells to lyse. The debris was pelleted, and the supernatant was further cleared through a $0.45 \mu \mathrm{~m}$ syringe filter unit. The fresh lysate was titered by spotting 10μ of serial 1:10 dilutions of lysate in TM buffer ($10 \mathrm{mM} \mathrm{MgSO} / 40 \mathrm{mM}$ Tris.Cl, pH 7.4) onto a 100 mm LB (with $2.5 \mathrm{mM} \mathrm{CaCl}{ }_{2}$) plate overlayed with a cultured lawn of E. coli in LB top agar (with $2.5 \mathrm{mMCaCl}_{2}$). The process was repeated using the newly created phage stock until the phage titer surpassed $10^{9} \mathrm{pfu} / \mathrm{ml}$.
[0247] The higher titer phage stock was used to transduce fragments of the $\mathrm{DH} 5 \alpha \mathrm{Z} 1$ genome into a recipient K 27 strain. An overnight culture (1.5 ml) of K27 was pelleted and resuspended in $750 \mu 1$ of a P 1 salts solution ($10 \mathrm{mM} \mathrm{CaCl} 2_{2} / 5 \mathrm{mM}$ $\left.\mathrm{MgSO}_{4}\right) .100 \mu$ of the suspended cells was inoculated with varying amounts of DH5 $\alpha \mathrm{Z} 1$ donor P1vir lysate (1,10 , and $100 \mu \mathrm{l})$ in sterile test tubes. The phage was allowed to adsorb to the cells for 30 minutes at $37^{\circ} \mathrm{C}$. Absorption was terminated by addition of 1 ml LB broth plus $200 \mu 1$ of 1 M sodium citrate, and the cultures were further incubated for 1 hour at $37^{\circ} \mathrm{C}$. with aeration. The cultures were pelleted, and the cells suspended in $100 \mu 1$ of LB broth (plus 0.2 M sodium citrate) and spread onto LB agar plates with $50 \mu \mathrm{~g} / \mathrm{mL}$ spectinomycin. Spectinomycin-resistant strains were isolated, and genomic DNAs were screened by PCR for the presence of tetR, lacI ${ }^{q}$ and fadD88. One such transductant was named $\mathrm{K} 27-\mathrm{Z1}$ and used in further studies.
[0248] To transform K27-Z1, competent cells were placed on ice in pre-chilled 14 ml round bottom centrifuge tubes. Each plasmid was incubated with $50 \mu 1$ of chemically competent K27-Z1 cells (Cohen, S. N., Change, A. C. Y., and L. Hsu. Proceedings National Academy Sciences U.S.A. 69: 2110-4 (1972)) for 30 minutes. The cells were heat shocked at $42^{\circ} \mathrm{C}$. for 90 seconds and immediately placed on ice for two minutes. Pre-warmed SOC medium ($250 \mu \mathrm{l}$) (Invitrogen, Carlsbad, Calif.) was added, and the cells were allowed to recover at $37^{\circ} \mathrm{C}$. with 125 rpm shaking for one hour. Transformed cell mix ($20 \mu \mathrm{l}$) was spread onto selective LB agar with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin to select for cells carrying the p TrcHisA-based plasmids. Transformed cell mix ($50 \mu \mathrm{l}$) was spread onto LB agar with $34 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol to select for cells carrying the pZA31-based plasmids. Transformed cell mix $(150 \mu \mathrm{l})$ was spread onto LB agar with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $34 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol to select for cells carrying both the pTrcHisA-based and pZA31-based plasmids. In some cases, the creation of triple transformants required two transformations: a double transformant was originally created, made competent, and transformed by a third plasmid.
[0249] Using the methods described above, E. coli strain K27-Z1 was transduced with pTrcHisA pZA31 (control), pZA31 mutAB Ss epi, pTrcHisA Ec sbm, and pTrcHisA Ec sbm/pZA31 Mb mmat. The bacteria were cultured in M9 with glycerol (0.2%) at $22^{\circ} \mathrm{C}$. in flasks that were coated with black Scotch duct tape.After the bacteria reached an optical density (600 nm) of 0.4 , a mix of IPTG, anhydrotetracycline, arabinose and hydroxocobalamin hydrochloride was added to the culture, giving final concentrations of $1 \mathrm{mM}, 100 \mathrm{ng} / \mathrm{ml}$, 0.2%, and $20 \mu \mathrm{M}$, respectively. Twenty-four hours later, the
bacteria were harvested for coenzyme A analysis. Methylma-lonyl-CoA production is illustrated in FIG. 24. Host cells producing exogenous methylmalonyl-CoA mutase and meth-ylmalonyl-CoA epimerase (encoded by pZA31 mutAB Ss epi) produced over 25 ng methylmalonyl-CoA per ml culture. Host cells comprising additional copies of the Sbm (methyl-malonyl-CoA mutase) coding sequence produced over three times the amount of methylmalonyl-CoA per ml of culture, and co-expression of an methylmalonyl-CoA acyl transferase reduced the amount of methylmalonyl-CoA present in the culture medium.
[0250] Production of methylmalonyl-CoA in host cells expressing exogenous propionyl-CoA carboxylase also was studied and is illustrated in FIG. 25. BW25113 (control) and BW25113 containing pZA31-accA1-pccB (labeled as Pcc in the figure) were cultured in LB, and the coenzyme-A thioesters were isolated and characterized as described above. Host cells comprising a polynucleotide encoding an exogenous propionyl-CoA carboxylase produced over about 15 ng methylmalonyl-CoA per ml of culture.
[0251] When Ec 'tesA was present, less longer-chain (fifteen and seventeen carbons) and more mid-chain (thirteen carbons) branched fatty acids were produced by the host cell, indicating that production of thioesterase increases the proportion of medium chain-length branched fatty acids produced by the inventive method.

Example 16

Analysis of Scattered Branched Fatty Acid by TwoDimensional (2D) Gas Chromatography
[0252] To identify branched fatty acids produced by recombinant E. coli produced as described herein, fatty acids were isolated from bacterial cultures and derivatives were generated to facilitate identification. The fatty acid derivatives were separated by 2D gas chromatography and mass spectrometry was used to characterize fragmented samples. Derivatization of fatty acids to their 4,4' dimethyloxazoline derivatives prior to analysis via mass spectrometry has been described (Zhang, J. Y., QT. Yu, B. N. Liu and Z. H. Huang, Biomed Env. Mass Spectrom. 15:33 (1988)). By careful examination of minor spectral differences, it possible to determine the location of branch points on the backbones of fatty acid derivatives.
[0253] One liter of bacterial samples in LB (modified to contain only $0.5 \mathrm{mg} / \mathrm{ml}$ sodium chloride, unless otherwise indicated) with cyanocobalamin $(20 \mu \mathrm{M})$ were cultured at 22° C. for 25 hours following induction with IPTG, anhydrotetracycline, and arabinose. A cell pellet was collected by centrifugation at 3500 rpm , and the supernatant was discarded. The cell pellet was suspended in the remaining liquid, and the slurry was transferred into Pyrex tubes (\#9826, Corning Inc., Lowell, Mass.). An equal volume of chloroform was added, and the sample was dried at room temperature overnight.
[0254] To produce samples for analysis, cell pellets (0.5 grams) were placed in a round bottom flask, and 0.5 grams of KOH pellets and 25 ml of water were added. The E. coli pellets and KOH solution were refluxed for three hours, and the sample was allowed to cool. Concentrated HCl was added drop-wise, using a methyl orange endpoint to ensure fatty carboxylic acids were in the acid form. The acidified aqueous solution was then extracted three times with 25 ml aliquots of hexane to extract the fatty acids into the organic layer.
[0255] To convert fatty acid to oxazoline derivatives, the hexane extract was evaporated to dryness and reconstituted
into 5 ml of hexane to which sodium sulfate was added as a drying agent. After evaporating the sample to a 1 ml volume, a portion $(0.6 \mathrm{ml})$ was decanted into a Reactitherm ${ }^{\mathrm{TM}}$ vial. The hexane in the Reactitherm ${ }^{\mathrm{TM}}$ vial was again evaporated to dryness, and 2 ml of 2-methyl-2-aminopropanol was added. The vial was capped and heated for 4 hours at $200^{\circ} \mathrm{C}$. The cooled 2-methyl-2-aminopropanol solution was transferred to a scintillation vial, to which 5 ml of methylene chloride was added. The sample was washed with three 5 ml volumes of water. Sodium sulfate was added to the methylene chloride to remove any residual water, and an aliquot was transferred to a GC vial for analysis.
[0256] The derivatized samples were analyzed on a Leco Pegasus 4D Comprehensive 2D gas chromatograph time-offlight mass spectrometer equipped with a 30M Supelco GammaDex 120 (Supelco 24307) column in the first dimension and a 2M Varian VF5-MS (Varian CP9034) column in the second dimension. Retention times of key chain-length fatty acids (in both first and second dimensions) in test samples were confirmed by identical preparation and analysis of a Supleco (47080-U) BAME (bacterial acid methyl ester) standard mixture. Using these columns, 4,4' dimethyloxazolinederivatized branched-chain fatty acids were expected to elute prior to their linear chain-length homologs in the first dimension, and this was confirmed by the iso and anteiso structural isomers of C15 methyl esters (derivatized to their 4,4'-dimethyloxazoline derivatives) in the BAME standard reference above.
[0257] The profile of fatty acids produced by two strains was compared. The first strain was engineered to produce branched fatty acids [BL21 Star (DE3) (pTrcHisA Ec sbm So ce epi pZA31 mmat)] and the second was a control strain [BL21 Star (DE3) (pTrcHisA pZA31)]. A sample of E. coli BL21 Star (DE3) comprising pTrcHisA Ec sbm So ce epi and pZA31 mmat was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE]. The sample from the first strain revealed several peaks in the region where branched fatty acids were expected (FIG. 26), whereas the sample from the control strain revealed no such peaks (FIG. 27). For example, several peaks (labeled 54, 55, and 57) were in a position consistent with branched C15 acids, and peaks 137 and 139 were in a position expected for branched C17 acids. Mass spectrometry established that these peaks comprise branched fatty acids.
[0258] The mass spectral fragmentation pattern of oxazoline derivatives was used to confirm that the fatty acids identified using 2D GC contained branches. Oxazoline derivatives fragment along the length of the carbon chain starting from the functional end of the molecule. If a branch point occurs along the backbone, there is a gap in the mass spectrum pattern; which peak is missing (or reduced) depends on the location of the branch. FIG. 28 depicts the mass spectra of the peaks labeled 54, 55, and 57 in FIG. 26 as oxazoline derivatives of methyl-branched tetradecanoic fatty acids. The ions circled exhibit reduced or no intensity relative to the reference spectrum of linear pentadecanoic fatty acid (bottom spectrum), and were assigned as 8 -methyl, 10 -methyl, and 12 -methyl (anteiso) tetradecanoic fatty acid (all as oxazoline derivatives). Peak 57 was tentatively identified as the anteiso C15 oxazoline derivative despite the similarity to the mass spec
data for the linear sample because 1) peak 61 migrated at the position of an anteiso C15 standard on 2D gas chromatography, 2) the 252 molecular weight ion is present in slightly lower amounts relative to the nearby 238 and 266 molecular weight ions, and 3) anteiso compounds can be difficult to identify by this technique. The 8 - and 10 -branched fatty acids are shown in the top two profiles of FIG. 28, readily identified by the almost complete absence of the fragment circled. Peaks 137 and 139 in FIG. 26 were assigned as 8-methylhexadecanoic acid and 12-methylhexadecanoic acids (as oxazoline derivatives). Thus, B132 Star (DE3) (pTrcHisA Ec sbm So ce epi pZA31 mmat) (i.e., a recombinant microbe comprising overexpressed or recombinant polynucleotides encoding a methylmalonyl-CoA mutase, a methylmalonylCoA epimerase, and an acyl transferase) generated branchedchain C 15 and C17 fatty acids comprising methyl branches on even-number carbons.
[0259] Branched fatty acid production also was observed in host cells producing exogenous propionyl-CoA carboxylase and Streptomyces coelicolor methylmalonyl-CoA mutase. The propionyl-CoA carboxylase gene-containing strain produced the branched fatty acids shown in Table F.

TABLE F

Peak \#	Proposed Compound ID	Formula	Molecular Weight	
			DMOX	as fatty acid
38	6-methyl, dodecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{13} \mathrm{H}_{33} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	267	214
40	8-methyl, dodecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{13} \mathrm{H}_{33} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	267	214
61	6-methyl, tridecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{35} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	281	228
62	8-methyl, tridecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{35} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	281	228
101	6-methyl, tetradecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{15} \mathrm{H}_{37} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	295	242
103	10-methyl, tetradecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{15} \mathrm{H}_{37} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	295	242
140	10-methyl, pentadecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{39} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	309	256
182	8-methyl, hexadecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{41} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	323	270
189	12-methyl, hexadecanoic acid (DMOX)	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{41} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right) \end{aligned}$	323	270

[0260] The S. coelicolor methylmalonyl-CoA mutase gene-containing microbe (BL21 Star (DE3) harboring pZA31 mutAB Ss epi p TrcHisA mmat) produced four branched fatty acids: 6-methyltetradecanoic acid, 10-methyltetradecanoic acid, 6-methylhexadecanoic acid, and 12-methylhexadecanoic acid.
[0261] Using 2D gas chromatography and mass spectrometry, fatty acid profiles were compared for two recombinant strains comprising Ec sbm, So ce epi, Mb mmat and containing or lacking a thioesterase coding sequence ('tesA). The amount of branched C15 fatty acids relative to branched C17 fatty acids was greater in the 'tesA-containing strain. The area percent ratio of branched C 15 fatty acid to branched C 17 fatty acids in K27-Z1 (pTrcHisA Ec sbm So ce epi pZA31 mmat) was 1.4, while the ratio produced by K27-Z1 (pTrcHisA Ec sbm So ce epi pZA31 mmat pZS22 Ec 'tesA) was 7.0. Expression of a thioesterase shortened the chain length of branched fatty acids.
[0262] These results demonstrate that a cell of the invention producing propionyl-CoA carboxylase or producing methyl-
malonyl-CoA mutase, methylmalonyl-CoA epimerase, and acyl transferase generates branched-chain fatty acids comprising methyl branches on even-number carbons. Recombinant host cells further comprising a polynucleotide encoding a thioesterase preferentially produce fatty acid comprising shorter chain length.
[0263] The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as " 40 mm " is intended to mean "about 40 mm ."
[0264] Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly
excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
[0265] While particular embodiments of the invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 671
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Janibacter sp. HTCC2 649
$<400>$ SEQUENCE: 3
Met Ala Arg Thr Tyr Ala Gly His Ser Ser Ala Ala Ala Ser Asn Ala
1501015
Leu Tyr Arg Arg Asn Leu Ala Lys Gly Gln Thr Gly Leu Ser Val Ala
20
20

Val Lys Ala Leu Gly Gly Thr Thr Gln Asn Asp Ile Ile Lys Glu Tyr
Leu Ser Arg Gly Thr Tyr Val Phe Ala Pro Ala Pro Ser Leu Arg Leu130135140
Ile Thr Asp Met Val Ser Tyr Thr Val Ser Asp Ile Pro Lys Trp Asn
145
150

Pro Ile Asn Ile Cys Ser Tyr His Leu Gln Glu Ala Gly Ala Thr Pro	175
165	

Ala Val Arg Asp Ala Gly Gln Val Pro Gln Glu Arg Phe Gly Glu Val
Val Ala Arg Ile Ser Phe Phe Val Asn Ala Gly Val Arg Phe Val Glu210215220

Pro Glu Ser Asp Ala Ala Lys Leu Lys Ala Ile Gly Val Ala Glu Val
625
630
$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 571
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE: 4
Met Thr Val Ala Pro Lys Arg Pro Ala Ala Met Thr Leu Ala Ala His

Phe Pro Glu Arg Thr Gln Glu Gln | Trp |
| :---: |
| 20 |
| 20 |\quad Arg Asp Leu Val Ala Gly Val

Val Asn Lys Gly Arg Pro Glu Asp Gln His Leu Ser Gly Asp Asp Ala
Val Ala Thr Met Arg Ser His Leu Glu Gly Gly Leu Asp Ile Glu Pro
50
50
Leu Tyr Met Lys Ser Ser Asp Pro Val Pro Leu Gly Val Pro Gly Ala
65
70
Met Pro Phe Thr Arg Gly Arg Ala Leu Arg Asp Ala Asp Val Pro Trp
85

Leu Val Leu Ala Asp Leu Glu Asn Gly Val Thr Ser Val Trp Leu His	120
115	

Val Gly Ala Asp Gly Leu Ala Pro Asn Asp Val Ala Glu Ala Leu Ala
130135140

Leu Ala Asp His Gly Glu Ile Arg Ala Ile Thr Val Asp Thr Arg Val

His Gly Asp Ala Gly Val			
225	230	Thr Val Thr Asp	Glu Val Ala Phe Ala Leu
---:			
235			

Ala Thr Gly Val Ala
245 Tyr Leu Arg His Leu Glu Ser Glu Gly Val Asp

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 146
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE: 5

ggcggcggcg ggegcggcet caaggtcgcc cgcaccctcg aagaggtgce ggagctgtac	540
gactccgccg tcegcgagge egtggccgce ttcggcegcg gggagtgctt cgtcgagcge	600
tacctcgaca agccccgcca cgtggagacc cagtgcctgg ccgacaccca cggcaacgtg	660
gtcgtcgtct ccacccgcga ctgctccctc cagcgccgcc accaaaagct cgtcgaggag	720
gceccegcge cetttctctc cgaggcceag acggagcage tgtactcatc ctccaaggec	780
atcetgaagg aggceggcta cggcggcgce ggcaccgtgg agttcctcgt cggcatggac	840
ggcacgatct tcttcctgga ggtcaacacc cgcetccagg togagcacce ggtcaccgag	900
gaagtcgceg gcatcgactt ggtccgcgag atgttccgca tcgccgacgg cgaggaactc	960
ggttacgacg accecgecet gcgeggceac tecttcgagt tecgcatcaa cggcgaggac	1020
cecggcegcg gettcctgce cgcecccgge accgtcacce tcttcgacge gcecacoggc	1080
cecggcgtce gectggacge cggcgtcgag tecggctecg tcatcggcec cgectgggac	1140
tcectcctcg ccaaactgat cgtcaccggc egcaccogcg cogaggcact ccagcgegcg	1200
gcecgcgece tggacgagtt caccgtcgag ggcatggcea ccgccatccc cttccaccge	1260
acggtcgtcc gcgaccogge cttcgccecc gaactcaccg gctccacgga coccttcacc	1320
gtccacaccc ggtggatcga gacggagttc gtcaacgaga tcaagcoctt caccacgcec	1380
gccgacaccg agacggacga ggagtcgggc cgggagacgg tcgtcgtcga ggtcggcgge	1440
aagcgcetgg aagtctccct cecctccagc etgggcatgt cectggcecg caccggcetg	1500
gccgccgggg cccgccecaa gcgccgcgcg gccaagaagt ccggccocgc cgcetcgggc	1560
gacaccetcg cotccecgat gcagggcacg atcgtcaaga tcgccgtcga ggaaggcoag	1620
gaagtccagg aaggcgacct catcgtcgta ctcgaggcga tgaagatgga acagcecctc	1680
aacgeccaca ggtccggcac catcaagggc ctcaccgecg aggtcggcge ctcectcacc	1740
tecggegcog coatctgcga gatcaaggac tga	1773
<210> SEQ ID NO 8	
<211> LENGTH: 1593	
<212> TYPE: DNA	
<213> ORGANISM: Streptomyces coelicolor	
<300> PUBLICATION INFORMATION:	
<308> DATABASE ACCESSION NUMBER: GenBank / AF113605.1	
<309> DATABASE ENTRY DATE: 1999-12-08	
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (1593)	
$<400>$ SEQUENCE: 8	
atgtccgagc cggaagagca gcagcecgac atccacacga cogcgggcaa gctegcggat	60
ctcaggcgcc gtatcgagga agcgacgcac gccggttccg cacgcgccgt cgagaagcag	120
cacgceaagg gcaagctgac ggctcgtgaa cgcatcgace tectcctcga cgagggttcc	180
ttcgtcgagc tggacgagtt cgcccggcac cgctccacca acttcggcet cgacgccaac	240
cgcecctacg gcgacggcgt cgtcaccggc tacggcaccg togacggceg ceccgtggec	300
gtcttctccc aggacttcac cgtcttcggc ggcgegctgg gcgaggtcta cggccagaag	360
atcgtcaagg tgatggactt cgcectcaag accggctgce cggtcgtcgg catcaacgac	420
tccggcggeg cecgcatcea ggagggegtg gcetcectcg gcgectacgg cgagatcttc	480
cgecgcaaca cceacgectc cggegtgatc cegcagatca gcetggtcgt cggeccgtgt	540
gcgggcggcg cggtgtactc cecegcgatc accgacttca cggtgatggt ggaccagace	600

agccacatgt	tcatcaccgg	tcccgacgtc atcaagacgg	accggcga ggacgtcggc	660
ttegaggagc	tgggcggcge	ccgcacccac aactccacct	cgggcgtggc ccaccacatg	720
gccggcgacg	agaaggacgc	ggtcgagtac gtcaagcagc	tcctgtcgta cotgcogtcc	780
aacaacctct	ccgagceccc	cgcettcccg gaggaggcgg	acctcgcggt cacggacgag	840
gacgecgagc	tggacacgat	cgtcccggac teggegaacc	agcectacga catgcactcc	900
gtcatcgage	acgtcetgga	cgacgcogag ttcttcgaga	cgcaaccect cttcgcgecg	960
aacatcetca	coggettcgg	cogcgtggag ggcegccogg	tcggcatcgt cgccaaccag	1020
cccatgcagt	tcgccggctg	cetggacatc acggcetcog	agaaggcggc cogcttcgtg	1080
cgcacctgcg	acgecttcaa	cgtceccgtc etcacettcg	tggacgtccc cggettcotg	1140
cceggegteg	accaggagca	cgacggcatc atcogccgcg	gcgecaagct gatcttcgec	1200
tacgcegagg	ccacggtgcc	gctcatcacg gtcatcaccc	gcaaggcett cggcggcgec	1260
tacgacgtca	tgggctecaa	gcacctggge gcegacctca	acctggcetg gcecaccgce	1320
cagatcgccg	tcatgggcge	ccaaggcgeg gtcaacatcc	tgcaccgcog caccatcgce	1380
gacgecggtg	acgacgcoga	ggccaccegg geccgcetga	tecaggagta cgaggacgec	1440
ctcctcaacc	cctacacggc	ggcegaacge ggctacgtcg	acgcegtgat catgcectcc	1500
gacactcgcc	gccacatcgt	cegcggcetg cgccagctge	gcaccaagcg cgagtccotg	1560
ccccegaaga	agcacggcaa	catccecotg taa		1593

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 590
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Streptomyces coelicolor
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: GenBank / AF113603.1
$<309>$ DATABASE ENTRY DATE: 1999-12-08
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (590)
$<400>$ SEQUENCE : 9

Ala Leu Gly Gly Asp Thr Pro Ala Thr Ser Tyr Leu Asp Ile Ala Lys
Val Leu Lys Ala Ala Arg Glu Ser Gly Ala Asp Ala

70
65

75

Tyr Gly Phe Leu Ser Glu Asn Ala Glu Phe Ala Gln Ala Val Leu Asp	
85	90

Ala Gly Leu Ile Trp Ile Gly Pro Pro Pro His Ala Ile Arg Asp Arg	
	100
105	

Gly Glu Lys Val Ala Ala Arg His Ile Ala Gln Arg Ala Gly Ala Pro
Leu Val Ala Gly Thr Pro Asp Pro Val Ser Gly Ala Asp Glu Val Val
Ala Phe Ala Lys Glu His Gly Leu Pro Ile Ala Ile Lys Ala Ala Phe
145
150 $\quad 155 \quad 160$

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 530
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Streptomyces coelicolor
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: GenBank / AF113605.1
$<309>$ DATABASE ENTRY DATE: 1999-12-08
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (530)
$<400>$ SEQUENCE : 10

Asp Glu Phe Ala Arg His Arg Ser Thr Asn Phe Gly Leu Asp Ala Asn
65
Arg Pro Tyr Gly Asp Gly Val Val Thr Gly Tyr Gly Thr Val Asp Gly

Arg Pro Val Ala Val Phe Ser Gln Asp	
	100
105	

Leu Gly Glu Val Tyr Gly Gln Lys Ile Val Lys Val Met Asp Phe Ala
Leu Lys Thr Gly Cys Pro Val Val Gly Ile Asn Asp Ser Gly Gly Ala

Arg Ile Gln Glu Gly Val Ala Ser Leu Gly Ala Tyr Gly Glu Ile Phe			
145	150	155	160

Arg Arg Asn Thr His Ala Ser Gly Val Ile Pro Gln Ile Ser Leu Val | Lin |
| ---: |
| 165 |

Val Gly Pro Cys Ala Gly Gly Ala Val Tyr Ser Pro Ala			
	180		
185		\quad	190
:---			

Phe Thr Val Met Val Asp Gln Thr Ser His Met Phe Ile Thr Gly Pro
Asp Val Ile Lys Thr Val Thr Gly Glu Asp Val Gly Phe Glu Glu Leu

Gly Gly Ala Arg Thr His Asn Ser Thr Ser Gly Val Ala His His Met	
225	230


```
<210> SEQ ID NO 11
<211> LENGTH: 116
<212> TYPE: DNA
<213> ORGANISM: Streptomyces coelicolor
<400> SEQUENCE: 11
```

aattgtgagc ggataacaat tgacattgtg agcggataac aagatactga gcacatcagc 60
aggacgcact gaccgaattc aataattttg tttaacttta agaaggagat atacat 116
$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 1773
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Streptomyces coelicolor
$<400>$ SEQUENCE: 12
atgcgcaaag tgctgattgc gaaccgtggt gaaatcgccg ttcgtgtggc acgcgegtgt 60
cgtgatgcag gtattgcaag tgttgcggtg tatgccgatc eggatcgcga tgcgctgcat 120
gttcgtgcgg cegatgaagc ctttgcactg ggcggtgata ceccggcaac gagctatctg 180
gatattgcaa aagtgctgaa agcagcgcgc gaaagcggtg eggatgccat ccatccgggc 240
tacggttttc tgtctgaaaa tgcagaattt gcacaggcgg ttctggatgc aggtctgatt 300
tggatcggtc cgccgccgca tgcaattcgt gatctgggcg ataaagtggc cgcacgccac 360

atcgeccagc	gtgcaggege gcegctggtt gcgggcacce	ggaccoggt ttctggtgca	420
gatgaagtgg	ttgegtttgc caaagaacat ggcetgcega	ttgcgatcaa agcagcattc	480
ggcggtggcg	gtcgeggtct gaaagtggce cgtaccctgg	agaagttcc ggaactgtat	540
gatagcgcag	ttcgegaage ggtggcagcg tttggcegtg	tgaatgctt cgtggaacgc	600
tacctggata	aaccgcgtca tgttgaaacc cagtgtctgg	ggatacgca cggcaacgtg	660
$g t t g t g g t t a$	gcacccgcga ttgctctctg caacgtcgcc	ccagaaact ggtggaagaa	720
gcaccggcgc	cgtttctgag cgaagcccag accgaacagc	tgtatagctc tagtaaagcg	780
attctgaaag	aagceggtta egtgggcgce ggtacggttg	atttctggt gggcatggat	840
ggcaccatta	gctttctgga agttaacacc cgtctgcaag	tgaacatcc ggtgaccgaa	900
gaagttgcgg	gcattgatct ggtgcgcgaa atgtttcgta	cgcagatgg cgaagaactg	960
ggttacgatg	atccggcgct gcgcggtcac agctttgaat	tcgtattaa tggcgaagat	1020
ccgggcogtg	gttttctgce ggcgccgggc accgtgacge	gttcgatgc accgaccggt	1080
cegggegttc	gtctggatgc cggtgtggaa agtggtagcg	tattggcce ggcatgggat	1140
agcetgctgg	cgaaactgat cgttaccggt egtacgcgcg	cgaagcget gcaacgtgca	1200
gcacgtgccc	tggatgaatt taccgtggaa ggcatggcga	ggceattcc gtttcatcgc	1260
accgtggttc	gtgatcoggc attcgegcog gaactgacog	gctetacoga tecgttcacc	1320
gtgcacacge	gctggatcga aaccgaattt gttaacgaaa	caaaccgtt caccacgccg	1380
gcggataccg	aaacggatga agaaagtggt cgcgaaacgg	tggttgtgga agtgggcggt	1440
aaacgtctgg	aagtttctct gcegagcagc etgggtatga	gtctggcgcg taccggtctg	1500
gcggceggcg	cccgtccgaa acgtcgcgca gcgaaaaaat	tggtccggc cgcaagcggt	1560
gataccetgg	ccagtccgat gcagggcacg attgtgaaaa	tcgcagtgga agaaggtcag	1620
gaagtgcagg	aaggegatct gattgttgtg etggaagcga	tgaaaatgga acagccgctg	1680
aatgcceatc	gtagcggcac catcaaaggc ctgacggceg	aagtgggtgc atctctgacc	1740
agtggcgcgg	ccatttgcga aatcaaagat taa		1773

```
<210> SEQ ID NO 1.3
<211> LENGTH: 57
<212> TYPE: DNA
<213> ORGANISM: Streptomyces coelicolor
<400> SEQUENCE: 13
```

agatctgcgg ccgcatctag aaataatttt gtttaacttt aagaaggaga tatattc

```
<210> SEQ ID NO 14
<211> LENGTH: 1593
<212> TYPE: DNA
<213> ORGANISM: Streptomyces coelicolor
<400> SEQUENCE: 14
```

atgagtgaac cggaagaaca gcagceggat attcatacca cggcaggcaa actggcggat 60
ctgcgtcgcc gtatcgaaga agcaacccat gcaggtagcg cacgtgcagt ggaaaaacag 120
cacgcgaaag gtaaactgac ggccegcgaa egtatcgatc tgctgctgga tgaaggcagt 180
tttgttgaac tggatgaatt tgcacgccac egtagcacca actttggtct ggatgcgaat 240
cgccegtatg gcgatggtgt ggttaccggt tacggtacgg tggatggtcg tccggtggca 300

gtccggtggg	tatcgttgca aatcagcoga	tgcagtttgc gggttgcetg	gatattaccg	3000
cctetgaaaa	agcggcecge tttgtgegta	cetgtgatge gttcaacgtg	coggttctga	3060
cgtttgtgga	tgttccggge ttcctgccgg	gtgttgatca ggaacatgat	ggcattatcc	3120
gcegtggtgc	gaaactgatt tttgcgtatg	ccgaagcaac cgtgcegctg	attaccgtta	3180
tcacgegcaa	agcattcggc ggtgcgtacg	atgtgatggg cagcaaacat	ctgggtgccg	3240
atctgaacet	ggcatggceg accgcacaga	tcgcagtgat gggcgcgcag	ggtgecgtta	3300
atattctgca	ccgcegtacc atcgcagatg	caggtgatga tgcagaagcg	acgcgegcac	3360
gtctgattca	ggaatatgaa gatgcgctgc	tgaacccgta taccgcagcg	gaacgtggtt	3420
acgtggatgc	ggttattatg cegagcgata	cecgcegtca tatcgtgcgt	ggtctgcgtc	3480
agctgcgtac	gaaacgtgaa tctctgccgc	cgaaaaaaca cggtaatatt	cogctgtaa	3539

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 45
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer
$<400>$ SEQUENCE: 16
aaactgcaga ggaggacagc tatgtctttt agcgaatttt atcag

```
<210> SEQ ID NO 17
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 17
```

aaaggatccc tattcttcga tcgcctggcg aatttg
$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 383
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Mycobacterium bovis
$<400>$ SEQUENCE: 18
Leu Val Glu Gly Leu Arg Glu Val Ala Asp Gly Asp Ala Leu Tyr Asp
Ala Ala Val Gly His Gly Asp Arg Gly Pro Val Trp Val phe ser Gly
Gln Gly Ser Gln Trp Ala Ala Met Gly Thr Gln Leu Leu Ala Ser Glu
Pro Val Phe Ala Ala Thr $\left.\begin{array}{c}\text { Ile Ala } \\ 50 \\ 55\end{array} \quad \begin{array}{c}\text { Lys Leu Glu Pro Val Ile Ala Ala } \\ 60\end{array}\right)$.
Glu Ser Gly Phe Ser Val Thr Glu Ala Ile Thr Ala Gln Gln Thr Val
65
70
Thr Gly Ile Asp Lys Val Gln Pro Ala Val Phe Ala Val Gln Val Ala
Leu Ala Ala Thr Met Glu Gln Thr Tyr Gly Val Arg Pro Gly Ala Val100105110

Val Gly His Ser Met Gly Glu Ser Ala Ala Ala Val Val Ala Gly Ala	
115	120


```
<210> SEQ ID NO 19
<211> LENGTH: 2111
<212> TYPE: PRT
<213> ORGANISM: Mycobacterium bovis
<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: GenBank / YP_97046
<309> DATABASE ENTRY DATE: 2010-12-14
<313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(2111)
<400> SEQUENCE: 19
```


				85				90					95	
Leu		Leu	$\begin{aligned} & \mathrm{Glu} \\ & 100 \end{aligned}$	Thr	Ser	Trp	$\begin{array}{r} \text { Glu Ala } \\ 105 \end{array}$	Ile		His	Ala	$\begin{aligned} & \text { Gly } \\ & 110 \end{aligned}$		Asp
	Ala	$\begin{aligned} & \text { Ser } \\ & 115 \end{aligned}$	Leu	Ala	Gly	Ser	$\begin{aligned} & \text { Ser Thr } \\ & 120 \end{aligned}$	Ala	Val	Phe	$\begin{aligned} & \text { Thr } \\ & 125 \end{aligned}$	Gly		Thr
His	$\begin{aligned} & \text { Glu } \\ & 130 \end{aligned}$	Asp	Tyr	u	Val	$\begin{aligned} & \text { Leu I } \\ & 135 \end{aligned}$	Thr Thr	Chr	Ala	$\begin{aligned} & \text { Gly } \\ & 140 \end{aligned}$	Gly	Leu	Ala	Ser
$\begin{aligned} & \text { Pro } \\ & 145 \end{aligned}$	Tyr	Val	al	Thr	$\begin{aligned} & \text { Gly } \\ & 150 \end{aligned}$	Leu	Asn Asn	Ser	$\begin{aligned} & \text { Val } \\ & 155 \end{aligned}$	Ala	Ser	Gly	Arg	Ile 160
Ala	His	Thr	eu	$\begin{aligned} & \text { Gly } \\ & 165 \end{aligned}$	Leu	His	Gly Pro	$\begin{aligned} & \text { Ala } \\ & 170 \end{aligned}$		Thr		Asp	$\begin{aligned} & \text { Thr } \\ & 175 \end{aligned}$	Ala
Cys	Ser	er	$\begin{aligned} & \text { Gly } \\ & 180 \end{aligned}$	Leu	Met	$1 a$	$\begin{array}{r} \text { al His } \\ 185 \end{array}$		Ala	Cys	Arg	$\begin{aligned} & \text { Ser } \\ & 190 \end{aligned}$	Leu	His
Asp	Gly	$\begin{aligned} & \text { Glu } \\ & 195 \end{aligned}$	Ala	Asp	Leu		$\begin{aligned} & \text { Leu Ala } \\ & 200 \end{aligned}$	Gly	Gly	Cys	$\begin{aligned} & \text { Ala } \\ & 205 \end{aligned}$		Leu	Leu
Glu	$\begin{aligned} & \text { Pro } \\ & 210 \end{aligned}$	is	Ala	Cys	Val	$\begin{aligned} & \text { Ala } \\ & 215 \end{aligned}$	Ala Ser	Ala	Gln	$\begin{aligned} & \text { Gly } \\ & 220 \end{aligned}$	Met		Ser	Ser
$\begin{aligned} & \text { Thr } \\ & 225 \end{aligned}$	Gly	g	Cys	His	$\begin{aligned} & \text { Ser } \\ & 230 \end{aligned}$	Phe	sp Ala	sp	$\begin{aligned} & \text { Ala } \\ & 235 \end{aligned}$	Asp	Gly		Val	$\begin{aligned} & \text { Arg } \\ & 240 \end{aligned}$
Ser	Glu	Gly	Cys	$\begin{aligned} & \text { Ala } \\ & 245 \end{aligned}$	Met	al	eu Leu	$\begin{aligned} & \text { Lys } \\ & 250 \end{aligned}$		Leu	ro	Asp	$\begin{aligned} & \text { Ala } \\ & 255 \end{aligned}$	Leu
Arg	Asp	Gly	$\begin{aligned} & \text { Asn } \\ & 260 \end{aligned}$	Arg	Ile	Phe	$\begin{array}{r} \text { Ala Val } \\ 265 \end{array}$	al	Arg	Gly	Thr	$\begin{aligned} & \text { Ala } \\ & 270 \end{aligned}$	Thr	Asn
Gln	Asp	$\begin{aligned} & \mathrm{Gly} \\ & 275 \end{aligned}$	Arg	Thr	Glu	Thr	$\begin{aligned} & \text { Leu Thr } \\ & 280 \end{aligned}$		Pro	Ser	$\begin{aligned} & \text { Glu } \\ & 285 \end{aligned}$	Asp	Ala	Gln
Val	$\begin{aligned} & \text { Ala } \\ & 290 \end{aligned}$	al	Tyr	Arg	1a	$\begin{aligned} & \text { Ala I } \\ & 295 \end{aligned}$	Leu Ala	$1 a$	Ala	$\begin{aligned} & \text { Gly } \\ & 300 \end{aligned}$	Val		Pro	Glu
$\begin{aligned} & \text { Thr } \\ & 305 \end{aligned}$	al	$1 y$	1	al	$\begin{aligned} & \text { Glu } \\ & 310 \end{aligned}$	Ala	is Gly	hr	$\begin{aligned} & \text { Gly } \\ & 315 \end{aligned}$	Thr	Pro	Ile	Gly	Asp 320
Pro	Ile	Glu	Tyr	$\begin{aligned} & \text { Arg } \\ & 325 \end{aligned}$	Ser	eu	la Arg	$\begin{aligned} & \text { Val } \\ & 330 \end{aligned}$		Gly	Ala	Gly	$\begin{aligned} & \text { Thr } \\ & 335 \end{aligned}$	Pro
Cys	Ala	u	$\begin{aligned} & \mathrm{Gly} \\ & 340 \end{aligned}$	Ser	la	Lys	$\begin{array}{r} \text { er Asn } \\ 345 \end{array}$	Met		is		$\begin{aligned} & \text { Thr } \\ & 350 \end{aligned}$	Ala	Ser
Ala	Gly	$\begin{aligned} & \text { Thr } \\ & 355 \end{aligned}$	Val	Gly	Leu	$1 \mathrm{e}$	$\begin{aligned} & \text { Lys Ala } \\ & 360 \end{aligned}$	Ile		Ser	$\begin{aligned} & \text { Leu } \\ & 365 \end{aligned}$	Arg	His	Gly
Val	$\begin{aligned} & \text { Val } \\ & 370 \end{aligned}$	ro	Pro	Leu	eu	$\begin{gathered} \text { His } \\ 375 \end{gathered}$	Phe Asn	$r g$	Leu	$\begin{aligned} & \text { Pro } \\ & 380 \end{aligned}$	Asp	Glu	eu	Ser
$\begin{aligned} & \text { Asp } \\ & 385 \end{aligned}$	Tal	lu	hr	Gly	$\begin{aligned} & \text { Leu } \\ & 390 \end{aligned}$	he	al Pro	Gln	$\begin{aligned} & \text { Ala } \\ & 395 \end{aligned}$	val	Thr	Pro	Trp	$\begin{aligned} & \text { Pro } \\ & 400 \end{aligned}$
Asn	Gly	Asn	Asp	His 405	Thr	Pro I	Lys Arg	$\begin{aligned} & \text { Val } \\ & 410 \end{aligned}$	Ala				Phe 415	Gly
Met	Ser		$\begin{aligned} & \text { Thr } \\ & 420 \end{aligned}$	Asn	al	is	$\begin{array}{r} \text { Ala Ile } \\ 425 \end{array}$	Val			Ala	$\begin{aligned} & \text { Pro } \\ & 430 \end{aligned}$	Ala	Glu
Ala		$\begin{aligned} & \text { Ala } \\ & 435 \end{aligned}$		Glu		Ser	$\begin{aligned} & \text { Pro Gly } \\ & 440 \end{aligned}$	Asp	Ala	Glu	$\begin{aligned} & \mathrm{Val} \\ & 445 \end{aligned}$	Gly	Pro	Arg
Leu	Phe 450	Met	Leu	Ser	Ser	$\begin{aligned} & \text { Thr } \\ & 455 \end{aligned}$	Ser Ser	Asp	Ala	Leu 460	Arg	Gln	Thr	Ala
$\begin{aligned} & \text { Arg } \\ & 465 \end{aligned}$	Gln	Leu	Ala	Thr	$\begin{aligned} & \text { Trp } \\ & 470 \end{aligned}$	Val	Glu Glu	His	$\begin{aligned} & \mathrm{Gln} \\ & 475 \end{aligned}$	Asp	Cys	Val	Ala	$\begin{aligned} & \text { Ala } \\ & 480 \end{aligned}$
Ser	Asp	Leu	Ala	Tyr 485	Thr	Leu	Ala Arg	Gly		Ala	His	Arg	Pro	Val

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 1149
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Mycobacterium bovis
$<400>$ SEQUENCE: 20
ctggtggaag gcetgcgtga agttgccgat ggtgatgcac tgtatgatgc agcagtgggt 60
catggcgatc gtggtccggt ttgggtgttt agcggccagg gttctcagtg ggcagcgatg 120
ggcacccagc tgctggcaag cgaaccggtt tttgccgcaa cgattgcaaa actggaaccg 180
gtgatcgcgg ccgaaagtgg cttcagcgtt accgaagcaa ttacggcgca gcagaccgtg 240
acgggtatcg ataaagtgca gccggccgtt ttcgcagttc aggtggcgct ggcagcgacg 300
atggaacaga cgtacggcgt tcgtccgggt gcagtggttg gtcacagtat gggtgaaagc 360
gccgcagcgg tggttgcagg cgccctgagt ctggaagatg ccgcacgtgt gatttgccgt 420
cgcagcaaac tgatgacccg tatcgcaggt gcaggtgcga tgggcagcgt ggaactgccg 480
gcaaaacagg ttaactctga actgatggcg cgcggtattg atgatgtggt tgtgtctgtt 540
gtggcgtctc cgcagagtac cgtgattggc ggcaccagtg atacggttcg tgatctgatc 600
gcgcgttggg aacagcgcga tgtgatggcg cgcgaagttg cogtggatgt tgcaagccat 660
tctccgcagg ttgatccgat tctggatgat ctggcggcgg cactggcaga tattgcaccg 720
atgaccccga aagtgccgta ttacagcgcg acgctgtttg atccgcgtga acagccggtg 780
tgtgatggcg cctattgggt tgataacctg cgcaataccg tgcagtttgc ggcggcagtt 840
caggcggcga tggaagatgg ttaccgtgtg ttcgcggaac tgtctccgca tccgctgctg 900
acccacgcag tggaacagac gggtcgctct ctggatatga gtgttgcagc actggccggt 960
atgcgtcgcg aacagccgct gcegcatgge ctgcgtggtc tgctgaccga actgcaccgt 1020
gcaggtgcag cactggatta tagcgcactg tacccggcag gtcgtctggt ggatgcaccg 1080
ctgccggcat ggacgcacgc acgtctgttc atcgatgatg atggccagga acagcgcgca 1140
cagggtgcg 1149
<210> SEQ ID NO 21

$<211>$ LENGTH: 1149

$<212>$ TYPE: DNA

<213> ORGANISM: Mycobacterium bovis

<400> SEQUENCE: 21
ctcgtcgagg gtttgcgcga ggtggccgac ggtgacgccc tctatgacgc ggcggtggga 60
cacggtgatc gaggaceggt ctgggtcttc tcogggcaag ggtcgcagtg ggcggcgatg 120
ggcacgcaat tgctcgccag cgaaccagtg ttcgcggcca ccatcgccaa getggagccg 180

gtgatcgccg	cagaatcggg attctcggtg	accgaggcga taacggcgca	gcagaccgtg	240
accggaatcg	acaaagtgca gecggcagtg	ttcgccgttc aggtcgegtt	ggcegccacc	300
atggagcaaa	cctacggagt gcggcegggc	gcggtcgtcg gacactcgat	gggtgagtcg	360
gccgcggccg	tcgtcgcggg ggcactgtcg	ctcgaggacg cggcgegcgt	catttgccgc	420
cgetcgaagc	tgatgacccg catagccggt	gctggtgcca tgggctcggt	ggaattgccc	480
gccaagcaag	tgaattcgga gctgatggca	cgcggaatcg acgatgttgt	ggtctcggtg	540
gtggegtccc	cgcaatccac ggtgatcggc	ggtacgagcg acaccgttcg	tgacctcatc	600
gcecgttggg	agcagcggga cgtgatggcg	cgcgaggtgg cogtcgacgt	ggcgtcgcac	660
tcgcetcaag	tcgatcogat actcgacgat	ttggcegcgg cgctggcgga	cattgctccg	720
atgacgecca	aggtgcegta ctactcggcg	accetgttcg accegcgega	gcagceggtg	780
tgcgatggcg	cttactgggt ggacaatctg	cgcaacacgg tgcagttcgc	cgcggcggtg	840
caggctgcga	tggaggacgg ctaccgggtc	ttcgeggage tgtcgccoca	cccgetgctt	900
acccacgceg	tegaacagac gggecgaage	ctcgacatgt cggtcgecgc	cctggcegge	960
atgcggcgag	agcagcetct gecgcatggt	ctgcgcggct tgctgacgga	gctgcaccge	1020
gcgggcgecg	ctttggacta ttcggcgetg	tatcccgctg ggcggctggt	ggatgcgecg	1080
ctgceggcgt	ggacccacge cogcctattc	atcgacgatg atgggcaaga	acagcgggea	1140
caaggtgcc				1149

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 628
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Salmonella enterica
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: GenBank / AAC44817
$<309>$ DATABASE ENTRY DATE: 1999-08-05
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) ... (628)
$<400>$ SEQUENCE: 22

Met 1	Ser		Ser	$\begin{aligned} & \text { Glu } \\ & 5 \end{aligned}$	$\text { he } I$	TYr	Gln	Arg	$\begin{aligned} & \text { Ser } \\ & 10 \end{aligned}$	e	n			$\begin{aligned} & \text { Glu Ala } \\ & 15 \end{aligned}$
Phe	Trp	Ala	$\begin{aligned} & \text { Glu } \\ & 20 \end{aligned}$	Gln	Ala	Arg	Arg	$\begin{aligned} & \text { Ile } \\ & 25 \end{aligned}$	Asp	Trp	Arg	Gln	$\begin{aligned} & \text { Pro } \\ & 30 \end{aligned}$	Phe Thr
Gln	Thr	$\begin{aligned} & \text { Leu } \\ & 35 \end{aligned}$	Asp	is	Ser A	rg	$\begin{aligned} & \text { Pro } \\ & 40 \end{aligned}$	Pro	Phe	Ala	Arg	$\begin{aligned} & \operatorname{Trp} \\ & 45 \end{aligned}$	Phe	Cys Gly
Gly	$\begin{aligned} & \text { Thr } \\ & 50 \end{aligned}$	Thr	Asn	Leu		$\begin{aligned} & \text { His } \\ & 55 \end{aligned}$	Asn	Ala	Val	Asp	Arg 60	Trp	Arg	Asp Lys
$\begin{aligned} & \text { Gln } \\ & 65 \end{aligned}$	Pro	Glu	la	eu	$\begin{aligned} & \text { Ala } \\ & 70 \end{aligned}$	Leu	Ile	$1 \mathrm{a}$	Val	$\begin{aligned} & \text { Ser } \subseteq \\ & 75 \end{aligned}$	Ser	Glu	Thr	$\begin{gathered} \text { Asp } G l u \\ 80 \end{gathered}$
Glu	Arg	Thr	Phe	$\begin{aligned} & \text { Thr } \\ & 85 \end{aligned}$	Phe	er	Gln	eu	$\begin{aligned} & \text { His } \\ & 90 \end{aligned}$	Asp	Glu	Val	sn	$\begin{aligned} & \text { Ile Val } \\ & 95 \end{aligned}$
Ala	Ala	et	$\begin{aligned} & \text { Leu } \\ & 100 \end{aligned}$	Leu	Ser I	eu	Gly	$\begin{aligned} & \text { Val } \\ & 105 \end{aligned}$	Gln	Arg	Gly		$\begin{aligned} & \text { Arg } \\ & 110 \end{aligned}$	Val Leu
Val	Tyr	$\begin{aligned} & \text { Met } \\ & 115 \end{aligned}$	Pro	et	Ile	la	$\begin{aligned} & \text { Glu } \\ & 120 \end{aligned}$	Ala	Gln	le	Thr	$\begin{aligned} & \text { Leu I } \\ & 125 \end{aligned}$	Leu	Ala Cys
Ala	$\begin{aligned} & \text { Arg } \\ & 130 \end{aligned}$	Ile	Gly	Ala	Ile	$\begin{gathered} \text { His } \\ 135 \end{gathered}$	Ser	Val	Val	Phe	$\begin{aligned} & \text { Gly } \\ & 140 \end{aligned}$	Gly	Phe	Ala Ser
$\begin{aligned} & \text { His } \\ & 145 \end{aligned}$	Ser	al	Ala	la	$\begin{aligned} & \text { Arg } \\ & 150 \end{aligned}$	Ile	Asp	Asp	Ala	Arg 155	Pro	Ala	Leu	Ile Val $\begin{array}{r}\text { V } \\ 160\end{array}$

$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 1884
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Salmonella enterica
$<400>$ SEQUENCE: 23
atgtctttta gcgaatttta tcagcgttcc attaacgaac cggaggcgtt ctgggccgag 60
caggcccggc gtatcgactg gcgacagcog tttacgcaga cgctggatca tagccgtcca 120
cegtttgccc getggttttg cggcggcacc actaacttat gtcataacgc cgtcgaccgc 180
tggcgggata aacagccgga ggcgctggcg ctgattgccg tctcatcaga gaccgatgaa 240
gagcgcacat ttaccttcag ccagttgcat gatgaagtca acattgtggc cgccatgttg 300
ctgtcgctgg gegtgcagcg tggcgatcgc gtattggtct atatgccgat gattgccgaa 360
gcgcagataa ccctgctggc ctgcgcgcgc attggcgcga tccattcggt ggtctttggc 420
ggttttgcct cgcacagcgt ggcggcgcgc attgacgatg ccagaccggc gctgattgtg 480
tcggcggatg ceggagcgeg gggcggtaaa atcetgccgt ataaaaagct getcgatgac 540
gctattgcgc aggcgcagca tcagccgaaa cacgttctgc tggtggacag agggctggcg 600
aaatggcat gggtggatgg gcgcgatctg gattttgcca cgttgcgcca gcagcatctc 660
ggcgcgagcg tgceggtggc gtggctggaa tccaacgaaa cetcgtgcat tetttacacc 720
tccggcacta coggcaaacc gaaaggcgtc cagcgcgacg tcggcggtta tgcggtggeg 780
ctggcaacct cgatggacac catttttggc gqcaaggcgg gcggcgtatt ctttgcgea 840
tcggatatcg getgggtcgt eggceactcc tatatcgttt acgegcegtt gctggcagge 900
atggcgacta ttgtttacga aggactgccg acgtacccgg actgcggggt ctggtggaaa 960
attgtcgaga aataccaggt taaccggatg ttttccgcce egaccgcgat tcgcgtgctg 1020
aaaaattcc egacggcgca aatccgcaat cacgatctct cetcgctgga ggcgetttat 1080
ctggccggtg agcegctgga cgagccgacg gccagttggg taacggagac gctgggcgta 1140
ccggtcatcg acaattattg gcagacggag tccggctggc cgatcatggc gctggccegc 1200
gcgctggacg acaggccgtc gcgtctggga agtcccggcg tgccgatgta cggttataac 1260
gtccagctac tcaatgaagt caccggcgaa cettgcggca taaatgaaaa ggggatgctg 1320
gtgatcgaag ggccgctgcc gccgggctgt attcagacta tttggggcga cgatgcgcgt 1380
tttgtgaaga cttactggtc gctgtttaac cgtcaggttt atgccacttt cgactgggga 1440
atccgcgacg ccgaggggta ttactttatt ctgggccgta ccgatgatgt gattaatatt 1500
gcgggtcatc ggctggggac gcgagaaata gaagaaagta tctccagcta cccgaacgta 1560
gcggaagtgg cggtagtggg gataaaagac gctctgaaag ggcaggtagc ggtggcgttt 1620

gtcattccga agcagagcga tacgctggcg gatcgcgagg cggcgcgcga cgaggaaaac	1680
gcgattatgg cgctggtgga caaccagatc ggtcactttg gtcgtccggc gcatgtctgg	1740
tttgtttcgc agctccccaa a acgcgttcc ggaaagatgc ttcgccgcac gatccaggcg	1800
atctgcgaag gccgcgatcc gggcgatctg acaaccattg acgatcccgc gtcgttgcag	1860
caaattcgcc aggcgatcga agaa	1884

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 616
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Streptomyces cinnamonensis
$<400>$ SEQUENCE: 24

Ala Val Arg Gly Thr Leu Gly Ala Asp Pro Leu Gly His Glu Ala Arg

Leu Gly Val Glu Lys Ala Phe Ala $\underset{260}{ }$| Gln |
| ---: |
| 265 |

Thr Ala Asp Gln Phe Leu Thr Ile Ala Lys Leu Arg Ala Ala Arg Arg
Leu Trp Ala Arg Val Ala Glu Val Ser Gly Val Pro Ala Ala Gly Ala
290

$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 733
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Streptomyces cinnamonensis
$<400>$ SEQUENCE: 25

$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 146
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Streptomyces sviceus
$<400>$ SEQUENCE: 26

$\begin{array}{cc}\text { Gly Val His His } & \text { Ile Ala Phe Gly Thr Ala Asp Val Asp Gln Asp Ala } \\ & 85 \\ 90\end{array}$	
$\begin{array}{rl}\text { Ala Asp } I l e \\ \text { Lys Asp Lys Gly Val Arg Val Leu Tyr Glu Glu Pro Arg } \\ 100 & 105\end{array}$	
$\begin{aligned} \text { Arg Gly Ser Met Gly Ser Arg } \begin{array}{l}\text { Ile } \\ 115 \\ 120\end{array} & \begin{array}{l}\text { Thr Phe Leu His Pro Lys Asp Cys } \\ \\ 125\end{array}\end{aligned}$	
His Gly Val Leu Thr Glu Leu Val Thr Ser Ala Pro Val Glu Ser Pro 130135140	
Glu His	
145	
<210> SEQ ID NO 27	
<211> LENGTH: 4553	
$<212>$ TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic nucleotide	
<400> SEQUENCE: 27	
gaattcaaa ttaagaggta tatattaatg accgtgctgc cggatgacgg tctgagtctg	60
gcagcegaat ttccggatgc gacgeatgaa cagtggcace gtctggttga aggegtggtt	120
cgcaaatcag gcaaagatgt ctcgggcacc gcagctgaag aagcectgag caccacgetg	180
gaagacggtc tgaccacgeg tccgctgtat acggcacgtg atgcagcacc ggacgetggt	240
tttcegggtt tcgegcegtt tgtgcgtgge tcagttccgg agggtaacac cccgggcggt	300
tgggatgtgc gtcaacgtta cgcatcggca gacccggcac gtaccaacga agcagtgctg	360
acggatctgg aaaatggtgt taccagcctg tggctgacge tgggttctgc aggtctgccg	420
gtgaccggtc tggaacgtgc actggatggt gtttatctgg acctggtccc ggtggcactg	480
gatgcaggta gcgaagcagc taccgcagca cgtgaactge tgcgtctgta cgaagcagct	540
ggtgttgctg atgacgcagt cegtggcacg ctgggtgcag atccgctggg ccatgaagca	600
cgcaccggtg aaaaagtac gtcetttgca gcagtggcag aactggcacg tctgtgcggt	660
gaacgttatc cgggtctgcg cgctctgacc gttgatgcge tgccgtacca tgaagctggc	720
gcgtcagcag ctcaggaact gggcgcttcg ctggcgaccg gtgtggaata tctgcgtgcg	780
ctgcacgata aaggcetggg tgttgaaaaa gcettcgcac agctggaatt tcgcttcgcg	840
gccaccgcgg accaatttct gacgattgcc aaactgcgtg cagctcgtcg cctgtgggca	900
cgtgttgcag aagtcagtgg cgtgceggca gcaggtgcac agcgtcaaca tgcagtcacc	960
tccccggtga tgatgacgeg togcgatcog tgggtgaaca tgctgcgtac cacggttgct	1020
tgtetgggtg caggtgtcgg cggtgctgat gcagttaccg tcctgcogtt cgatcacgaa	1080
ctgggtctgc cggacgcett tgcacgtcge attgcgcgta ataccagtac gatcctgctg	1140
gaagaatccc atctggcccg tgtcattgat ccggcaggeg gtagctggta tgtggaacge	1200
ctgaccgatg aactggccca cgcagcttgg gactttttca aagaaatcga acgtgcagat	1260
ggtcaggtcg cagcactgcg tagcggcetg gtgggtgace gcattgcagc tacctgggca	1320
gaacgtcgca aaaaactgge gegtcgecgt gaaccgatca coggtgtgtc tgaatttccg	1380
ctgctgacgg aacgcccggt tgaacgtgaa ccggcaccgg cagcaccgce gggcggtctg	1440
ccgcgcgtgc gcegtgatga agcetacgaa gaactgcgtg gtcgttctga cgcacacctg	1500

$<210>$ SEQ ID NO 28
$<211>$ LENGTH: 717
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE : 28

$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 2166
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic nucleotide
$<400>$ SEQUENCE: 29
ggatccatgt ctagaatgag caacgtgcag gaatggcagc agctggcgaa taaagaactg 60
agccgtcgcg aaaaacggt tgattctctg gtgcatcaga cogccgaagg tatcgcaatt 120
aaaccgctgt ataccgaagc ggatctggat aacctggaag tgaccggtac gctgccgggt 180
ctgcegccgt atgttcgtgg tcegcgtgcg accatgtaca eggcacagcc gtggacgatt 240
cgtcagtatg cgggcttcag caccgccaaa gaatctaacg cattttaccg tcgcaatctg 300
gcggcgggtc agaaaggtct gagcgtggcg tttgatctgg ccacccaccg tggttacgat 360
tctgataacc cgegegttgc gggegatgtg ggtaaagcag gegttgcgat cgatacggtg 420
gaagatatga aagttctgtt cgatcagatt cegctggata aaatgagtgt tagcatgacc 480
atgaatggcg eggttctgcc ggtgetggce ttttatatcg tggcagcgga agaacagggt 540
gttacgccgg ataaactgac cggcacgatc cagaacgata ttctgaaaga atacctgtgc 600
cgtaatacct atatttacce gccgaaaccg tctatgcgca ttatcgcaga tattatcgcg $\quad 660$
tggtgtagtg gtaacatgcc gcgtttcaat acgatctcta ttagtggcta tcatatgggt 720
gaagceggcg caaactgcgt tcagcaggtg gcetttacce tggcagatgg tatcgaatac 780
attaaagceg caatcagtge gggcetgaaa attgatgatt tcgccecgcg cetgagettt 840
ttctttggca ttggtatgga tctgtttatg aatgtggcca tgctgcgtgc ggcccgctat 900
ctgtggagcg aagcagtttc tggctttggc gcgcaggace egaaaagcct ggcactgcgt 960
acccattgcc agacgagtgg ttggagcctg accgaacagg acccgtacaa caatgtgatc 1020
cgcaccacga ttgaagcgct ggcagcaacc etgggtggta egcagagcct gcacaccaac 1080
gcgttcgatg aagccctggg tctgccgacg gattttagcg cccgtatcgc acgcaatacc 1140
cagattatca ttcaggaaga atctgaactg tgtcgtacgg ttgatccgct ggcgggcagt 1200
tattacatcg aaagcctgac cgatcagatt gttaaacagg cgcgtgcgat cattcagcag 1260
attgatgaag caggeggtat ggcaaaagcg atcgaagcgg gcctgccgaa acgtatgatt 1320
gaagaagcct ctgcacgcga acagagtctg atcgatcagg gtaaacgtgt gattgttggc 1380
gtgaacaaat acaaactgga tcatgaagat gaaaccgatg tgctggaaat cgataacgtt 1440
atggtgcgta atgaacagat egceagcetg gaacgtattc gegcaaccog cgatgatgcc 1500
gcagttacgg cggccctgaa cgcactgacc catgcagcgc agcacaacga aaatctgctg 1560
gcegcagcgg tgaatgccgc acgtgttcgc gcgacgctgg gtgaaatttc tgatgcactg 1620
gaagtggcgt tcgatcgcta tctggttccg agtcagtgcg ttaccggcgt gatcgcccag 1680
agttaccatc agagcgaaaa aagcgcatct gaatttgatg cgattgtggc ccagaccgaa 1740
cagtttctgg cagataacgg cegtcgcccg cgtatcctga ttgccaaaat gggtcaggatggccacgatc geggtgcgaa agtgatcgeg tctgcetata gtgatctggg ettcgatgtt 1860
gatctgtctc cgatgtttag tacgccggaa gaaattgcac gtctggeggt tgaaaatgat 1920
gtgcatgtgg ttggtgccag ctctctggcg gcgggtcaca aaaccctgat tccggaactg 1980
gtggaagcge tgaaaaaatg gggtcgcgaa gatatctgtg tggttgcggg cggtgtgatt 2040
ccgccgcagg attatgcgtt tetgcaagaa cgtggtgttg cagcaatcta cggtcegggc 2100
accecgatgc tggatagtgt tegcgatgtg ctgaatctga ttagccagca tcacgattaa 2160
gagctc 2166
<210> SEQ ID NO 30

<211> LENGTH: 1206

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic nucleotide

$<400>$ SEQUENCE: 30
ggatccatga aaataaaac aggtgcacgc atcctcgcat tatccgcatt aacgacgatg 60
atgttttccg cotcggctct cgccaaaatc gaagaaggta aactggtaat ctggattaac 120
ggcgataaag gctataacgg tctcgctgaa gtcggtaaga aattcgagaa agataccgga 180
attaaagtca cegttgagca tecggataaa ctggaagaga aattcccaca ggttgcggca 240
actggcgatg gccetgacat tatcttctgg gcacacgace getttggtgg etacgetcaa 300
tctggcetgt tggetgaaat caccecggac aaagegttcc aggacaagct gtatccgttt 360
acctgggatg ccgtacgtta caacggcaag ctgattgctt acccgatcgc tgttgaagcg 420
ttatcgctga tttataacaa agacctgctg cegaacccge caaaaacctg ggaagagatc 480
ccggcgctgg ataaagaact gaaagcgaaa ggtaagagcg cgctgatgtt caacctgcaa 540
gaaccgtact tcacctggce gctgattgct gctgacgggg gttatgcgtt caagtatgaa 600
aacggcaagt acgacattaa agacgtgggc gtggataacg etggcgcgaa agcgggtctg 660
accttcctgg ttgacctgat taaaacaaa cacatgaatg cagacaccga ttactccatc 720
gcagaagctg cctttaataa aggcgaaaca gcgatgacca tcaacggccc gtgggcatgg 780
tccaacatcg acaccagcaa agtgaattat ggtgtaacgg tactgccgac cttcaagggt 840
caaccatcca aaccgttcgt tggcgtgctg agcgcaggta ttaacgccgc cagtccgaac 900
aaagagctgg cgaaagagtt cetcgaaaac tatctgctga ctgatgaagg tetggaageg 960
gttaataaag acaaaccgct gggtgccgta gcgctgaagt cttacgagga agagttggcg 1020
aaagatccac gtattgccge caccatggaa aacgcccaga aaggtgaaat catgccgaac 1080
atcccgcaga tgtcegcttt etggtatgcc gtgcgtactg cggtgatcaa cgccgccagc 1140
ggtcgtcaga ctgtcgatga agccetgaaa gacgcgcaga ctcgtatcac caagtctaga 1200
gagetc 1206

```
<210> SEQ ID NO 31
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 31
```

gagaggtacc atggggggtt ctcatcatca tcatcatc
$<210>$ SEQ ID NO 32
$<211>$ LENGTH: 38
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer
$<400>$ SEQUENCE: 32cagccaagct tttattacgc accetgtgcg cgctgttc38
$<210>S E Q$ ID NO 33

<211> LENGTH: 1263

$<212>$ TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic nucleotide

<400> SEQUENCE: 33atggggggtt ctcatcatca tcatcatcat ggtatggcta gcatgactgg tggacagcaa60
atgggtcggg atctgtacga cgatgacgat aaggatcgat ggggatccct ggtggaaggc 120
ctgcgtgaag ttgccgatgg tgatgcactg tatgatgcag cagtgggtca tggcgatcgt 180
ggtccggttt gggtgtttag cggccagggt tctcagtggg cagcgatggg cacccagctg 240
ctggcaagcg aaccggtttt tgccgcaacg attgcaaaac tggaaccggt gatcgcggce 300
gaaagtggct tcagcgttac cgaagcaatt acggcgcagc agaccgtgac gggtatcgat 360
aaagtgcagc cggcegtttt cgcagttcag gtggcgctgg cagcgacgat ggaacagacg 420
tacggegttc gtccgggtgc agtggttggt cacagtatgg gtgaaagcgc cgcagcggtg 480
gttgcaggcg cectgagtct ggaagatgce gcacgtgtga tttgccgtcg cagcaaactg 540
atgacccgta tcgcaggtgc aggtgcgatg ggcagcgtgg aactgccggc aaaacaggtt 600
aactctgaac tgatggcgeg cggtattgat gatgtggttg tgtctgttgt ggcgtctccg 660
cagagtaccg tgattggcgg caccagtgat acggttcgtg atctgatcgc gcgttgggaa 720
cagcgcgatg tgatggcgeg cgaagttgce gtggatgttg caagccattc tccgcaggtt 780
gatccgattc tggatgatct ggcggcggca ctggcagata ttgcaccgat gaccccgaaa 840
gtgccgtatt acagcgcgac gctgtttgat ccgcgtgaac agccggtgtg tgatggcgcc 900
tattgggttg ataacctgcg caataccgtg cagtttgcgg cggcagttca ggcggcgatg 960
gaagatggtt accgtgtgtt cgcggaactg tctccgcatc cgctgctgac ccacgcagtg 1020
gaacagacgg gtcgctctct ggatatgagt gttgcagcac tggccggtat gcgtcgcgaa 1080
cagcegctgc cgcatggcet gcgtggtctg ctgaccgaac tgcaccgtgc aggtgcagca 1140
ctggattata gegcactgta ccoggcaggt cgtctggtgg atgcaccgct gccggcatgg 1200
acgcacgcac gtctgttcat cgatgatgat ggccaggaac agcgcgcaca gggtgcgtaa 1260
$<210>$ SEQ ID NO 34
$<211>$ LENGTH: 419
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mycobacterium bovis
$<400>$ SEQUENCE: 34

$145150 \quad 155 \quad 160$

Thr His Ala Val Glu Gln Thr Gly Arg Ser Leu Asp Met Ser Val Ala | 345 |
| ---: |
| 340 |

Ala Leu Ala 355							
Gly Leu Leu370							
Ala Leu Tyr385							
Thr His Ala							
Gln Gly Ala							

$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 464
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Kribbella flavida DSM
$<400>$ SEQUENCE: 35

gagctcagga ggaattaacc atggaacacc tgacggcgac ccagaccctg tttgaagcga	60
ttgaccacgt tggcgttgca gttgcggatt ttgatgaagc agtgcgtttt tatgcagaaa	120
ccttcggcat gacggtggct catgaagaag ttaacgaaga acagggtgtt cgtgaagcaa	180
tgctgtcaat tggcgattcg ggtagctcta tccaactgct ggcgccgctg tccgatagtt	240
ccccgattgc caaatttctg gaccgcaatg gcccgggtat ccagcaactg gcctatcgtg	300
tccgcgatct ggacgcagtg agcgcaaccc tgcgtgaacg tggcgcgcaa ctgctgtacg	360
acgaaccgcg tcgcggcacg gctggttctc gtattaactt cattcatccg aaatcggcgg	420
gcggcgtcct ggtggaactg gtggaaccgg ctcgctaact gcag	464

$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 145
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Kribbella flavida DSM
$<400>$ SEQUENCE: 36


```
<210> SEQ ID NO 37
<211> LENGTH:545
<212> TYPE: DNA
<213> ORGANISM: Sorangium cellulosum
<400> SEQUENCE: 37
gagctcagga ggaattaacc atggctccgc cggcaacgcg tccggctccg gctgcaccga 60
cgggcetgce gacccaacgt gaaccgatga aagaccagat tccgggcttt ctgttcattg 120
atcatatcgc gatggcegtg ceggcaggcc aactggacgc acaagttaaa gcetatgaaa 180
tgctgggctt tcgtgaagtt catcgcgaag aagtccgtgg tgcggatcag gtgcgcgaag 240
ttatgctgcg tattggtgat agcgacaacc acgtccaact gctggaaccg ctgagccogg 300
aatctccggt tcaaaaactg atcgagaaaa acggcggtcg cggcggtttc gcacatgtgg 360
cttaccgtgt cagtgatgtg caagcggcct ttgacgaact gaaagcgcgt ggcttccgca 420
ttatcgatgc agctccgcgt ccgggcagcc gtggcaccac gattttcttt gttcacccgc 480
gctcacgcga cgatgccccg ttcggtcace tgattgaagt tgtccagtca catggctaac 540
tgcag 545
```

$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 172
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Sorangium cellulosum
$<400>$ SEQUENCE: 38
Met Ala Pro Pro Ala Thr Arg Pro Ala Pro Ala Ala Pro Thr Gly Leu
$15010 \quad 15$

Pro Thr Gln Arg Glu Pro Met Lys Asp Gln Ile Pro Gly Phe Leu Phe | 25 |
| :---: |
| 20 |

Ile Asp His Ile Ala Met Ala Val Pro Ala Gly Gln Leu Asp Ala Gln
35
Val Lys Ala Tyr Glu Met Leu Gly Phe Arg Glu Val His Arg Glu Glu

65	70	75	80

Ser Asp Asn His Val Gln Leu Leu Glu Pro Leu Ser Pro Glu Ser Pro

85

Val Gln Lys Leu

Phe Gly His Leu Ile Glu Val Val Gln Ser His Gly | 165 |
| ---: |
| 170 |

```
<210> SEQ ID NO 39
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

<223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 39	
taagagctca ggaggaatta accatg	26
<210> SEQ ID NO 40	
<211> LENGTH: 566	
<212> TYPE: DNA	
$<213>$ ORGANISM: Escherichia coli	
<400> SEQUENCE: 40	
catgccatgg eggacacgtt attgattctg ggtgatagce tgagcgccgg gtatcgaatg 60	
tctgccagcg eggcetggce tgcettgttg aatgataagt ggcagagtaa aacgtcggta 120	
gttaatgcca gcatcagcgg egacacctcg caacaaggac tggcgegcet tccggctotg 180	
ctgaaacagc atcagccgcg ttgggtgctg gttgaactgg gcggcaatga cggtttgcgt 240	
ggttttcagc cacagcaaac cgagcaaacg ctgcgecaga ttttgcagga tgtcaaagce 300	
gccaacgetg aaccattgtt aatgcaata cgtetgcetg caaactatgg tcgecgttat 360	
aatgaagcet ttagcgccat ttaccecaaa ctcgccaaag agtttgatgt tccgctgctg 420	
ccettttta tggaagaggt ctacctcaag ccacaatgga tgcaggatga cggtattcat 480	
cccaaccgcg acgcecagce gtttattgce gactggatgg cgaagcagtt gcagcottta 540	
gtaatcatg actcataagg atccgc	566

```
<210> SEQ ID NO 41
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 41
```

catgccatgg eggacacgtt attgattctg gg 32
$<210>$ SEQ ID NO 42
$<211>$ LENGTH: 9
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic peptide
$<400>$ SEQUENCE: 42
Met Ala Asp Thr Leu Leu Ile Leu Gly
1

```
<210> SEQ ID NO 43
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 43
```

geggatcctt atgagtcatg atttactaaa ggctgc
$<210>$ SEQ ID NO 44
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic peptide
<400> SEQUENCE: 44
Ser Asp His Asn Val Leu Pro Gln Leu
15
$<210>$ SEQ ID NO 45
$<211>$ LENGTH: 183
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE : 45

$<210>$ SEQ ID NO 46
$<211>$ LENGTH: 33
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer
$<400>$ SEQUENCE: 46
cattactcga gcgcactccc gttctggata atg
$<210>$ SEQ ID NO 47
$<211>$ LENGTH: 35
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer
$<400>$ SEQUENCE: 47

```
<210> SEQ ID NO 48
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic peptide
<400> SEQUENCE: 48
```

Ser Asp His Asn Val Leu Pro Gln Leu	
1	5

$<210>$ SEQ ID NO 49
$<211>$ LENGTH: 15
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic nucleotide
$<400>$ SEQUENCE: 49
ggatccatgt ctaga
$<210>$ SEQ ID NO 50
$<211>$ LENGTH: 34
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic peptide
$<400>$ SEQUENCE: 50
Met Gly Gly Ser His His His His His His Gly Met Ala Ser Met Thr
$15010 \quad 15$
Gly Gly Gln Gln Met Gly Arg Thr Asp Asp Asp Asp Lys Asp Arg Trp
$2025 \quad 30$
Gly Ser
$<210>$ SEQ ID NO 51
$<211>$ LENGTH: 655
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ehrlichia chaffeensis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_507303
$<309>$ DATABASE ENTRY DATE: 2010-05-14
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (655)

$<210>$ SEQ ID NO 52
$<211>$ LENGTH: 510
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Ehrlichia chaffeensis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_507410
$<309>$ DATABASE ENTRY DATE: 2010-05-14
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (510)
$<400>$ SEQUENCE: 52


```
<210> SEQ ID NO 53
<211> LENGTH: 666
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium vitis
<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: NCBI / YP 002547482
<309> DATABASE ENTRY DATE: 2010-04-01
<313> RELEVANT RESIDUES IN SEQ ID NO: (1).. (666)
<400> SEQUENCE: 53
```



```
<210> SEQ ID NO 54
<211> LENGTH: 510
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium vitis
<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: NCBI / YP_002547479
<309> DATABASE ENTRY DATE: 2010-04-01
<313> RELEVANT RESIDUES IN SEQ ID NO: (1) .. (510)
<400> SEQUENCE: 54
```


$<210>$ SEQ ID NO 55
$<211>$ LENGTH: 667
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Methylobacterium extorquens
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_003069256
$<309>$ DATABASE ENTRY DATE: 2010-04-16
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1).. (667)
$<400>$ SEQUENCE: 55

			340					345					350		
Gly	Arg	$\begin{aligned} & \text { Leu } \\ & 355 \end{aligned}$	Thr	Thr	Tyr	Gln	$\begin{aligned} & \text { Pro } \\ & 360 \end{aligned}$	Pro	Glu	Glu		$\begin{aligned} & \text { Pro } \\ & 365 \end{aligned}$	Leu		Gly
Ala	$\begin{aligned} & \text { Ile } \\ & 370 \end{aligned}$	Val	Arg	Asn	Asp	$\begin{aligned} & \text { Thr } \\ & 375 \end{aligned}$	Gly	Val	Glu	Glu	$\begin{aligned} & \text { Gly } \\ & 380 \end{aligned}$	Gl_{Y}	Glu		Ala
$\begin{aligned} & \text { Ile } \\ & 385 \end{aligned}$	His	TYr	Asp	Pro	$\begin{aligned} & \text { Met } \\ & 390 \end{aligned}$	le	Ala	Lys	Leu	$\begin{aligned} & \text { Val } \\ & 395 \end{aligned}$	Thr	Trp	Ala	Pro	$\begin{aligned} & \text { Thr } \\ & 400 \end{aligned}$
Arg	Leu	Glu	Ala	$\begin{aligned} & \text { Ile } \\ & 405 \end{aligned}$	Asp	Ala	Gln	Ala	$\begin{aligned} & \text { Thr } \\ & 410 \end{aligned}$	Ala	Leu	Asp	Ala	Phe 415	Ala
Ile	Glu	Gly	$\begin{aligned} & \text { Ile } \\ & 420 \end{aligned}$	Arg	His	Asn	Ile	$\begin{aligned} & \text { Pro } \\ & 425 \end{aligned}$	Phe	Leu	Ala	Thr	$\begin{aligned} & \text { Leu } \\ & 430 \end{aligned}$		Ala
His	Pro	$\begin{aligned} & \text { Arg } \\ & 435 \end{aligned}$	Trp	Arg	Asp	Gly	$\begin{aligned} & \text { Arg } \\ & 440 \end{aligned}$	Leu	Ser	Thr	Gly	$\begin{aligned} & \text { Phe } \\ & 445 \end{aligned}$	Ile	Lys	Glu
Glu	$\begin{aligned} & \text { Phe } \\ & 450 \end{aligned}$	Pro	Glu	Gly	Phe	$\begin{aligned} & \text { Ile } \\ & 455 \end{aligned}$	Ala	Pro	Glu	Pro	$\begin{aligned} & \text { Glu } \\ & 460 \end{aligned}$	Gly	Pro	Val	Ala
$\begin{aligned} & \text { His } \\ & 465 \end{aligned}$	Arg	Leu	Ala	Ala	$\begin{aligned} & \text { Val } \\ & 470 \end{aligned}$	$1 a$	$1 a$	Ala	Ile	$\begin{aligned} & \text { Asp } \\ & 475 \end{aligned}$	His	Lys	Leu	Asn	$\begin{aligned} & \text { Ile } \\ & 480 \end{aligned}$
Arg	Lys	Arg	Gly	$\begin{aligned} & \text { Ile } \\ & 485 \end{aligned}$	Ser	Gly	Gln	Met	$\begin{aligned} & \text { Arg } \\ & 490 \end{aligned}$	Asp	Pro	Ser	Leu	$\begin{aligned} & \text { Leu } \\ & 495 \end{aligned}$	Thr
Phe	Gln	Arg	$\begin{aligned} & \text { Glu } \\ & 500 \end{aligned}$	Arg	Val	Val	Val	$\begin{aligned} & \text { Leu } \\ & 505 \end{aligned}$	Ser	Gly	Gln	Arg	Phe 510	Asn	Val
Thr	Val	Asp 515	Pro	Asp	Gly	Asp	Asp 520	Leu	Leu	Val	Thr	Phe 525	Asp	Asp	Gly
Thr	$\begin{aligned} & \text { Thr } \\ & 530 \end{aligned}$	Ala	Pro	Val	Arg	$\begin{aligned} & \text { Ser } \\ & 535 \end{aligned}$	Ala	Trp	Arg	Pro	$\begin{aligned} & \text { Gly } \\ & 540 \end{aligned}$	Ala	Pro	Val	Trp
$\begin{aligned} & \text { Ser } \\ & 545 \end{aligned}$	Gly	Thr	al	Gly	Asp 550	Gln	Ser	Ile	Ala	$\begin{aligned} & \text { Ile } \\ & 555 \end{aligned}$	Gln	Val	Arg	Pro	$\begin{aligned} & \text { Leu } \\ & 560 \end{aligned}$
Leu	Asn	Gly	Val	Phe 565	Leu	Gln	His	Ala	$\begin{aligned} & \mathrm{Gly} \\ & 570 \end{aligned}$	Ala	Ala	Ala		$\begin{aligned} & \text { Ala } \\ & 575 \end{aligned}$	Arg
Val	Phe	Thr	$\begin{aligned} & \text { Arg } \\ & 580 \end{aligned}$	Arg	Glu		Glu	$\begin{aligned} & \text { Leu } \\ & 585 \end{aligned}$	Ala	Asp	Leu	Met	$\begin{aligned} & \text { Pro } \\ & 590 \end{aligned}$		Lys
Glu	Asn	Ala 595	Gly	Ser	Gly	Lys	$\begin{aligned} & \text { Gln } \\ & 600 \end{aligned}$	Leu	Leu	Cys		$\begin{aligned} & \text { Met } \\ & 605 \end{aligned}$	Pro	Gly	Leu
Val	$\begin{aligned} & \text { Lys } \\ & 610 \end{aligned}$	Gln	Ile	Met	Val	$\begin{aligned} & \text { Ser } \\ & 615 \end{aligned}$	Glu	Gly	Gln	Glu	$\begin{aligned} & \text { Val } \\ & 620 \end{aligned}$	Lys	Asn	Gly	Glu
$\begin{aligned} & \text { Pro } \\ & 625 \end{aligned}$	Leu	Ala	Ile	Val	$\begin{aligned} & \text { Glu } \\ & 630 \end{aligned}$	Ala	Met	Lys	Met	$\begin{aligned} & \text { Glu } \\ & 635 \end{aligned}$	Asn	Val	Leu	Arg	Ala 640
Glu	Arg	Asp	Gly	Thr 645	Ile		Lys	Ile	$\begin{aligned} & \text { Ala } \\ & 650 \end{aligned}$	Ala	Lys	Glu	Gly	Asp 655	Ser
Leu	Ala	Val	Asp 660	Ala	Val	Ile	Leu	$\begin{aligned} & \text { Glu } \\ & 665 \end{aligned}$	Phe						

```
<210> SEQ ID NO 56
<211> LENGTH: 510
<212> TYPE: PRT
\ll 2 1 3 > ~ O R G A N I S M : ~ M e t h y l o b a c t e r i u m ~ e x t o r q u e n s ~
<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: NCBI / YP 003065890
<309> DATABASE ENTRY DATE: 2010-04-16
<313> RELEVANT RESIDUES IN SEQ ID NO: (1) .. (510)
<400> SEOUENCE: 56
```

Met Lys Asp Ile Leu Glu Lys Leu Glu Glu Arg Arg Ala Gln Ala Arg

$<210>$ SEQ ID NO 57
$<211>$ LENGTH: 670
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Sinorhizobium meliloti
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / NP_437988
$<309>$ DATABASE ENTRY DATE: 2010-04-01
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (670)
$<400>$ SEQUENCE: 57

$<210>$ SEQ ID NO 59
$<211>$ LENGTH: 681
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ruegeria pomeroyi
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_166352
$<309>$ DATABASE ENTRY DATE: 2010-06-29
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (681)
$<400>$ SEQUENCE: 59

$<210>$ SEQ ID NO 60
$<211>$ LENGTH: 510
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Ruegeria pomeroyi
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_166345
$<309>$ DATABASE ENTRY DATE: 2010-06-29
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (510)
$<400>$ SEQUENCE: 60

	$\begin{aligned} & \text { Glu } \\ & 210 \end{aligned}$	Leu	Gly	Gly	Ala	$\begin{aligned} & \text { Ser } \\ & 215 \end{aligned}$			Thr	Arg	$\begin{aligned} & \text { Lys } \\ & 220 \end{aligned}$	Ser		al Ala
$\begin{aligned} & \text { Asi } \\ & 22 \end{aligned}$	Gly	Ala	Phe	Glu	$\begin{aligned} & \text { Asn } \\ & 230 \end{aligned}$	Asp	Val	Glu	Ala	$\begin{aligned} & \text { Leu } \\ & 235 \end{aligned}$	Ala	Glu	Val	$\begin{array}{r} \text { Arg Arg } \\ 240 \end{array}$
Leu	Val	Asp	Phe	$\begin{aligned} & \text { Leu } \\ & 245 \end{aligned}$	Pro	Leu	Asn	Asn	$\begin{aligned} & \text { Arg } \\ & 250 \end{aligned}$	Glu	Lys	Pro	Pro	$\begin{aligned} & \text { Val Arg } \\ & 255 \end{aligned}$
Pro	Phe	Phe	$\begin{aligned} & \text { Asp } \\ & 260 \end{aligned}$	Glu	Pro	Gly	Arg	$\begin{aligned} & \text { Ile } \\ & 265 \end{aligned}$	Glu	Ala	Ser	Leu	Asp 270	Thr Leu
Val	Pro	$\begin{aligned} & \text { Glu } \\ & 275 \end{aligned}$	Asn	Ala	Asn	Thr	$\begin{aligned} & \text { Pro } \\ & 280 \end{aligned}$	Tyr	Asp	Met	Lys	$\begin{aligned} & \text { Glu } \\ & 285 \end{aligned}$	Leu	Ile Asn
Lys	$\begin{aligned} & \text { Ile } \\ & 290 \end{aligned}$	Ala	Asp	Glu	Gly	$\begin{aligned} & \text { Asp } \\ & 295 \end{aligned}$	Phe	Tyr	Glu	Ile	$\begin{aligned} & \mathrm{Gln} \\ & 300 \end{aligned}$	Glu	Asp	Phe Ala
LYs	Asn	Ile	Ile	Thr	Gly	Phe	Ile	Arg	Leu	Glu	Gly	Gln	Thr	$\begin{aligned} & \text { Val } \text { Gly } \\ & 320 \end{aligned}$
Va	Val	Ala	sn	$\begin{aligned} & \text { Gln } \\ & 325 \end{aligned}$	Pro	Met	Ile	Leu	$\begin{aligned} & \text { Ala } \\ & 330 \end{aligned}$	Gly	Cys	Leu	Asp	$\begin{aligned} & \text { Ile Asp } \\ & 335 \end{aligned}$
Ser	Ser	Arg	$\begin{aligned} & \text { Lys } \\ & 340 \end{aligned}$	Ala	Ala	Arg	Phe	$\begin{aligned} & \text { Val } \\ & 345 \end{aligned}$	Arg	Phe	Cys	Asp	$\begin{aligned} & \text { Cys } \\ & 350 \end{aligned}$	Phe Glu
II	ro	$\begin{aligned} & \text { Ile } \\ & 355 \end{aligned}$	Leu	Thr	Leu	al	$\begin{aligned} & \text { Asp } \\ & 360 \end{aligned}$	Val	Pro	Gly	Phe	$\begin{aligned} & \text { Leu } \\ & 365 \end{aligned}$	Pro	Gly Thr
Ser	$\begin{aligned} & \mathrm{Gln} \\ & 370 \end{aligned}$	Glu	Tyr	Gly	Gly	$\begin{aligned} & \text { Val } \\ & 375 \end{aligned}$	Ile	Lys	His	Gly	$\begin{aligned} & \text { Ala } \\ & 380 \end{aligned}$	Lys	Leu	Leu Phe
$\begin{aligned} & \mathrm{Al} \\ & 38= \end{aligned}$	Tyr	Gly	Glu	Ala	$\begin{aligned} & \text { Thr } \\ & 390 \end{aligned}$	Val	Pro	Lys	Val	$\begin{aligned} & \text { Thr } \\ & 395 \end{aligned}$	Val	Ile	Thr	$\begin{aligned} \text { Arg Lys } \\ 400 \end{aligned}$
Al	TYr	Gly	Gly	$\begin{aligned} & \text { Ala } \\ & 405 \end{aligned}$	Tyr	Asp	Val	Met	Ala 410	Ser	Lys	His	Leu	$\begin{aligned} & \text { Arg Gly } \\ & 415 \end{aligned}$
Asp	Phe	Asn	$\begin{aligned} & \text { Tyr } \\ & 420 \end{aligned}$	Ala	Trp	Pro	Thr	$\begin{aligned} & \text { Ala } \\ & 425 \end{aligned}$	Glu	Ile	Ala	Val	$\begin{aligned} & \text { Met } \\ & 430 \end{aligned}$	Gly Ala
Lys	Gly	$\begin{aligned} & \text { Ala } \\ & 435 \end{aligned}$	Thr	Glu	Ile	Ile	His 440	Arg	Ala	Asp	Leu	$\begin{aligned} & \text { Gly } \\ & 445 \end{aligned}$	Asp	Ala Asp
LYs	$\begin{aligned} & \text { Ile } \\ & 450 \end{aligned}$	Ala		His	Thr	$\begin{aligned} & \text { Lys } \\ & 455 \end{aligned}$	Asp	Tyr	Glu	Gly	$\begin{aligned} & \text { Arg } \\ & 460 \end{aligned}$	Phe	Ala	Asn Pro
$\begin{aligned} & \text { Phe } \\ & 46= \end{aligned}$	Val	Ala	Ala	Glu	Arg 470	Gly	Phe	Ile	Asp	$\begin{aligned} & \text { Glu } \\ & 475 \end{aligned}$	Val	Ile	Gln	$\begin{array}{r} \text { Pro Arg } \\ 480 \end{array}$
Ser	Thr	Arg	Lys	Arg 485	Val	Ser	Arg	Ala	Phe 490	Ala	Ser	Leu	Arg	$\begin{aligned} & \text { Gly Lys } \\ & 495 \end{aligned}$
Ser	Leu	Lys	$\begin{aligned} & \text { Asn } \\ & 500 \end{aligned}$	Pro	Trp	Lys	Lys	$\begin{aligned} & \text { His } \\ & 505 \end{aligned}$	Asp				$\begin{aligned} & \text { Leu } \\ & 510 \end{aligned}$	

$<210>$ SEQ ID NO 61
$<211>$ LENGTH: 678
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Bacillus megaterium
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_003564880
$<309>$ DATABASE ENTRY DATE: 2010-12-17
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1)...(678)
$<400>$ SEQUENCE: 61

$<210>$ SEQ ID NO 62
$<211>$ LENGTH: 716
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Bacillus megaterium
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI - YP_003564879
$<309>$ DATABASE ENTRY DATE: 2010-12-17
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (716)
$<400>$ SEQUENCE: 62

$<210>$ SEQ ID NO 63
$<211>$ LENGTH: 615
$<212>$ TYPE: PRT
$<213>$ ORGANISM: MYCobacterium tuberculosis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_001282809
$<309>$ DATABASE ENTRY DATE: 2010-05-13
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (615)
$<400>$ SEQUENCE : 63

$<210>$ SEQ ID NO 64
$<211>$ LENGTH: 750
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mycobacterium tuberculosis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_001282810
$<309>$ DATABASE ENTRY DATE: 2010-05-13
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (750)
$<400>$ SEQUENCE: 64

Asn Gln Pro Trp Thr Ile Arg Gln Tyr Ala Gly Phe Ser Thr Ala Ala
Asp Ser Asn Ala Phe Tyr Arg Arg Asn Leu Ala Ala Gly Gln Lys Gly

Leu Ser Val Ala Phe Asp | Leu Ala Thr His Arg Gly Tyr Asp Ser Asp | |
| ---: | :--- |
| 130 | 135 |$\quad 140$

His Pro Arg Val Gln Gly Asp Val Gly Met Ala Gly Val Ala		
145	150	155

Ser Ile Leu Asp Met Arg Gln Leu Phe Asp Gly Ile Asp Leu Ser Thr
Val Ser Val Ser Met Thr Met Asn Gly Ala Val Leu Pro Ile Leu Ala
Leu Tyr Val Val Ala Ala Glu Glu Gln Gly Val Ala Pro Glu Gln Leu195200205
Ala
Gly

210 Thr Ile Gln Asn Asp | Ile Leu Lys Glu Phe Met Val Arg Asn |
| ---: |
| 215 |

Thr Tyr Ile Tyr Pro Pro Lys Pro Ser Met Arg Ile Ile Ser Asp Ile
Phe Ala Tyr Thr Ser Ala Lys Met Pro Lys Phe Asn Ser Ile Ser Ile

[^1]$<213>$ ORGANISM: Corynebacterium glutamicum
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_225813
$<309>$ DATABASE ENTRY DATE: 2010-12-14
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (737)
$<400>$ SEQUENCE: 66

Met 1	Thr	Ser	Ile	$\begin{aligned} & \text { Pro } \\ & 5 \end{aligned}$	$A s n$	Phe	Ser	Asp	$\begin{aligned} & \text { Ile } \\ & 10 \end{aligned}$	ro	u			$\begin{aligned} & \text { Glu } \\ & 15 \end{aligned}$	
Arg	Ala	Ser	$\begin{aligned} & \text { Glu } \\ & 20 \end{aligned}$	Ser	His	Asn	Val	$\begin{aligned} & \text { Asp } \\ & 25 \end{aligned}$	Ala	Gly	Lys	Val	$\begin{aligned} & \operatorname{Trp} \\ & 30 \end{aligned}$		Thr
Pro	Glu	$\begin{aligned} & \text { Gly } \\ & 35 \end{aligned}$	Ile	Asp	Val	bys	$\begin{aligned} & \text { Arg } \\ & 40 \end{aligned}$	Val	Phe	Thr	Gln	Ala 45	Asp	Arg	Asp
Glu	$\begin{aligned} & \text { Ala } \\ & 50 \end{aligned}$	Gln	Ala	la	Gly	$\begin{aligned} & \text { His } \\ & 55 \end{aligned}$	Pro	al	Asp	Ser	$\begin{aligned} & \text { Leu } \\ & 60 \end{aligned}$	Pro	Gly	Gln	Lys
$\begin{aligned} & \text { Pro } \\ & 65 \end{aligned}$	Phe	Met	Arg	l_{Y}	$\begin{aligned} & \text { Pro } \\ & 70 \end{aligned}$	「yr	Pro	Thr	Met	$\begin{aligned} & \text { Tyr } \\ & 75 \end{aligned}$	Thr	Asn	Gln	Pro	$\begin{aligned} & \operatorname{Tr} p \\ & 80 \end{aligned}$
Thr	Ile	Arg	Gln	$\begin{aligned} & \text { Tyr } \\ & 85 \end{aligned}$	Ala	Gly	he	er	$\begin{aligned} & \text { Thr } Z \\ & 90 \end{aligned}$	Ala	Ala	Glu	Ser	$\begin{aligned} & \text { Asn } \\ & 95 \end{aligned}$	Ala
Phe	Tyr	Arg	$\begin{aligned} & \text { Arg } \\ & 100 \end{aligned}$	Asn	Leu	Ala	Ala	$\begin{aligned} & \text { Gly } \\ & 105 \end{aligned}$	Gln	Lys	Gly	Leu	$\begin{aligned} & \text { Ser } \\ & 110 \end{aligned}$	Val	Ala
Phe	Asp	Leu 115	Ala	Thr	His	Arg	$\begin{aligned} & \text { Gly } \\ & 120 \end{aligned}$	Tyr	Asp	er	Asp	Asn 125	Glu	Arg	Val
Val	$\begin{aligned} & \text { Gly } \\ & 130 \end{aligned}$	Asp	Val	$1 Y$	et	$\begin{aligned} & \text { Ala } \\ & 135 \end{aligned}$	Gly	al	$1 a$	e	$\begin{aligned} & \text { Asp } \\ & 140 \end{aligned}$	Ser	Ile	Leu	Asp
$\begin{aligned} & \text { Met } \\ & 145 \end{aligned}$	Arg	Gln	Leu	he	$\begin{aligned} & \text { Asp } \\ & 150 \end{aligned}$	Gly	Ile	Asp	Leu	$\begin{aligned} & \text { Ser } \\ & 155 \end{aligned}$	Ser	Val	Ser	Val	$\begin{aligned} & \text { Ser } \\ & 160 \end{aligned}$
Met	Thr	Met	Asn	$\begin{aligned} & \text { Gly } \\ & 165 \end{aligned}$	Ala	Val	u	ro	$\begin{aligned} & \text { Ile I } \\ & 170 \end{aligned}$	Leu	Ala	Phe	Tyr	$\begin{aligned} & \text { Ile } \\ & 175 \end{aligned}$	Val
Ala	Ala	Glu	$\begin{aligned} & \text { Glu } \\ & 180 \end{aligned}$	Gln	Gly	al	Gly	$\begin{aligned} & \text { Pro } \\ & 185 \end{aligned}$	Glu	Gln	Leu	Ala	$\begin{aligned} & \text { Gly } \\ & 190 \end{aligned}$	Thr	Ile
Gln	Asn	$\begin{aligned} & \text { Asp } \\ & 195 \end{aligned}$	Ile	Leu	Lys	lu	$\begin{aligned} & \text { Phe } \\ & 200 \end{aligned}$	Met	Val	rg	Asn	$\begin{aligned} & \text { Thr } \\ & 205 \end{aligned}$	TYr	Ile	Tyr
Pro	$\begin{aligned} & \text { Pro } \\ & 210 \end{aligned}$	Lys	Pro	er	Met	$\begin{aligned} & \text { Arg } \\ & 215 \end{aligned}$	Ile	Ile	Ser	sn	$\begin{aligned} & \text { Ile } \\ & 220 \end{aligned}$	Phe	Glu	TYr	Thr
$\begin{aligned} & \text { Ser } \\ & 225 \end{aligned}$	Leu	Lys	et	ro	$\begin{aligned} & \text { Arg } \\ & 230 \end{aligned}$	Phe	Asn	er	Ile	$\begin{aligned} & \text { Ser } \\ & 235 \end{aligned}$	Ile	Ser	Gly	Tyr	$\begin{aligned} & \mathrm{His} \\ & 240 \end{aligned}$
Ile	Gln	Glu	Ala	$\begin{aligned} & \text { Gly } \\ & 245 \end{aligned}$	Ala	hr	Ala	Asp	$\begin{aligned} & \text { Leu } \\ & 250 \end{aligned}$	Glu	Leu	Ala	Tyr	$\begin{aligned} & \text { Thr } \\ & 255 \end{aligned}$	Leu
Ala	Asp	Gly	$\begin{aligned} & \text { Ile } \\ & 260 \end{aligned}$	Glu	Tyr	Ile	Arg	$\begin{aligned} & \text { Ala } \\ & 265 \end{aligned}$	Gly	Lys	Glu	Val	$\begin{aligned} & \text { Gly } \\ & 270 \end{aligned}$	Leu	Asp
Val	Asp	$\begin{aligned} & \text { Lys } \\ & 275 \end{aligned}$	Phe	Ala	Pro	$r g$	Leu 280	Ser	Phe	Phe	Trp	$\begin{aligned} & \text { Gly } \\ & 285 \end{aligned}$	Ile	Ser	Met
Tyr	$\begin{aligned} & \text { Thr } \\ & 290 \end{aligned}$	Phe	Met	lu	Ile	$\begin{aligned} & \text { Ala } \\ & 295 \end{aligned}$	Lys	Leu	$r g$	Ala	$\begin{gathered} \text { Gly } \\ 300 \end{gathered}$	Arg	Leu	Leu	Trp
$\begin{aligned} & \text { Ser } \\ & 305 \end{aligned}$	Glu	Leu	Val		$\begin{aligned} & \text { Lys } \\ & 310 \end{aligned}$		Asp	Pro	Lys	$\begin{aligned} & \text { Asn } \\ & 315 \end{aligned}$	Ala	Lys	Ser	Gln	$\begin{aligned} & \text { Ser } \\ & 320 \end{aligned}$
Leu	Arg	Thr	His	$\begin{aligned} & \text { Ser } \\ & 325 \end{aligned}$	Gln	Thr	Ser	Gly	$\begin{aligned} & \operatorname{Trp} \\ & 330 \end{aligned}$	Ser	Leu	Thr	Ala	$\begin{aligned} & \mathrm{G} \ln \\ & 335 \end{aligned}$	Asp
Val	Tyr	Asn	$\begin{aligned} & \text { Asn } \\ & 340 \end{aligned}$	Val	Ala	Arg	Thr	$\begin{aligned} & \text { Ala } \\ & 345 \end{aligned}$	Ile	Glu	Ala	Met	$\begin{aligned} & \text { Ala } \\ & 350 \end{aligned}$	Ala	Thr
Gln	Gly	His 355	Thr	Gln	Ser	Leu	His 360	Thr	Asn	Ala	Leu	Asp 365			Leu

[^2]$<213>$ ORGANISM: Rhodococcus erythropolis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_002766535
$<309>$ DATABASE ENTRY DATE: 2010-05-12
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (631)
$<400>$ SEQUENCE: 67

$<210>$ SEQ ID NO 68
$<211>$ LENGTH: 750
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Rhodococcus erythropolis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / YP_002766536
$<309>$ DATABASE ENTRY DATE: 2010-05-12
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (750)
$<400>$ SEQUENCE: 68

$<210>$ SEQ ID NO 69
$<211>$ LENGTH: 618
$<212>$ TYPE: PRT
$<213>$ ORGANISM: PorphYromonas gingivalis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / NP_905776
$<309>$ DATABASE ENTRY DATE: 2010-06-29
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) .. (618)
$<400>$ SEQUENCE: 69

$<210>$ SEQ ID NO 70
$<211>$ LENGTH: 715
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Porphyromonas gingivalis
$<300>$ PUBLICATION INFORMATION:
$<308>$ DATABASE ACCESSION NUMBER: NCBI / NP_905777
$<309>$ DATABASE ENTRY DATE: 2010-06-29
$<313>$ RELEVANT RESIDUES IN SEQ ID NO: (1) . (715)
$<400>$ SEQUENCE: 70

What is claimed is:

1. A method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons, the method comprising culturing a cell comprising
(aa) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to meth-ylmalonyl-CoA and/or (bb) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA,
under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid, wherein the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).
2. The method of claim $\mathbf{1}$ further comprising extracting from culture the branched-chain fatty acid or a product of the branched-chain fatty acid.
3. The method of claim 2, wherein the polypeptide that catalyzes the conversion of propionyl-CoA to methylmalo-nyl-CoA is a propionyl-CoA carboxylase and/or the polypeptide that catalyzes the conversion of succinyl-CoA to meth-ylmalonyl-CoA is a methylmalonyl-CoA mutase.
4. The method of claim 3, wherein (i) the propionyl-CoA carboxylase is Streptomyces coelicolor PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalonyl-CoA mutase is Janibacter sp. HTCC2649 methylmalonyl-CoA mutase, S. cinnamonensis MutA and MutB, or E. coli Sbm.
5. The method of claim $\mathbf{3}$, wherein (i) the methylmalonylCoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionylCoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.
6. The method of claim 3 , wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA
mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.
7. The method of claim 2 , wherein the cell further comprises an exogenous or overexpressed polynucleotide encoding an acyl transferase lacking polyketide synthesis activity and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a thioesterase.
8. The method of claim 7, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of Mycobacterium mycocerosic acid synthase.
9. The method of claim 2 , wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylmalonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.
10. The method of claim 2, wherein the cell produces a Type II fatty acid synthase.
11. The method of claim 10 , wherein the cell is Escherichia coli.
12. A branched-chain fatty acid produced by the method of claim 1.
13. A cell comprising:
(i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and
(ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionylCoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase,
wherein the polynucleotide(s) are expressed and the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).
14. The cell of claim 13, wherein (i) the propionyl-CoA carboxylase is Streptomyces coelicolor PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalonyl-CoA mutase
is Janibacter sp. HTCC2649 methylmalonyl-CoA mutase, S. cinnamonensis MutA and MutB, or E. coli Sbm.
15. The cell of claim 13, wherein (i) the methylmalonylCoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionylCoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.
16. The cell of claim 13, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.
17. The cell of claim 13, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of Mycobacterium mycocerosic acid synthase.
18. The cell of claim 13, wherein the cell further comprises an exogenous or overexpressed polynucleotide comprises a nucleic acid sequence encoding a thioesterase.
19. The cell of claim 13, wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylmalonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.
20. The cell of claim 13, wherein the cell is Escherichia coli.

[^0]: LVEGLREVVADGALYDAAVGHGDRGEVWVESGQGSQWAAMGHQL LASEFVEAAHDAKLE＇ VIAAESGESVTEAITAOQTVTGIDEVQPAVEAVOVAIAATMEQTYGVEPGAVVGHSMGES AAAVVAGALSLEDAARVICRESKLMTRIAGAGAVGSVELPAKOVNSELMARGIDDUVVSV VKSEQSTVIGGTSDTVRDLIARWEQRDVMAREVAVDVASHSPQVDPILDDUAAALRDIAP MTPKVPYYSATLコDPRコQPVCLGAYMVDNLRNTVQFAAAVQAANEDGYRVFAELSPヨPLL ZHAVEQTGRSLDISVAA AAGMRREQRLPHG＿RGLLTELHRAGAALDYSALYPAGRLVDAF LDAWTHARLFIDDDGQコORFOGA

[^1]: <210> SEQ ID NO 66
 <211> LENGTH: 737
 $<212>$ TYPE: PRT

[^2]: $<210>S E Q$ ID NO 67
 <211> LENGTH: 631
 <212> TYPE: PRT

