

US 20110166370A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0166370 A1

Jul. 7, 2011 (43) **Pub. Date:**

Saunders et al.

(54) SCATTERED BRANCHED-CHAIN FATTY ACIDS AND BIOLOGICAL PRODUCTION THEREOF

- **Charles Winston Saunders**, (76) Inventors: Fairfield, OH (US); Jun Xu, Mason, OH (US); Leo Timothy Laughlin, II, Mason, OH (US); Zubin Sarosh Khambatta, Fairfield, OH (US); Phillip Richard Green, Wyoming, OH (US)
- 13/004,077 (21) Appl. No.:
- (22) Filed: Jan. 11, 2011

Related U.S. Application Data

(60) Provisional application No. 61/294,274, filed on Jan. 12, 2010.

Publication Classification

(51) Int. Cl.

C07C 53/126	(2006.01)
C12P 7/64	(2006.01)
C12N 1/00	(2006.01)
C12N 1/21	(2006.01)

(52) U.S. Cl. 554/1; 435/134; 435/243; 435/252.33

(57)ABSTRACT

Methods and cells for producing scattered branched-chain fatty acids are provided. For example, the invention provides a method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons. The method comprises culturing a cell comprising an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA, under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid. The cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s). A cell that produces branched-chain fatty acid and the branched-chain fatty acid also are provided.

Figure 1: *mutA* nucleotide sequence (SEQ.ID NO: 1)

ATGGCAAGCACGGACCAGGGTACCAACCCGGCAGACACCGACGACCTGACGCCAACCACT CTGAGTCTGGCGGGCGATTTTCCGAAAGCAACCGAAGAACAGTGGGAGCGCGAAGTGGAG AAAGTTCTGAACCGTGGCCGTCCGCCGGAGAAACAGCTGACGTTTGCGGAATGTCTGAAA CGCCTGACGGTCCACACAGTAGACGGCATTGACATTGTGCCAATGTATCGCCCGAAAGAT GCGCCGAAGAAACTGGGTTACCCAGGCGTTGCCCCATTTACACGTGGGACCACGGTTCGT AATGGCGATATGGACGCATGGGATGTCCGTGCACTGCATGAAGATCCGGATGAGAAATTT ACGCGCAAAGCGATTCTGGAAGGGCTGGAACGCGGGGTTACATCTCTGCTGCGCGTGTG GACCCGGACGCTATTGCTCCAGAACACCTGGATGAAGTGCTGTCTGACGTGCTGCTGGAG ATGACCAAAGTAGAAGTCTTTAGTCGTTACGATCAAGGCGCCGCTGCCGAGGCGCTGGTA TCTGTGTACGAGCGCAGCGATAAACCGGCTAAGGACCTGGCTCTGAATCTGGGTCTGGAC CCGATCGCCTTCGCGGCACTGCAGGGGGCGGACCTGATCTGACTGTCCTGGGTGATTGG GTGCGTCGCCTGGCAAAATTTAGCCCAGATTCTCGTGCAGTGACCATCGATGCGAACATT TATCATAATGCGGGTGCGGGGGGGGATGTAGCAGAGCTGGCTTGGGCCCTGGCTACCGGTGCG GAATATGTTCGTGCACTGGTAGAACAAGGTTTTACGGCGACCGAGGCGTTCGATACGATT AACTTTCGTGTGACCGCAACCCATGATCAGTTTCTGACAATCGCGCGCTCTGCGCGCACTG CGTGAGGCGTGGGCGCGCATTGGGGAGGTATTTGGGGTTGATGAGGATAAACGTGGCGCC CGTCAAAATGCGATCACGAGTTGGCGCGATGTGACACGCGAGGACCCGTATGTGAATATC CTGCCTTTTACCCAGGCACTGGGTCTGCCAGAAGACGATTTTCCGCTGCGTATCGCTCGT GGTAGCTATTACGTGGAAAGTCTGACTCGTAGTCTGGCCGATGCAGCGTGGAAAGAGTTC CAAGAAGTGGAGAAACTGGGCGGCATGAGCAAGGCGGTGATGACGGAACATGTAACGAAA GTGCTGGATGCCTGCAATGCAGAACGCCGCGAAACGCCTGGCCAATCGCAAACAGCCGATT ACCGCAGTAAGCGAATTTCCTATGATTGGGGCGCGCTCTATCGAAACGAAACCTTTTCCT GCCGCACCGGCCCGTAAAGGTCTGGCATGGCATCGCGACAGTGAAGTATTCGAACAACTG ATGGATCGCAGCACCAGTGTGAGTGAACGTCCAAAGGTTTTCCTGGCGTGCCTGGGCACA CGTCGTGACTTCGGTGGTCGTGAGGGTTTTAGCAGCCCAGTGTGGCATATCGCAGGCATT GACACCCCACAGGTTGAGGGTGGCACAACCGCAGAAATCGTAGAAGCATTCAAGAAATCT GGGGCACAAGTTGCGGATCTGTGCTCTAGCGCCAAAGTGTACGCTCAGCAGGGTCTGGAG GTGGCCAAAGCTCTGAAAGCAGCTGGCGCCAAAGCCCTGTATCTGAGCGGTGCCTTTAAG GAGTTCGGCGATGATGCGGCTGAGGCGGAGAAACTGATCGATGGTCGCCTGTTTATGGGT ATGGATGTGGTTGACACTCTGTCTAGTACGCTGGACATTCTGGGTGTAGCAAAGTAA

Figure 2: *mutB* nucleotide sequence (SEQ.ID NO: 2)

ATCACT

ACACTGCCTCGTTTTGACTCTGTTGACCTGGGGAACGCGCCTGTTCCGGCGGATGCGGCC CGTCGCTTCGAGGAACTGGCGGCAAAAGCGGGGCACGGGTGAGGCGTGGGAGACCGCGGAG ACGTACGCCGSGATTCCGCCATTCGTTCACGGCCCGTACGCGACGATGTACGCTTTCCGT CGCCGTAACCTGGCGGGGGGGGGAAAAGGGTCTGTCTGTGGCATTCGACCTGCCGACCCAC CGCGGTTACGATAGCGATAATCCGCGCGTGGCAGGGGACGTGGGTATGGCCGGGGTGGCC ATCGACAGTATTTACGACATGCGTGAACTGTTTGCAGGCATTCCGCTGGACCAGATGAGC GTGAGTATGACGATGAATGGTGCCGTCCTGCCGATTCTGGCACTGTATGTGGTTACAGCC GAAGAACAAGGTGTGAAGCCGGAACAGCTGGCTGGCACCATCCAGAACGATATTCTGAAG GAGTTCATGGTGCGTAACACCTATATCTATCCGCCGCAACCGTCTATGCGCATCATCAGT GAGATCTTTGCGTATACTAGTGCAAATATGCCGAAGTGGAACTCTATCAGTATTAGTGGC TATCACATGCAGGAGGCGGGGGGCGCCACTGCCGATATCGAAATGGCCTATACGCTGGCCGAT GGCGT'TGATTATATTCGTGCAGGCGAAAGCGTCGGTCTGAACGTGGACCAGTTCGCCCCG CGTCTGAGCTTCTTTTGGGGTATTGGCATGAATTTCTTTATGGAAGTCGCAAAACTGCGT GCCGCCCGCATGCTGTGGGCCCAAACTGGTGCACCAATTCGGCCCGAAGAACCCGAAGAGC ATGAGCCTGCGCACGCACAGTCAAACCAGCGGCTGGAGCCTGACCGCGCAGGACGTATAT AACAACGTAGTTCGCACCTGTATTGAGGCGATGGCAGCCACCCAGGGTCACACCCAGAGC CTGCATACAAACTCTCTGGACGAGGCCATCGCACTGCCGACAGACTTCAGCGCCCGCATC TGGTCTGGCASTGCATATGTCGAGGAACTGACCTGGGATCTGGCCCGTAAAGCGTGGGGT CATATCCAGGAAGTCGAGAAAGTGGGTGGTATGGCTAAAGCAATTGAGAAAGGCATCCCG AAAATGCGCATTGAAGAAGCGGCAGCGCGCACCCAAGCACGCATCGACAGCGGTCGCCAG CCGCTGATTGGCGTGAACAAATATCGCCTGGAACATGAACCGCCACTGGATGTTCTGAAA CGCGATCCTGAGAAAGTTAAAGCGGCGCTGGATAAAATCACTTGGGCCGCGGGCAACCCG GATGATAAAGACCCAGACCGTAATCTGCTGAAGCTGTGTATTGACGCGGGTCGTGCTATG GCGACTGTCGGCGAAATGAGCGATGCGCTGGAGAAAGTATTTGGTCGTTATACCGCGCAA ATTCGTACTATTTCTGGTGTCTATAGCAAGGAAGTTAAGAATACTCCAGAAGTAGAAGAA GCGCGTGAACTGGTAGAAGAATTTGAGCAGGCTGAAGGTCGCCGTCCACGCATTCTGCTG GCCAAAATGGGCCAGGATGGCCATGATCGCGGTCAGAAAGTTATTGCTACTGCTTATGCT GATCTGGGCTTCGATGTTGATGTCGGCCCTCTGTTCCAGACTCCAGAGGAAACTGCCCGC ACCCTGGTCCCTGCTCTGCGCAAGGAACTGGATAAGCTGGGCCGCCCTGATATTCTGATT ACTGTCGGCGGCGTCATTCCTGAACAGGATTTCGATGAACTGCGCAAGGATGGCGCTGTC GAAATTTATACCCCTGGCACCGTCATTCCTGAATCTGCTATTTCTCTGGTCAAGAAGCTG CGCGCTAGCCTGGATGCCTAACTCGAG

Figure 3: MutA protein sequence (SEQ.ID NO: 3)

MARTYAGHSSAAASNALYRRNLAKGQTGLSVAFDLPTQTGYDPDHVLARGEVGKVGVPISHIGDMRALFDQ TPLGQMNTSMTTNATAMWILAMYQVAAEDQATAADEDPASVVKALGGTTQNDIIKEYLSRGTYVFAPAPS LRLITDMVSYTVSDIPKWNPINICSYHLQEAGATPVQEIAYAMSTAIAVLDAVRDAGQVPQERFGEVVAR ISFFVNAGVRFVEEMCKMRAFVELWDELTRERYGVTDAKQRRFRYGVQVNSLGLTEAQPENNVQRIVLEM LAVTLSKGARARAVQLPAWNEALGLPRPWDQQWSLRMQQVLAYESDLLEYEDLFEGSAVVEAKVAELVAG AKAEIARVAELGGAVAAVESGYMKSALVASHALRRQRIEAGEDIVVGVNKFETTEPNPLTADLDTAIQSV DAGVEAAAAKAVREWRETRDADPVKRERAVAALARLKAAAQTDENLMEASIECARAEVTTGEWAQALREV FGEFRAPTGVTGTVGLTGGAAGAELSAVRERVAGLRDELGETLRVLVGKPGLDGHSNGAEQIAVRARDAG FEVIYQGIRLTPEQIVAAAVSEDVHLVGISILSGSHMELIPEVLDRLREAGAGDIPVIVGGIIPESDAAK LKAIGVAEVFTPKDFGLNDIMGRFVDVIRDSRLTTAAPTV

Figure 4: MutB protein sequence (SEQ.ID NO: 4)

 $\label{eq:mtvapkrpaamtlaahfpertqeqwrdlvacvvnkgrpedqhlsgddavatmrshleggldieplymkssdpvplgvpgampftrgralrdadvpwdvrqvhddpdaaatrqlvladlengvtsvwlhvgadglapndvaealaevrlelapvvsssdqutaadalvavlsgsrassgnlghdplgaaatrgsapdlapladavrrladhgeiraitvdtryhgdagvtvtdevrfaalatgvaylrhlesegvdvaeafrniefrvsatadqfltaaalralrawarigesvgvpetsrgafthavtsgriftrddawtnilrstlatfgaslggadaitvlppdtvsglptpfsrriarntqillaeesnvarvdpaggswyvetltdvaawetfqeiesaggmvaalanglvaqrilaavaerdaalatrstpitgvstpplagekplervvraelpvqpradvvraelpvqpradvvraelpvqpradvvraflstradstflavgriftrdavraftradstflavgriftrdavraftradstflavgriftradartgvatterstradstflavgriftradartgvatterstradstflavgriftradartgvatterstradstflavgriftradartgvatterstradstflavgriftradatrstpitgvatterstradstflavgriftradatrstflavgriftradatrstflavgriftradatrstflavgriftradatratgvatterstradstflavgriftradatrstflavgriftradatrstflavgriftradatratgvatterstradstflavgriftradatrstflavgriftradstflavgriftradatratgvatterstradstflavgriftradatratgvatterstradstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgvatterstflavgriftradatratgriftradatratgvatterstflavgriftradatratgriftradatra$

Figure 5: Methylmalonyl-CoA epimerase nucleotide sequence (SEQ.ID NO: 5)

Figure 6: Methylmalonyl-CoA epimerase protein sequence (SEQ.ID NO: 6) MLTRIDHIGIACFDLDKTVEFYRATYGFEVFHSEVNEEQGVREAMLKINETSDGGASYLQLLEPTRPDSTVAKWLDKN

 ${\tt GEGV} H{\tt H}{\tt A}{\tt F}{\tt G}{\tt T}{\tt A}{\tt D}{\tt V}{\tt D}{\tt Q}{\tt A}{\tt A}{\tt D}{\tt I}{\tt K}{\tt D}{\tt K$

Figure 7: DNA sequence for *accA1* (AF113603.1) (SEQ.ID NO: 7)

```
GTCCGCAAGGTSCTCATCGCCAATCGTGGCGAAATCGCTGTCCGCGTGGCCCGGGCCTGCCGGGACGCCG
GGATCGCGAGCGTGGCCGTCTACGCGGATCCGGACCGGGACGCGTTGCACGTCCGTGCCGCTGATGAGGC
GTTCGCCCTGGGTGGTGACACCCCGCGGCGACCAGCTATCTGGACATCGCCAACGTCCTCAAAGCCCGCGCGC
GASTCGGSCGCCGGACCATCCACCCCGGCTACGGATTCCTCTCGGASAACSCCGGASTCSCGCAGGCGG
TCCTGGACGCCGGCCTGATC2GGATCGGCCCGCCCCCGCACGCCATCCGCGACGTSGCGAAAAGGTCGC
CGCCCGCCACATCGCCCAGCGGCCCGCGCCCCCTGGTCGCCGGCACCCCCGACCCCGTCTCCCGGCGCG
GACGAGETCGTCGCCTTCGCCAAGGAGCACGGCCTGCCCATCCCCATCAAGECCGCCTTCCGCCGGCGGCG
GCCCCCCCCAAGGTCCCCCCCCCCCAAGAGGTGCCCGGAGCTGTACGACTCCCCCCGCCGACGC
CGTGGCCCCCTCCGCCGCGCGGGGAGTGCTTCGTCGAGGCCTACCTCGACAAGCCCCCGCCACGTGGAGACC
ACCAAAAGCTCCTCCAGCGCGCCCCCCCCCCCTTTCTCTCCCGAGGCCCAGACGGACCAGCTCTACTCATC
GCCACGA FCTTCTTCCTGGASGTCAACACCCGCCTCCAGGTCGAGCACCCGCTCACCGAGCAAGTCGCCG
gCATCGACTTGGTCCGCGAGATGTTCCGCATCGCCGACGGCGAGGAACTCGGTTACGACGACCCGCCCT
GCCCGGCCACTCCTTCGAGTTCCGCATCAACGGCGAGGACGCCGGGCGGCGTTCCTGCCCGGCCCCGGG
TCATCGCCCCCCCCGGGAC_CCCCCCCCCCCAACTGATCG1CACCGCCCCACCCCGCCCGAGGCAC_
GGIGGATCGAGACGGAGTTCSTCAACGAGATCAAGCCCITCACCACGCCCGCCGACACCGAGACGGACGA
GGAG!/CCSGCCGGGAGACGC:/CG!/CG1/CGACGC/CGGCCAGCCC//GGAAG!/C//CCC//CCCAGC
CTEGGCATGTCCCTGCCCCGCACCGGCCTGGCCGCCGGGGCCCCAAGCGCCCGCGCCCAAGAAGT
CCCGCCCGCCGCCTCGGCGACACCCTCCCCCCATGCAGGCCACGATCGTCAAGATCGCCGTCGA
GGAAGGCCAGGAAGTCCAGGAAGGCGACCTCATCGTCGTACTCGAGGCGATGAAGATGGAACAGCCCCTC
CCATCTGCGAGATCAAGGACTGA
```

Figure 8: DNA sequence for *pccB* (AF113605.1) (SEQ.ID NO: 8)

ATGTCCGAGCCGGAAGAGCAGCAGCCCGACATCCACGACCGCGGGCAAGCTCGCGGATCTCAGGCGCC GTATCGAGGAAGCGACGCCGGGTTCCGCACGCCGTCGAGAAGCAGCACGCCAAGGGCAAGCTGAC GGCTCGTGAACGCATCGACCTCCTCCGACGAGGGTTCCTTCGTCGAGCTGGACGAGTTCGCCCGGCAC CGCTCCACCAACTTCGGCCTCGACGCCAACCGCCCCTACGGCGACGGCGTCGTCACCGGCTACGGCACCG ${\tt CGGCCAGAAGATCGTCAAGGTGATGGACTTCGCCCTCAAGACCGGCTGCCCGGTCGTCGGCATCAACGAC}$ TCCGGCGGCGCCCGCATCCAGGAGGGCGTGGCCTCCCTCGGCGCCTACGGCGAGATCTTCCGCCGCAACA ATCAAGACGGTCACCGGCGAGGACGTCGGCTTCGAGGAGCTGGGCGGCGCCCGCACCACACTCCACCT CGGGCGTGGCCCACCACATGGCCGGCGACGAGAAGGACGCGGTCGAGTACGTCAAGCAGCTCCTGTCGTA CCTGCCGTCCAACAACCTCTCCGAGCCCCCGCCTTCCCGGAGGAGGCGGACCTCGCGGTCACGGACGAG GACGCCGAGCTGGACACGATCGTCCCGGGACTCGGCGAACCAGCCCTACGACATGCACTCCGTCATCGAGC ACGTCCTGGACGACGCCGAGTTCTTCGAGACGCAACCCCTCTTCGCGCCCGAACATCCTCACCGGCTTCGG CCGCGTGGAGGGCCGCCCGGTCGGCATCGTCGCCAACCAGCCCATGCAGTTCGCCGGCTGCCTGGACATC ACGGCCTCCGAGAAGGCGGCCCGCTTCGTGCGCACCTGCGACGCCTTCAACGTCCCCGTCCTCACCTTCG TGGACGTCCCCGGCTTCCTGCCCGGCGTCGACCAGGAGCACGACGGCATCATCCGCCGCGCGCCAAGCT GATCTTCGCCTACGCCGAGGCCACGGTGCCGCTCATCACGGTCATCACCCGCAAGGCCTTCGGCGGCGCC TACGACGTCATGGGCTCCAAGCACCTGGGCGCCGACCTCAACCTGGCCCGGCCCAGATCGCCG TCATGGGCGCCCAAGGCGGGGCCAACATCCTGCACCGCCGCACCATCGCCGACGCCGGTGACGACGCCGA GGCCACCCGGGCCCGATCCAGGAGTACGAGGACGCCCTCCTCAACCCCTACACGCGGCCGAACGC GGCTACGTCGACGCCGTGATCATGCCCTCCGACACTCGCCGCCACATCGTCCGCCGGCCTGCGCCAGCTGC GCACCAAGCGCGAGTCCCTGCCCCCGAAGAAGCACGGCAACATCCCCCTGTAA

Figure 9: Protein sequence for AccA1 (SEQ.ID NO: 9)

MRKVLIANRGEIAVRVARACRDAGIASVAVYADPDRDALHVRAADEAFALGGDTPATSYL DIAKVLKAARESGADAIHPGYGFLSENAEFAQAVLDAGLIWIGPPPHAIRDRGEKVAARH IAQRAGAPLVAGTPDPVSGADEVVAFAKEHGLPIAIKAAFGGGGRGLKVARTLEEVPELY DSAVREAVAAFGRGECFVERYLDKPRHVETQCLADTHGNVVVVSTRDCSLQRRHQKLVEE APAPFLSEAQTEQLYSSSKAILKEAGYGGAGTVEFLVGMDGTIFFLEVNTRLQVEHPVTE EVAGIDLVREMFRIADGEELGYDDPALRGHSFEFRINGEDPGRGFLPAPGTVTLFDAPTG PGVRLDAGVESGSVIGPAWDSLLAKLIVTGRTRAEALQRAARALDEFTVEGMATAIPFHR TVVRDPAFAPELTGSTDPFTVHTRWIETEFVNEIKPFTTPADTETDEESGRETVVVEVGG KRLEVSLPSSLGMSLARTGLAAGARPKRRAAKKSGPAASGDTLASPMQGTIVKIAVEEGQ EVQEGDLIVVLEAMKMEQPLNAHRSGTIKGLTAEVGASLTSGAAICEIKD*

Figure 10: Protein sequence for PccB (SEQ.ID NO: 10)

MSEPEEQQPDIHTTAGKLADLRRRIEEATHAGSARAVEKQHAKGKLTARERIDLLLDEGS FVELDEFARHRSTNFGLDANRPYGDGVVTGYGTVDGRPVAVFSQDFTVFGGALGEVYGQK IVKVMDFALKTGCPVVGINDSGGARIQEGVASLGAYGEIFRRNTHASGVIPQISLVVGPC AGGAVYSPAITDFTVMVDQTSHMFITGPDVIKTVTGEDVGFEELGGARTHNSTSGVAHHM AGDEKDAVEYVKQLLSYLPSNNLSEPPAFPEEADLAVTDEDAELDTIVPDSANQPYDMHS VIEHVLDDAEFFETQPLFAPNILTGFGRVEGRPVGIVANQPMQFAGCLDITASEKAARFV RTCDAFNVPVLTFVDVPGFLPGVDQEHDGIIRRGAKLIFAYAEATVPLITVITRKAFGGA YDVMGSKHLGADLNLAWPTAQIAVMGAQGAVNILHRRTIADAGDDAEATRARLIQEYEDA LLNPYTAAERGYVDAVIMPSDTRRHIVRGLRQLRTKRESLPPKKHGNIPL* Figure 11: Element 1: PlacO1 sequence + phage T7 gene10 ribosome binding site (SEQ.ID NO: 11)

Figure 12: Element 2: Optimized *accA1* gene sequence (SEQ.ID NO: 12)

 $at \verb"coggatgcgctgcatgttcgtgcggccgatgaagcctttgcactgggcggtgataccccggcaacgagctatctggatattgcaaaagt the state of the state of$ ggtctgatttggatcggtccgccgccgcatgcaattcgtgatctgggcgataaagtggccgcacgccacatcgcccagcgtgcaggcgcgccgctgggcgcgcacgccacatcgcccagcgtgcaggcgcgccgctgggcgcgcacgccgcacgccacatcgcccagcgtgcaggcgcgccgcdgggcgcgcacgccacatcgcccacatcgcccagcgtgcaggcgcgcdggcgcacgccacatcgcccacatcgcccaggcggcgcgcdggcgcgcacgccacatcgcccacatcgccacatcgccacatcgccacatcgccacatcgcccacatcgcccacatcgcccacatcgccacatcgccacatcgccacatcgccacatcgccacatcgcccacatcgcccacatcgccacatcgcccacatcgcccacatcgccacatcgcccacatcgccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgccacatcgccacatcgcccacatcgcccacatcgccacatcgccacatcgccacatcgccacatcgccacatcgccacatcgccacatcgccacatcgccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgcccacatcgccccacatcgcccacatcgcccacatcgcccacatcgccacatcgcccacatcgcccacatcgccccacatcgcccacatcgcccacatcgcccacatcgcccacatcgccccacatcgcccacatcgcccccacatcgcccccacatcgccccccacatcgcccccacatcgcccacatcgcccccacatttgcgggcaccccggacccggtttctggtgcagatgaagtggttgcgtttgccaaagaacatggcctgccgattgcgatcaaagcagcattcggcgggastgettegtggaacgetacetqgataaaceqegteatgttgaaaceccagtgtetqgeggatacgecacegtgettgtggttgtggttageaecegeggatacgecacegtgettgtggttageaecegeggatacgecacegtgettgtggttageaecegeggatacgecacegtgettgttgtggttageaecegeggatacgecacegtgettgtggttageaecegeggatacgecacegtgettgtggttageaecegeggatacgecaeegeggatacgecaeegeggataegegataegeggataegeggataegeggattgetetetgeaacgtegeeaccagaaactggtggaagaageaccggeegeegtttetgagegaageeccagacegaacagetgtatagetetagtaaetseaagttgascateceggtgascgaagaagttgegggeattsatetggtgeggaaatgtttegtateseagatggegaagaactgggttaegatg at ccggcgctgcgcggtcacagctttgaatttcgtattaatggcgaagatccgggccgtggttttctgccggcgccggcgccaccgtgacgctgttcgaaccggtcgtacgcgccgccgaagcgctgcaacgtgcagcacgtgccctggatgaatttaccgtggaaggcatggcgacgcccattccgttcstcgcacaegcggtgateccctggccagtccgatgcagggcacgattgtgaaaatcgcagtggaagsaggtcaggaagtgcaggaaggcggatctgattgttgtgeggeeatttgegaaateaaagattaa

Figure 13: Element3: Spacer sequence (Restriction sites and phage T7 gene10 ribosome binding site) (SEQ.ID NO. 13)

agatctgcggccgcatctagaaataattttgtttaactttaagaaggagatatattc

Figure 14: Element4: Optimized *pccB* (SEQ.ID NO: 14)

gegeaegtgeagtggaaaaaaageaegegaaaggtaaaetgaeggeeegegaaegtategatetgetgetggatgaaggeagttttgttgaaetggaaegtatetgetgeatgaaggeagttttgttgaaetggaaegtatetgetgeatgaaggeagttttgttgaaetggaaegtatetgetgeagtgaaggeagttttgttgaaetggaaegtategatetgetgeagtgaaggeagttttgttgaaetggaaegtategatetgetgeagtggaaggeagttttgttgaaetggaaegtatetgetgeagtggaaggeagtgtggaaggeagtgtggaaegtggaaggeagtgtggaaegtggaaegtggaaggeagtgtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaggeagtgtggaaegtgaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtgaaegtgaaegtgaaegtggaagtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtggaaegtgaaegtggaaegtgaaegtgaaegtggaaegtggaaegtgaagggaaegtggaaegtgaaegtgaaegtgaaegtgaaegtggaaggtggaagtggaaggtgaagggaaegtggaaegtgaaegtggaaggtgaaegtgatgaatttgeaegeeaeegtageaeeaaetttggtetggatgegaategeeegtatggegatggtgtggttaeeggttaeggtgaeggtggatggtegtccggtqgcagtttttagccaggattttaccgtgttcggcggtgcactgggcgaagtttacggtcagaaaatcgtgaaagtttatggatttcgcgctgaagtttacggtgaaagtttacggtgaaagtttacggtgaaagtttaggatttcgcgctgaagtttaggatttcgcgctgaagtttaggatttcgcgcgctgaagtttaggatgaagttgaagttgaagttgaagttgaagttgaagttgaagttgaaagttgaagttgaagttgaagttgaagttgaagtttaggatgaagttgaaggttgaagttgaagttgaaggttgaagttgaagttgaagttgaagttgaagttgaagtgaagttgaa $\tt gtgatggttgatcagaccagtcacatgttcattacgggcccggatgtgatcaaaaccgttacgggcgaagatgtgggttttgaagaactgggcggtg$ qcaaatcaqccqtacqatatccacaqtqtcattqaacacqttctqqatqcqqaatttttcqaaacccaqccqctqtttqccccqaacattctqacgggtttcggtcgtggaaggtcgtcgccggggtatcgttgcaaatcagccgatgcagtttgcgggttgcctggatattaccgcctctgaaaaagccgatgcagtttgcgggttgcctggatattaccgcctctgaaaaagccgatgcagtttgcgggttgcctggatattaccgcctctgaaaaagccgatgcagtttgcgggttgcctggatattaccgccgctgaaaagccgatgcagtttgcgggttgcctggatattaccgcctctgaaaaagccgatgcagtttgcgggttgcctggatattaccgccgctgaaaagccgatgcagtttgcgggttgcctggatattaccgcctctgaaaaagccgatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcgggttgcctggatgcagtttgcctggatgcagtttgcctggatgcagtttgcctggatgcagtttgcctggatgcagtttgcctggatgcagtttgcctggatgcagttgcctggatgcagtttgccdggatgcagtttgccdggatgcagtttgcctggatgcagtttgcctggatgcagtttgcctggatgcagtttgcctggatgcagtttgccdggatgcagtttgcaggatgcagtttgcaggatgcagtttgccdggatgcaggatgcaggatgcaggatgcaggatgcaggatgcaggatgcaggatgcagtttgccdggatgcagtttgcaggatgcagtttgccdggatgcaggtotgcaccgccgtaccatcgcagatgcaggtgatgatgcagasgcgcgcgcgcgcgcgctgattcaggaatatgaagatgcgctgctgaacccgtataccgcagcggaacgtggttacgtggatgcggttattatgccgagcgatacccgccgtcatatcgtgcgtcgtctgcgtcagctgcgtacgaaacgtgaatetetgeegeegaaaaaacaeggtaatatteegetgtaa

Figure 15: Entire synthetic sequence for propionyl-CoA carboxylase gene expression. (SEQ.ID NO: 15)

alclggalallgcaaaagtgclgaaagcagcgcgcgaaagcggtgcggatgccatccatccgggolacggtlttctgtcrgaaaatgcagaatttgc acaggcggttctggatgcaggtctgatttggatcggtccgccgccgcatgcaattcgtgatctgggcgataaaqtggccgcacgccacatcgcccag ggcagcgtttggccgtggtgaatgcttcgtggaacgctacctggataaaccgcgtcatgttgaaacccagtgtctggcggatacgcacggcaacgtg $\tt gttgtggttagcacccgcgattgctctctgcaacgtcgccaccagaaactggtggaagaagcaccggcgccgtttctgagcgaagcccagaccgaacccgaaaccgaaccgaacccgaaccgaaccgaaccgaaccgaaccgaaccgaaccgaaccgaaccgaaccg$ geaccgtgacgctgttcgatgcaccgaccggtccggcgttcgtctggatgccggtgtggaaagtggtagcgttattggcccggcatgggatagcctgccattccgtttcatcgcaccgtggttcgtgatccggcattcgcgccggaactgaccggctctaccgatccgttcaccgtgcacacgcgctggatcgaaggegatetgattgttgtggtggagggatgaaaatggaacageegetgaatgcccategtageggcaccateaaaggeetgaeggeegaagtggg gglcglccgglggcaglilllagccaggalillaccglgilcggcgglgcacigggcgaagillacgglcagaaaalcgigaaagllaiggalllcg egetgaaaaegggetgeeeggtggttggttgttastaaeggeggtgeeegeateeaggaaggtgttgeetetetgggegegtatggegaaatettectgecgageaacaatetgtetgaacegecggegtteccggaagaageagaeetggeggtgacegatgaagatgeegaaetggataegateetteeg ttetgacgggtttcggtegtgtggaaggtegtecggtgggtategttgcaaatcagcegatgcagtttgcgggttgeetggatattaccgeetetgaaasageggeeegetttgtgegtaeetgtgetteaaegtgeeggttetgaegtttgtggatgtteegggetteetgeegggtgttgateaggaaaacgtgaatetetgecgecgaaaaaacacggtaatattecgetgtaa

Figure 16: Forward primer for PrpE (SEQ.ID NO: 16)

AAACTGCAGAGGAGGACAGCTATGTCTTTTAGCGAATTTTATCAG

Figure 17: Reverse primer for PrpE (SEQ.ID NO 17)

AAAGGATCCCTATTCTTCGATCGCCTGGCGAATTTG

Figure 18: MMAT domain sequence from *Mycobacterium bovis* BCG (SEQ.ID NO: 18)

LVEGLREVADGDALYDAAVGHGDRGPVWVFSGQGSQWAAMGTQLLASEPVFAATIAKLEP VIAAESGFSVTEAITAQQTVTGIDKVQPAVFAVQVALAATMEQTYGVRPGAVVGHSMGES AAAVVAGALSLEDAARVICRRSKLMTRIAGAGAMGSVELPAKQVNSELMARGIDDVVVSV VASPQSTVIGGTSDTVRDLIARWEQRDVMAREVAVDVASHSPQVDPILDDLAALADIAP MTFXVPYSATLFDPR2QPVCDGAYWVDNLRNTVQFAAAVQAAMEDGYRVFAELSPHPLL THAVEQTGRSLDMSVAALAGMRREQPLPHGIRGLLTELHRAGAALDYSALYPAGRLVDAP LPANTHARLFIDDDG22ORAQGA

Figure 19: Protein sequence for the *Mycobacterium bovis* BCG MAS (YP_979046) (SEQ.ID NO: 19)

MESRVTPVAVIGMGCRLPGGINSPDKLWESLLRGDDLVTEIPPDRWDADDYYDPEPGVPGRSVSRWGGFL DDVAGFDAEFFGISEBEATSIDPQQRLLLETSWEAIEHAGLDPASLAGSSTAVFTGLTHEDYLVLTTTAG ${\tt GLASPYVVTGLNNSVASGRIAHTLGLHGPAMTFDTACSSGLMAVHLACRSLHDGEADLALAGGCAVLLEP}$ HACVAASAQGMLSSTGRCHSFDADADGFVRSEGCAMVLLKRLPDALRDGNRIFAVVRGTATNQDGRTETL ${\tt TMPSEDAQVAVYRAALAAAGVQPETVGVVEAHCTGTPIGDPIEYRSLARVYGAGTPCALGSAKSNMGHST}$ ASAGTVGLIKAILSLRHGVVPPLLHFNRLPDELSDVETGLFVPQAVTFWPNGNDHTPKRVAVSSFGMSGT NVHAIVEEAPAEASAPESSPGDAEVGPRLFMLSSTSSDALRQTARQLATWVEEHQDCVAASDLAYTLARGED AV AND A ${\tt RAHRPVR}{\tt TAVVAANLPELVEGLREVADGDALYDAAVGHGDRGPVWVFSGQGSQWAAMGTQLLASEPVFAA}$ TIAKLEPVIAAESGFSVTEAITAQQTVTGIDKVQPAVFAVQVALAATMEQTYGVRPGAVVGHSMGESAAA VVAGALSLEDAARVICRRSKLMTRIAGAGAMGSVELPAKQVNSELMARGIDDVVVSVVASPQSTVIGGTS ${\tt DTVRDLIARWEQRDVMAREVAVDVASIISPQVDPILDDLAAALADIAPMTPKVPYYSATLFDPREQPVCDG}$ $\label{eq:construction} AYWVDNLRNTVQFAAAVQAAMEDGYRVFAELSPHPLLTHAVEQTGRSLDMSVAALAGMRREQPLPHGLRG$ LLTELHRAGAALDYSALYPAGRLVDAPLPAWTHARLFIDDDGQEQRAQGACTITVHPLLGSHVRLTEEPE RHVWQGDVGTSVLSWLSDHQVHNVAALPGAAYCEMALAAAAEVFGEAAEVRDITFEQMLLLDEQTPIDAVASIDAPGVVNFTVETNRDGETTRHATAALRAAEDDCPPPGYDITALLQAHPHAVNGTAMRESFAERGVTLGAAFGGLTTAHTAEAGAATVLAEVALPASIRFQQGAYRIHPALLDACFQSVGAGVQAGTATGGLLLPLGV RSLRAYGPTRNARYCYTRLTKAFNDGTRGGEADLDVLDEHGTVLLAVRGLRMGTGTSERDERDRLVSERL $\tt LTLGWQQRALPEVGDGEAGSWLLIDTSNAVDTPDMLASTLTDALKSHGPQGTECASLSWSVQDTPPNDQA$ GLEKLGSQLRGRDGVVIVYGPRVGDPDEHSLLAGREQVRHLVRITRELAEFEGELPRLFVVTRQAQIVKP HDSGERANLEQAGLRGLLRVISSEHPMLRTTLIDVDEHTDVERVAQQLLSGSEEDETAWRNGDWYVARLT PSPLGHEERRTAVLDPDHDGMRVQVRRPGDLQTLEFVASDRVPPGPGQIEVAVSMSSINFADVLIAFGRF PIIDDREPQLGMDFVGVVTAVGEGVTGHQVGDRVGGFSEGGCWRTFLTCDANLAVTLPPGLTDEQAITAA TAHATAWYGLNDLAQIKAGDKVLIHSATGGVGQAAISIARAKGAEIFATAGNPAKRAMLRDMGVEHVYDS RSVEFAEQIRRDTDGYGVDIVLNSLTGAAQRAGLELLAFGGRFVEIGKADVYGNTRLGLFPFRRGLTFYYLDLALMSVTQPDRVRELLATVFKLTADGVLTAPQCTHYPLAEAADAIRAMSNAEHTGKLVLDVPRSGRRS VAVTPEQAPLYRRDGSYIITGGLGGLGLFFASKLAAAGCGRIVLTARSQPNPKARQTIEGLRAAGADIVV ECGNIAEPDTADRLVSAATATGLPLRGVLHSAAVVEDATLTNITDELIDRDWSPKVFGSWNLHRATLGOP LDWFCLFSSGAALLGSPGQGAYAAANSWVDVFAHWRRAQGLPVSAIAWGAWGEVGRATFLAEGGEIMITP ${\tt EEGAYAFETLVRHDRAYSGYIPILGAPWLADLVRRSPWGEMFASTGQRSRGPSKFRMELLSLPQDEWAGR}$ LRRLLVEQASVILRRTIDADRSFIEYGLDSLGMLEMRTHVETETGIR_TPKVIATNNTARALAQYLADTL AEEOAAAPAAS

Figure 20: Codon-optimized MMAT domain DNA sequence from *Mycobacterium bovis* BCG (SEQ.ID NO: 20)

CTGGTGGAAGGCCTGCGTGAACTTGCCCGATGGTGATGCACTGTATGATGCAGCAGTGGGTCATGGCGAT CCGGTTTTTGCCGCAACGATTGCAAAACTGGAACCGGTGATCGCGGCCGAAAGTGGCTTCAGCGTTACCGAAGCA ATTACGGCGCAGCAGACCGFGACGGGTATCGATAAAGTGCAGCCGGCCGTTTTCGCAGTTCAGGTGGCGCTGGCA GTGGTTGCAGGCGCCCTGAGTCTGGAAGATGCCGCACGTGTGATTTGCCGTCGCAGCAAACTGATGACCCGTATC GCAGGTGCAGGTGCGATGGGCAGCGTGGGAACTGCCGGCAAAACAGGTTAACTCTGAACTGATGGCGCGCGGTAT1 GATGATGT GGTTGTGTC TGTTGTGGCGTCTCCCGCAGAGTACCGTGAT TGGCGGCACCAGTGATACGGTTCGTGAT CTGATCGCGCGTTGGGAACAGCGCGATGTGATGGCGCGCGAAGTTGCCGTGGATGTTGCAAGCCATTCTCCGCAG GTTGAFCCGATTCTGGATGATCTGGCGGCGCGCCACTGGCAGATATTGCACCGATGACCCCGAAAGTGCCGTATTAC AGCGCGACGCTGTTTGATCCGCGTGAACAGCCGGTGTGTGATGGCGCCTATTGGGTTGATAACCTGCGCAATACC GTGCAGTTTGCGGCGGCAGTTCAGGCGGCGATGGAAGATGGTTACCGTGTTCGCGGAACTGTCTCCGCATCCG GAACAGCCGCTGCCGCATGGCCTGCGTGGTCTGCTGACCGAACTGCACCGTGCAGGTGCACCACTGGATTATAGC GATGGCCAGGAACAGCGCGCACAGGGTGCG

Figure 21: Alignment of a codon-optimized MMAT domain from *Mycobacterium bovis* BCG with the original sequence:

Optimized 1 CTGGTGGAAGGCCTGCGTGAAGTTGCCGATGGTGATGCACTGTATGATGCAGCAGTGGGT Original 1 CTCGTCGAGGGTTTGCGCGAGGTGGCCGACGGTGACGCCCTCTATGACGCCGCGGTGGGA Optimized 61 CATGCCGATCGTGGTCCGGTTTGGGTGTTTAGCGGCCAGGGTTCTCAGTGCGCAGCGATG Original Optimized 121 GGCACCCAGCTGCTGGCAAGCGAACCGGTTTTTGCCGCAACGATTGCAAAACTGGAACCG 121 GGCACGCAATTGCTCGCCAGCGAACCAGTGTTCGCGGCCACCATCGCCAAGCTGGAGCCG Original Optimized 181 GTGATCGCGGCCGAAAGTGCCTTCAGCGTTACCGAAGCAATTACGGCGCAGCAGCAGCAGCGTG 181 GTGATCGCCGCAGAATCGGGATTCTCGGTGACCGAGGCGATAACGGCGCACCAGACCGTG Original Optimized 241 ACGGETATCGATAAAGTGCAGCCGGCCGTTTTCGCAGTTCAGGTGGCGCTGGCAGCGACG Original 241 ACCGGAATCGACAAAGTGCAGCCGGCAGTGTTCGCCGTTCAGGTCGCCGTTGGCCGCCACC Optimized 301 ATGGAACAGACGTACGGCGTTCGTCCGGGTGCAGTGGTCGCCAGTATGGGTGAAAGC Original 301 ATGGAGCAAACCTACGGAGTGCGGCCGGGCGCGGGCGGGGCGGACACTCGATGGGTGAGTCG Optimized 361 GCCGCAGCGGTGGTTGCAGGCGCCCTGAGTCTGGAAGATGCCGCACGTGTGATTTGCCGT Original Optimized 421 CGCAGCAAACTGATGACCCGTATCGCAGGTGCAGGTGCGATGGGCAGCGTGGAACTGCCG 421 CGCTCGAAGCTGATGACCCGCATAGCCGGTGCTGGTGCCATGGGCTCGGTGGAATTGCCC Original Optimized 481 GCAAAACAGGTTAACTCTGAACTGATGGCGCGCGGTATTGATGATGTGGTTGTGTCTGTT Original 481 GCCAAGCAAGTGAATTCGGAGCTGATGGCACGCCGAATCGACGATGTTGTCGTCTCGGTG Optimized 541 GTGGCGTCTCCGCAGAGTACCGTGATTGGCCGCACCAGTGATACGGTTCGTGATCTGATC Original 541 GTGGCGTCCCCGCAATCCACGGTGATCGGCGGTACGAGCGACACCGTTCGTGACCTCATC Optimized 601 GCGCGTTGGGAACAGCGCGATGTGATGGCGCGCGAAGTTGCCGTGGATGTTGCAAGCCAT 601 GCCCGTTGGGAGCAGCGGGGACGTGATGGCGCGCGAGGTGGCCGTCGACGTCGCGTCGCAC Original Optimized 661 TCTCCGCAGGTTGATCCGATTCTGGATGATCTGGCGGCGCACTGGCAGATATTGCACCG 661 TCGCCTCAAGTCGATCCGATACTCGACGATTTGGCCGCGGCGCTGGCGGACATTGCTCCG Original Optimized 721 ATGACCCCGAAAGTGCCGTATTACAGCGCGACCCTGTTTGATCCGCGTGAACAGCCGGTG Original 721 ATGACGCCCAAGGTGCCGTACTACTCGGCGACCCTGTTCGACCCGCGCGAGCAGCCGGTG Optimized 781 TGTGATG3CGCCTATTGGGTTGATAACCTGCGCAATACCGTGCAGTTTGCCGCGGCAGTT Original 781 TGCGATGSCGCTTACTGGGTGGACAATCTGCGCAACACGGTGCAGTTCGCCGCGGCGGTG Optimized 841 CAGGCGGCGATGGAAGATGGTTACCGTGTGTCGCGGAACTGTCTCCGCATCCGCTGCTG 841 CAGGCTGCGATGGAGGACGGCTACCGGGTCTTCGCGGAGCTGTCGCCCCACCCGCTGCTT Original Optimized 901 ACCCACGCAGTGGAACAGACGGGTCGCTCTCTGGATATGAGTGTTGCAGCACTGGCCGGT Original

Optimized 96	1 ATGCGTCGCGAACAGCCGCTGCCGCATGGCCTGCGTGGTCTGCTGACCGAACTGCACCGT
Original 96	1 ATGCGGCGAGAGCAGCCTCTGCCGCATGGTCTGCGCGGCTTGCTGACGGAGCTGCACCGC
Optimized 102	1 GCAGGTGCAGCACTGGATTATAGCGCACTGTACCCGGCAGGTCGTCTGGTGGATGCACCG
Original 102	1 GCGGGCGCCGCTTTGGACTATTCGGCGCTGTATCCCGCTGGGCGGCTGGTGGATGCGCCG
Optimized 108	1 CTGCCGGCATGGACGCACGCACGTCTGTTCATCGATGATGGCCAGGAACAGCGCGCA
Original 108	1 CTGCCGGCGTGGACCCACGCCCGCCTATTCATCGACGATGATGGGCAAGAACAGCGGGCA
Optimized 114	1 CAGGGTGCG
Original 114	1 CAAGGTGCC

Figure 22: Protein sequence of *Salmonella enterica* propionyl CoA synthase PrpE (AAC44817) (SEQ.ID NO. 21)

MSFSEFYQRSINEPEAFWAEQARRIDWRQPFTQTLDHSRPPFARWFCGGTTNLCHNAVDRWRDKQPEALA LIAVSSETDEERTFTFSQLHDEVNIVAAMLLSLGVQRGDRVLVYMPMIAEAQITLLACARIGAIHSVVFG GFASHSVAARIDDARPALIVSADAGARGGKILFYKKLDDAIAQAQHQPKHVLLVDRGLAKMAWVDGRDL DFATLRQQHLGASVPVAWLESNETSCIJTSGTTGKPKGVQRDVGGYAVALATSMDTIFGGKAGGVFFCA SDIGWVVGHSYIVYAPLLAGMATIVYEGLPTYPDCGVWWKIVEKYQVNRMFSAPTAIRVLKKFPTAQIRN HDLSSLEALYLACEPLDEPTASWVTETLCVPVIDNYWQTESCWPIMALARALDDRPSRLCSPCVPMYCYN VQLLNEVTGEPCGINEKGMLVIEGPLPPGCIQTIWGDDARFVKTYWSLFNRQVYATFDWGIRDAEGYYFI LGRTDDVINIAGHRLGTREIEESISSYPNVAEVAVVGIKDALKGQVAVAFVIPKQSDTLADREAARDEEN AIMALVDNQIGHFGRPAHVWFVSQLPKTRSGKMLRRTIQAICEGRDPGDLTTIDDPASLQQIRQAIEE

Figure 23: DNA sequence of *Salmonella enterica* propionyl CoA synthase PrpE (SEQ.ID NO. 22)

ATGTCTTTTAGCGAATTTTATCAGCGTTCCATTAACGAACCGGAGGCGTTCTGGGCCGAG CAGGCCCGGCGTATCGACTGGCGACAGCCGTTTACGCAGACGCTGGATCATAGCCGTCCA CCGTTTGCCCGCTGGTTTTGCGGCGGCACCACTAACTTATGTCATAACGCCGTCGACCGC TGGCGGGATAAACAGCCGGAGGCGCTGGCGCTGATTGCCGTCTCATCAGAGACCGATGAA GAGCGCACATTTACCTTCAGCCAGTTGCATGATGAAGTCAACATTGTGGCCGCCATGTTG CTGTCGCTGGSCGTGCAGCGTGSCGATCGCGTATTGGTCTATATGCCGATGATTGCCGAA GCGCAGATAACCCTGCTGGCCTGCGCGCGCGCATTGGCGCGATCCATTCGGTGGTCTTTGGC GGTTTTGCCTCGCACAGCGTGGCGGCGCGCGCATTGACGATGCCAGACCGGCGCTGATTGTG TCGGCGGATGCCGGAGCGCGGGGGGGGGGGGGAAAATCCTGCCGTATAAAAAGCTGCTCGATGAC GCTATTGCGCAGGCGCAGCATCAGCCGAAACACGTTCTGCTGGTGGACAGAGGGCTGGCG AAAATGGCATGGGTGGATGGGCGCGCGATCTGGATTTTTGCCACGTTGCGCCAGCAGCATCTC GGCGCGAGCGTGCCGGTGGCGTGGCTGGAATCCAACGAAACCTCGTGCATTCTTACACC TCCGGCACTACCGGCAAACCGAAAGGCGTCCAGCGCGACGTCGGCGGTTATGCGGTGGCG TCGGATATCGGCTGGGTCGTCGGCCACTCCTATATCGTTTACGCGCCGTTGCTGGCAGGC ATGGCGACTATTGTTTACGAAGGACTGCCGACGTACCCGGACTGCGGGGTCTGGTGGAAA ATTGTCGAGAAATACCAGGTTAACCGGATGTTTTCCGCCCCGACCGCGATTCGCGTGCTG AAAAAATTCCCGACGGCGCAAATCCGCAATCACGATCTCTCCTCGCTGGAGGCGCTTTAT CTGGCCGGTGAGCCGCTGGACGAGCCGACGGCCAGTTGGGTAACGGAGACGCTGGGCGTA CCGGTCATCGACAATTATTGGCAGACGGAGTCCGGCTGGCCGATCATGGCGCTGGCCCGC GCGCTGGACGACAGGCCGTCGCGTCTGGGAAGTCCCGGCGTGCCGATGTACGGTTATAAC GTCCAGCTACTCAATGAAGTCACCGGCGAACCTTGCGGCATAAATGAAAAGGGGATGCTG GTGATCGAAGGGCCGCTGCCGCCGGGCTGTATTCAGACTATTTGGGGCGACGATGCGCGT TTTGTGAAGACTTACTGGTCGCTGTTTAACCGTCAGGTTTATGCCACTTTCGACTGGGGA ATCCGCGACGCCGAGGGGTATTACTTTATTCTGGGCCGTACCGATGATGTGATTAATATT GCGGGTCATCGGCTGGGGACGCGAGAAATAGAAGAAAGTATCTCCAGCTACCCGAACGTA GCGGAAGTGGCGGTAGTGGGGGATAAAAGACGCTCTGAAAGGGCAGGTAGCGGTGGCGTTT GCGATTATGGCGCTGGTGGACAACCAGATCGGTCACTTTGGTCGTCCGGCGCATGTCTGG TTTGTTTCGCAGCTCCCCAAAACGCGTTCCGGAAAGATGCTTCGCCGCACGATCCAGGCG ATCTGCGAAGGCCGCGATCCGGGCGATCTGACAACCATTGACGATCCCGCGTCGTTGCAG CAAATTCGCCAGGCGATCGAAGAA

Figure 24

Figure 25

Figure 27

Figure 28

SCATTERED BRANCHED-CHAIN FATTY ACIDS AND BIOLOGICAL PRODUCTION THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS AND INCORPORATION BY REFERENCE

[0001] This application claims priority to U.S. Provisional Patent Application No. 61/294,274, filed Jan. 12, 2010, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The invention relates to cells and methods for producing fatty acids, and more particularly relates to cells and methods for producing scattered branched-chain fatty acids.

BACKGROUND OF THE INVENTION

[0003] Branched-chain fatty acids are carboxylic acids with a methyl or ethyl branch on one or more carbons that can be either chemically synthesized or isolated from certain animals and bacteria. While certain bacteria, such as Escherichia coli, do not naturally produce branched-chain fatty acids, some bacteria, such as members of the genera Bacillus and Streptomyces, can naturally produce these fatty acids. For example, Streptomyces avermitilis and Bacillus subtilis both produce branched-chain fatty acids with from 14 to 17 total carbons, with the branches in the iso and anteiso positions (Cropp et al., Can. J. Microbiology 46: 506-14 (2000); De Mendoza et al., Biosynthesis and Function of Membrane Lipids, in Bacillus subtilis and Other Gram-Positive Bacteria, Sonenshein and Losick, eds., American Society for Microbiology (1993)). However, these organisms do not produce branched-chain fatty acids in amounts that are commercially useful. Another limitation of these natural organisms is that they apparently do not produce medium-chain branchedchain fatty acids, such as those with 11 or 13 carbons. In addition, if fatty acids having particular chain lengths, branches on particular carbons, or branches at positions other than the iso and anteiso positions are desired, these fatty acids may not be available or easily isolated from a natural organism in meaningful quantities.

[0004] As such, there remains a need for commercially useful, bacterially-produced, branched-chain fatty acids. In addition, there remains a need for a method of producing such branched-chain fatty acids.

SUMMARY OF THE INVENTION

[0005] Methods and cells for producing scattered branched-chain fatty acids are provided. In certain embodiments, the method for producing branched-chain fatty acids in a cell includes expressing in the cell one or more recombinant polypeptides that catalyze the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.

[0006] Also provided is a method for producing branchedchain fatty acids in a cell, the method including expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced. **[0007]** In certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the method including expressing in the cell a polypeptide that has propionyl-CoA synthetase activity; inhibiting propionylation of the propionyl-CoA synthetase; and culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.

[0008] Further provided is a method for producing branched-chain fatty acids in a cell, the method including expressing in the cell a polypeptide that has methylmalonyl-CoA mutase activity; expressing in a cell a polypeptide that has methylmalonyl-CoA epimerase activity; and culturing the cell under conditions suitable for producing the polypeptides, such that branched-chain fatty acids are produced.

[0009] A composition comprising a mixture of biologically-produced branched-chain fatty acids is also provided. The composition can include branched-chain fatty acids having a chain length of C12 to C16 and from about 1 to about 3 methyl branches positioned on one or more even-numbered carbons.

[0010] In certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the method including expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.

[0011] In addition, in certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the method including expressing in the cell one or more recombinant polypeptides that increase the production of methyl-malonyl-CoA in the cell; expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; expressing in the cell a recombinant thioesterase; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.

[0012] Also provided is a method for producing branchedchain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon. The method includes modifying the cell to increase carbon flow to methylmalonyl-CoA; and culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced. In certain embodiments, the branching can be on the fourth, sixth, eighth, tenth, or twelfth carbon.

[0013] In certain embodiments, a method for producing branched-chain fatty acids in a cell is provided, the branchedchain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon. The method includes modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced. In certain embodiments, the branching can be on the fourth, sixth, eighth, tenth, or twelfth carbon.

[0014] A method for producing modified fatty acids in a cell is also provided, the method including providing a cell

having type II fatty acid synthase activity; expressing in the cell one or more recombinant polypeptides that catalyze formation of at least one intermediate metabolite, wherein the at least one intermediate metabolite is incorporated by the type II fatty acid synthase; and culturing the cell under conditions suitable for producing the recombinant polypeptide, such that modified fatty acids are produced.

[0015] Further provided is an *Escherichia* cell that produces branched-chain fatty acids having a chain length from about 10 to about 18 carbons and comprising one or more methyl branches on one or more even-numbered carbons.

[0016] The invention further provides a method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons. The method comprises culturing a cell comprising (aa) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or (bb) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA. The cell is cultured under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid. Optionally, the method further comprises extracting from the culture the branched-chain fatty acid or a product of the branched-chain fatty acid. Also provided is a cell comprising (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase, which are expressed in the cell. The cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).

[0017] The following numbered paragraphs each succinctly define one or more exemplary variations of the invention:

[0018] 1. A method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons, the method comprising culturing a cell comprising

[0019] (aa) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or (bb) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA, under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid, wherein the cell produces more fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).

[0020] 2. The method of paragraph 1 further comprising extracting from culture the branched-chain fatty acid or a product of the branched-chain fatty acid.

[0021] 3. The method of paragraph 1 or paragraph 2, wherein the polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA is a propionyl-CoA carboxylase and/or the polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA is a methylmalonyl-CoA mutase.

[0022] 4. The method of paragraph 3, wherein (i) the propionyl-CoA carboxylase is *Streptomyces coelicolor* PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalo-nyl-CoA mutase is *Janibacter* sp. HTCC2649 methylmalo-nyl-CoA mutase, *S. cinnamonensis* MutA and MutB, or *E. coli* Sbm.

[0023] 5. The method of paragraph 3, wherein (i) the methylmalonyl-CoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionyl-CoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.

[0024] 6. The method of any one of paragraphs 3-5, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.

[0025] 7. The method of any one of paragraphs 1-6, wherein the cell further comprises an exogenous or overexpressed polynucleotide encoding an acyl transferase lacking polyketide synthesis activity and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a thioesterase.

[0026] 8. The method of paragraph 7, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of *Mycobacterium* mycocerosic acid synthase.

[0027] 9. The method of any one of paragraphs 1-8, wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylmalonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.

[0028] 10. The method of any one of paragraphs 1-9, wherein the cell produces a Type II fatty acid synthase.

[0029] 11. The method of any one of paragraphs 1-10, wherein the cell is *Escherichia coli*.

[0030] 12. A branched-chain fatty acid produced by the method of any one of paragraphs 1-11.

[0031] 13. A cell comprising: (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase, wherein the polynucleotide(s) are expressed and the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).

[0032] 14. The cell of paragraph 13, wherein (i) the propionyl-CoA carboxylase is *Streptomyces coelicolor* PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalonyl-CoA mutase is *Janibacter* sp. HTCC2649 methylmalonyl-CoA mutase, *S. cinnamonensis* MutA and MutB, or *E. coli* Sbm.

[0033] 15. The cell of paragraph 13, wherein (i) the methylmalonyl-CoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionyl-CoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.

[0034] 16. The cell of any one of paragraphs 13-15, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.

[0035] 17. The cell of any one of paragraphs 13-16, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of *Mycobacterium* mycocerosic acid synthase.

[0036] 18. The cell of any one of paragraphs 13-17, wherein the cell further comprises an exogenous or overexpressed polynucleotide comprises a nucleic acid sequence encoding a thioesterase.

[0037] 19. The cell of any one of paragraphs 13-18, wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylmalonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.

[0038] 20. The cell of any one of paragraphs 13-19, wherein the cell is *Escherichia coli*.

[0039] 21. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that catalyze the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and b. culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.

[0040] 22. The method of paragraph 21, wherein the polypeptide is an acyl transferase.

[0041] 23. The method of paragraph 21, wherein the polypeptide is encoded by fabD.

[0042] 24. The method of paragraph 22, wherein the polypeptide is a polyketide synthase or a portion thereof.

[0043] 25. The method of paragraph 21, wherein the polypeptide is a *Mycobacterium* mycocerosic acid synthase or a portion thereof

[0044] 26. The method of paragraph 21, wherein the polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 19.

[0045] 27. The method of paragraph 21, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.

[0046] 28. The method of paragraph 21, wherein the cell is an *Escherichia* cell.

[0047] 29. The method of paragraph 21, wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.

[0048] 30. The method of paragraph 21, wherein the branched-chain fatty acids comprise one or more methyl branches.

[0049] 31. The method of paragraph 30, wherein the one or more methyl branches are on even numbered carbons.

[0050] 32. The method of paragraph 21, wherein the branched-chain fatty acids are not naturally produced in the cell.

[0051] 33. Branched-chain fatty acids produced by the method of paragraph 21.

[0052] 34. A cell comprising at least one recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP, wherein the cell comprising the

recombinant polypeptide produces more branched-chain fatty acids than an otherwise similar cell that does not comprise the recombinant polypeptide.

[0053] 35. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; and b. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.

[0054] 36. The method of paragraph 35, wherein expression of the polypeptide results in increased propionyl-CoA synthetase activity in the cell.

[0055] 37. The method of paragraph 35, wherein the polypeptide has propionyl-CoA carboxylase activity.

[0056] 38. The method of paragraph 35, wherein the polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 10.

[0057] 39. The method of paragraph 35, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.

[0058] 40. The method of paragraph 35, wherein the cell is an *Escherichia* cell.

[0059] 41. The method of paragraph 35, wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.

[0060] 42. The method of paragraph 35, wherein the branched-chain fatty acids comprise one or more methyl branches.

[0061] 43. The method of paragraph 42, wherein the one or more methyl branches are on even numbered carbons.

[0062] 44. The method of paragraph 35, wherein the branched-chain fatty acids are not naturally produced in the cell.

[0063] 45. Branched-chain fatty acids produced by the method of paragraph 35.

[0064] 46. A cell comprising at least one recombinant polypeptide that increases the production of methylmalonyl-CoA in the cell, wherein the cell comprising the recombinant polypeptide produces more branched-chain fatty acids than an otherwise similar cell that does not comprise the recombinant polypeptide.

[0065] 47. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell a polypeptide that has propionyl-CoA synthetase activity; b. inhibiting propionylation of the propionyl-CoA synthetase; and c. culturing the cell under conditions suitable for producing the polypeptide, such that branched-chain fatty acids are produced.

[0066] 48. The method of paragraph 47, wherein the polypeptide does not include a lysine that is subject to propionylation.

[0067] 49. The method of paragraph 47, wherein step c) includes providing a source of resveratrol into a culture medium used to culture the cell.

[0068] 50. The method of paragraph 47, wherein the cell does not include an N-acetyltransferase enzyme responsible for propionylation of the propionyl-CoA synthetase.

[0069] 51. The method of paragraph 47, wherein the polypeptide has at least about 60% sequence identity to the protein encoded by SEQ ID NO: 22.

[0070] 52. The method of paragraph 47, wherein the cell contains increased enzymatic activity for removal of propionyl groups from one or more lysine residues of propionyl-CoA synthetase.

[0071] 53. The method of paragraph 47, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.

[0072] 54. The method of paragraph 47, wherein the cell is an *Escherichia* cell.

[0073] 55. The method of paragraph 47, wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.

[0074] 56. The method of paragraph 47, wherein the branched-chain fatty acids comprise one or more methyl branches.

[0075] 57. The method of paragraph 56, wherein the one or more methyl branches are on even numbered carbons.

[0076] 58. The method of paragraph 47, wherein the branched-chain fatty acids are not naturally produced in the cell.

[0077] 59. Branched-chain fatty acids produced by the method of paragraph 47.

[0078] 60. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell a polypeptide that has methylmalonyl-CoA mutase activity; b. expressing in a cell a polypeptide that has methylmalonyl-CoA epimerase activity; and c. culturing the cell under conditions suitable for producing the polypeptides, such that branchedchain fatty acids are produced.

[0079] 61. The method of paragraph 60, wherein the methylmalonyl-CoA mutase polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 3 or SEQ ID NO: 4.

[0080] 62. The method of paragraph 60, wherein the methylmalonyl-CoA epimerase polypeptide has at least about 60% sequence identity to a sequence set forth in SEQ ID NO: 6.

[0081] 63. The method of paragraph 60, wherein the method further includes expressing in the cell a polypeptide that encodes an exogenous thioesterase.

[0082] 64. The method of paragraph 60, wherein the cell is an *Escherichia* cell.

[0083] 65. The method of paragraph 60, wherein the cell produces higher levels of branched-chain fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.

[0084] 66. The method of paragraph 60, wherein the branched-chain fatty acids comprise one or more methyl branches.

[0085] 67. The method of paragraph 66, wherein the one or more methyl branches are on even numbered carbons.

[0086] 68. The method of paragraph 60, wherein the branched-chain fatty acids are not naturally produced in the cell.

[0087] 69. Branched-chain fatty acids produced by the method of paragraph 60.

[0088] 70. A cell comprising recombinant polypeptides having methylmalonyl-CoA mutase activity and methylmalonyl-CoA epimerase activity, wherein the cell comprising the recombinant polypeptides produces more branched-chain fatty acids than an otherwise similar cell that does not comprise the recombinant polypeptide.

[0089] 71. A composition comprising a mixture of biologically-produced branched-chain fatty acids, the branchedchain fatty acids having a chain length of C12 to C16 and from about 1 to about 3 methyl branches positioned on one or more even-numbered carbons.

[0090] 72. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; b. expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; and c. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.

[0091] 73. The method of paragraph 72, wherein the cell has a deletion in a gene for a methylmalonyl-CoA decarboxy-lase.

[0092] 74. The method of paragraph 72, wherein the cell additionally produces a recombinant polypeptide with a 3-ke-toacyl-ACP synthase activity that recognizes methylmalonyl-ACP as a substrate.

[0093] 75. A method for producing branched-chain fatty acids in a cell comprising: a. expressing in the cell one or more recombinant polypeptides that increase the production of methylmalonyl-CoA in the cell; b. expressing in the cell a recombinant polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP; c. expressing in the cell a recombinant thioesterase; and d. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that branched-chain fatty acids are produced.

[0094] 76. The method of paragraph 75, wherein the cell has a deletion in a gene for a methylmalonyl-CoA decarboxy-lase.

[0095] 77. The method of paragraph 75, wherein the cell additionally produces a recombinant polypeptide with a 3-ke-toacyl-ACP synthase activity that recognizes methylmalonyl-ACP as a substrate.

[0096] 78. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced. **[0097]** 79. The method of paragraph 78, wherein the branching at the second carbon is a methyl branch.

[0098] 80. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the fourth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the fourth carbon are produced. **[0099]** 81. The method of paragraph 80, wherein the branching at the fourth carbon is a methyl branch.

[0100] 82. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the sixth carbon, the method comprising: a. modifying the cell to

increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the sixth carbon are produced.

[0101] 83. The method of paragraph 82, wherein the branching at the sixth carbon is a methyl branch.

[0102] 84. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 12 to 18 carbons and branching at the eighth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 12 to about 18 carbons and branching at the eighth carbon are produced. **[0103]** 85. The method of paragraph 84, wherein the branching at the eighth carbon is a methyl branch.

[0104] 86. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 14 to 18 carbons and branching at the tenth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 14 to about 18 carbons and branching at the tenth carbon are produced.

[0105] 87. The method of paragraph 86, wherein the branching at the tenth carbon is a methyl branch.

[0106] 88. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 16 to 18 carbons and branching at the twelfth carbon, the method comprising: a. modifying the cell to increase carbon flow to methylmalonyl-CoA; and b. culturing the cell under conditions suitable for carbon flow to methylmalonyl-CoA to be increased, such that branched-chain fatty acids having a chain length from about 16 to about 18 carbons and branching at the twelfth carbon are produced. **[0107]** 89. The method of paragraph 88, wherein the branching at the twelfth carbon is a methyl branch.

[0108] 90. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the second carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the second carbon are produced.

[0109] 91. The method of paragraph 90, wherein the branching at the second carbon is a methyl branch.

[0110] 92. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the fourth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the fourth carbon are produced.

[0111] 93. The method of paragraph 92, wherein the branching at the fourth carbon is a methyl branch.

[0112] 94. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 10 to 18 carbons and branching at the sixth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 10 to about 18 carbons and branching at the sixth carbon are produced.

[0113] 95. The method of paragraph 94, wherein the branching at the sixth carbon is a methyl branch.

[0114] 96. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 12 to 18 carbons and branching at the eighth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 12 to about 18 carbons and branching at the eighth carbon are produced.

[0115] 97. The method of paragraph 96, wherein the branching at the eighth carbon is a methyl branch.

[0116] 98. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 14 to 18 carbons and branching at the tenth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 14 to about 18 carbons and branching at the tenth carbon are produced.

[0117] 99. The method of paragraph 98, wherein the branching at the tenth carbon is a methyl branch.

[0118] 100. A method for producing branched-chain fatty acids in a cell, the branched-chain fatty acids having a chain length from about 16 to 18 carbons and branching at the twelfth carbon, the method comprising: a. modifying the cell to generate methylmalonyl-ACP from methylmalonyl-CoA; and b. culturing the cell under conditions suitable for generation of methylmalonyl-ACP from methylmalonyl-CoA, such that branched-chain fatty acids having a chain length from about 16 to about 18 carbons and branching at the twelfth carbon are produced.

[0119] 101. The method of paragraph 100, wherein the branching at the twelfth carbon is a methyl branch.

[0120] 102. A method for producing modified fatty acids in a cell comprising: a. providing a cell having type II fatty acid synthase activity; b. expressing in the cell one or more recombinant polypeptides that catalyze formation of at least one intermediate metabolite, wherein the at least one intermediate metabolite is incorporated by the type II fatty acid synthase; and c. culturing the cell under conditions suitable for producing the recombinant polypeptide, such that modified fatty acids are produced.

[0121] 103. The method of paragraph 102, wherein the cell is an *Escherichia* cell.

[0122] 104. The method of paragraph 102, wherein the intermediate metabolite is methylmalonyl-ACP.

[0123] 105. The method of paragraph 102, wherein the polypeptide(s) catalyze the conversion of methylmalonyl-CoA to methylmalonyl-ACP.

[0124] 106. The method of paragraph 102, wherein the cell produces higher levels of modified fatty acids after expression of the polypeptide than it did prior to expression of the polypeptide.

[0125] 107. The method of paragraph 102, wherein the modified fatty acids comprise one or more methyl branches on even-numbered carbons.

[0126] 108. The method of paragraph 102, wherein the polypeptide is an acyl transferase.

[0127] 109. The method of paragraph 102, wherein the polypeptide is encoded by fabD.

[0128] 110. The method of paragraph 102, wherein the polypeptide is a polyketide synthase or a portion thereof.

[0129] 111. The method of paragraph 102, wherein the polypeptide is a *Mycobacterium* mycocerosic acid synthase or a portion thereof.

[0130] 112. An *Escherichia* cell that produces branchedchain fatty acids having a chain length from about 10 to about 18 carbons and comprising one or more methyl branches on one or more even-numbered carbons.

BRIEF DESCRIPTION OF THE DRAWINGS

[0131] FIG. **1** is a mutA nucleotide sequence (SEQ ID NO: 1).

[0132] FIG. **2** is a mutB nucleotide sequence (SEQ ID NO: 2).

[0133] FIG. 3 is a MutA protein sequence (SEQ ID NO: 3).

[0134] FIG. 4 is a MutB protein sequence (SEQ ID NO: 4).

[0135] FIG. **5** is a methylmalonyl-CoA epimerase nucleotide sequence (SEQ ID NO: 5).

[0136] FIG. **6** is a methylmalonyl-CoA epimerase protein sequence (SEQ ID NO: 6).

[0137] FIG. **7** is a DNA sequence for accA1 (GenBank Accession No. AF113603.1) (SEQ ID NO: 7).

[0138] FIG. **8** is a DNA sequence for pccB (GenBank Accession No. AF113605.1) (SEQ ID NO: 8).

[0139] FIG. **9** is a protein sequence for AccA1 (SEQ ID NO: 9).

[0140] FIG. **10** is a protein sequence for PccB (SEQ ID NO: 10).

[0141] FIG. **11** shows element 1 including the $P_{Llac0-1}$ sequence and the phage T7 gene10 ribosome binding site (SEQ ID NO: 11).

[0142] FIG. **12** shows element 2 including the optimized accA1 gene sequence (SEQ ID NO: 12).

[0143] FIG. **13** shows element 3 including the spacer sequence (SEQ ID NO: 13).

[0144] FIG. **14** shows element 4 including the optimized pccB sequence (SEQ ID NO: 14).

[0145] FIG. **15** is a synthetic sequence for propionyl-CoA carboxylase gene expression (SEQ ID NO: 15).

[0146] FIG. **16** is the forward primer sequence for PrpE (SEQ ID NO: 16).

[0147] FIG. 17 is the reverse primer sequence for PrpE (SEQ ID NO: 17).

[0148] FIG. **18** is the MMAT domain sequence from *Mycobacterium bovis* BCG (SEQ ID NO: 18).

[0149] FIG. **19** is a protein sequence for the *Mycobacterium bovis* BCG MAS (GenBank Accession No. YP_979046) (SEQ ID NO: 19).

[0150] FIG. **20** is a codon-optimized MMAT domain DNA sequence from *Mycobacterium bovis* BCG (SEQ ID NO: 20).

[0151] FIG. **21** is an alignment of a codon-optimized MMAT domain from *Mycobacterium bovis* BCG with the original sequence (SEQ ID NOs: 20 and 21).

[0152] FIG. **22** is the protein sequence of *Salmonella enterica* propionyl CoA synthase PrpE (GenBank Accession No. AAC44817) (SEQ ID NO: 22).

[0153] FIG. **23** is the DNA sequence of *Salmonella enterica* propionyl CoA synthase PrpE (SEQ ID NO. 23).

[0154] FIG. **24** is a bar graph illustrating methylmalonyl-CoA production (ng/ml) in *E. coli* strain K27-Z1 harboring pTrcHisA pZA31 (control), pZA31 mutAB Ss epi (MutAB Epi), pTrcHisA Ec sbm (Sbm), or pTrcHisA Ec sbm pZA31 Mb mmat (Sbm/Mmat). No methylmalonyl-CoA was identified in the control sample; the figure indicates the background level of detection.

[0155] FIG. **25** is a bar graph illustrating methylmalonyl-CoA production (ng/ml) in *E. coli* BW25113 (control) and BW25113 harboring pZA31-accA1-pccB (Pcc). No methylmalonyl-CoA was identified in the control sample; the figure indicates the background level of detection. Two biological replicates are represented.

[0156] FIG. **26** is a two-dimensional (2D) representation of the 2D Total Ion Chromatogram resulting from a sample of fatty acid produced by BL21 Star (DE3) *E. coli* harboring pTrcHisA Ec sbm So ce epi pZA31 mmat. Light areas on the figure indicate the presence of sample material. Peak names and arrows indicate samples that were further characterized by mass spectrometry.

[0157] FIG. **27** is a two-dimensional (2D) representation of the 2D Total Ion Chromatogram resulting from a sample produced by a control strain, BL21 Star (DE3) *E. coli* harboring pTrcHisA pZA31. No branched-chain fatty acid was detected. Arrows indicate the presence of straight-chain fatty acid derivatives of the indicated chain length.

[0158] FIG. **28** is a representation of the mass spectra of peaks 54, 55, and 57 identified in FIG. **26**. Eight- and tencarbon branched-chain fatty acids are depicted in the top two profiles and were identified by the almost complete absence of the circled fragment. A twelve-branched fatty acid was tentatively identified and is depicted in the third profile.

DETAILED DESCRIPTION OF THE INVENTION

[0159] The invention relates to improved biological production of scattered branched-chain fatty acids. In addition, in certain embodiments, the invention provides improved compositions of biologically produced scattered branchedchain fatty acids having defined chain lengths with methyl branches at one or more even-numbered carbons within the fatty acid. In addition, in certain embodiments, the fatty acid length can be tailored to a predetermined length, such as, for example, to produce fatty acids with a backbone of C12 to C16. In certain embodiments, the methods and/or cells can produce a mixture of fatty acids having varied numbers of methyl branches, varied positions of the methyl branches, and varied length of the fatty acids, such as, for example, a mixture of fatty acids having a chain length of C12 to C16 and from about 0 to about 3 methyl branches positioned on one or more even-numbered carbons.

[0160] As used herein, "amplify," "amplified," or "amplification" refers to any process or protocol for copying a polynucleotide sequence into a larger number of polynucleotide molecules, e.g., by reverse transcription, polymerase chain reaction, and ligase chain reaction.

[0161] As used herein, an "antisense sequence" refers to a sequence that specifically hybridizes with a second polynucleotide sequence. For instance, an antisense sequence is a DNA sequence that is inverted relative to its normal orientation for transcription. Antisense sequences can express an RNA transcript that is complementary to a target mRNA molecule expressed within the host cell (e.g., it can hybridize to target mRNA molecule through Watson-Crick base pairing).

[0162] As used herein, "cDNA" refers to a DNA that is complementary or identical to an mRNA, in either single stranded or double stranded form.

[0163] As used herein, the carbons in fatty acids are numbered with the first carbon as part of the carboxylic acid group, and the second carbon (C2) adjacent to the first. The numbers continue so that the highest number carbon is farthest from the carboxylic acid group. "Even number" carbons include C2, C4, C6, C8, C10, C12, C14, and so on.

[0164] As used herein, "complementary" refers to a polynucleotide that can base pair with a second polynucleotide. Put another way, "complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, a polynucleotide having the sequence 5'-GTCCGA-3' is complementary to a polynucleotide with the sequence 5'-TCGGAC-3'.

[0165] As used herein, a "conservative substitution" refers to the substitution in a polypeptide of an amino acid with a functionally similar amino acid. Put another way, a conservative substitution involves replacement of an amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art, and include amino acids with basic side chains (e.g., lysine, arginine, and histidine), acidic side chains (e.g., aspartic acid and glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, and cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, and tryptophan), betabranched side chains (e.g., threonine, valine, and isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, and histidine).

[0166] As used herein, "encoding" refers to the inherent property of nucleotides to serve as templates for synthesis of other polymers and macromolecules. Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.

[0167] As used herein, "endogenous" refers to polynucleotides, polypeptides, or other compounds that are expressed naturally or originate within an organism or cell. That is, endogenous polynucleotides, polypeptides, or other compounds are not exogenous. For instance, an "endogenous" polynucleotide or peptide is present in the cell when the cell was originally isolated from nature.

[0168] As used herein, "expression vector" refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. For example, suitable expression vectors include, without limitation, autonomously replicating vectors or vectors integrated into the chromosome. In some instances, an expression vector is a viral-based vector. **[0169]** As used herein, "exogenous" refers to any polynucleotide or polypeptide that is not naturally expressed or

produced in the particular cell or organism where expression is desired. Exogenous polynucleotides, polypeptides, or other compounds are not endogenous.

[0170] As used herein, "hybridization" includes any process by which a strand of a nucleic acid joins with a complementary nucleic acid strand through base-pairing. Thus, the term refers to the ability of the complement of the target sequence to bind to a test (i.e., target) sequence, or vice-versa. [0171] As used herein, "hybridization conditions" are typically classified by degree of "stringency" of the conditions under which hybridization is measured. The degree of stringency can be based, for example, on the melting temperature (T_m) of the nucleic acid binding complex or probe. For example, "maximum stringency" typically occurs at about T_m -5° C. (5° below the T_m of the probe); "high stringency" at about 5-10° C. below the T_m ; "intermediate stringency" at about 10-20° below the T_m of the probe; and "low stringency" at about 20-25° C. below the T. Alternatively, or in addition, hybridization conditions can be based upon the salt or ionic strength conditions of hybridization and/or one or more stringency washes. For example, 6×SSC=very low stringency; 3×SSC=low to medium stringency; 1×SSC=medium stringency; and 0.5×SSC=high stringency. Functionally, maximum stringency conditions may be used to identify nucleic acid sequences having strict (i.e., about 100%) identity or near-strict identity with the hybridization probe; while high stringency conditions are used to identify nucleic acid sequences having about 80% or more sequence identity with the probe.

[0172] As used herein, "identical" or percent "identity" in the context of two or more polynucleotide or polypeptide sequences refers to two or more sequences that are the same or have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using sequence comparison algorithms or by visual inspection.

[0173] As used herein, "long-chain fatty acids" refers to fatty acids with aliphatic tails longer than 14 carbons. In some embodiments of the invention, long-chain fatty acids are provided that comprise 15, 16, 17, 18, 19, 20, 21, or 22 carbons in the carbon backbone.

[0174] As used herein, "medium-chain fatty acids" refers to fatty acids with aliphatic tails between 6 and 14 carbons. In certain embodiments, the medium-chain fatty acids can have from 11 to 13 carbons.

[0175] As used herein, "naturally-occurring" refers to an object that can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.

[0176] As used herein, "operably linked," when describing the relationship between two DNA regions or two polypeptide regions, means that the regions are functionally related to each other. For example, a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation; and a signal sequence, such as by participating in the secretion of the mature form of the protein.

[0177] As used herein, "overexpression" refers to expression of a polynucleotide to produce a product (e.g., a polypeptide or RNA) at a higher level than the polynucleotide is

normally expressed in the host cell. An overexpressed polynucleotide is generally a polynucleotide native to the host cell, the product of which is generated in a greater amount than that normally found in the host cell. Overexpression is achieved by, for instance and without limitation, operably linking the polynucleotide to a different promoter than the polynucleotide's native promoter or introducing additional copies of the polynucleotide into the host cell.

[0178] As used herein, "polynucleotide" refers to a polymer composed of nucleotides. The polynucleotide may be in the form of a separate fragment or as a component of a larger nucleotide sequence construct, which has been derived from a nucleotide sequence isolated at least once in a quantity or concentration enabling identification, manipulation, and recovery of the sequence and its component nucleotide sequences by standard molecular biology methods, for example, using a cloning vector. When a nucleotide sequence is represented by a DNA sequence (i.e., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which "U" replaces "T." Put another way, "polynucleotide" refers to a polymer of nucleotides removed from other nucleotides (a separate fragment or entity) or can be a component or element of a larger nucleotide construct, such as an expression vector or a polycistronic sequence. Polynucleotides include DNA, RNA and cDNA sequences.

[0179] As used herein, "polypeptide" refers to a polymer composed of amino acid residues which may or may not contain modifications such as phosphates and formyl groups. [0180] As used herein, "recombinant expression vector" refers to a DNA construct used to express a polynucleotide that encodes a desired polypeptide. A recombinant expression vector can include, for example, a transcriptional subunit comprising (i) an assembly of genetic elements having a regulatory role in gene expression, for example, promoters and enhancers, (ii) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (iii) appropriate transcription and translation initiation and termination sequences. Recombinant expression vectors are constructed in any suitable manner. The nature of the vector is not critical, and any vector may be used, including plasmid, virus, bacteriophage, and transposon. Possible vectors for use in the invention include, but are not limited to, chromosomal, nonchromosomal and synthetic DNA sequences, e.g., bacterial plasmids; phage DNA; yeast plasmids; and vectors derived from combinations of plasmids and phage DNA, DNA from viruses such as vaccinia, adenovirus, fowl pox, baculovirus, SV40, and pseudorabies.

[0181] As used herein, "primer" refers to a polynucleotide that is capable of specifically hybridizing to a designated polynucleotide template and providing a point of initiation for synthesis of a complementary polynucleotide when the polynucleotide primer is placed under conditions in which synthesis is induced.

[0182] As used herein, "recombinant polynucleotide" refers to a polynucleotide having sequences that are not naturally joined together. A recombinant polynucleotide may be included in a suitable vector, and the vector can be used to transform a suitable host cell. A host cell that comprises the recombinant polynucleotide is referred to as a "recombinant host cell." The polynucleotide is then expressed in the recombinant host cell to produce, e.g., a "recombinant polypeptide."

[0183] As used herein, "specific hybridization" refers to the binding, duplexing, or hybridizing of a polynucleotide preferentially to a particular nucleotide sequence under stringent conditions.

[0184] As used herein, "stringent conditions" refers to conditions under which a probe will hybridize preferentially to its target subsequence, and to a lesser extent to, or not at all to, other sequences.

[0185] As used herein, "short-chain fatty acids" refers to fatty acids having aliphatic tails with fewer than 6 carbons.

[0186] As used herein, "substantially homologous" or "substantially identical" in the context of two nucleic acids or polypeptides, generally refers to two or more sequences or subsequences that have at least 40%, 60%, 80%, 90%, 95%, 96%, 97%, 98% or 99% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using sequence comparison algorithms or by visual inspection. The substantial identity can exist over any suitable region of the sequences, such as, for example, a region that is at least about 50 residues in length, a region that is at least about 100 residues, or a region that is at least about 150 residues. In certain embodiments, the sequences are substantially identical over the entire length of either or both comparison biopolymers.

[0187] In one embodiment, the invention relates to a novel method of producing scattered branched-chain fatty acids (or products derived from scattered branched-chain fatty acid) using bacteria. In general, the method includes increasing the supply of methylmalonyl-CoA and/or the conversion of methylmalonyl-CoA to methylmalonyl-ACP within the cell, incorporating the branch from the methylmalonyl-CoA into the fatty acid, and, optionally, using a thioesterase to specify the range of size of the fatty acids. In certain embodiments, the method provides branched-chain fatty acids having a chain length of C12 to C16. In addition, in certain embodiments, the branched-chain fatty acids have from about 0 to about 3 methyl branches, such as from about 1 to about 3 methyl branches, such as, for example, from about 1 to about 2 methyl branches, or 1, 2, or 3 methyl branches positioned on one or more carbons. In certain embodiments, the methyl branches are positioned on even-numbered carbons.

[0188] In one embodiment, scattered branched-chain fatty acid production is increased by increasing the production of methylmalonyl-CoA within the cell via, e.g., propionyl-CoA and/or succinyl-CoA intermediates. Thus, in one aspect, the invention provides a method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons. The method comprises culturing a cell comprising an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA. The cell is cultured under conditions allowing expression of the polynucleotide(s) and production of the branchedchain fatty acid. The cell produces more branched-chain fatty acid comprising a methyl branch on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s) (e.g., a cell of the same cell type or derived from the same organism that does not comprise the polynucleotide(s)). Propionyl-CoA is converted to methylmalonyl-CoA by, e.g., the action of a propionyl-CoA carboxylase. Any propionyl-CoA carboxylase that catalyzes the

conversion of propionyl-CoA to methylmalonyl-CoA is suitable for use in the inventive method. An exemplary propionyl-CoA carboxylase is a carboxylase from Streptomyces coelicolor, which comprises two heterologous subunits encoded by pccB and by either accA1 or accA2. In certain embodiments, the cell of the inventive method is engineered to produce PccB and AccA1 or PccB and AccA2. In one aspect, the cell comprises one or more polynucleotides encoding polypeptide(s) comprising an amino acid sequence at least about 80% identical (e.g., 85%, 90%, 95%, or 100% identical) to the amino acid sequences set forth in SEQ ID NO: 9 and/or 10. Additional, non-limiting examples of polypeptides that catalyze the conversion of propionyl-CoA to methylmalonyl-CoA are propionyl-CoA carboxylases from Mycobacterium smegmatis, Homo sapiens, Acinetobacter baumannii, Brucella suis, Saccharopolyspora erythraea, Burkholderia glumae, and Aedes aegypti, as well as the propionyl-CoA carboxylases set forth in Table A.

TABLE A

nucleotide	encoding lac	ctate dehydrog	genase,	lactate CoA	
transferase,	lactyl-CoA	dehydratase,	and/or	acrylyl-CoA	
reductase.					

[0191] In addition, in any aspect of the invention, carbon flow to branch pathways not contributing to formation of the desired branched-chain fatty acid is minimized by attenuation of endogenous enzyme activity responsible for the diversion of carbon. Complete abolishment of endogenous activity is not required; any reduction in activity is suitable in the context of the invention. Enzyme activity is attenuated (i.e., reduced or abolished) by, for example, mutating the coding sequence for the enzyme to create a non-functional or reduced-function polypeptide, by removing all or part of the coding sequence for the enzyme from the cellular genome, by interfering with translation of an RNA transcript encoding the enzyme (e.g., using antisense oligonucleotides), or by manipulating the expression control sequences influencing expression of the enzyme. For example, in one aspect, the cell

Organism	GenBank Accession	Description	SEQ ID NO:
Ehrlichia chaffeensis	YP_507303	Propionyl-CoA carboxylase alpha subunit (PCCA)	51
Ehrlichia chaffeensis	YP_507410	Propionyl-CoA carboxylase beta subunit (PCCB)	52
Agrobacterium vitis	YP_002547482	Propionyl-CoA carboxylase alpha subunit (PCCA)	53
Agrobacterium vitis	YP_002547479	Propionyl-CoA carboxylase beta subunit (PCCB)	54
Methylobacterium extorquens	YP_003069256	Propionyl-CoA carboxylase alpha subunit (PCCA)	55
Methylobacterium extorquens	YP_003065890	Propionyl-CoA carboxylase beta subunit (PCCB)	56
Sinorhizobium meliloti	NP_437988	Propionyl-CoA carboxylase alpha subunit (PCCA)	57
Sinorhizobium meliloti	NP_437987	Propionyl-CoA carboxylase beta subunit (PCCB)	58
Ruegeria pomeroyi	YP_166352	Propionyl-CoA carboxylase alpha subunit (PCCA)	59
Ruegeria pomeroyi	YP_166345	Propionyl-CoA carboxylase beta subunit (PCCB)	60

[0189] Optionally, the cell is modified to increase carbon flow to propionyl-CoA (and then onward to methylmalonyl-CoA) by, for example, increasing expression of (i.e., overexpressing) prpE or other propionyl-CoA synthetase genes. Alternatively or in addition, an exogenous polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA synthetase is introduced into the host cell to upregulate propionyl-CoA production. Additionally, feeding host cells (e.g., microbes) large amounts of methionine, isoleucine, valine, threonine, propionic acid, and/or odd-chain length fatty acids (such as valeric acid) increases production of the propionyl-CoA precursor of methylmalonyl-CoA.

[0190] Methylmalonyl-CoA production via propionyl-CoA also is increased utilizing the metabolic pathway that converts pyruvate to propionyl-CoA, with lactate, lactoyl-CoA, and acrylyl-CoA as intermediates. Carbon flow to propionyl-CoA is upregulated by overproducing the enzymes of the pathway, producing exogenous enzymes catalyzing one or more conversions of the pathway, and/or by providing pyruvate or lactate in larger amounts than normally found in the host cell. For example, in any embodiment of the invention, the cell comprises an exogenous or overexpressed polyis modified to prevent methylmalonyl-CoA degradation, thereby increasing the amount of methylmalonyl-CoA available for conversion to methylmalonyl-ACP. Methylmalonyl-CoA degradation is reduced by, for example, deleting or inactivating methylmalonyl-CoA decarboxylase from the host. Put another way, the cell is modified to attenuate endogenous methylmalonyl-CoA decarboxylase activity. In E. coli, for example, methylmalonyl-CoA decarboxylase activity is attenuated by, for example, deleting or mutating ygfG. Optionally, endogenous acyl transferase activity is attenuated. Alternatively or in addition, methylmalonyl-CoA production within the cell is increased by preventing alternative metabolism of propionyl-CoA to succinyl-CoA, such as, for example, by deleting or otherwise reducing (attenuating) the activity of an endogenous methylmalonyl-CoA mutase gene. Optionally, methylmalonyl-CoA levels are increased by increasing the degradation of valine directly to methylmalonyl-CoA. Valine degradation comprises the following intermediates: α-ketoisovalerate, isobutyryl-CoA, methacrylyl-CoA, β-hydroxyisobutyryl-CoA, β-hydroxyisobutyrate, and methylmalonate semialdehyde. Optionally, methylmalonate semialdehyde is converted directly to methylmalonyl-CoA or indirectly through a propionyl-CoA intermediate. In an exemplary embodiment, the cell of the invention comprises an overexpressed or exogenous polynucleotide comprising a nucleic acid sequence encoding one or more of the following enzymes: L-valine:2-oxoglutarate aminotransferase, 2-ox-oisovalerate dehydrogenase, isobutyryl-CoA:FAD oxidoreductase, 3-hydroxy-isobutyryl-CoA hydro-lyase, 3-hydroxyisobutyryl-CoA hydrolase, 3-hydroxyisobutyrate dehydrogenase, and/or methylmalonate-semialdehyde dehydrogenase catalyzes the production of propanoyl-CoA, which can be converted to methylmalonyl-CoA by propanoyl-CoA carboxylase.

[0192] In one aspect, the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA. An exemplary polypeptide that catalyzes the reaction is methylmalonyl-CoA mutase. In any embodiment of the invention, the cell is engineered to overexpress a methylmalonyl-CoA mutase gene, such as, for example, sbm (encoding Sleeping Beauty mutase) in E. coli. Alternatively or in addition, an exogenous polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase is expressed in the cell. Exemplary methylmalonyl-CoA mutases include, but are not limited to, Sbm from E. coli, MutA and/or MutB from Streptomyces cinnamonensis, and methylmalonyl-CoA mutases from Janibacter sp. HTCC2649, Corynebacterium glutamicum, Euglena gracilis, Homo sapiens, Propionibacterium shermanii, Bacillus megaterium, and Mycobacterium smegmatis. Additional, non-limiting examples of polypeptides that catalyze the conversion of succinyl-CoA to methylmalonyl-CoA are provided in Table B.

[0194] Depending on the substrate specificity of the fatty acid synthase produced by the cell, a methylmalonyl-CoA epimerase also may be desired to facilitate use of methylmalonyl-CoA as a precursor in fatty acid synthesis. Thus, in one aspect, the cell further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase. Methylmalonyl-CoA epimerases suitable for use in the invention include, but are not limited to, *Sorangium cellulosum* So ce 56 methylmalonyl-CoA epimerase, *Streptomyces sviceus* ATCC 29083 methylmalonyl-CoA epimerase, *Kribbella flavida* DSM 17836 methylmalonyl-CoA epimerase, and methylmalonyl-CoA epimerase from *Homo sapiens, Bacillus megaterium*, and *Mvcobacterium smegmatis*.

[0195] Production of branched-chain fatty acid comprising a methyl branch on one or more even number carbons also is enhanced by upregulating conversion of methylmalonyl-CoA to methylmalonyl-ACP. In one or more embodiments, conversion of methylmalonyl-CoA to methylmalonyl-ACP is increased in the cell by engineering the cell to produce an acyl transferase (such as the acyl transferase encoded by fabD in E. *coli*) to catalyze the formation of methylmalonyl-ACP from methylmalonyl-CoA. Put another way, in one aspect, the cell further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase. Any suitable acyl transferase can be used, such as, for example and without limitation, an acyl transferase domain from a polyketide synthase, such as those involved in the synthesis of monensin, epothilone, amphotericin, candicidin, nystatin, pimaricin, ascomycin, rapamycin, avermiectin, spinosad, mycinamicin, niddamycin, oleandomycin, megalomicin, nanchangmycin, picromycin, rifamycin, oligomycin erythromycin, polyenes, and macrolides, and an acyl

Organism	GenBank Accession	Description	SEQ ID NO
Bacillus megaterium	YP_003564880	methylmalonyl-CoA mutase small subunit (mutA)	61
Bacillus megaterium	YP_003564879	methylmalonyl-CoA mutase large subunit (mutB)	62
Mycobacterium tuberculosis	YP_001282809	methylmalonyl-CoA mutase small subunit (mutA)	63
Mycobacterium tuberculosis	YP_001282810	methylmalonyl-CoA mutase large subunit (mutB)	64
Corynebacterium glutamicum	YP_225814	methylmalonyl-COA mutase small subunit (mutA)	65
Corynebacterium glutamicum	YP_225813	methylmalonyl-CoA mutase large subunit (mutB)	66
Rhodococcus erythropolis	YP_002766535	methylmalonyl-CoA mutase small subunit (mutA)	67
Rhodococcus erythropolis	YP_002766536	methylmalonyl-CoA mutase large subunit (mutB)	68
Porphyromonas gingivalis	NP_905776	methylmalonyl-CoA mutase small subunit (mutA)	69
Porphyromonas gingivalis	NP_905777	methylmalonyl-CoA mutase large subunit (mutB)	70

TABLE B

[0193] In one aspect, the cell comprises one or more polynucleotides encoding polypeptide(s) comprising an amino acid sequence at least about 80% identical (e.g., 85%, 90%, 95%, or 100% identical) to the amino acid sequences set forth in SEQ ID NO: 3, 4, and/or 28. The cell can comprise polynucleotides encoding a methylmalonyl-CoA mutase, a propionyl-CoA carboxylase, or both. transferase domain from *Mycobacterium* mycocerosic acid synthase. Acyl transferase domains from larger fatty acid synthase enzymes, such as *Mycobacterium* mycocerosic acid synthase, act upon methylmalonyl-CoA in the absence of other enzymatic domains of the larger synthase. Optionally, the acyl transferase lacks polyketide synthesis activity. By "polyketide synthesis activity" is meant enzymatic activity, other than acyl transferase activity, that catalyzes the production of polyketides in a host cell, such as, for example and without limitation, acyltransferase activity, ketoacyl synthase activity, ketoacyl reductase activity, dehydratase activity, enoyl reductase activity, acyl carrier protein activity, and thioesterase activity.

[0196] Alternatively, or in addition, in certain embodiments, a 3-ketoacyl-ACP synthase domain, such as, for example, a domain from a polyketide synthase or a mycocerosic acid synthase, is added to the fatty acid synthase of the host cell. In certain embodiments, the host cell (e.g., microbe) is engineered to include both acyl transferase and 3-ketoacyl-ACP synthase domains that can recognize methylmalonyl-CoA. In addition, in certain embodiments, genes for the endogenous acyl transferase and/or 3-ketoacyl-ACP synthase activities can be attenuated (e.g., deleted) to minimize the amount of malonyl-CoA incorporation in fatty acid synthesis. [0197] In certain embodiments, the invention includes use of a thioesterase to specify the chain length of the fatty acid, such as, for example, to produce medium-chain fatty acids. In certain embodiments, the host cell further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a thioesterase. In one aspect, the host cell (e.g., bacteria) is engineered to produce a thioesterase that assists in the production of medium-chain branchedchain fatty acids. Alternatively, the host cell is engineered to produce (or overproduce) a thioesterase that assists in the production of long-chain branched-chain fatty acids. Exemplary thioesterases include, for example, the mallard uropygial gland thioesterase, the California bay thioesterase, the rat mammary gland thioesterase II, E. coli TesA, the Cuphea wrightii thioesterase, and other thioesterases suitable for production of the desired chain-length fatty acids.

[0198] Optionally, the cell is modified to produce (or increase the production of) branched acyl-CoA, which is a substrate for elongase in the production of long chain fatty acid. In this regard, in an exemplary embodiment of the invention, the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid encoding a coenzyme-A synthetase, which converts branched-chain fatty acid to branched acyl-CoA. Examples of coenzyme-A synthetases include, but are not limited to, the coenzyme-A synthetase from Leishmania braziliensis (GenBank Accession No. XP 001561614), and the coenzyme-A synthetase from Escherichia coli (GenBank Accession No. YP_541006). Optionally, the cell comprises exogenous or overexpressed polynucleotide(s) comprising a nucleic acid sequence encoding an elongase to increase the length of the carbon backbone. Elongases are enzyme complexes that exhibit 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA reductase, 3-hydroxyacyl-CoA dehydratase, and enoyl-CoA reductase activities, and generally utilize malonyl-CoA as an extension unit for extending the carbon chain. When a methyl-malonyl CoA is used as an extension unit by the enzyme complex, additional methyl branches are introduced at even carbon positions. Exemplary elongases include, but are not limited to, elongases comprising the one or more of the following subunits: Saccharomyces cerevisiae 3-ketoacyl-CoA synthase (Gen-Bank Accession No. NP_013476), 3-ketoacyl-CoA reductase (GenBank Accession No. NP_009717), 3-hydroxyacyl-CoA dehydratase (GenBank Accession No. NP_012438) and enoyl-CoA reductase (GenBank Accession No. NP_010269); and Arabidopsis thaliana col 3-ketoacyl-CoA synthase (GenBank Accession No. NP_849861), 3-ketoacylCoA reductase (GenBank Accession No. NP_564905), 3-hydroxyacyl-CoA dehydratase (GenBank Accession No. NP_193180), and enoyl-CoA reductase (GenBank Accession No. NP_191096).

[0199] Any suitable cell or organism, such as, for example, bacterial cells and other prokaryotic cells, and yeast cells, can be used in the context of the invention. In one aspect, the invention relates to cells, such as *Escherichia* cells (e.g., *E*. coli), which naturally produce Type II fatty acid synthase and/or do not naturally produce scattered branched-chain fatty acid (i.e., branched-chain fatty acid comprising a methyl branch on one or more even numbered carbons). These cells are engineered to produce the branched-chain fatty acids as described herein. Alternatively, the cell naturally produces branched-chain fatty acid and is modified as described herein to produce higher levels of branched-chain fatty acid (or different proportions of different types of branched-chain fatty acid) compared to an unmodified cell. In certain embodiments, fatty acid is manufactured using bacteria known to make the methylmalonyl-CoA precursor, such as Streptomyces, Mycobacterium or Corynebacterium. These bacteria are, in one aspect, engineered to produce (i) an acyl transferase to increase carbon flux to methylmalonyl-ACP that is incorporated in the fatty acid synthesis pathway and/or (ii) a thioesterase to control the chain length.

[0200] Exemplary bacteria that are suitable for use in the invention include, but are not limited to, Spirochaeta aurantia, Spirochaeta littoralis, Pseudomonas maltophilia, Pseudomonas putrefaciens, Xanthomonas campestris, Legionella anisa, Moraxella catarrhalis, Thermus aquaticus, Flavobacterium aquatile, Bacteroides asaccharolyticus, Bacteroides fragilis, Succinimonas amylolytica, Desulfovibrio africanus, Micrococcus agilis, Stomatococcus mucilaginosus, Planococcus citreus, Marinococcus albusb, Staphylococcus aureus, Peptostreptococcus anaerobius, Ruminococcus albus, Sarcina lutea, Sporolactobacillus inulinus, Clostridium thermocellum, Sporosarcina ureae, Desulfotomaculum nigrificans, Listeria monocytogenes, Brochothrix thermosphacta, Renibacterium salmoninarum, Kurthia zopfii, Corvnebacterium aquaticum, Arthrobacter radiotolerans, Brevibacterium fermentans, Propionibacterium acidipropionici, Eubacterium lentum, Cytophaga aquatilis, Sphingobacteriuma multivorumb, Capnocytophaga gingivalis, Sporocytophaga myxococcoides, Flexibacter elegans, Myxococcus coralloides, Archangium gephyra, Stigmatella aurantiaca, Oerskovia turbata, Escherichia coli, Bacillus subtilis, Salmonella typhimurium, Corvnebacterium glutamicum, Streptomyces coelicolor, Streptomyces lividans, Clostridium thermocellum and Saccharomonospora viridis.

[0201] In one aspect, the fatty acid produced by the inventive cell comprises about 80% to about 100% (wt.) (e.g., about 85%, about 90%, or about 95%) linear and branched-chain fatty acid. Of the linear and branched-chain fatty acids produced by the cell, approximately 1% to approximately 95% or more (e.g., 5%, 10%, 15%, 20%, 30%, 50%, 60%, 75%, 85%, or 100%) is branched-chain fatty acid comprising a methyl group on one or more even carbons. In some embodiments, the cell does not produce, or produces only trace amounts of, fatty acid comprising methyl branching on odd numbered carbons. By "trace amount" is meant less than 1% of the total fatty acid content produced by the cell. Alternatively or in addition, in one aspect, the mixture of fatty acids produced by the cell comprises no more than 50% end-terminal-branched fatty acid (i.e., fatty acids that contain branched.

ing on a carbon atom that is within 40% of the non-functionalized terminus of the longest carbon chain). Optionally, the inventive cell is modified to preferentially produce branchedchain fatty acid with desired chain lengths, e.g., about six to about 18 carbons or more in the carbon backbone (not including the methyl branch(es)). In some embodiments, the host cell preferentially generates long chain fatty acid, mediumlength chain fatty acid, short chain fatty acid, or a desired combination fatty acids (e.g., 60%, 70%, 80%, 85%, 90%, 95% or more of the branched-chain fatty acid produced by the cell comprises the desired number of carbons). In addition, in certain embodiments, the engineered cells tolerate large amounts of branched-chain fatty acid in the growth medium, plasma membrane, or lipid droplets, and/or produce branched-chain fatty acid more economically than an unmodified cell by, e.g., using a less expensive feedstock, requiring less fermentation time, and the like.

[0202] The polynucleotide(s) encoding one or more polypeptides that catalyze the reaction(s) for producing branched-chain fatty acid may be derived from any source. Depending on the embodiment of the invention, the polynucleotide is isolated from a natural source such as bacteria, algae, fungi, plants, or animals; produced via a semi-synthetic route (e.g., the nucleic acid sequence of a polynucleotide is codon-optimized for expression in a particular host cell, such as E. coli); or synthesized de novo. In certain embodiments, it is advantageous to select an enzyme from a particular source based on, e.g., the substrate specificity of the enzyme, the type of branched-chain fatty acid produced by the source, or the level of enzyme activity in a given host cell. In one aspect of the invention, the enzyme and corresponding polynucleotide are naturally found in the host cell and overexpression of the polynucleotide is desired. In this regard, in some instances, additional copies of the polynucleotide are introduced in the host cell to increase the amount of enzyme available for fatty acid production. Overexpression of a native polynucleotide also is achieved by upregulating endogenous promoter activity, or operably linking the polynucleotide to a more robust promoter. Exogenous enzymes and their corresponding polynucleotides also are suitable for use in the context of the invention, and the features of the biosynthesis pathway or end product can be tailored depending on the particular enzyme used. If desired, the polynucleotide(s) is isolated or derived from the branched-chain fatty acid-producing organisms described herein.

[0203] In certain embodiments, the cell produces an analog or variant of a polypeptide described herein. Amino acid sequence variants of the polypeptide include substitution, insertion, or deletion variants, and variants may be substantially homologous or substantially identical to the unmodified polypeptides as set out above. In certain embodiments, the variants retain at least some of the biological activity, e.g., catalytic activity, of the polypeptide. Other variants include variants of the polypeptide that retain at least about 50%, preferably at least about 75%, more preferably at least about 90%, of the biological activity.

[0204] Substitution variants typically exchange one amino acid for another at one or more sites within the protein. Substitutions of this kind can be conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine.

[0205] In some instances, the recombinant cell comprises an analog or variant of the exogenous or overexpressed polynucleotide(s) described herein. Nucleic acid sequence variants include one or more substitutions, insertions, or deletions, and variants may be substantially homologous or substantially identical to the unmodified polynucleotide. Polynucleotide variants or analogs encode mutant enzymes having at least partial activity of the unmodified enzyme. Alternatively, polynucleotide variants or analogs encode the same amino acid sequence as the unmodified polynucleotide. Codon-optimized sequences, for example, generally encode the same amino acid sequence as the parent/native sequence but contain codons that are preferentially expressed in a particular host organism.

[0206] A polypeptide or polynucleotide "derived from" an organism contains one or more modifications to the native amino acid sequence or nucleotide sequence and exhibits similar, if not better, activity compared to the native enzyme (e.g., at least 70%, at least 80%, at least 90%, at least 95%, at least 100%, or at least 110% the level of activity of the native enzyme). For example, enzyme activity is improved in some contexts by directed evolution of a parent/native sequence. Additionally or alternatively, an enzyme coding sequence is mutated to achieve feedback resistance. Thus, in one or more embodiments of the invention, the polypeptide encoded by the exogenous polynucleotide is feedback resistant and/or is modified to alter the activity of the native enzyme. A polynucleotide "derived from" a reference polynucleotide encompasses, but is not limited to, a polynucleotide comprising a nucleic acid sequence that has been codon-optimized for expression in a desired host cell.

[0207] The cell of the invention may comprise any combination of polynucleotides described herein to produce branched-chain fatty acid comprising a methyl branch on one or more even number carbons. For example, the invention provides a cell comprising (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase, wherein the polynucleotide(s) are expressed and the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s). Recombinant cells can be produced in any suitable manner to establish an expression vector within the cell. The expression vector can include the exogenous polynucleotide operably linked to expression elements, such as, for example, promoters, enhancers, ribosome binding sites, operators and activating sequences. Such expression elements may be regulatable, for example, inducible (via the addition of an inducer). Alternatively or in addition, the expression vector can include additional copies of a polynucleotide encoding a native gene product operably linked to expression elements. Representative examples of useful promoters include, but are not limited to: the LTR (long terminal 35 repeat from a retrovirus) or SV40 promoter, the E. coli lac,

tet, or trp promoter, the phage Lambda P_L promoter, and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. In one aspect, the expression vector also includes appropriate sequences for amplifying expression. The expression vector can comprise elements to facilitate incorporation of polynucleotides into the cellular genome. Introduction of the expression vector or other polynucleotides into cells can be performed using any suitable method, such as, for example, transformation, electroporation, microinjection, microprojectile bombardment, calcium phosphate precipitation, modified calcium phosphate precipitation, cationic lipid treatment, photoporation, fusion methodologies, receptor mediated transfer, or polybrene precipitation. Alternatively, the expression vector or other polynucleotides can be introduced by infection with a viral vector, by conjugation, by transduction, or by other any other suitable method.

[0208] Cells, such as bacterial cells, containing the polynucleotides encoding the proteins described herein can be cultured under conditions appropriate for growth of the cells and expression of the polynucleotides. Cells expressing the protein can be identified by any suitable methods, such as, for example, by PCR screening, screening by Southern blot analysis, or screening for the expression of the protein. In certain embodiments, cells that contain the polynucleotide(s) can be selected by including a selectable marker in the DNA construct, with subsequent culturing of cells containing a selectable marker gene, under conditions appropriate for survival of only those cells that express the selectable marker gene. The introduced DNA construct can be further amplified by culturing genetically modified cells under appropriate conditions (e.g., culturing genetically modified cells containing an amplifiable marker gene in the presence of a concentration of a drug at which only cells containing multiple copies of the amplifiable marker gene can survive). Cells that contain and express polynucleotides encoding the exogenous proteins can be referred to herein as genetically modified cells. Bacterial cells that contain and express polynucleotides encoding the exogenous protein can be referred to as genetically modified bacterial cells.

[0209] Exemplary cells of the invention include E. coli BW25113 comprising pTrcHisA mmat and pZA31-accA1pccB, which was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE], and E. coli BL21 Star (DE3) comprising pTrcHisA Ec sbm So ce epi and pZA31 mmat which was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE]. The invention also includes variants or progeny of the cells described herein that retain the phenotypic characteristics of the recombinant microbe. A substantially pure monoculture of the cell described herein (i.e., a culture comprising at least 80% or at least 90% of a desired cell) also is provided.

[0210] Any cell culture conditions appropriate for growing a host cell and synthesizing branched-chain fatty acid is suitable for use in the inventive method. Addition of fatty acid

synthesis intermediates, precursors, and/or co-factors for the enzymes associated with branched-chain fatty acid synthesis to the culture is contemplated herein. In certain embodiments, the genetically modified cells (such as genetically modified bacterial cells) have an optimal temperature for growth, such as, for example, a lower temperature than normally encountered for growth and/or fermentation. For example, in certain embodiments, incorporation of branched-chain fatty acids into the membrane may increase membrane fluidity, a property normally associated with low growth temperatures. In addition, in certain embodiments, cells of the invention may exhibit a decline in growth at higher temperatures as compared to normal growth and/or fermentation temperatures as typically found in cells of the type.

[0211] The inventive method optionally comprises extracting branched-chain fatty acid from the culture. Fatty acids can be extracted from the culture medium and measured using any suitable manner. Suitable extraction methods include, for example, methods as described in: Bligh et al., A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol. 37:911-917 (1959). In certain embodiments, production of fatty acids in the culture supernatant or in the membrane fraction of recombinant cells can be measured. In this embodiment, cultures are prepared in the standard manner, although nutrients (e.g., 2-methylbutyrate, isoleucine) that may provide a boost in substrate supply can be added to the culture. Cells are harvested by centrifugation, acidified with hydrochloric or perchloric acid, and extracted with chloroform and methanol, with the fatty acids entering the organic layer. The fatty acids are converted to methyl esters, using methanol at 100° C. The methyl esters are separated by gas chromatography (GC) and compared with known standards of fatty acids (purchased from Larodan or Sigma). Confirmation of chemical identity is carried out by combined GC/mass spec, with further mass spec analysis of fragmented material carried out if necessary.

[0212] In one embodiment, the cell utilizes the branchedchain fatty acid as a precursor to make one or more other products. Products biosynthesized (i.e., derived) from branched-chain fatty acid include, but are not limited to, phospholipids, triglycerides, alkanes, olefins, wax esters, fatty alcohols, and fatty aldehydes. Some host cells naturally generate one or more products derived from branched-chain fatty acid; other host cells are genetically engineered to convert branched-chain fatty acid to, e.g., an alkane, olefin, wax ester, fatty alcohol, phospholipid, triglyceride, and/or fatty aldehyde. Organisms and genetic modifications thereof to synthesize products derived from branched-chain fatty acids are further described in, e.g., International Patent Publication Nos. WO 2007/136762, WO 2008/151149, and WO 2010/ 062480, and U.S. Patent Application Publication US 2010/ 0298612, all of which are hereby incorporated by reference in their entirety. In one aspect, the inventive method comprises extracting a product derived from branched-chain fatty acid (phospholipid, triglyceride, alkane, olefin, wax ester, fatty alcohol, and/or fatty aldehyde synthesized in the cell from branched-chain fatty acid) from the culture. Any extraction method is appropriate, including the extraction methods described in International Patent Publication Nos. WO 2007/ 136762, WO 2008/151149, and WO 2010/062480, and U.S. Patent Application Publication Nos. US 2010/0251601, US 20100242345, US 20100105963, and US 2010/0298612.

[0213] The inventive cell preferably produces more branched-chain fatty acid comprising a methyl branch on one

or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s). Methods of measuring fatty acid released into the fermentation broth or culture media or liberated from cellular fractions are described herein. Branched-chain fatty acid production is not limited to fatty acid accumulated in the culture, however, but also includes fatty acid used as a precursor for downstream reactions yielding products derived from branched-chain fatty acid. Thus, products derived from branched-chain fatty acid (e.g., phospholipids, triglycerides, fatty alcohols, olefins, wax esters, fatty aldehydes, and alkanes) are, in some embodiments, surrogates for measuring branched-chain fatty acid production in a host cell. Methods of measuring fatty acid content in phospholipid in the cell membrane are described herein. Similarly, measurement of degradation products of branched-chain fatty acids also is instructive as to the amount of branched-chain fatty acid is produced in a host cell. Depending on the particular embodiment of the invention, the inventive cell produces at least 3%, at least 5%, at least 10%, at least 20%, at least 25%, or at least 50% more branched-chain fatty acid than an otherwise similar cell that does not comprise the polynucleotide(s).

[0214] The invention further provides a composition comprising the branched-chain fatty acids described herein. For example, the invention provides a composition comprising a branched-chain fatty acid comprising between 10-18 carbons in the carbon backbone, such as fatty acids comprising between 10 and 16 carbons (e.g., fatty acids comprising 10, 11, 12, 13, 14, 15, or 16 carbons), with branching on one or more even numbered carbons (e.g., C2, C4, C6, C8, C10, C12, C14, and/or C16). A composition comprising longer-chain fatty acid also is provided, such as a composition comprising between 19 and 22 carbons in the longest carbon chain. A composition comprising a combination of any of the fatty acids described herein also is provided (e.g., a composition comprising fatty acids of varying lengths and/or branch locations along the carbon backbone).

[0215] The following examples further describe and demonstrate embodiments within the scope of the invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the invention, as many variations thereof are possible without departing from the spirit and scope of the invention.

Example 1

Construction of Methylmalonyl-CoA Mutase Expression Vector

[0216] There are numerous genes annotated to encode the two subunits of methylmalonyl-CoA mutase. Janibacter sp. HTCC2649 encodes two such genes. Synthetic versions of these genes were prepared, with the codon usage altered to match that used by many E. coli genes (i.e., the coding sequence was codon-optimized for expression in E. coli). By analogy to other methylmalonyl-CoA mutase genes, these synthetic genes were named mutA (SEQ ID NO: 1) and mutB (SEQ ID NO: 2), corresponding to the MutA (SEQ ID NO: 3) and MutB (SEQ ID NO: 4) protein subunits. In the synthetic DNA, an extra three base pairs were added (encoding an alanine residue immediately after the initiation methionine) in mutA to facilitate introduction of an NcoI site. An XhoI restriction site was also placed after the coding sequence of mutB for insertion into the pBAD vector (Invitrogen). The NcoI/XhoI fragment was cloned into pBAD.

Example 2

Construction of Methylmalonyl-CoA Epimerase Expression Vector

[0217] There are numerous genes annotated to encode methylmalonyl-CoA mutase. One such gene is from Streptomyces sviceus. A synthetic gene can be constructed (SEQ ID NO: 5) using codon usage similar to E. coli genes and with EcoRI and Hind III sites flanking the coding region. An E. coli Shine-Dalgarno sequence can be added between the EcoRI site and the initiation codon for the epimerase gene. The predicted protein product is the same as the predicted protein product from the S. sviceus gene (SEQ ID NO: 6). The epimerase gene can be cloned into the pBAD-mutAB construct using the EcoRI and Hind III restriction sites (downstream of mutB) to form the pBAD-mutAB-epimerase gene plasmid. E. coli cultures can be grown at 27° C. after induction with arabinose and supplemented with hydroxycobalamin to achieve expression of functional methylmalonyl-CoA mutase and branched-chain fatty acid production.

Example 3

Construction of Propionyl-CoA Carboxylase Expression Vector

[0218] Nucleotide sequences (SEQ ID NO: 7 and SEQ ID NO: 8) encoding the two propionyl-CoA carboxylase subunits AccA1 (GenBank Accession NO. AF113603.1; SEQ ID NO: 9) and PccB (GenBank Accession No. AF113605.1; SEQ ID NO: 10)), respectively, from the Streptomyces coelicolor A3(2) propionyl-CoA carboxylase (Rodriguez E., Gramajo H., Microbiology. 1999 November; 145:3109-19), were codon-optimized for E. coli expression. A gene construct for expressing propionyl-CoA carboxylase was constructed with the following elements sequentially 1) P_{Llac0-1} promoter and operator plus T7 gene10 ribosomal binding site (SEQ ID NO: 11); 2) optimized accA1 (SEQ ID NO: 12); 3) three restriction site sequences including BgIII, NotI and XbaI and a T7 gene10 ribosome binding site (SEQ ID NO: 13); and 4) codon-optimized pccB (SEQ ID NO: 14). The synthesized DNA fragments were cloned into the XhoI and PstI sites of expression vector pZA31-MCS (Expressys, Ruelzheim, Germany), resulting in plasmid pZA31-accA1-pccB (SEQ ID NO: 15).

Example 4

Construction of Propionyl-CoA Synthetase Expression Vector

[0219] The *Salmonella enterica* propionyl-CoA synthetase gene, prpE, was amplified using PCR and the primers set forth in SEQ ID NO: 16 and SEQ ID NO: 17, and placed behind a Shine-Dalgarno sequence in the plasmid pZA31-accA1-pccB (SEQ ID NO: 15) using the restriction enzymes PstI and BamHI. Enhanced propionyl-CoA synthetase production is expected to increase synthetic flux to propionyl-CoA.

Example 5

Reduction of Propionylation of Propionyl-CoA Synthetase

[0220] In *S. enterica*, propionyl-CoA synthetase is subject to inhibition by propionylation at lysine 592 when propionyl-CoA levels accumulate. (Garrity et al, *J. Biol. Chem., Vol.*

282, Issue 41, 30239-30245, Oct. 12, 2007). Similar enzyme modulation may occur in other species, although the position of the modified lysine may be different. Several strategies to overcome this inhibition will be tested and compared. First, the propionyl-CoA synthetase gene will be mutated to change the coding capacity from lysine (at the site of propionylation) to arginine or other amino acids to prevent propionylation. Second, a source of resveratrol or other sirtuin activators will be introduced into the culture medium to activate sirtuin to depropionylate PrpE. Third, the endogenous N-acetyltransferase enzyme responsible for the propionylation reaction will be knocked out. For example, if working with S. enterica, pat could be deleted. As another example, if working with B. subtilis, acuA could be deleted. Fourth, the flux of propionyl-CoA into fatty acid synthesis will be increased by increasing propionyl-CoA carboxylase activity to keep free propionyl-CoA levels down. Fifth, the sirtuin activity will be increased, thus increasing deacetylation of propionyl-CoA carboxylase. For example, the S. enterica cobB expression could be increased.

Example 6

Creation of an Expression Vector Comprising the Coding Sequence of the MMAT (Methylmalonyl-CoA Acyl Transferase) Domain from *Mycobacterium* Mycocerosic Acid Synthase (MAS).

[0221] *Mycobacterium* MAS is a multifunctional protein that catalyzes the synthesis of mycocerosic acid and that contains a domain with MMAT activity. The MMAT domain (amino acids 508-890) (SEQ ID NO: 18) of MAS from *Mycobacterium bovis* BCG (YP_979046) (SEQ ID NO: 19) was codon optimized for *E. coli* expression (SEQ ID NO: 20). The optimized sequence was synthesized and cloned into vector pTrcHisA (Invitrogen) between the BamHI and HindIII sites. The resulting construct fused the MMAT domain with the His tag leader peptide encoded by the vector. The expression vector was introduced into a recombinant *E. coli* host that produces methylmalonyl-CoA. MMAT activity catalyzes the formation of methylmalonyl-ACP, which subsequently can be incorporated into the type II fatty acid synthesis pathway to form methyl branches at even positions of the fatty acid chain.

Example 7

Method for Detecting Acyl-CoA

[0222] This example describes an exemplary method for detecting and quantifying an acyl-CoA (e.g., methylmalonyl-CoA) in a sample, such as a sample of recombinant host cells producing branched-chain fatty acid.

[0223] A stable, labeled (deuterium) internal standard-containing master mix was prepared comprising d_3 -3-hydroxymethylglutaryl-CoA (200 µl of 50 µg/ml stock in 10 ml of 15% trichloroacetic acid). An aliquot (500 µl) of the master mix was added to a 2 ml tube. Silicone oil (AR200; Sigma catalog number 85419; 800 µl) was layered onto the master mix. An *E. coli* culture (800 µl) was layered gently on top of the silicone oil, and the resulting sample was subjected to centrifugation at 20,000×g for five minutes at 4° C. in an Eppendorf 5417 C centrifuge. A portion (300 µl) of the master mix-containing layer was transferred to an empty tube and frozen on dry ice for 30 minutes.

[0224] The acyl-CoA content of samples was determined using HPLC/MS/MS. Individual coenzyme-A standards

(propionyl-CoA, methylmalonyl-CoA, succinyl-CoA, malonyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA) were purchased from Sigma Chemical Company (St. Louis, Mo.) and prepared as 500 µg/ml stocks in methanol. The analytes were pooled, and standards with all of the analytes were prepared by dilution with 15% trichloroacetic acid. Standards for regression were prepared by transferring 500 µl of the working standards to an autosampler vial containing 10 µL of the 50 µg/ml internal standard. Sample peak areas (or heights) were normalized to the stable-labeled internal standard (d₃-3-hydroxymethylglutaryl-CoA, Cayman Chemical Co.). Samples were assayed by HPLC/MS/MS on a Sciex API5000 mass spectrometer in positive ion Turbo Ion Spray. Separation was carried out by reversed-phase high performance liquid chromatography using a Phenomenex Onyx Monolithic C18 column $(2 \times 50 \text{ mm})$ and mobile phases of (1)5 mM ammonium acetate, 5 mM dimethylbutylamine, 6.5 mM acetic acid and (2) acetonitrile with 0.1% formic acid, with the gradient set forth in Table C.

TABLE C

Time	Mobile Phase A (%)	Mobile Phase B (%)
0 min	97.5	2.5
1.0 min	97.5	2.5
2.5 min	91.0	9.0
5.5 min	45	55
6.0 min	45	55
6.1 min	97.5	2.5
7.5 min	_	—
9.5 min	End Run	

[0225] The conditions on the mass spectrometer were: DP 160, CUR 30, GS1 65, GS2 65, IS 4500, CAD 7, TEMP 650 C. The transitions set forth in Table D were used for the multiple reaction monitoring (MRM).

TABLE D

Compound	Precursor Ion*	Product Ion*	Collision Energy	CXP
n-Propionyl-CoA	824.3	317.2	41	32
Methylmalonyl-CoA	868.1	317.1	42	31
Succinyl-CoA	868.2	361.1	49	38
Malonyl-CoA	854.2	347.2	41	36
Isobutyryl-CoA	838.3	345.2	45	34
Isovaleryl-CoA	852.2	345.2	45	34
Acetyl-CoA	810.3	303.2	43	30
d3-3-Hydroxymethylglutaryl-	915.2	408.2	49	13

*Energy (Volts) for MS/MS analysis

Example 8

Analysis of Fatty Acids Produced by Host Cells

[0226] This example illustrates a method of analyzing branched-chain fatty acids produced by cells (e.g., recombinant microbes).

[0227] Cell cultures (approximately 1.5 ml) were frozen in 2.0 ml glass vials and stored at -20° C. until ready for processing. Samples were chilled on dry ice for 30 minutes and lyophilized overnight (-16 hours) until dry. A 10 µl aliquot of internal standard (glyceryl trinonadecanoate (Sigma catalog number T4632-1G)) was added to each vial, followed by 400

 μ L of 0.5 N NaOH (in methanol). The vial was capped and vortexed for 10 seconds. Samples were incubated at 65°C. for 30-50 minutes. Samples were then removed from the incubator, and 500 µl of boron trifluoride reagent (Aldrich catalog number B1252) was added. The samples were vortexed again for 10 seconds, incubated at 65° C. for 10-15 minutes, and cooled to room temperature (approximately 20 minutes). Hexane (350 µl) was added, and the samples were again vortexed for 10 seconds. If the phases did not separate, 50-100 µl of saturated salt solution (5 g NaCl to 5 ml water) was added, and the sample was vortexed for 10 seconds. At least 100 µl of the top hexane layer was placed into the gas chromatography vial. The vial was capped and stored at 4° C. until analyzed by gas chromatography.

[0228] Gas chromatography was performed as described in Table E below. A bacterial acid methyl ester standard (Sigma catalog number 47080-U) and a fatty acid methyl ester standard (Sigma catalog number 47885-U) were used to identify peaks in samples. A sample check standard using glyceryl tripalmitate (Sigma catalog number T5888-1G) was used to confirm esterification of samples. A blank standard (internal standard only) was used to assess background noise.

TABLE E

			L			
Gas Chromatograph	HP 589	HP 5890 GC Series II				
Detector	FID 360)° C. 40 m	l/min Hydroge	n,		
	400 ml/	min Air				
Carrier Gas	Helium					
Quantitative	GC Che	mstation 2	A.09.03. (Agile	ent)		
Program						
Column	VF-5 m	s 15 M × 0	0.150 mm × 0.3	15 μm		
	Varian c	Varian catalog number CP9035				
Injection Liner	Goosen	eck (with	glass wool pac	king)		
Injector	HP 767.	3				
Injection Syringe	$10 \mu L$					
Injection Mode	Split 25	:1				
Injection volume	4 μL (Pl	lunger Spe	eed = fast; 5 sau	nple pump	os)	
Pre Injection Solvent	2 sampl	es				
Washes						
Post Injection	3 for bo	th acetone	and hexane			
Solvent Washes						
Injector Temperature	325° C.					
Total Program Time	16 minu	ites				
	Initial	Initial		Final	Final	
	Temp.	Time	Rate	Temp	Time	
	(° C.)	(min)	(° C./min)	(° C.)	(min)	
Thermal Program	90	0.75	20.0	325	1.0	
			25.0	350	2.5	

Example 9

Construction of Expression Vectors Comprising S. Cinnamonensis mutA and mutB and S. sviceus epi.

[0229] A synthetic DNA construct was generated comprising *Streptomyces cinnamonensis* mutA (SEQ ID NO: 24) (GenBank Accession No. AAA03040.1), *S. cinnamonensis* mutB (SEQ ID NO: 25) (GenBank Accession No. AAA03041.1), and a *Streptomyces sviceus* ATCC 29083 methylmalonyl-CoA epimerase gene (SEQ ID NO: 26) (GenBank Accession No. ZP_06919825.1). The genes were codon-optimized for expression in *E. coli*. An EcoRI restriction site was placed on the 5' end, and a BamHI site was placed on the 3' end of the synthesized gene construct. These sites were subsequently used for cloning into a pZA31 vector (Expressys, Ruelzheim, Germany). A ribosome binding

sequence and spacer was placed before the mutA and epimerase gene start codons (SEQ ID NO: 27). The plasmid was designated pZA31 mutAB Ss epi.

Example 10

Construction of Expression Vectors Comprising Sbm and malE/sbm Polynucleotides

[0230] Sleeping beauty mutase (Sbm) (also known as methylmalonyl-CoA mutase (MCM)) is an enzyme that catalyzes the rearrangement of succinyl-CoA to L-methylmalonyl-CoA. The enzyme is vitamin B12 (cobalamin) dependent. Methylmalonyl-CoA is a building block for scattered branch-chain fatty acids (sBCFA) (i.e., branched-chain fatty acid comprising a methyl branch on one or more even number carbons of the fatty acid backbone). Plasmids comprising a polynucleotide encoding Sbm were generated to introduce multiple copies of the Sbm coding sequence, downstream of a regulatable promoter, into *E. coli* host cells.

[0231] A polynucleotide was synthesized based on the sequence of E. coli sbm (SEQ ID NO: 28) (GenBank Accession No. NP_417392.1) from E. coli strain MG1655. The nucleic acid sequence was codon-optimized to match the pattern of highly expressed E. coli genes while maintaining the native amino acid sequence of the enzyme. The generated nucleic acid sequence is set forth in SEQ ID NO: 29. A BamHI and an XbaI site were added at the 5' end of the synthetic Sbm coding sequence with the sequence GGATC-CATGTCTAGA (SEQ ID NO: 49) adjacent to the ATG translation initiation sequence. A SacI restriction site sequence was added to the 3' end of the synthetic Sbm coding sequence. The gene was synthesized, cloned into a pUC57 vector, and sequenced (GenScript, Piscataway, N.J.). The synthetic sbm was then released from pUC57 by restriction enzymes BamHI and Sad, and sub-cloned into plasmid pTrcHisA (Invitrogen, Carlsbad, Calif.) in frame with the poly-histidine sequence (GenScript, Piscataway, N.J.). The plasmid was designated pTrcHisA Ec sbm. The sequence was confirmed by sequencing (GenScript, Piscataway, N.J.). The recombinant protein encoded by the sequence contained a poly-histidine sequence (Met-Gly-Gly-Ser-His-His-His-His-His-Gly-Met-Ala-Ser-Met-Thr-Gly-Gly-Gln-Gln-Met-Gly-Arg-Thr-Asp-Asp-Asp-Asp-Lys-Asp-Arg-Trp-Gly-Ser (SEQ ID NO: 50)) and a full-length native Sbm amino acid sequence. [0232] A recombinant methylmalonyl-CoA mutase has been reported to be insoluble in E. coli (Korotkova, N., and M. E. Lidstrom. J. Biological Chemistry 279: 13652-8 (2004)). Translation fusion with maltose-binding protein (MBP, encoded by malE) prevents aggregation of recombinant proteins (Kapust, R. B., and D. S. Waugh. Protein Science 8: 1668-74 (1999)). A recombinant construct was generated by inserting malE upstream of sbm. The malE polynucleotide was synthesized based on the sequence of maltose binding protein (E. coli MG1655 GenBank NC_000913.2 (Gen-Script, Piscataway, N.J.)). A BamHI site was placed adjacent to the translation initiation codon of malE, and an XbaI site was placed immediately 5' to the stop codon of the malE sequence (SEQ ID NO: 30). Also, one nucleotide was changed (T438 to C438) to remove a restriction site recognition sequence for BgIII.

[0233] The MalE coding sequence (SEQ ID NO: 30) was first synthesized and cloned into a pUC57 plasmid. After confirming its sequence, the malE polynucleotide was released using restriction enzymes BamHI and XbaI. The

released malE was then re-cloned into plasmid pTrcHisA Ec sbm at BamHI and XbaI sites (GenScript, Piscataway, N.J.). The resulting plasmid was designated pTrcHisA Ec malE Ec sbm. The recombinant protein encoded by pTrcHisA Ec malE Ec sbm contains three peptides: the poly-histidine tag, full-length MBP, and full-length Sbm.

Example 11

Construction of a Recombinant Expression Vector Comprising a Polynucleotide Encoding the Methylmalonyl-CoA Acyl Transferase (MMAT) Domain from *Mycobacterium* Mycocerosic Acid Synthase (MAS).

[0234] Mycobacterium MAS is a multifunctional protein containing MMAT activity that catalyzes the synthesis of mycocerosic acid. The nucleic acid sequence encoding the MMAT domain (amino acids 508-890) (SEQ ID NO: 18) of MAS from Mycobacterium bovis BCG (GenBank Accession No.YP_979046) (SEQ ID NO: 19) was codon-optimized for E. coli expression (SEQ ID NO: 20). The optimized sequence, designated "mmat," was synthesized and cloned into vector pTrcHisA (Invitrogen) between the BamHI and HindIII sites. The resulting construct fused the MMAT domain with the poly-histidine tag encoded by the vector. The expression vector (pTrcHisA mmat) was introduced into a recombinant E. coli host that produces methylmalonyl-CoA. MMAT activity catalyzes the formation of methylmalonyl-ACP, which is incorporated by Type II fatty acid synthase into fatty acid, forming methyl branches at even positions of the fatty acid chain.

[0235] An expression vector encoding Mycobacterium bovis BCG fused to a poly-histidine tag also was generated. The pTrcHisA mmat plasmid DNA described above was amplified by PCR using oligonucleotides synthesized to include 5'-KpnI (SEQ ID NO: 31) and 3'-HindIII restriction sites (SEQ ID NO: 32) (Integrated DNA Technologies, Inc., Coralville, Iowa). PCR was run on samples having $1 \mu l (2 ng)$ pTrcHisA mmat DNA, 1.5 µl of a 10 µM stock of each primer, 5 µl of 10× Pfx reaction mix (Invitrogen Carlsbad, Calif.), 0.5 µl of Pfx DNA polymerase (1.25 units), and 41 µl of water. PCR conditions were as follows: the samples were initially incubated at 95° C. for three minutes, followed by 30 cycles at 95° C. for 30 seconds (strand separation), 58° C. for 30 seconds (primer annealing), and 68° C. primer extension for 1.5 minutes. Following the cycles, the samples were incubated for 10 minutes at 68° C., and the samples were then held at 4° C.

[0236] The PCR products were purified using a QIAquick® PCR Purification Kit (Qiagen), digested with restriction enzymes KpnI and HindIII and ligated (Fast-Link Epicentre Biotechnologies, Madison, Wis.) with KpnI/HindIII-digested pZA31MCS (Expressys, Ruelzheim, Germany). The ligation mix was used to transform *E. coli* DHS α^{TM} (Invitrogen Carlsbad, Calif.). Isolated colonies were screened by PCR using a sterile pipette tip stab as an inoculum into a reaction tube containing only water, followed by addition of the remaining PCR reaction cocktail (AccuPrimeTM SuperMixII, Invitrogen Carlsbad, Calif.) and primers as described above.

[0237] Recombinant plasmids were isolated and purified using the QIAPrep® Spin Miniprep Kit (Qiagen) and characterized by restriction enzyme digestion (DraI, KpnI and HindIII from New England Biolabs, Beverly, Mass.). The

plasmids were subsequently used to transform BW25113 (*E. coli* Genetics Stock Center, New Haven, Conn.) made competent using the calcium chloride method. Transformants were selected on Luria agar plates containing 34 µg/ml chloramphenicol. Plasmid DNA was isolated and purified using the QIAfilter[™] Plasmid Midi Kit (Qiagen). DNA sequencing confirmed that the insert was mmat (SEQ ID NO: 34). The resulting plasmid incorporating a poly-histidine tag was designated pZA31 mmat.

Example 12

Method of Generating a Recombinant Host Cell Comprising an Exogenous Polynucleotide Encoding a Propionyl-CoA Carboxylase and an Exogenous Polynucleotide Encoding a Methylmalonyl-CoA Acyl Transferase (MMAT) Domain from *Mycobacterium* Mycocerosic Acid Synthase (MAS).

[0238] This example describes an exemplary method for making a cell comprising an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of methylmalonyl-CoA to methylmalonyl-ACP. The method entails co-transduction of *E. coli* with plasmids containing a propionyl-CoA carboxylase gene from *Streptomyces coelicolor* and a gene encoding a MMAT domain from *Mycobacterium* MAS.

[0239] *E. coli* BW25113 cells (*E. coli* Genetic Stock Center, New Haven, Conn.) were made chemically competent for plasmid DNA transformation by a calcium chloride method. Actively growing 50 ml *E. coli* cultures were grown to an optical density (at 600 nm) of ~0.4. Cultures were quickly chilled on ice, and the bacteria were recovered by centrifugation at 2700×g for 10 minutes. The supernatant was discarded and pellets were gently suspended in 30 ml of an ice-cold 80 mM MgCl₂, 20 mM CaCl₂ solution. Cells were again recovered by centrifugation at 2700×g for 10 minutes. The supernatant was discarded and pellets were gently resuspended in 2 ml of an ice-cold 0.1 M CaCl₂ solution.

[0240] Cells were transformed on ice in pre-chilled 14 ml round-bottom centrifuge tubes. Approximately 25 ng of each of pTrcHisA mmat and pZA31-accA1-pccB (described above) was incubated on ice with 100 µl of competent cells for 30 minutes. The cells were heat shocked at 42° C. for 90 seconds and immediately placed on ice for two minutes. Pre-warmed SOC medium (500 µl; Invitrogen, Carlsbad, Calif.) was added and the cells allowed to recover at 37° C. with 225 rpm shaking. A portion (50 µl) of the transformed cell mix was spread onto selective LB agar 100 mg/ml ampicillin and 34 mg/ml chloramphenicol plates to select for cells carrying the pTrcHisA mmat and pZA31/32-accA1-pccB plasmids. Individual colonies were picked from each plate and streaked onto LB agar (with ampicillin and chloramphenicol) to confirm the antibiotic resistance phenotype. Restriction endonuclease digestion analysis of isolated plasmid DNA with HaeII verified the plasmid DNA pool for each strain. A sample of E. coli BW25113 comprising pTrcHisA mmat and pZA31-accA1-pccB was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the

Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE].

Example 13

Construction of an Expression Vector Encoding Sorangium Cellulosum So ce 56 Methylmalonyl-CoA Epimerase

[0241] A *S. cellulosum* methylmalonyl-CoA epimerase synthetic gene (So ce epi) was designed and synthesized (SEQ ID NO: 37). The coding sequence was codon-optimization for expression in *E. coli* and modified to remove restriction sites (GenScript, Piscataway, N.J.). The nucleic acid sequence was flanked with a SacI site and a synthetic ribosome binding site from the pBAD vector (Invitrogen, Carlsbad, Calif.) adjacent to the translation initiation sequence (SEQ ID NO: 39). The synthetic gene was cloned as a SacI/PstI fragment into pTrcHisA Ec sbm and pTrcHisA Ec malE Ec sbm, with the resulting plasmids designated as pTrcHisA Ec sbm So ce epi and pTrcHisA Ec malE Ec sbm So ce epi, respectively.

Example 14

Construction of an Expression Vector Encoding Kribbella Flavida DSM 17836 Methylmalonyl-CoA Epimerase

[0242] A *K. flavida* methylmalonyl-CoA epimerase gene (Kf epi) was designed and synthesized (SEQ ID NO: 35). The coding sequence was optimized for expression in *E. coli* and restriction sites were removed (GenScript, Piscataway, N.J.). The gene was flanked with a Sad site and a synthetic ribosome binding site from the pBAD vector adjacent to the translation initiation sequence (SEQ ID NO: 39). The synthetic gene was cloned as a SacI/PstI fragment into pTrcHisA Ec sbm and pTrcHisA Ec malE Ec sbm. The resulting plasmids were designated pTrcHisA Ec sbm Kf epi and pTrcHisA Ec malE Ec sbm Kf epi, respectively.

Example 15

Production of Host Cells Producing Branched-Chain Fatty Acid

[0243] This example describes the production of branchedchain fatty acid using a recombinant host cell (e.g., *E. coli*) expressing polynucleotides encoding a propionyl-CoA carboxylase or a methylmalonyl-CoA mutase and a methylmalonyl-CoA epimerase, in some instances in conjunction with a polynucleotide encoding an acyl transferase and/or thioesterase.

[0244] It is useful to have the capacity to tailor the fatty acid chain length. Branched fatty acids of different lengths have different physical properties suitable for different commercial applications. To demonstrate the capacity to tailor the chain length of branched fatty acids, *E. coli* 'TesA (Cho, H., and J. E. Cronan, Jr. *J. Biological Chemistry* 270: 4216-9 (1995)) was incorporated into expression vectors described above and inserted into host cells. To create a pTrc Ec 'tesA expression vector, a truncated *E. coli* tesA ('tesA) cDNA (SEQ ID NO: 40) was created by PCR amplification of the *E. coli* tesA gene (GenBank Accession No. L06182). A 5' primer (SEQ ID NO: 41) was designed to anneal after the 26th codon of tesA, modifying the 27th codon from an alanine to a

methionine and creating a NcoI restriction site. A 3' primer (SEQ ID NO: 43) incorporating a BamHI restriction site was designed. PCR was performed with 50 µl of Pfu Ultra II Hotstart 2× master mix (Agilent Technologies, Santa Clara, Calif.), 1 µl of a mix of the two primers (10 µmoles of each), 1 µl of E. coli BW25113 genomic DNA, and 48 µl of water. PCR began with a two minute incubation at 95° C., followed by 30 cycles of 20 seconds at 95° C. for denaturation, 20 seconds for annealing at 58° C., and 15 seconds at 72° C. for extension. The sample was incubated at 72° C. for three minutes and then held at 4° C. The PCR product (Ec 'tesA) was purified using a QIAquick® PCR Purification Kit (Qiagen, Valencia, Calif.). The bacterial expression vector pTrcHisA and the 'tesA PCR product were digested with NcoI and BamHI. The digested vector and insert were ligated using Fast-Link (Epicentre Biotechnologies, Madison, Wis.). The ligation mix was then used to transform E. coli TOP 10 cells (Invitrogen, Carlsbad, Calif.). Recombinant plasmids were isolated using a QIAPrep0 Spin Miniprep Kit (Qiagen) and characterized by gel electrophoresis of restriction digests with HaeII. DNA sequencing confirmed that the 'tesA insert had been cloned and that the insert encoded the expected amino acid sequence (SEQ ID NO: 45). The resulting plasmid was designated pTrc Ec 'tesA.

[0245] To limit gene expression, the truncated E. coli 'tesA gene was subcloned into the low-copy bacterial expression vector pZS21-MCS (Expressys, Ruelzheim, Germany). The expression vector pTrc Ec 'tesA was a template in a PCR reaction using a 5' primer designed to create a flanking XhoI restriction site and include the pTrcHisA lac promoter (to replace the pZS21-MCS vector tet promoter) (SEQ ID NO: 46) and a 3' primer incorporating a HindIII restriction site (SEQ ID NO: 47). PCR was performed with 50 µl of Pfu Ultra II Hotstart 2× master mix (Agilent Technologies, Santa Clara, Calif.), 1 μl of a mix of the two primers (10 $\mu moles$ of each), 1 µl of pTrc Ec 'tesA plasmid DNA (6 ng), and 48 µl of water. PCR began with a two minute incubation at 95° C., followed by 30 cycles of 20 seconds at 95° C. for denaturation, 20 seconds for annealing at 57° C., and 20 seconds at 72° C. for extension. The sample was incubated at 72° C. for three minutes and then held at 4° C. The PCR product was purified using a QIAquick® PCR Purification Kit (Qiagen, Valencia, Calif.). The bacterial expression vector pZS21-MCS and the Ec 'tesA PCR product were digested with XhoI and HindIII. The digested vector and insert were ligated using Fast-Link (Epicentre Biotechnologies, Madison, Wis.). The ligation mix was then used to transform E. coli TOP10 cells (Invitrogen, Carlsbad, Calif.). Recombinant plasmids were isolated using a QIAPrep® Spin Miniprep Kit (Qiagen) and characterized by gel electrophoresis of restriction digests with HaeII. DNA sequencing confirmed that the 'tesA insert had been cloned and that the insert encoded the expected amino acid sequence (SEQ ID NO: 45). The resulting plasmid was designated pZS22 Ec 'tesA.

[0246] An *E. coli* strain deficient in fatty acid degradation (Voelker, T. A., and H. M. Davies. J. *Bacteriology* 176: 7320-7 (1994)) and able to regulate transcription of recombinant genes was generated as follows. An *E. coli* K-12 strain (K27) defective in fadD lacks the fatty acyl-CoA synthetase responsible for an initial step in fatty acid degradation. The strain K27 (F—, tyrT58(AS), fadD88, mel-1; CGSC Strain #5478) was obtained from the *E. coli* Genetic Stock Center (New Haven, Conn.). A genomic regulation cassette from strain DH5 α Z1 [lacl^q, PN25-tetR, Sp^R, deoR, supE44, Δ (lac-

ZYA-argFV169), $\phi 80$ lacZ Δ M15 (Expressys, Ruelzheim, Germany)] was introduced into the host strain. The transducing phage P1vir was charged with DH5 α Z1 DNA as follows. A logarithmically growing culture (5 ml LB broth containing 0.2% glucose and 5 mM CaCl₂) of donor strain, DH5 α Z1, was infected with a 100 µl of a lysate stock of P1vir phage. The culture was further incubated three hours for the infected cells to lyse. The debris was pelleted, and the supernatant was further cleared through a 0.45 µm syringe filter unit. The fresh lysate was titered by spotting 10 µl of serial 1:10 dilutions of lysate in TM buffer (10 mM MgSO₄/10 mM Tris.Cl, pH 7.4) onto a 100 mm LB (with 2.5 mM CaCl₂) plate overlayed with a cultured lawn of *E. coli* in LB top agar (with 2.5 mM CaCl₂). The process was repeated using the newly created phage stock until the phage titer surpassed 10⁹ pfu/ml.

[0247] The higher titer phage stock was used to transduce fragments of the DH5 α Z1 genome into a recipient K27 strain. An overnight culture (1.5 ml) of K27 was pelleted and resuspended in 750 µl of a P1 salts solution (10 mM CaCl₂/5 mM MgSO₄). 100 µl of the suspended cells was inoculated with varying amounts of DH5aZ1 donor P1vir lysate (1, 10, and 100 µl) in sterile test tubes. The phage was allowed to adsorb to the cells for 30 minutes at 37° C. Absorption was terminated by addition of 1 ml LB broth plus 200 µl of 1 M sodium citrate, and the cultures were further incubated for 1 hour at 37° C. with aeration. The cultures were pelleted, and the cells suspended in 100 µl of LB broth (plus 0.2 M sodium citrate) and spread onto LB agar plates with 50 µg/mL spectinomycin. Spectinomycin-resistant strains were isolated, and genomic DNAs were screened by PCR for the presence of tetR, lacI^q and fadD88. One such transductant was named K27-Z1 and used in further studies.

[0248] To transform K27-Z1, competent cells were placed on ice in pre-chilled 14 ml round bottom centrifuge tubes. Each plasmid was incubated with 50 µl of chemically competent K27-Z1 cells (Cohen, S. N., Change, A. C. Y., and L. Hsu. Proceedings National Academy Sciences U.S.A. 69: 2110-4 (1972)) for 30 minutes. The cells were heat shocked at 42° C. for 90 seconds and immediately placed on ice for two minutes. Pre-warmed SOC medium (250 µl) (Invitrogen, Carlsbad, Calif.) was added, and the cells were allowed to recover at 37° C. with 125 rpm shaking for one hour. Transformed cell mix (20 µl) was spread onto selective LB agar with 100 µg/ml ampicillin to select for cells carrying the pTrcHisA-based plasmids. Transformed cell mix (50 µl) was spread onto LB agar with 34 µg/ml chloramphenicol to select for cells carrying the pZA31-based plasmids. Transformed cell mix (150 µl) was spread onto LB agar with 100 µg/ml ampicillin and 34 µg/ml chloramphenicol to select for cells carrying both the pTrcHisA-based and pZA31-based plasmids. In some cases, the creation of triple transformants required two transformations: a double transformant was originally created, made competent, and transformed by a third plasmid.

[0249] Using the methods described above, *E. coli* strain K27-Z1 was transduced with pTrcHisA pZA31 (control), pZA31 mutAB Ss epi, pTrcHisA Ec sbm, and pTrcHisA Ec sbm/pZA31 Mb mmat. The bacteria were cultured in M9 with glycerol (0.2%) at 22° C. in flasks that were coated with black Scotch duct tape. After the bacteria reached an optical density (600 nm) of 0.4, a mix of IPTG, anhydrotetracycline, arabinose and hydroxocobalamin hydrochloride was added to the culture, giving final concentrations of 1 mM, 100 ng/ml, 0.2%, and 20 μ M, respectively. Twenty-four hours later, the

bacteria were harvested for coenzyme A analysis. Methylmalonyl-CoA production is illustrated in FIG. **24**. Host cells producing exogenous methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase (encoded by pZA31 mutAB Ss epi) produced over 25 ng methylmalonyl-CoA per ml culture. Host cells comprising additional copies of the Sbm (methylmalonyl-CoA mutase) coding sequence produced over three times the amount of methylmalonyl-CoA per ml of culture, and co-expression of an methylmalonyl-CoA present in the culture medium.

[0250] Production of methylmalonyl-CoA in host cells expressing exogenous propionyl-CoA carboxylase also was studied and is illustrated in FIG. **25**. BW25113 (control) and BW25113 containing pZA31-accA1-pccB (labeled as Pcc in the figure) were cultured in LB, and the coenzyme-A thioesters were isolated and characterized as described above. Host cells comprising a polynucleotide encoding an exogenous propionyl-CoA carboxylase produced over about 15 ng methylmalonyl-CoA per ml of culture.

[0251] When Ec 'tesA was present, less longer-chain (fifteen and seventeen carbons) and more mid-chain (thirteen carbons) branched fatty acids were produced by the host cell, indicating that production of thioesterase increases the proportion of medium chain-length branched fatty acids produced by the inventive method.

Example 16

Analysis of Scattered Branched Fatty Acid by Two-Dimensional (2D) Gas Chromatography

[0252] To identify branched fatty acids produced by recombinant *E. coli* produced as described herein, fatty acids were isolated from bacterial cultures and derivatives were generated to facilitate identification. The fatty acid derivatives were separated by 2D gas chromatography and mass spectrometry was used to characterize fragmented samples. Derivatization of fatty acids to their 4,4' dimethyloxazoline derivatives prior to analysis via mass spectrometry has been described (Zhang, J. Y., QT. Yu, B. N. Liu and Z. H. Huang, *Biomed Env. Mass Spectrom.* 15:33 (1988)). By careful examination of minor spectral differences, it possible to determine the location of branch points on the backbones of fatty acid derivatives.

[0253] One liter of bacterial samples in LB (modified to contain only 0.5 mg/ml sodium chloride, unless otherwise indicated) with cyanocobalamin ($20 \,\mu$ M) were cultured at 22° C. for 25 hours following induction with IPTG, anhydrotetracycline, and arabinose. A cell pellet was collected by centrifugation at 3500 rpm, and the supernatant was discarded. The cell pellet was suspended in the remaining liquid, and the slurry was transferred into Pyrex tubes (#9826, Corning Inc., Lowell, Mass.). An equal volume of chloroform was added, and the sample was dried at room temperature overnight.

[0254] To produce samples for analysis, cell pellets (0.5 grams) were placed in a round bottom flask, and 0.5 grams of KOH pellets and 25 ml of water were added. The *E. coli* pellets and KOH solution were refluxed for three hours, and the sample was allowed to cool. Concentrated HCl was added drop-wise, using a methyl orange endpoint to ensure fatty carboxylic acids were in the acid form. The acidified aqueous solution was then extracted three times with 25 ml aliquots of hexane to extract the fatty acids into the organic layer.

[0255] To convert fatty acid to oxazoline derivatives, the hexane extract was evaporated to dryness and reconstituted

into 5 ml of hexane to which sodium sulfate was added as a drying agent. After evaporating the sample to a 1 ml volume, a portion (0.6 ml) was decanted into a ReactithermTM vial. The hexane in the ReactithermTM vial was again evaporated to dryness, and 2 ml of 2-methyl-2-aminopropanol was added. The vial was capped and heated for 4 hours at 200° C. The cooled 2-methyl-2-aminopropanol solution was transferred to a scintillation vial, to which 5 ml of methylene chloride was added. The sample was washed with three 5 ml volumes of water. Sodium sulfate was added to the methylene chloride to remove any residual water, and an aliquot was transferred to a GC vial for analysis.

[0256] The derivatized samples were analyzed on a Leco Pegasus 4D Comprehensive 2D gas chromatograph time-offlight mass spectrometer equipped with a 30M Supelco GammaDex 120 (Supelco 24307) column in the first dimension and a 2M Varian VF5-MS (Varian CP9034) column in the second dimension. Retention times of key chain-length fatty acids (in both first and second dimensions) in test samples were confirmed by identical preparation and analysis of a Supleco (47080-U) BAME (bacterial acid methyl ester) standard mixture. Using these columns, 4,4' dimethyloxazolinederivatized branched-chain fatty acids were expected to elute prior to their linear chain-length homologs in the first dimension, and this was confirmed by the iso and anteiso structural isomers of C15 methyl esters (derivatized to their 4,4'-dimethyloxazoline derivatives) in the BAME standard reference above.

[0257] The profile of fatty acids produced by two strains was compared. The first strain was engineered to produce branched fatty acids [BL21 Star (DE3) (pTrcHisA Ec sbm So ce epi pZA31 mmat)] and the second was a control strain [BL21 Star (DE3) (pTrcHisA pZA31)]. A sample of E. coli BL21 Star (DE3) comprising pTrcHisA Ec sbm So ce epi and pZA31 mmat was deposited with American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., on Dec. 14, 2010, under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure ("Budapest Treaty"), and assigned Deposit Accession No. [XXX] on [DATE]. The sample from the first strain revealed several peaks in the region where branched fatty acids were expected (FIG. 26), whereas the sample from the control strain revealed no such peaks (FIG. 27). For example, several peaks (labeled 54, 55, and 57) were in a position consistent with branched C15 acids, and peaks 137 and 139 were in a position expected for branched C17 acids. Mass spectrometry established that these peaks comprise branched fatty acids.

[0258] The mass spectral fragmentation pattern of oxazoline derivatives was used to confirm that the fatty acids identified using 2D GC contained branches. Oxazoline derivatives fragment along the length of the carbon chain starting from the functional end of the molecule. If a branch point occurs along the backbone, there is a gap in the mass spectrum pattern; which peak is missing (or reduced) depends on the location of the branch. FIG. 28 depicts the mass spectra of the peaks labeled 54, 55, and 57 in FIG. 26 as oxazoline derivatives of methyl-branched tetradecanoic fatty acids. The ions circled exhibit reduced or no intensity relative to the reference spectrum of linear pentadecanoic fatty acid (bottom spectrum), and were assigned as 8-methyl, 10-methyl, and 12-methyl (anteiso) tetradecanoic fatty acid (all as oxazoline derivatives). Peak 57 was tentatively identified as the anteiso C15 oxazoline derivative despite the similarity to the mass spec data for the linear sample because 1) peak 61 migrated at the position of an anteiso C15 standard on 2D gas chromatography, 2) the 252 molecular weight ion is present in slightly lower amounts relative to the nearby 238 and 266 molecular weight ions, and 3) anteiso compounds can be difficult to identify by this technique. The 8- and 10-branched fatty acids are shown in the top two profiles of FIG. 28, readily identified by the almost complete absence of the fragment circled. Peaks 137 and 139 in FIG. 26 were assigned as 8-methylhexadecanoic acid and 12-methylhexadecanoic acids (as oxazoline derivatives). Thus, B132 Star (DE3) (pTrcHisA Ec sbm So ce epi pZA31 mmat) (i.e., a recombinant microbe comprising overexpressed or recombinant polynucleotides encoding a methylmalonyl-CoA mutase, a methylmalonyl-CoA epimerase, and an acyl transferase) generated branchedchain C15 and C17 fatty acids comprising methyl branches on even-number carbons.

[0259] Branched fatty acid production also was observed in host cells producing exogenous propionyl-CoA carboxylase and *Streptomyces coelicolor* methylmalonyl-CoA mutase. The propionyl-CoA carboxylase gene-containing strain produced the branched fatty acids shown in Table F.

TABLE F

			Molecular Weight	
Peak #	Proposed Compound ID	Formula	DMOX	as fatty acid
38	6-methyl, dodecanoic acid	$\mathrm{C_{13}H_{33}}$	267	214
40	(DMOX) 8-methyl, dodecanoic acid (DMOX)	$\begin{array}{c} (\mathrm{C_4H_8NO}) \\ \mathrm{C_{13}H_{33}} \\ (\mathrm{C_4H_8NO}) \end{array}$	267	214
61	6-methyl, tridecanoic acid	C ₁₄ H ₃₅	281	228
62	(DMOX) 8-methyl, tridecanoic acid (DMOX)	$\begin{array}{c} (\mathrm{C_4H_8NO}) \\ \mathrm{C_{14}H_{35}} \\ (\mathrm{C_4H_8NO}) \end{array}$	281	228
101	6-methyl, tetradecanoic acid	C15H37	295	242
103	(DMOX) 10-methyl, tetradecanoic acid (DMOX)	$\begin{array}{c} (\mathrm{C_4H_8NO}) \\ \mathrm{C_{15}H_{37}} \\ (\mathrm{C_4H_8NO}) \end{array}$	295	242
140	10-methyl, pentadecanoic acid	C16H39	309	256
182	(DMOX) 8-methyl, hexadecanoic acid (DMOX)	$\begin{array}{c} (\mathrm{C_4H_8NO}) \\ \mathrm{C_{17}H_{41}} \\ (\mathrm{C_4H_8NO}) \end{array}$	323	270
189	12-methyl, hexadecanoic acid (DMOX)	$C_{17}H_{41}$ (C ₄ H ₈ NO)	323	270

[0260] The *S. coelicolor* methylmalonyl-CoA mutase gene-containing microbe (BL21 Star (DE3) harboring pZA31 mutAB Ss epi pTrcHisA mmat) produced four branched fatty acids: 6-methyltetradecanoic acid, 10-meth-yltetradecanoic acid, 6-methylhexadecanoic acid, and 12-methylhexadecanoic acid.

[0261] Using 2D gas chromatography and mass spectrometry, fatty acid profiles were compared for two recombinant strains comprising Ec sbm, So ce epi, Mb mmat and containing or lacking a thioesterase coding sequence ('tesA). The amount of branched C15 fatty acids relative to branched C17 fatty acids was greater in the 'tesA-containing strain. The area percent ratio of branched C15 fatty acid to branched C17 fatty acids in K27-Z1 (pTrcHisA Ec sbm So ce epi pZA31 mmat) was 1.4, while the ratio produced by K27-Z1 (pTrcHisA Ec sbm So ce epi pZA31 mmat pZS22 Ec 'tesA) was 7.0. Expression of a thioesterase shortened the chain length of branched fatty acids.

[0262] These results demonstrate that a cell of the invention producing propionyl-CoA carboxylase or producing methyl-

malonyl-CoA mutase, methylmalonyl-CoA epimerase, and acyl transferase generates branched-chain fatty acids comprising methyl branches on even-number carbons. Recombinant host cells further comprising a polynucleotide encoding a thioesterase preferentially produce fatty acid comprising shorter chain length.

[0263] The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

[0264] Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly

excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern. **[0265]** While particular embodiments of the invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the

scope of this invention.

21

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 70 <210> SEQ ID NO 1

<211> LENGTH: 1917 <212> TYPE: DNA

<213> ORGANISM: Escherichia coli

<400> SEQUENCE: 1

atggcaagca cggaccaggg	taccaacccg	gcagacaccg	acgacctgac	gccaaccact	60
ctgagtctgg cgggcgattt	tccgaaagca	accgaagaac	agtgggagcg	cgaagtggag	120
aaagttctga accgtggccg	tccgccggag	aaacagctga	cgtttgcgga	atgtctgaaa	180
cgcctgacgg tccacacagt	agacggcatt	gacattgtgc	caatgtatcg	cccgaaagat	240
gcgccgaaga aactgggtta	cccaggcgtt	gccccattta	cacgtgggac	cacggttcgt	300
aatggcgata tggacgcatg	ggatgtccgt	gcactgcatg	aagatccgga	tgagaaattt	360
acgcgcaaag cgattctgga	agggctggaa	cgcggggtta	catctctgct	gctgcgtgtg	420
gacccggacg ctattgctcc	agaacacctg	gatgaagtgc	tgtctgacgt	gctgctggag	480
atgaccaaag tagaagtctt	tagtcgttac	gatcaaggcg	ccgctgccga	ggcgctggta	540
tctgtgtacg agcgcagcga	taaaccggct	aaggacctgg	ctctgaatct	gggtctggac	600
ccgatcgcct tcgcggcact	gcaggggacg	gaacctgatc	tgactgtcct	gggtgattgg	660
gtgcgtcgcc tggcaaaatt	tagcccagat	tctcgtgcag	tgaccatcga	tgcgaacatt	720
tatcataatg cgggtgcggg	cgatgtagca	gagctggctt	gggccctggc	taccggtgcg	780
gaatatgttc gtgcactggt	agaacaaggt	tttacggcga	ccgaggcgtt	cgatacgatt	840
aactttcgtg tgaccgcaac	ccatgatcag	tttctgacaa	tegegegtet	gcgcgcactg	900
cgtgaggcgt gggcgcgcat	tggggaggta	tttggggttg	atgaggataa	acgtggcgcc	960
cgtcaaaatg cgatcacgag	ttggcgcgat	gtgacacgcg	aggacccgta	tgtgaatatc	1020
ctgcgcggga gcatcgctac	attttctgca	agcgtgggtg	gggccgaaag	tattacaact	1080
ctgcctttta cccaggcact	gggtctgcca	gaagacgatt	ttccgctgcg	tatcgctcgt	1140
aataccggta tcgttctggc	cgaagaagtg	aacatcggtc	gtgttaatga	tccggccggc	1200
ggtagctatt acgtggaaag	tctgactcgt	agtctggccg	atgcagcgtg	gaaagagttc	1260
caagaagtgg agaaactggg	cggcatgagc	aaggcggtga	tgacggaaca	tgtaacgaaa	1320

gtgctggatg	cctgcaatgc	agaacgcgcg	aaacgcctgg	ccaatcgcaa	acagccgatt	1380
accgcagtaa	gcgaatttcc	tatgattggg	gcgcgctcta	tcgaaacgaa	accttttcct	1440
gccgcaccgg	cccgtaaagg	tctggcatgg	catcgcgaca	gtgaagtatt	cgaacaactg	1500
atggatcgca	gcaccagtgt	gagtgaacgt	ccaaaggttt	tcctggcgtg	cctgggcaca	1560
cgtcgtgact	tcggtggtcg	tgagggtttt	agcagcccag	tgtggcatat	cgcaggcatt	1620
gacaccccac	aggttgaggg	tggcacaacc	gcagaaatcg	tagaagcatt	caagaaatct	1680
ggggcacaag	ttgcggatct	gtgctctagc	gccaaagtgt	acgctcagca	gggtctggag	1740
gtggccaaag	ctctgaaagc	agetggegee	aaagccctgt	atctgagcgg	tgcctttaag	1800
gagttcggcg	atgatgcggc	tgaggcggag	aaactgatcg	atggtcgcct	gtttatgggt	1860
atggatgtgg	ttgacactct	gtctagtacg	ctggacattc	tgggtgtagc	aaagtaa	1917
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN <400> SEQUI	TH: 2193 : DNA NISM: Eschei	richia coli				
		tgactctgtt	gacctgggga	acgcgcctgt	tccggcggat	60
				cgggtgaggc		120
				tttacaaaga		180
ctggacacgt	acgccgggat	tccgccattc	gttcacggcc	cgtacgcgac	gatgtacgct	240
ttccgtccgt	ggacaattcg	tcaatacgcc	gggtttagca	cggcgaaaga	aagtaatgct	300
ttctaccgcc	gtaacctggc	ggcggggcaa	aagggtctgt	ctgtggcatt	cgacctgccg	360
acccaccgcg	gttacgatag	cgataatccg	cgcgtggcag	gggacgtggg	tatggccggg	420
gtggccatcg	acagtattta	cgacatgcgt	gaactgtttg	caggcattcc	gctggaccag	480
atgagcgtga	gtatgacgat	gaatggtgcc	gtcctgccga	ttctggcact	gtatgtggtt	540
acagccgaag	aacaaggtgt	gaagccggaa	cagctggctg	gcaccatcca	gaacgatatt	600
ctgaaggagt	tcatggtgcg	taacacctat	atctatccgc	cgcaaccgtc	tatgcgcatc	660
atcagtgaga	tctttgcgta	tactagtgca	aatatgccga	agtggaactc	tatcagtatt	720
agtggctatc	acatgcagga	ggcgggcgcc	actgccgata	tcgaaatggc	ctatacgctg	780
gccgatggcg	ttgattatat	tcgtgcaggc	gaaagcgtcg	gtctgaacgt	ggaccagttc	840
gccccgcgtc	tgagcttctt	ttggggtatt	ggcatgaatt	tctttatgga	agtcgcaaaa	900
ctgcgtgccg	cccgcatgct	gtgggccaaa	ctggtgcacc	aattcggccc	gaagaacccg	960
aagagcatga	gcctgcgcac	gcacagtcaa	accagegget	ggagcetgae	cgcgcaggac	1020
gtatataaca	acgtagttcg	cacctgtatt	gaggcgatgg	cagccaccca	gggtcacacc	1080
cagagcctgc	atacaaactc	tctggacgag	gccatcgcac	tgccgacaga	cttcagcgcc	1140
cgcatcgcgc	gtaatactca	actgtttctg	caacaggaaa	gcggtactac	ccgtgtgatc	1200
gatccgtggt	ctggcagtgc	atatgtcgag	gaactgacct	gggatctggc	ccgtaaagcg	1260
tggggtcata	tccaggaagt	cgagaaagtg	ggtggtatgg	ctaaagcaat	tgagaaaggc	1320
atcccgaaaa	tgcgcattga	agaagcggca	gcgcgcaccc	aagcacgcat	cgacagcggt	1380
cgccagccgc	tgattggcgt	gaacaaatat	cgcctggaac	atgaaccgcc	actggatgtt	1440

ctgaaagtag ataactctac cgtcctggcg gagcagaaag cgaaactggt taagctgcgt 1500 gcggaacgcg atcctgagaa agttaaagcg gcgctggata aaatcacttg ggccgcgggc 1560 aaccoggatg ataaagacco agacogtaat ctgotgaago tgtgtattga ogogggtogt 1620 gctatggcga ctgtcggcga aatgagcgat gcgctggaga aagtatttgg tcgttatacc 1680 gcgcaaattc gtactatttc tggtgtctat agcaaggaag ttaagaatac tccagaagta 1740 gaagaagcgc gtgaactggt agaagaattt gagcaggctg aaggtcgccg tccacgcatt 1800 ctgctggcca aaatgggcca ggatggccat gatcgcggtc agaaagttat tgctactgct 1860 tatgctgatc tgggcttcga tgttgatgtc ggccctctgt tccagactcc agaggaaact 1920 gcccgccagg ctgttgaagc tgacgtccat gtcgttggcg ttagctctct ggctggcggc 1980 catctgaccc tggtccctgc tctgcgcaag gaactggata agctgggccg ccctgatatt 2040 ctgattactg tcggcggcgt cattcctgaa caggatttcg atgaactgcg caaggatggc 2100 gctgtcgaaa tttatacccc tggcaccgtc attcctgaat ctgctatttc tctggtcaag 2160 2193 aagetgegeg ctageetgga tgeetaacte gag <210> SEQ ID NO 3 <211> LENGTH: 671 <212> TYPE: PRT <213> ORGANISM: Janibacter sp. HTCC2649 <400> SEQUENCE: 3 Met Ala Arg Thr Tyr Ala Gly His Ser Ser Ala Ala Ala Ser Asn Ala 1 10 15 Leu Tyr Arg Arg Asn Leu Ala Lys Gly Gln Thr Gly Leu Ser Val Ala 25 30 20 Phe Asp Leu Pro Thr Gln Thr Gly Tyr Asp Pro Asp His Val Leu Ala 35 40 45 Arg Gly Glu Val Gly Lys Val Gly Val Pro Ile Ser His Ile Gly Asp 50 55 60 Met Arg Ala Leu Phe Asp Gln Ile Pro Leu Gly Gln Met Asn Thr Ser 65 70 75 80 Met Thr Ile Asn Ala Thr Ala Met Trp Leu Leu Ala Met Tyr Gln Val 85 90 95 Ala Ala Glu Asp Gln Ala Thr Ala Ala Asp Glu Asp Pro Ala Ser Val 100 105 110 Val Lys Ala Leu Gly Gly Thr Thr Gln Asn Asp Ile Ile Lys Glu Tyr 115 120 125 Leu Ser Arg Gly Thr Tyr Val Phe Ala Pro Ala Pro Ser Leu Arg Leu 130 135 140 Ile Thr Asp Met Val Ser Tyr Thr Val Ser Asp Ile Pro Lys Trp Asn 145 150 155 160 Pro Ile Asn Ile Cys Ser Tyr His Leu Gln Glu Ala Gly Ala Thr Pro 170 Val Gln Glu Ile Ala Tyr Ala Met Ser Thr Ala Ile Ala Val Leu Asp 185 180 190 Ala Val Arg Asp Ala Gly Gln Val Pro Gln Glu Arg Phe Gly Glu Val 200 205 Val Ala Arg Ile Ser Phe Phe Val Asn Ala Gly Val Arg Phe Val Glu 215 220 210

Glu 225	Met	Суз	Lys	Met	Arg 230	Ala	Phe	Val	Glu	Leu 235	Trp	Asp	Glu	Leu	Thr 240
Arg	Glu	Arg	Tyr	Gly 245	Val	Thr	Asp	Ala	Lys 250	Gln	Arg	Arg	Phe	Arg 255	Tyr
Gly	Val	Gln	Val 260	Asn	Ser	Leu	Gly	Leu 265	Thr	Glu	Ala	Gln	Pro 270	Glu	Asn
Asn	Val	Gln 275	Arg	Ile	Val	Leu	Glu 280	Met	Leu	Ala	Val	Thr 285	Leu	Ser	Lys
Gly	Ala 290	Arg	Ala	Arg	Ala	Val 295	Gln	Leu	Pro	Ala	Trp 300	Asn	Glu	Ala	Leu
Gly 305	Leu	Pro	Arg	Pro	Trp 310	Asp	Gln	Gln	Trp	Ser 315	Leu	Arg	Met	Gln	Gln 320
Val	Leu	Ala	Tyr	Glu 325	Ser	Asp	Leu	Leu	Glu 330	Tyr	Glu	Asp	Leu	Phe 335	Glu
Gly	Ser	Ala	Val 340	Val	Glu	Ala	Гла	Val 345	Ala	Glu	Leu	Val	Ala 350	Gly	Ala
Гла	Ala	Glu 355	Ile	Ala	Arg	Val	Ala 360	Glu	Leu	Gly	Gly	Ala 365	Val	Ala	Ala
Val	Glu 370	Ser	Gly	Tyr	Met	Lys 375	Ser	Ala	Leu	Val	Ala 380	Ser	His	Ala	Leu
Arg 385	Arg	Gln	Arg	Ile	Glu 390	Ala	Gly	Glu	Aab	Ile 395	Val	Val	Gly	Val	Asn 400
ГЛа	Phe	Glu	Thr	Thr 405	Glu	Pro	Asn	Pro	Leu 410	Thr	Ala	Asp	Leu	Asp 415	Thr
Ala	Ile	Gln	Ser 420	Val	Asp	Ala	Gly	Val 425	Glu	Ala	Ala	Ala	Ala 430	Lys	Ala
Val	Arg	Glu 435	Trp	Arg	Glu	Thr	Arg 440	Asp	Ala	Asp	Pro	Val 445	Lys	Arg	Glu
Arg	Ala 450	Val	Ala	Ala	Leu	Ala 455	Arg	Leu	Lys	Ala	Ala 460	Ala	Gln	Thr	Asp
Glu 465	Asn	Leu	Met	Glu	Ala 470	Ser	Ile	Glu	Cys	Ala 475	Arg	Ala	Glu	Val	Thr 480
Thr	Gly	Glu	Trp	Ala 485	Gln	Ala	Leu	Arg	Glu 490	Val	Phe	Gly	Glu	Phe 495	Arg
Ala	Pro	Thr	Gly 500	Val	Thr	Gly	Thr	Val 505	Gly	Leu	Thr	Gly	Gly 510	Ala	Ala
Gly	Ala	Glu 515	Leu	Ser	Ala	Val	Arg 520		Arg	Val	Ala	Gly 525		Arg	Asp
Glu	Leu 530	Gly	Glu	Thr	Leu	Arg 535	Val	Leu	Val	Gly	Lys 540	Pro	Gly	Leu	Asp
Gly 545	His	Ser	Asn	Gly	Ala 550	Glu	Gln	Ile	Ala	Val 555	Arg	Ala	Arg	Asb	Ala 560
Gly	Phe	Glu	Val	Ile 565	Tyr	Gln	Gly	Ile	Arg 570	Leu	Thr	Pro	Glu	Gln 575	Ile
Val	Ala	Ala	Ala 580	Val	Ser	Glu	Asp	Val 585	His	Leu	Val	Gly	Ile 590	Ser	Ile
Leu	Ser	Gly 595	Ser	His	Met	Glu	Leu 600	Ile	Pro	Glu	Val	Leu 605	Asp	Arg	Leu
Arg	Glu 610	Ala	Gly	Ala	Gly	Asp 615	Ile	Pro	Val	Ile	Val 620	Gly	Gly	Ile	Ile

Pro Glu Ser Asp Ala Ala Lys Leu Lys Ala Ile Gly Val Ala Glu Val Phe Thr Pro Lys Asp Phe Gly Leu Asn Asp Ile Met Gly Arg Phe Val Asp Val Ile Arg Asp Ser Arg Leu Thr Thr Ala Ala Pro Thr Val <210> SEQ ID NO 4 <211> LENGTH: 571 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Thr Val Ala Pro Lys Arg Pro Ala Ala Met Thr Leu Ala Ala His 10 15 Phe Pro Glu Arg Thr Gln Glu Gln Trp Arg Asp Leu Val Ala Gly Val Val Asn Lys Gly Arg Pro Glu Asp Gln His Leu Ser Gly Asp Asp Ala Val Ala Thr Met Arg Ser His Leu Glu Gly Gly Leu Asp Ile Glu Pro Leu Tyr Met Lys Ser Ser Asp Pro Val Pro Leu Gly Val Pro Gly Ala Met Pro Phe Thr Arg Gly Arg Ala Leu Arg Asp Ala Asp Val Pro Trp Asp Val Arg Gln Val His Asp Asp Pro Asp Ala Ala Ala Thr Arg Gln Leu Val Leu Ala Asp Leu Glu Asn Gly Val Thr Ser Val Trp Leu His Val Gly Ala Asp Gly Leu Ala Pro Asn Asp Val Ala Glu Ala Leu Ala Glu Val Arg Leu Glu Leu Ala Pro Val Val Val Ser Ser Trp Asp Asp Gln Thr Ala Ala Ala Asp Ala Leu Tyr Ala Val Leu Ser Gly Ser Arg Ala Ser Ser Gly Asn Leu Gly His Asp Pro Leu Gly Ala Ala Arg Thr Gly Ser Ala Pro Asp Leu Ala Pro Leu Ala Asp Ala Val Arg Arg Leu Ala Asp His Gly Glu Ile Arg Ala Ile Thr Val Asp Thr Arg Val His Gly Asp Ala Gly Val Thr Val Thr Asp Glu Val Ala Phe Ala Leu Ala Thr Gly Val Ala Tyr Leu Arg His Leu Glu Ser Glu Gly Val Asp Val Ala Glu Ala Phe Arg Asn Ile Glu Phe Arg Val Ser Ala Thr Ala Asp Gln Phe Leu Thr Ala Ala Ala Leu Arg Ala Leu Arg Arg Ala Trp Ala Arg Ile Gly Glu Ser Val Gly Val Pro Glu Thr Ser Arg Gly Ala Phe Thr His Ala Val Thr Ser Gly Arg Ile Phe Thr Arg Asp Asp Ala

Trp Thr Asn	Ile Leu	Arg Se	r Thr	Leu	Ala	Thr	Phe	Gly	Ala	Ser	Leu
	325				330	51		-		335	a]
Gly Gly Ala	ASP AIA 340	lie in	r vai	цец 345	Pro	Pne	Аар	Inr	vai 350	ser	GIY
Leu Pro Thr 355		Ser Ar	g Arg 360		Ala	Arg	Asn	Thr 365	Gln	Ile	Leu
Leu Ala Glu 370	Glu Ser	Asn Va 37		Arg	Val	Thr	Asp 380	Pro	Ala	Gly	Gly
Ser Trp Tyr 385	Val Glu	Thr Le 390	u Thr	Asp	Asp	Val 395	Ala	Гла	Ala	Ala	Trp 400
Glu Thr Phe	Gln Glu 405		u Ser	Ala	Gly 410	Gly	Met	Val	Ala	Ala 415	Leu
Ala Asn Gly	Leu Val 420	Ala Gl	n Arg	Ile 425	Leu	Ala	Ala	Val	Ala 430	Glu	Arg
Asp Ala Ala 435		Thr Ar	g Ser 440		Pro	Ile	Thr	Gly 445	Val	Ser	Thr
Phe Pro Leu 450	Ala Gly	Glu Ly 45		Leu	Glu	Arg	Val 460	Val	Arg	Ala	Glu
Leu Pro Val 465	Gln Pro	Asn Al 470	a Leu	Ala	Pro	His 475	Arg	Asp	Ser	Ala	Ile 480
Phe Glu Ala	Leu Arg 485	-	g Ser	Ala	Ala 490	Tyr	Ala	Thr	Glu	His 495	Gly
His Ala Pro	Arg Val 500	Ser Va	l Pro	Thr 505	Leu	Asp	Val	Pro	Arg 510	Ala	Ala
Asp Arg Arg 515	-	Ala Va	l Asn 520		Leu	Thr	Val	Ala 525	Gly	Ile	Asp
Ala Val Asp 530	Gly Asp	Thr Gl 53		Ala	Ala	Ala	Leu 540	Thr	Gly	Thr	Asp
Lys Gly Tyr 545	Glu Gly	Val Al 550	a Lys	Asp	Met	Asp 555	Val	Val	Ala	Phe	Leu 560
Ser Asp Leu	Leu Asp 565		r Gly	Ala	Pro 570	Ala					
<210> SEQ I	DNO 5										
<211> LENGT <212> TYPE:	H: 146										
<213> ORGAN		herichi	a col	i							
<400> SEQUE	NCE: 5										
Met Leu Thr 1	Arg Ile 5	Asp Hi	s Ile	Gly	Ile 10	Ala	Суз	Phe	Asp	Leu 15	Asp
Lys Thr Val	Glu Phe 20	Tyr Ar	g Ala	Thr 25	Tyr	Gly	Phe	Glu	Val 30	Phe	His
Ser Glu Val 35	Asn Glu	Glu Gl	n Gly 40	Val	Arg	Glu	Ala	Met 45	Leu	Гла	Ile
Asn Glu Thr 50	Ser Asp	Gly Gl 55	y Ala	Ser	Tyr	Leu	Gln 60	Leu	Leu	Glu	Pro
Thr Arg Pro 65	Asp Ser	Thr Va 70	l Ala	Lys	Trp	Leu 75	Asp	Lys	Asn	Gly	Glu 80
Gly Val His	His Ile 85	Ala Ph	e Gly	Thr	Ala 90	Asp	Val	Asp	Gln	Asp 95	Ala
Ala Asp Ile	rîya yab	Lys Gl	y Val	Arg	Val	Leu	Tyr	Glu	Glu	Pro	Arg

-continued

100 105 110 Arg Gly Ser Met Gly Ser Arg Ile Thr Phe Leu His Pro Lys Asp Cys 115 120 125 His Gly Val Leu Thr Glu Leu Val Thr Ser Ala Pro Val Glu Ser Pro 130 135 140 Glu His 145 <210> SEQ ID NO 6 <211> LENGTH: 146 <212> TYPE: PRT <213> ORGANISM: Streptomyces sviceus <400> SEOUENCE: 6 Met Leu Thr Arg Ile Asp His Ile Gly Ile Ala Cys Phe Asp Leu Asp 10 1 5 15 Lys Thr Val Glu Phe Tyr Arg Ala Thr Tyr Gly Phe Glu Val Phe His 25 20 30 Ser Glu Val Asn Glu Glu Gln Gly Val Arg Glu Ala Met Leu Lys Ile 35 40 45 Asn Glu Thr Ser Asp Gly Gly Ala Ser Tyr Leu Gln Leu Leu Glu Pro 50 55 60 Thr Arg Pro Asp Ser Thr Val Ala Lys Trp Leu Asp Lys Asn Gly Glu 70 65 75 80 Gly Val His His Ile Ala Phe Gly Thr Ala Asp Val Asp Gln Asp Ala 90 95 85 Ala Asp Ile Lys Asp Lys Gly Val Arg Val Leu Tyr Glu Glu Pro Arg 105 100 110 Arg Gly Ser Met Gly Ser Arg Ile Thr Phe Leu His Pro Lys Asp Cys 115 120 125 His Gly Val Leu Thr Glu Leu Val Thr Ser Ala Pro Val Glu Ser Pro 130 135 140 Glu His 145 <210> SEO ID NO 7 <211> LENGTH: 1773 <212> TYPE: DNA <213> ORGANISM: Streptomyces coelicolor <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank / AF113603.1 <309> DATABASE ENTRY DATE: 1999-12-08 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(1773) <400> SEQUENCE: 7 gtgcgcaagg tgctcatcgc caatcgtggc gaaatcgctg tccgcgtggc ccgggcctgc 60 cgggacgccg ggatcgcgag cgtggccgtc tacgcggatc cggaccggga cgcgttgcac 120 gtccgtgccg ctgatgaggc gttcgccctg ggtggtgaca cccccgcgac cagctatctg 180 gacategeca aggteeteaa ageegegege gagtegggeg eggaegeeat eeaceegge 240 tacggattcc tctcggagaa cgccgagttc gcgcaggcgg tcctggacgc cggcctgatc 300 tggatcggcc cgcccccgca cgccatccgc gaccgtggcg aaaaggtcgc cgcccgccac 360 atcqcccaqc qqqccqqcqc ccccctqqtc qccqqcaccc ccqaccccqt ctccqqcqcq 420 480 gacgaggteg tegeettege caaggageae ggeetgeeca tegecateaa ggeegeette

ggcggcggcg ggcgcggcct caaggtcgcc cgcaccctcg aagaggtgcc ggagctgtac	540									
gactccgccg tccgcgaggc cgtggccgcc ttcggccgcg gggagtgctt cgtcgagcgc	600									
tacetegaca ageceegeea egtggagace eagtgeetgg eegacaceea eggeaaegtg	660									
gtcgtcgtct ccacccgcga ctgctccctc cagcgccgcc accaaaagct cgtcgaggag	720									
gcccccgcgc cctttctctc cgaggcccag acggagcagc tgtactcatc ctccaaggcc	780									
ateetgaagg aggeeggeta eggeggegee ggeaeegtgg agtteetegt eggeatggae	840									
ggcacgatct tcttcctgga ggtcaacacc cgcctccagg tcgagcaccc ggtcaccgag	900									
gaagtegeeg geategaett ggteegegag atgtteegea tegeegaegg egaggaaete	960									
ggttacgacg acceegeeet gegeggeeae teettegagt teegeateaa eggegaggae	1020									
cccggccgcg getteetgee egeeceegge accgteacee tettegaege geecaeegge	1080									
cccggcgtcc gcctggacgc cggcgtcgag tccggctccg tcatcggccc cgcctgggac	1140									
teecteeteg ceaaactgat egteacegge egeaceegeg eegaggeact eeagegegeg	1200									
gecegegeee tggaegagtt caeegtegag ggeatggeea eegeeateee etteeaeege	1260									
acggtcgtcc gcgacccggc cttcgccccc gaactcaccg gctccacgga ccccttcacc	1320									
gtccacaccc ggtggatcga gacggagttc gtcaacgaga tcaagccctt caccacgccc	1380									
gccgacaccg agacggacga ggagtcgggc cgggagacgg tcgtcgtcga ggtcggcggc	1440									
aagegeetgg aagteteeet eeeeteeage etgggeatgt eeetggeeeg eaceggeetg	1500									
geegeegggg ceegeeeeaa gegeegegeg geeaagaagt eeggeeeege egeeteggge	1560									
gacacecteg ecteeeegat geagggeaeg ategteaaga tegeegtega ggaaggeeag	1620									
gaagteeagg aaggegaeet categtegta etegaggega tgaagatgga acageeeete	1680									
aacgeecaca ggteeggeae cateaaggge eteacegeeg aggteggege eteeeteace	1740									
tccggcgccg ccatctgcga gatcaaggac tga	1773									
<210> SEQ ID NO 8 <211> LENGTH: 1593 <212> TYPE: DNA <213> ORGANISM: Streptomyces coelicolor <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank / AF113605.1 <309> DATABASE ENTRY DATE: 1999-12-08 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(1593)										
<400> SEQUENCE: 8										
atgteegage eggaagagea geageeegae ateeacaega eegegggeaa getegeggat	60									
ctcaggcgcc gtatcgagga agcgacgcac gccggttccg cacgcgccgt cgagaagcag	120									
cacgccaagg gcaagctgac ggctcgtgaa cgcatcgacc teeteetega cgagggttee	180									
ttcgtcgagc tggacgagtt cgcccggcac cgctccacca acttcggcct cgacgccaac	240									
cgcccctacg gcgacggcgt cgtcaccggc tacggcaccg tcgacggccg ccccgtggcc	300									
gtetteteee aggaetteae egtettegge ggegegetgg gegaggteta eggeeagaag	360									
atcgtcaagg tgatggactt cgccctcaag accggctgcc cggtcgtcgg catcaacgac	420									
teeggeggeg eeegeateea ggagggegtg geeteeeteg gegeetaegg egagatette	480									
cgccgcaaca cccacgcctc cggcgtgatc ccgcagatca gcctggtcgt cggcccgtgt	540									
gcgggcggcg cggtgtactc ccccgcgatc accgacttca cggtgatggt ggaccagacc	600									

agccacatgt teateaeegg teeegaegte ateaagaegg teaeeggega ggaegtegge	660
ttcgaggagc tgggcggcgc ccgcacccac aactccacct cgggcgtggc ccaccacatg	720
geeggegaeg agaaggaege ggtegagtae gteaageage teetgtegta eetgeegtee	780
aacaacctct cogageeeec egeetteeeg gaggaggegg acetegeggt caeggaegag	840
gacgccgagc tggacacgat cgtcccggac tcggcgaacc agccctacga catgcactcc	900
gtcatcgagc acgtcctgga cgacgccgag ttcttcgaga cgcaacccct cttcgcgccg	960
aacateetea eeggettegg eegegtggag ggeegeeegg teggeategt egeeaaceag	1020
cccatgcagt tcgccggctg cctggacatc acggcctccg agaaggcggc ccgcttcgtg	1080
cgcacetgeg acgeetteaa egteeeegte eteacetteg tggaegteee eggetteetg	1140
cccggcgtcg accaggagca cgacggcatc atccgccgcg gcgccaagct gatcttcgcc	1200
tacgccgagg ccacggtgcc gctcatcacg gtcatcaccc gcaaggcctt cggcggcgcc	1260
tacgacgtca tgggetecaa geaeetggge geegaeetea aeetggeetg geeeaeegee	1320
cagatogoog toatgggogo coaaggogog gtoaacatoo tgoacogoog caccatogoo	1380
gacgccggtg acgacgccga ggccacccgg gcccgcctga tccaggagta cgaggacgcc	1440
cteeteaace ectaeaegge ggeegaaege ggetaegteg aegeegtgat eatgeeetee	1500
gacactogoc gocacatogt cogoggootg ogocagotgo goaccaagog ogagtoootg	1560
cccccgaaga agcacggcaa catccccctg taa	1593
<pre><210> SEQ ID NO 9 <211> LENGTH: 590 <212> TYPE: PRT <213> ORGANISM: Streptomyces coelicolor <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank / AF113603.1 <309> DATABASE ENTRY DATE: 1999-12-08 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(590)</pre>	
<400> SEQUENCE: 9	
Met Arg Lys Val Leu Ile Ala Asn Arg Gly Glu Ile Ala Val Arg Val 1 5 10 15	
Ala Arg Ala Cys Arg Asp Ala Gly Ile Ala Ser Val Ala Val Tyr Ala 20 25 30	
Asp Pro Asp Arg Asp Ala Leu His Val Arg Ala Ala Asp Glu Ala Phe 35 40 45	
Ala Leu Gly Gly Asp Thr Pro Ala Thr Ser Tyr Leu Asp Ile Ala Lys	
50 55 60	
Val Leu Lys Ala Ala Arg Glu Ser Gly Ala Asp Ala Ile His Pro Gly 65 70 75 80	
Tyr Gly Phe Leu Ser Glu Asn Ala Glu Phe Ala Gln Ala Val Leu Asp 85 90 95	
Ala Gly Leu Ile Trp Ile Gly Pro Pro Pro His Ala Ile Arg Asp Arg 100 105 110	
Gly Glu Lys Val Ala Ala Arg His Ile Ala Gln Arg Ala Gly Ala Pro 115 120 125	
Leu Val Ala Gly Thr Pro Asp Pro Val Ser Gly Ala Asp Glu Val Val 130 135 140	
Ala Phe Ala Lys Glu His Gly Leu Pro Ile Ala Ile Lys Ala Ala Phe	

Gly	Gly	Gly	Gly	Arg 165	Gly	Leu	Lys	Val	Ala 170	Arg	Thr	Leu	Glu	Glu 175	Val
Pro	Glu	Leu	Tyr 180	Asp	Ser	Ala	Val	Arg 185	Glu	Ala	Val	Ala	Ala 190	Phe	Gly
Arg	Gly	Glu 195	Суз	Phe	Val	Glu	Arg 200	Tyr	Leu	Asp	Lys	Pro 205	Arg	His	Val
Glu	Thr 210	Gln	Сүз	Leu	Ala	Asp 215	Thr	His	Gly	Asn	Val 220	Val	Val	Val	Ser
Thr 225	Arg	Asp	Сув	Ser	Leu 230	Gln	Arg	Arg	His	Gln 235	Lys	Leu	Val	Glu	Glu 240
Ala	Pro	Ala	Pro	Phe 245	Leu	Ser	Glu	Ala	Gln 250	Thr	Glu	Gln	Leu	Tyr 255	Ser
Ser	Ser	Lys	Ala 260	Ile	Leu	Lys	Glu	Ala 265	Gly	Tyr	Gly	Gly	Ala 270	Gly	Thr
Val	Glu	Phe 275	Leu	Val	Gly	Met	Asp 280	Gly	Thr	Ile	Phe	Phe 285	Leu	Glu	Val
Asn	Thr 290	Arg	Leu	Gln	Val	Glu 295	His	Pro	Val	Thr	Glu 300	Glu	Val	Ala	Gly
Ile 305	Asp	Leu	Val	Arg	Glu 310	Met	Phe	Arg	Ile	Ala 315	Asp	Gly	Glu	Glu	Leu 320
Gly	Tyr	Asp	Asp	Pro 325	Ala	Leu	Arg	Gly	His 330	Ser	Phe	Glu	Phe	Arg 335	Ile
Asn	Gly	Glu	Asp 340	Pro	Gly	Arg	Gly	Phe 345	Leu	Pro	Ala	Pro	Gly 350	Thr	Val
Thr	Leu	Phe 355	Asp	Ala	Pro	Thr	Gly 360	Pro	Gly	Val	Arg	Leu 365	Asp	Ala	Gly
Val	Glu 370	Ser	Gly	Ser	Val	Ile 375	Gly	Pro	Ala	Trp	380 380	Ser	Leu	Leu	Ala
Lуя 385	Leu	Ile	Val	Thr	Gly 390	Arg	Thr	Arg	Ala	Glu 395	Ala	Leu	Gln	Arg	Ala 400
Ala	Arg	Ala	Leu	Asp 405	Glu	Phe	Thr	Val	Glu 410	Gly	Met	Ala	Thr	Ala 415	Ile
Pro	Phe	His	Arg 420	Thr	Val	Val	Arg	Asp 425	Pro	Ala	Phe	Ala	Pro 430	Glu	Leu
Thr	Gly	Ser 435	Thr	Asp	Pro	Phe	Thr 440	Val	His	Thr	Arg	Trp 445	Ile	Glu	Thr
Glu	Phe 450	Val	Asn	Glu	Ile	Lys 455	Pro	Phe	Thr	Thr	Pro 460	Ala	Asp	Thr	Glu
Thr 465	Aab	Glu	Glu	Ser	Gly 470	Arg	Glu	Thr	Val	Val 475	Val	Glu	Val	Gly	Gly 480
ГЛЗ	Arg	Leu	Glu	Val 485	Ser	Leu	Pro	Ser	Ser 490	Leu	Gly	Met	Ser	Leu 495	Ala
Arg	Thr	Gly	Leu 500	Ala	Ala	Gly	Ala	Arg 505	Pro	ГÀа	Arg	Arg	Ala 510	Ala	Lys
Lys	Ser	Gly 515	Pro	Ala	Ala	Ser	Gly 520	Asp	Thr	Leu	Ala	Ser 525	Pro	Met	Gln
Gly	Thr 530	Ile	Val	Lys	Ile	Ala 535	Val	Glu	Glu	Gly	Gln 540	Glu	Val	Gln	Glu
Gly 545	Asp	Leu	Ile	Val	Val 550	Leu	Glu	Ala	Met	Lуя 555	Met	Glu	Gln	Pro	Leu 560

Asn Ala His Arg Ser Gly Thr Ile Lys Gly Leu Thr Ala Glu Val Gly Ala Ser Leu Thr Ser Gly Ala Ala Ile Cys Glu Ile Lys Asp <210> SEQ ID NO 10 <211> LENGTH: 530 <212> TYPE: PRT <213> ORGANISM: Streptomyces coelicolor <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank / AF113605.1 <309> DATABASE ENTRY DATE: 1999-12-08 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(530) <400> SEQUENCE: 10 Met Ser Glu Pro Glu Glu Gln Gln Pro Asp Ile His Thr Thr Ala Gly Lys Leu Ala Asp Leu Arg Arg Arg Ile Glu Glu Ala Thr His Ala Gly Ser Ala Arg Ala Val Glu Lys Gln His Ala Lys Gly Lys Leu Thr Ala 35 40 45 Arg Glu Arg Ile Asp Leu Leu Leu Asp Glu Gly Ser Phe Val Glu Leu Asp Glu Phe Ala Arg His Arg Ser Thr Asn Phe Gly Leu Asp Ala Asn Arg Pro Tyr Gly Asp Gly Val Val Thr Gly Tyr Gly Thr Val Asp Gly Arg Pro Val Ala Val Phe Ser Gln Asp Phe Thr Val Phe Gly Gly Ala 100 105 110 Leu Gly Glu Val Tyr Gly Gln Lys Ile Val Lys Val Met Asp Phe Ala Leu Lys Thr Gly Cys Pro Val Val Gly Ile Asn Asp Ser Gly Gly Ala Arg Ile Gln Glu Gly Val Ala Ser Leu Gly Ala Tyr Gly Glu Ile Phe Arg Arg Asn Thr His Ala Ser Gly Val Ile Pro Gln Ile Ser Leu Val Val Gly Pro Cys Ala Gly Gly Ala Val Tyr Ser Pro Ala Ile Thr Asp Phe Thr Val Met Val Asp Gln Thr Ser His Met Phe Ile Thr Gly Pro Asp Val Ile Lys Thr Val Thr Gly Glu Asp Val Gly Phe Glu Glu Leu Gly Gly Ala Arg Thr His Asn Ser Thr Ser Gly Val Ala His His Met Ala Gly Asp Glu Lys Asp Ala Val Glu Tyr Val Lys Gln Leu Leu Ser Tyr Leu Pro Ser Asn Asn Leu Ser Glu Pro Pro Ala Phe Pro Glu Glu Ala Asp Leu Ala Val Thr Asp Glu Asp Ala Glu Leu Asp Thr Ile Val Pro Asp Ser Ala Asn Gln Pro Tyr Asp Met His Ser Val Ile Glu His Val Leu Asp Asp Ala Glu Phe Phe Glu Thr Gln Pro Leu Phe Ala Pro

-con	τ.	זר	าเม	ed

	-continued														
305					310					315					320
Asn]	Ile	Leu	Thr	Gly 325	Phe	Gly	Arg	Val	Glu 330	Gly	Arg	Pro	Val	Gly 335	Ile
Val A	Ala	Asn	Gln 340	Pro	Met	Gln	Phe	Ala 345	Gly	Суз	Leu	Asp	Ile 350	Thr	Ala
Ser (Glu	Lys 355	Ala	Ala	Arg	Phe	Val 360	Arg	Thr	Суа	Asp	Ala 365	Phe	Asn	Val
Pro N	Val 370	Leu	Thr	Phe	Val	Asp 375	Val	Pro	Gly	Phe	Leu 380	Pro	Gly	Val	Asp
Gln (385	Glu	His	Asp	Gly	Ile 390	Ile	Arg	Arg	Gly	Ala 395	LYa	Leu	Ile	Phe	Ala 400
Tyr A	Ala	Glu	Ala	Thr 405		Pro	Leu	Ile	Thr 410		Ile	Thr	Arg	Lys 415	
Phe (Gly	Gly	Ala 420		Asp	Val	Met	Gly 425		Lys	His	Leu	Gly 430		Asp
Leu A	Asn			Trp	Pro	Thr			Ile	Ala	Val			Ala	Gln
Gly A		435 Val	Asn	Ile	Leu		440 Arg	Arg	Thr	Ile		445 Asp	Ala	Gly	Asp
Asp A	450 Ala	Glu	Ala	Thr		455 Ala	Arg	Leu	Ile		460 Glu	Tyr	Glu	Asp	
465 Leu I	Leu	Asn	Pro	-	470 Thr	Ala	Ala	Glu	-	475 Gly	Tyr	Val	Asp		480 Val
Ile M	Met	Pro		485 Asp	Thr	Arg	Arg		490 Ile	Val	Arg	Gly		495 Arg	Gln
Leu A	Arg	Thr	500 Lys	Arg	Glu	Ser	Leu	505 Pro	Pro	Lys	Lys	His	510 Gly	Asn	Ile
Pro I		515		5			520			-	-	525	-		
	Leu 530														
<210															
<211× <212× <213×	> T)	ZPE:	DNA		epto	myce	5 CO	elico	olor						
<400>															
aattç	gtga	age g	ggat	aaca	at t	gaca	ttgt	g ago	cggal	taac	aag	atac	tga (gcac	atcag
aggad	cgca	act ç	gacc	gaati	tc a	ataa	tttt	g tti	taaci	ttta	aga	agga	gat	atac	at
<210:															
<2112 <2122 <2132	> T)	YPE :	DNA		epto	myce	5 CO	elic	olor						
<400>															
atgcç	gcaa	aag t	tgct	gatt	gc g	aacc	gtggi	t gaa	aatco	gccg	ttc	gtgt	ggc .	acgc	gcgtg
cgtga	atgo	cag g	gtat	tgca	ag t	gttg	cggt	g tai	tgee	gatc	cgg	atcg	cga	tgcg	ctgca
gttcg	gtgo	cgg (ccga	tgaa	gc c	tttg	cact	a aa	cggt	gata	ccc	cggc	aac	gage	tatct
gatat	ttgo	caa a	aagt	gctga	aa a	gcag	cgcg	c gaa	aagco	ggtg	cgg	atgc	cat	ccat	ccggg
tacgo	gttt	tc t	tgtc	tgaa	aa t	gcag.	aatti	t gca	acag	gcgg	ttc	tgga	tgc .	aggt	ctgat
tggat	tegg	gtc d	cgcc	gccg	ca t	gcaa	ttcg	t gai	tctg	ggcg	ata	aagt	ggc	cgca	cgcca

-continued	
ategeceage gtgeaggege geegetggtt gegggeacee eggaeeeggt ttetggtgea	a 420
gatgaagtgg ttgcgtttgc caaagaacat ggcctgccga ttgcgatcaa agcagcattc	2 480
ggcggtggcg gtcgcggtct gaaagtggcc cgtaccctgg aagaagttcc ggaactgtat	540
gatagcgcag ttcgcgaagc ggtggcagcg tttggccgtg gtgaatgctt cgtggaacgc	c 600
tacctggata aaccgcgtca tgttgaaacc cagtgtctgg cggatacgca cggcaacgtg	g 660
gttgtggtta gcacccgcga ttgctctctg caacgtcgcc accagaaact ggtggaagaa	a 720
gcaccggcgc cgtttctgag cgaagcccag accgaacagc tgtatagctc tagtaaagcg	g 780
attetgaaag aageeggtta egtgggegee ggtaeggttg aatttetggt gggeatggat	840
ggcaccatta gctttctgga agttaacacc cgtctgcaag ttgaacatcc ggtgaccgaa	a 900
gaagttgcgg gcattgatct ggtgcgcgaa atgtttcgta tcgcagatgg cgaagaactg	g 960
ggttacgatg atccggcgct gcgcggtcac agctttgaat ttcgtattaa tggcgaagat	1020
ccgggccgtg gttttctgcc ggcgccgggc accgtgacgc tgttcgatgc accgaccggt	1080
ccgggcgttc gtctggatgc cggtgtggaa agtggtagcg ttattggccc ggcatgggat	1140
agcetgetgg egaaaetgat egttaeeggt egtaegegeg eegaageget geaaegtgea	a 1200
gcacgtgccc tggatgaatt taccgtggaa ggcatggcga cggccattcc gtttcatcgc	2 1260
accgtggttc gtgatccggc attcgcgccg gaactgaccg gctctaccga tccgttcacc	2 1320
gtgcacacgc gctggatcga aaccgaattt gttaacgaaa tcaaaccgtt caccacgccc	g 1380
gcggataccg aaacggatga agaaagtggt cgcgaaacgg tggttgtgga agtgggcggt	1440
aaacgtetgg aagtttetet geegageage etgggtatga gtetggegeg taeeggtetg	g 1500
gcggccggcg cccgtccgaa acgtcgcgca gcgaaaaaat ctggtccggc cgcaagcggt	1560
gataccctgg ccagtccgat gcagggcacg attgtgaaaa tcgcagtgga agaaggtcag	3 1620
gaagtgcagg aaggcgatct gattgttgtg ctggaagcga tgaaaatgga acagccgctg	g 1680
aatgeeeate gtageggeae cateaaagge etgaeggeeg aagtgggtge atetetgaee	2 1740
agtggcgcgg ccatttgcga aatcaaagat taa	1773
<210> SEQ ID NO 13 <211> LENGTH: 57 <212> TYPE: DNA <213> ORGANISM: Streptomyces coelicolor	
<400> SEQUENCE: 13	
agatetgegg eegeatetag aaataatttt gtttaaettt aagaaggaga tatatte	57
<210> SEQ ID NO 14 <211> LENGTH: 1593 <212> TYPE: DNA <213> ORGANISM: Streptomyces coelicolor	
<400> SEQUENCE: 14	
atgagtgaac cggaagaaca gcagccggat attcatacca cggcaggcaa actggcggat	60
ctgcgtcgcc gtatcgaaga agcaacccat gcaggtagcg cacgtgcagt ggaaaaacag	g 120
cacgcgaaag gtaaactgac ggcccgcgaa cgtatcgatc tgctgctgga tgaaggcagt	180
tttgttgaac tggatgaatt tgcacgccac cgtagcacca actttggtct ggatgcgaat	240

gtttttagec aggatttae egtgttegge ggtgeaetgg gegaagttta eggteagaa360ategtgaaag ttatggatt eggeetgaaa aegggetgee eggtggttgg tataaegat420ageggeggtg eeggtate eggeagtgt geetetegg gegegtatgg egaaatett480egeegtaata eceatgegag tggegtgatt eegeagtea geetggtggt tggteegtg540geeggeggtg eegtttaete teeggeetta aeegattta eggtggtggt tgateagaee600agteaetgt teattaeggg eeeggtggt ateaaaaeeg ttaegggega agatgtgggt660tttgaagaae tgggeggtg aegtaceea aaeageaegt etgetgagta eetgeeggt720geeggtgatg aaaaagatge egtggaatat gttaaaeage tgetgagta eetgeeggt780aaeaatetgt etgaaegee eggegteeg gaagaageag aeetggeggt gaeegatgaa840gatgeegaae tggataegat egtteeggat tetgeaaate ageegtaega tatgeeagat900gtgattgaae aegttetegg tegtggaaat ttttegaaa eeegeeggegt tggeaeetg960aaeaateteg eegggtteegg tegtggaaa ggtegteegg tgggtategt tgeaaateeg1020cegateggt tegeggttg eetggatat aeegeetteg aggeetteegg1200cegateggt ateeggaaea tggeegteeg etgaeate ggeegteeg1140cegggtggt tggeegeeg eetgeggeege eegesteeg eegeaeeea1220cegategga egaeeege eegesteeg eegaaeet ggeegeege1220cegategga egaeege eegesteeg eegaaeet eggeegeege1220tatgeegaae aeeetgee eegesteeg eegaaeet eggeegeege1220tatgeegaae tggeegeege eegesteeg eegaaeet eegeegeege1220cegategga tggeegeege eegesteeg eegaaeet egeegeege1220cagategga egaeegeege eegesteeg eegaaeet egeegeegea1320cagategga gaeegeege eegeegeegeegeegeegeegeegeegeegee									
ageggeggtg eeegatee ggaaggtgt geeteegg geeggtagg egaatett 480 egeeggeggtg eegttee teegatee geetgeggegg geeggtgg tegteegg tegteegg gaaggtgg eaedteeg tttgaagaae tgggeggtg eegtteeg aacageaeg tegggegt geegategg agatgtggg 660 agteeedae teggeeggtg eegtteeg gaagaageg eegggtge geegategg agatgtggg 720 geeggtgatg aaaaagatg egtggaata gttaaaaeg teggggtg gaeegatega 780 aacaatetgt etgaacege geegteeg aagaageag aeetggeggt gaeegatega 840 gatgeeggaa tggataega egtgeegga tetgeegg tegegatega tageeaeg 900 gtgattgaae aegtteegg tegtggaat etteegaaa eeggeegg tggegaateg 900 gtgattgaae aegtteegg tegtggaat etteegaaa eeggeegg tggegateg 1020 eegatgeegt tegeggtte eetgetga ageegeeg teggtatee geetteeg 960 aacaatetgt eegggtteeg tegggatat aceedeeg tegeggtee geetteeg 1020 eegatgeegt tegeggtte eetgest eegeette gaaaageege eegetteeg 1080 eegateegg tegeggetg eetggeegt eeggetteeg teggatee geetteeg 1020 eegatgeegt tegeggtte eetgatega taeegeegg teggataeet geetteeg 1140 eegggtgtg ateaggaae tgatgeegt eetgeegg geegaaeet gegeggeeg 1260 tatgeegagg caaceegtee geeggtee geeageeteg eeaageet eggeeggeeg 1260 taegatgeag teggeggee geaggtgee geeageeteg tegaaate tegeegeeg 1320 eagateegag teggegeeg eeaggtgee geeageeg eeaageet eegeegg taeeateeg 1320									
cgccgtaatacccatgcgagtggcgtgattccgcagatcagcctggtggttggtccgtgt540gcgggcggtgccgttactctccggccattaccgatttacggtggtggttgatcagacc600agtcacatgttcattacggcccggatggtatcaaaacgttagggcgaagatggtggg660tttgaagaatgggcggtgacgtaccacaaacagcacgtctggcgtgggcatcacatg720gccggtgataaaaagatgcgtggatatgttaaacagtgtgggggaccaggggg780aacaatctgctgaaccgcggcgttccggaagaagcagacctggcggtgaccgatga840gtgatgcgaatggtacgatcgttccggattttcgaaaagccgatgat900gtgattgaaacgttctggtgatgcggaattttcgaaacccagccgc960aacattctgcgggttcgtcggatataccagccgtggcttctg1020ccgatgcagtttgcgggtgcctgacgtttggatgtcg1140ccgggtgtgatcaggaactgatgcggaagtatcagcgggcggtgggtaggcgagcaccgtgcggcagatcaggccggtggg1200tatgccgaacaccgtgcggcagatcaggccggtgg1200tatgccgaacaccgtgcggccgatcagacctggcgg1220tatgcggaatgatggcgggccgatcagacctggcag1320cagatggatgatggcgggccgatcgaacctggcgg1320tatgcagaatgatggcgggcaggtggcgcagtcggtacaggacgtatgcagaatgatggcgggcaggttcgtgaaggcg1320cagatcgcatgatggcgggcaggttcg <t< td=""></t<>									
gegggeggtg eegttaate teeggeeatt acegaattta eggtgatggt tgateagaee 600 agteacatgt teattaeggg eeeggatgtg ateaaaaceg ttaegggega agatgtgggt 660 tttgaagaae tgggeggtge acgtaeceae aacageaegt etggegttge geateacatg 720 geeggtgatg aaaaagatge egtggaatat gttaaacage tgetgagtta eetgeeggeg 780 aacaatetgt etgaacegee ggegtteegg gaagaageag acetggeggt gaeegatgaa 840 gatgeeggaae tggataegat egtteeggat tetgeaaate ageegtaega tatgeaeagt 900 gtgattgaae acgttetgga tgatgeggaa ttttegaaa eeeggeegg tgeeateacatg 900 gtgattgaae acgttetgga tgatgeggaa ttttegaaa eeeggeeg tgeeateacatg 1020 eeegatgeag ttgegggtg eetgggatat aceegeetg tgeggateeg tgeateetg 1020 eegatgeag ttgegggtg eetggegatat aceegeetg ggggtatee ggeetteeg 1140 eeegggggtg ateaggaae tgatggeat ateegeetg ggeagaaet gattttege 1200 tatgeegaag eaeeegtge getgataee gttateeeg geaaageat eggeggteeg 1260 taegatgtga tgggeageaa acatetggg geegatetga acetggeetg teegaaeteg 1320 eagateegag tggggeagea acatetggg geegatetga acetggeetg geegaeega 1320 eagategeag tgatggeeg geagggtgee gttaatatte tgeaeegeeg taeeategea 1380 gatgeeaggt gatggeeg geaggtgee gttaatatte tgeaeegeeg taeeategea 1380									
agtcacatgt tcattacggg cccggatgtg atcaaaaccg ttacgggcga agatgtgggt660tttgaagaac tgggcgtge acgtaccac aacagcacgt ctggcgttge gcatcacatg720gccggtgatg aaaagatge cgtggaatat gttaaacage tgctgagtta cctgccgage780aacaatctgt ctgaaccgce ggcgtteceg gaagaagcag acctggcggt gaccgatgaa840gtgtgctgaac acgttetgga tgttecgga tctgcaaate agccgtacga tatgcacagt900gtgattgaac acgttetgga tgatgcgaa ttttegaaa cccagceget gttgececeg960aacaatctg tgcgggttg cctggatat accectetg aaaaagcge ccgetttgt1020ccgatgcagt ttgegggtt gctggatat accegeceg tgggtategt tgcaaatcag1020cggatgtg atcaggaac tgtgcggt ctgacgttg tggatgte gggttecg1140ccggatgtg atcaggaaca tgatgcgg gccaacceg gtgggggggggggggggg1260tatgecgaag tgggcagea accetggg gccgatctg accegeceg taccactege1320cagatgcag tgggcagea accetggg gccgatctg accegeceg taccactege1320cagatgcag tggggage gcaggtge gtaatate tgcaccge taccactege1320cagatcgcag tgatgcgga gacggtge gcagtteg ttcagagata tgaagatge1320cagatcgag tgatggge gcaggtge gcagtteg ttcagagata tacactege1320cagatcgcag tgatggge gcaggtge gcagtteg ttcagagata tgaagatge1320cagatcgcag tgatggge gcaggtge gcagtteg ttcagagata tgaagatge1320cagatcgcag tgatggge gcaggtge gcagtteg ttcagagata tgaagatge1320cagatcgcag tgatggga agcgacge gcaggtge gcagtteg taccactege1320cagatcgcag tgatggaga agcgacge gcaggtge gtacgtteg tacaggatge1340gcggatgga tgatgcgag agcgacge gcaggtge gtacgata tgaagatge1440									
tttgaagaac tgggcggtgc acgtacccac aacagcacgt ctggcgttgc gcatcacatg720gccggtgatg aaaaagatgc cgtggaatat gttaaacagc tgctgagtta cctgccgagc780aacaatctgt ctgaaccgcc ggcgttcccg gaagaagcag acctggcggt gaccgatgaa840gatgccgaac tggatacgat cgttccggat tctgcaaatc agccgtacga tatgcacagt900gtgattgaac acgttctgga tgatgcggaa ttttcgaaa cccagccgct gttgccccg960aacaatctgt cgggtttcgg tcgtgtggaa ggtcgtccgg tgggtatcgt tgcaaatca1020ccgatgcagt ttgcgggtt cctggatatt accgcctctg aaaaagcggc ccgctttgtg1080cgtacctgtg atgcgtcaa cgtgccggt ctgacgttg tggatgtcc gggcttccg1140ccgggtgtg atcaggaac tgatgggcg gcaggtgcc gtatatt tgcaccgc gcacgccg1320cagatcgcag tgagggcg gcagggtgcc gtatatt tgcaccgc gaagaagcag acctggcg taccatcgca1320cagatgcgag tagggcagcaa acatctgggt gccgatctga tctaggcat gcaccatcgca1380gatgcaggtg tgatggcgc gcaggtgcc gtatattc tgcaccgcg taccatcgca1440									
gccggtgatg aaaagatge egtggaatat gttaaacage tgetgagtta eetgeegage 780 aacaatetgt etgaacegee ggegtteeeg gaagaageag aeetggeggt gaeegatgaa 840 gatgeegaae tggataegat egtteegga tetgeaate ageegtaega tatgeacagt 900 gtgattgaae aegtteegga tgatgeggaa ttteegaaa eeeageege gttgeeeg 960 aacatteega egggtteegg tegegegaa ggeegteegg tgggateegt tgeaaateag 1020 eegatgeagt tegeggetg eeeggetgee gegeeteeg aaaaageege eegettegg 1080 egtaeeetgg atgeeggetg eeeggetge etgaegteeg teggatgee ggeeteeg 1140 eegggegetg ateaggaaca egeteegg geeggeteeg eeegeteg geeggeeggae 1220 tatgeegaag eaaceegege geeggetgee geegateega aceeggeeg geeggeeggae 1220 eagategeag tgaeggeeg geagggtgee gtaatate tgeacegeeg taceateega 1320 eagategeag tgaeggeeg geagggtgee geegeteega teeggeata tgaagatgeeg 1440									
aacaatctgt ctgaaccgcc ggcgttcccg gaagaagcag acctggcggt gaccgatgaa 840 gatgccgaac tggatacgat cgttccggat tctgcaaatc agccgtacga tatgcacagt 900 gtgattgaac acgttctgga tgatgcggaa ttttcgaaa cccagccgct gttgccccg 960 aacattctga cgggtttcgg tcgtgtggaa ggtcgtccgg tgggtatcgt tgcaaatcag 1020 ccgatgcagt ttgcgggttg cctggatat accgcctctg aaaaagcggc ccgctttgtg 1080 cgtacctgtg atgcgtcaa cgtgccggt ctgacgttg tggatgtcc gggcttcctg 1140 ccgggtgttg atcaggaaca tgatggcat atccgccgt gtgggaact gattttgccg 1200 tatgccgaag caaccgtgc gctgattacc gttaccage gcaagcatt cggcggtgcg 1260 tacgatgtga tgggcagcaa acatctgggt gccgatctga acctggcatg gccgaccgca 1320 cagatcgcag tgatgggcg gcagggtgcc gttaatatt tgcacgccg taccatcgca 1380 gatgcaggtg atgatgcaga agcgacgcg gcacgtctga ttcaggaata tgaagatgcg 1440									
gatgccgaac tggatacgat cgttccggat tctgcaaatc agccgtacga tatgcacagt 900 gtgattgaac acgttctgga tgatgcggaa tttttcgaaa cccagccgct gttgccccg 960 aacattctga cgggtttcgg tcgtgtggaa ggtcgtccgg tgggtatcgt tgcaaatcag 1020 ccgatgcagt ttgcgggttg cctggatatt accgcctctg aaaaagcggc ccgctttgtg 1080 cgtacctgtg atgcgttcaa cgtgccggtt ctgacgttg tggatgttcc gggcttcctg 1140 ccgggtgttg atcaggaaca tgatggcatt atccgccgtg gtgcgaaact gatttttgcg 1200 tatgccgaag caaccgtgcc gctgattacc gttatcacgc gcaaagcatt cggcggtgcg 1260 tacgatgtga tgggcagcaa acatctgggt gccgatctga acctggcatg gccgaccgca 1320 cagatcgcag tgatggcgc gcaggtgcc gttaatattc tgcaccgccg taccatcgca 1380 gatgcaggtg atgatgcaga agcgacgcg gcacgtctga ttcaggaata tgaagatgcg 1440									
gtgattgaac acgttetgga tgatgeggaa tttttegaaa eccageeget gttgeeceeg 960 aacattetga egggtttegg tegtgtggaa ggtegteegg tgggtategt tgeaaateag 1020 eegatgeagt ttgegggttg eetggatatt accgeetetg aaaaagegge eegettetg 1080 egtaeetgtg atgegtteaa egtgeeggtt etgaegttg tggatgttee gggetteetg 1140 eegggtgttg ateaggaaca tgatggeatt ateegeegtg gtgegaaaet gattttgeg 1200 tatgeegaag eaacegtgee getgattaee gttateaege geaageatt eggeggtgeg 1260 taegatgtga tgggeageaa acatetgggt geegatetga acetggeatg geegaeegea 1320 eagategeag tgatgggeeg geagggtgee gttaatatte tgeaeegeeg taeeateega 1380 gatgeaggtg atgatgeaga agegaeggee geegtetga tteaggaata tgaagatgeg 1440									
aacattetga egggtttegg tegtgtggaa ggtegteegg tgggtategt tgeaaateag 1020 eegaagetgeag ttgegggttg eetggatatt acegeetetg aaaaagegge eegettetg 1080 eegtaeetgg atgegtteaa egtgeeggtt etgaegtttg tggatgttee gggetteetg 1140 eegggtgttg ateaggaaca tgatggeatt ateegeeggt gtgegaaaet gatttttgeg 1200 tatgeegaag eaacegtgee getgattaee gttateaege geaaageatt eggeggtgeg 1260 taegaatgtga tggggeageaa acatetgggt geegatetga acetggeatg geegaeege 1320 eagategeag tgatgggeeg geagggtgee gttaatatte tgeaeegeeg taeeategea 1380 gatgeaggtg atgatgeaga agegaeegee geegtetga tteaggaata tgaagatgeg 1440									
ccgatgcagt ttgcgggttg cctggatatt accgcctctg aaaaagcggc ccgctttgtg 1080 cgtacctgtg atgcgttcaa cgtgccggtt ctgacgttg tggatgttcc gggcttcctg 1140 ccgggtgttg atcaggaaca tgatggcatt atccgccgtg gtgcgaaact gatttttgcg 1200 tatgccgaag caaccgtgcc gctgattacc gttatcacgc gcaaagcatt cggcggtgcg 1260 tacgatgtga tggggcagcaa acatctgggt gccgatctga acctggcatg gccgaccgca 1320 cagatcgcag tgatggcgc gcagggtgcc gttaatattc tgcaccgccg taccatcgca 1380 gatgcaggtg atgatgcaga agcgacgcgc gcacgtctga ttcaggaata tgaagatgcg 1440									
cgtacctgtg atgcgttcaa cgtgccggtt ctgacgtttg tggatgttcc gggcttcctg 1140 ccgggtgttg atcaggaaca tgatggcatt atccgccgtg gtgcgaaact gattttgcg 1200 tatgccgaag caaccgtgcc gctgattacc gttatcacgc gcaaagcatt cggcggtgcg 1260 tacgatgtga tggggcagcaa acatctgggt gccgatctga acctggcatg gccgaccgca 1320 cagatcgcag tgatgggcgc gcagggtgcc gttaatattc tgcaccgccg taccatcgca 1380 gatgcaggtg atgatgcaga agcgacgcgc gcacgtctga ttcaggaata tgaagatgcg 1440									
ccgggtgttg atcaggaaca tgatggcatt atccgccgtg gtgcgaaact gatttttgcg1200tatgccgaag caaccgtgcc gctgattacc gttatcacgc gcaaagcatt cggcggtgcg1260tacgatgtga tgggcagcaa acatctgggt gccgatctga acctggcatg gccgaccgca1320cagatcgcag tgatgggcgc gcagggtgcc gttaatattc tgcaccgccg taccatcgca1380gatgcaggtg atgatgcaga agcgacgcgc gcacgtctga ttcaggaata tgaagatgcg1440									
tatgeegaag eaacegtgee getgattace gttateacege geaaageatt eggeggtgeg 1260 taegatgtga tggggeageaa acatetgggt geegatetga acetggeatg geegaeegea 1320 eagategeag tgatggggege geagggtgee gttaatatte tgeaeegeeg taeeategea 1380 gatgeaggtg atgatgeaga agegaeggeg geaegtetga tteaggaata tgaagatgeg 1440									
tacgatgtga tgggcagcaa acatctgggt gccgatctga acctggcatg gccgaccgca 1320 cagatcgcag tgatggggcgc gcagggtgcc gttaatattc tgcaccgccg taccatcgca 1380 gatgcaggtg atgatgcaga agcgacgcgc gcacgtctga ttcaggaata tgaagatgcg 1440									
cagategeag tgatgggege geagggtgee gttaatatte tgeaeegeeg taeeategea 1380 gatgeaggtg atgatgeaga agegaegege geaegtetga tteaggaata tgaagatgeg 1440									
gatgcaggtg atgatgcaga agcgacgcgc gcacgtctga ttcaggaata tgaagatgcg 1440									
ctgctgaacc cgtataccgc agcggaacgt ggttacgtgg atgcggttat tatgccgagc 1500									
gataccegee gteatategt gegtggtetg egteagetge gtaegaaaeg tgaatetetg 1560									
ccgccgaaaa aacacggtaa tattccgctg taa 1593									
<210> SEQ ID NO 15 <211> LENGTH: 3539 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic nucleotide									
<400> SEQUENCE: 15									
aattgtgagc ggataacaat tgacattgtg agcggataac aagatactga gcacatcagc 60									
aggacgcact gaccgaattc aataattttg tttaacttta agaaggagat atacatatgc 120									
gcaaagtget gattgegaac egtggtgaaa tegeegtteg tgtggeaege gegtgtegtg 180									
atgcaggtat tgcaagtgtt gcggtgtatg ccgatccgga tcgcgatgcg ctgcatgttc 240									
atgcaggtat tgcaagtgtt gcggtgtatg ccgatccgga tcgcgatgcg ctgcatgttc 240									
atgcaggtat tgcaagtgtt gcggtgtatg ccgatccgga tcgcgatgcg ctgcatgttc 240 gtgcggccga tgaagcettt gcactgggcg gtgataceee ggcaacgage tatetggata 300									
atgcaggtat tgcaagtgtt gcggtgtatg ccgatccgga tcgcgatgcg ctgcatgttc 240 gtgcggccga tgaagcettt gcactgggcg gtgataceee ggcaacgage tatetggata 300 ttgcaaaagt getgaaagea gegegegaaa geggtgegga tgecateeat eegggetaeg 360									
atgcaggtat tgcaagtgtt gcggtgtatg ccgatccgga tcgcgatgcg ctgcatgttc 240 gtgcggccga tgaagccttt gcactgggcg gtgatacccc ggcaacgagc tatctggata 300 ttgcaaaagt gctgaaagca gcgcgcgaaa gcggtgcgga tgccatccat ccgggctacg 360 gttttctgtc tgaaaatgca gaatttgcac aggcggttct ggatgcaggt ctgatttgga 420									
atgcaggtat tgcaagtgtt gcggtgtatg ccgatccgga tcgcgatgcg ctgcatgttc 240 gtgcggccga tgaagcettt gcactgggcg gtgataceee ggcaacgage tatetggata 300 ttgcaaaagt getgaaagea gegegegaaa geggtgegga tgecateeat eegggetaeg 360 gttttetgte tgaaaatgea gaatttgeae aggeggttet ggatgeaggt etgatttgga 420 teggteegee geegeatgea attegtgate tgggegataa agtggeegea egeeacateg 480									

-continued	
gegeagtteg egaageggtg geagegtttg geegtggtga atgettegtg gaaegetaee	2 720
tggataaacc gcgtcatgtt gaaacccagt gtctggcgga tacgcacggc aacgtggttg	g 780
tggttagcac ccgcgattgc tctctgcaac gtcgccacca gaaactggtg gaagaagcac	2 840
cggcgccgtt tctgagcgaa gcccagaccg aacagctgta tagctctagt aaagcgattc	900
tgaaagaagc cggttacgtg ggcgccggta cggttgaatt tctggtgggc atggatggca	a 960
ccattagett tetggaagtt aacaecegte tgeaagttga acateeggtg acegaagaag	g 1020
ttgegggeat tgatetggtg egegaaatgt ttegtatege agatggegaa gaaetgggtt	1080
acgatgatcc ggcgctgcgc ggtcacagct ttgaatttcg tattaatggc gaagatccgg	g 1140
geogtggttt tetgeoggeg eegggeaceg tgaegetgtt egatgeaceg aceggteegg	g 1200
gcgttcgtct ggatgccggt gtggaaagtg gtagcgttat tggcccggca tgggatagcc	2 1260
tgetggegaa aetgategtt aeeggtegta egegegeega agegetgeaa egtgeageae	2 1320
gtgeeetgga tgaatttaee gtggaaggea tggegaegge catteegttt eategeaeeg	g 1380
tggttcgtga teeggeatte gegeeggaae tgaeeggete taeegateeg tteaeegtge	2 1440
acacgcgctg gatcgaaacc gaatttgtta acgaaatcaa accgttcacc acgccggcgg	g 1500
ataccgaaac ggatgaagaa agtggtcgcg aaacggtggt tgtggaagtg ggcggtaaac	2 1560
gtetggaagt ttetetgeeg ageageetgg gtatgagtet ggegegtaee ggtetggegg	g 1620
ccggcgcccg tccgaaacgt cgcgcagcga aaaaatctgg tccggccgca agcggtgata	a 1680
ccctggccag tccgatgcag ggcacgattg tgaaaatcgc agtggaagaa ggtcaggaag	g 1740
tgcaggaagg cgatctgatt gttgtgctgg aagcgatgaa aatggaacag ccgctgaatg	g 1800
cccatcgtag cggcaccatc aaaggcctga cggccgaagt gggtgcatct ctgaccagtg	g 1860
gcgcggccat ttgcgaaatc aaagattaaa gatctgcggc cgcatctaga aataattttg	J 1920
tttaacttta agaaggagat atattcatga gtgaaccgga agaacagcag ccggatatto	2 1980
ataccacggc aggcaaactg gcggatctgc gtcgccgtat cgaagaagca acccatgcag	g 2040
gtagcgcacg tgcagtggaa aaacagcacg cgaaaggtaa actgacggcc cgcgaacgt <i>a</i>	a 2100
tcgatctgct gctggatgaa ggcagttttg ttgaactgga tgaatttgca cgccaccgt <i>a</i>	a 2160
gcaccaactt tggtctggat gcgaatcgcc cgtatggcga tggtgtggtt accggttacc	g 2220
gtacggtgga tggtcgtccg gtggcagttt ttagccagga ttttaccgtg ttcggcggtg	g 2280
cactgggcga agtttacggt cagaaaatcg tgaaagttat ggatttcgcg ctgaaaacgg	g 2340
getgeeeggt ggttggtatt aacgatageg geggtgeeeg cateeaggaa ggtgttgeet	2400
ctctgggcgc gtatggcgaa atctttcgcc gtaataccca tgcgagtggc gtgattccgc	2460
agatcageet ggtggttggt eegtgtgegg geggtgeegt ttaeteteeg geeattaeeg	3 2520
attttacggt gatggttgat cagaccagtc acatgttcat tacgggcccg gatgtgatca	a 2580
aaaccgttac gggcgaagat gtgggttttg aagaactggg cggtgcacgt acccacaaca	a 2640
gcacgtctgg cgttgcgcat cacatggccg gtgatgaaaa agatgccgtg gaatatgtta	a 2700
aacagetget gagttaeetg eegageaaca atetgtetga aeegeeggeg tteeeggaag	g 2760
aagcagacct ggcggtgacc gatgaagatg ccgaactgga tacgatcgtt ccggattctc	g 2820
caaatcagcc gtacgatatg cacagtgtga ttgaacacgt tctggatgat gcggaatttt	2880
tegaaaeeea geegetgttt geeeegaaea ttetgaeggg ttteggtegt gtggaaggte	2940

-continued										
gteeggtggg tategttgea aateageega tgeagtttge gggttgeetg gatattaeeg	3000									
cctctgaaaa agcggcccgc tttgtgcgta cctgtgatgc gttcaacgtg ccggttctga	3060									
cgtttgtgga tgttccgggc ttcctgccgg gtgttgatca ggaacatgat ggcattatcc	3120									
gccgtggtgc gaaactgatt tttgcgtatg ccgaagcaac cgtgccgctg attaccgtta	3180									
tcacgcgcaa agcattcggc ggtgcgtacg atgtgatggg cagcaaacat ctgggtgccg	3240									
atetgaacet ggeatggeeg acegeacaga tegeagtgat gggegegeag ggtgeegtta	3300									
atattetgea eegeegtaee ategeagatg eaggtgatga tgeagaageg aegegegeae	3360									
gtctgattca ggaatatgaa gatgcgctgc tgaacccgta taccgcagcg gaacgtggtt	3420									
acgtggatgc ggttattatg ccgagcgata cccgccgtca tatcgtgcgt ggtctgcgtc	3480									
agctgcgtac gaaacgtgaa tctctgccgc cgaaaaaaca cggtaatatt ccgctgtaa	3539									
<pre><210> SEQ ID NO 16 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer</pre>										
<400> SEQUENCE: 16 aaactgcaga ggaggacagc tatgtctttt agcgaatttt atcag	45									
aaactycaya yyayyacayo tatytotto ayoyaattot attay	42									
<210> SEQ ID NO 17 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer										
<400> SEQUENCE: 17	24									
aaaggateee tattettega tegeetggeg aatttg	36									
<210> SEQ ID NO 18 <211> LENGTH: 383 <212> TYPE: PRT <213> ORGANISM: Mycobacterium bovis										
<400> SEQUENCE: 18										
Leu Val Glu Gly Leu Arg Glu Val Ala Asp Gly Asp Ala Leu Tyr Asp 1 5 10 15										
Ala Ala Val Gly His Gly Asp Arg Gly Pro Val Trp Val Phe Ser Gly 20 25 30										
Gln Gly Ser Gln Trp Ala Ala Met Gly Thr Gln Leu Leu Ala Ser Glu 35 40 45										
Pro Val Phe Ala Ala Thr Ile Ala Lys Leu Glu Pro Val Ile Ala Ala 50 55 60										
Glu Ser Gly Phe Ser Val Thr Glu Ala Ile Thr Ala Gln Gln Thr Val 65 70 75 80										
Thr Gly Ile Asp Lys Val Gln Pro Ala Val Phe Ala Val Gln Val Ala 85 90 95										
Leu Ala Ala Thr Met Glu Gln Thr Tyr Gly Val Arg Pro Gly Ala Val 100 105 110										
Val Gly His Ser Met Gly Glu Ser Ala Ala Ala Val Val Ala Gly Ala 115 120 125										

-continued

											-	con	cin	uea							
Leu	Ser 130	Leu	Glu	Asp	Ala	Ala 135	Arg	Val	Ile	Суз	Arg 140	Arg	Ser	ГЛа	Leu					 	
Met 145	Thr	Arg	Ile	Ala	Gly 150	Ala	Gly	Ala	Met	Gly 155		Val	Glu	Leu	Pro 160						
Ala	Lys	Gln	Val	Asn 165	Ser	Glu	Leu	Met	Ala 170	Arg	Gly	Ile	Asp	Asp 175	Val						
Val	Val	Ser		Val	Ala	Ser	Pro			Thr	Val	Ile	-		Thr						
Ser	Asp	Thr	180 Val	Arg	Asp	Leu	Ile	185 Ala	Arg	Trp	Glu	Gln	190 Arg	Asp	Val						
Met	Ala	195 Arg	Glu	Val	_ ∆la	Val	200 Asp	Val	Δla	Ser	Нія	205 Ser	Pro	Gln	Val						
	210	Ĩ				215	-				220										
Asp 225	Pro	IIe	Leu	Asp	Asp 230	Leu	Ala	Ala	Ala	Leu 235	Ala	Asp	IIe	Ala	Pro 240						
Met	Thr	Pro	Lys	Val 245	Pro	Tyr	Tyr	Ser	Ala 250	Thr	Leu	Phe	Asp	Pro 255	Arg						
Glu	Gln	Pro	Val 260	Суз	Asp	Gly	Ala	Tyr 265	Trp	Val	Asp	Asn	Leu 270	Arg	Asn						
Thr	Val	Gln 275	Phe	Ala	Ala	Ala	Val 280	Gln	Ala	Ala	Met	Glu 285	Asp	Gly	Tyr						
Arg	Val 290	Phe	Ala	Glu	Leu	Ser 295	Pro	His	Pro	Leu	Leu 300	Thr	His	Ala	Val						
Glu 305	Gln	Thr	Gly	Arg	Ser 310	Leu	Asp	Met	Ser	Val 315	Ala	Ala	Leu	Ala	Gly 320						
Met	Arg	Arg	Glu	Gln 325	Pro	Leu	Pro	His	Gly 330	Leu	Arg	Gly	Leu	Leu 335	Thr						
Glu	Leu	His		Ala	Gly	Ala	Ala			Tyr	Ser	Ala			Pro						
Ala	Gly	Arg	340 Leu	Val	Asp	Ala	Pro	345 Leu	Pro	Ala	Trp	Thr	350 His	Ala	Arg	i					
Leu	Phe	355 Ile	Asp	Asp	Asp	Glv	360 Gln	Glu	Gln	Ara	Ala	365 Gln	Glv	Ala							
204	370		P		1101	375			0111	-		0111	017								
<212 <212 <212 <300 <308 <309	L> LH 2> TY 3> OH 0> PT 3> DH 3> DH	JBLI ATABI ATABI	H: 2 PRT ISM: CATI ASE ASE	111	NFORI SSIOI Y DA	MATI(N NUN FE: 2	DN: MBER 2010-	: Gen -12-1	14												
		EQUEI																			
Met 1	Glu	Ser	Arg	Val 5	Thr	Pro	Val	Ala	Val 10	Ile	Gly	Met	Gly	Суз 15	Arg						
Leu	Pro	Gly	Gly 20	Ile	Asn	Ser	Pro	Asp 25	Lys	Leu	Trp	Glu	Ser 30	Leu	Leu						
Arg	Gly	Asp 35	Asp	Leu	Val	Thr	Glu 40	Ile	Pro	Pro	Asp	Arg 45	Trp	Asp	Ala						
Asp	Asp 50	Tyr	Tyr	Asp	Pro	Glu 55	Pro	Gly	Val	Pro	Gly 60	Arg	Ser	Val	Ser						
Arg 65	Trp	Gly	Gly	Phe	Leu 70	Asp	Asp	Val	Ala	Gly 75	Phe	Asp	Ala	Glu	Phe 80						
	Gly	Ile	Ser	Glu		Glu	Ala	Thr	Ser	Ile	Asp	Pro	Gln	Gln		I					

-continued

											-	con	tin	ued	
				85					90					95	
Leu	Leu	Leu	Glu 100	Thr	Ser	Trp	Glu	Ala 105	Ile	Glu	His	Ala	Gly 110	Leu	Asp
Pro	Ala	Ser 115	Leu	Ala	Gly	Ser	Ser 120	Thr	Ala	Val	Phe	Thr 125	Gly	Leu	Thr
His	Glu 130	Asp	Tyr	Leu	Val	Leu 135	Thr	Thr	Thr	Ala	Gly 140	Gly	Leu	Ala	Ser
Pro 145	Tyr	Val	Val	Thr	Gly 150	Leu	Asn	Asn	Ser	Val 155	Ala	Ser	Gly	Arg	Ile 160
Ala	His	Thr	Leu	Gly 165	Leu	His	Gly	Pro	Ala 170	Met	Thr	Phe	Asp	Thr 175	Ala
Сув	Ser	Ser	Gly 180	Leu	Met	Ala	Val	His 185	Leu	Ala	Суа	Arg	Ser 190	Leu	His
Asp	Gly	Glu 195	Ala	Asp	Leu	Ala	Leu 200	Ala	Gly	Gly	Сүз	Ala 205	Val	Leu	Leu
Glu	Pro 210	His	Ala	Суз	Val	Ala 215	Ala	Ser	Ala	Gln	Gly 220	Met	Leu	Ser	Ser
Thr 225	Gly	Arg	Суз	His	Ser 230	Phe	Asp	Ala	Asp	Ala 235	Asp	Gly	Phe	Val	Arg 240
Ser	Glu	Gly	Суз	Ala 245	Met	Val	Leu	Leu	Lys 250	Arg	Leu	Pro	Asp	Ala 255	Leu
Arg	Asp	Gly	Asn 260	Arg	Ile	Phe	Ala	Val 265	Val	Arg	Gly	Thr	Ala 270	Thr	Asn
Gln	Asp	Gly 275	Arg	Thr	Glu	Thr	Leu 280	Thr	Met	Pro	Ser	Glu 285	Asp	Ala	Gln
Val	Ala 290	Val	Tyr	Arg	Ala	Ala 295	Leu	Ala	Ala	Ala	Gly 300	Val	Gln	Pro	Glu
Thr 305	Val	Gly	Val	Val	Glu 310	Ala	His	Gly	Thr	Gly 315	Thr	Pro	Ile	Gly	Asp 320
Pro	Ile	Glu	Tyr	Arg 325	Ser	Leu	Ala	Arg	Val 330	Tyr	Gly	Ala	Gly	Thr 335	Pro
Сув	Ala	Leu	Gly 340	Ser	Ala	Lys	Ser	Asn 345	Met	Gly	His	Ser	Thr 350	Ala	Ser
Ala	Gly	Thr 355	Val	Gly	Leu	Ile	Lys 360	Ala	Ile	Leu	Ser	Leu 365	Arg	His	Gly
Val	Val 370	Pro	Pro	Leu	Leu	His 375	Phe	Asn	Arg	Leu	Pro 380	Asp	Glu	Leu	Ser
Asp 385	Val	Glu	Thr	Gly	Leu 390	Phe	Val	Pro	Gln	Ala 395		Thr	Pro	Trp	Pro 400
		Asn	Asp	His 405	Thr		Lys	Arg	Val 410		Val	Ser	Ser	Phe 415	
Met	Ser	Gly	Thr 420	Asn		His	Ala	Ile 425	Val	Glu	Glu	Ala	Pro 430		Glu
Ala	Ser	Ala 435			Ser	Ser	Pro 440	Gly		Ala	Glu	Val 445		Pro	Arg
Leu	Phe 450	Met	Leu	Ser	Ser	Thr 455		Ser	Asp	Ala	Leu 460	Arg	Gln	Thr	Ala
Arg 465	Gln	Leu	Ala	Thr	Trp 470	Val		Glu	His	Gln 475		Суз	Val	Ala	Ala 480
		Leu	Ala	Tyr 485	Thr		Ala	Arg	Gly 490	Arg	Ala	His	Arg	Pro 495	

-continued

Arg	Thr	Ala	Val 500	Val	Ala	Ala	Asn	Leu 505	Pro	Glu	Leu	Val	Glu 510	Gly	Leu
Arg	Glu	Val 515	Ala	Asp	Gly	Asp	Ala 520	Leu	Tyr	Asp	Ala	Ala 525	Val	Gly	His
Gly	Asp 530	Arg	Gly	Pro	Val	Trp 535	Val	Phe	Ser	Gly	Gln 540	Gly	Ser	Gln	Trp
Ala 545	Ala	Met	Gly	Thr	Gln 550	Leu	Leu	Ala	Ser	Glu 555	Pro	Val	Phe	Ala	Ala 560
Thr	Ile	Ala	ГЛа	Leu 565	Glu	Pro	Val	Ile	Ala 570	Ala	Glu	Ser	Gly	Phe 575	Ser
Val	Thr	Glu	Ala 580	Ile	Thr	Ala	Gln	Gln 585	Thr	Val	Thr	Gly	Ile 590	Asp	Lys
Val	Gln	Pro 595	Ala	Val	Phe	Ala	Val 600	Gln	Val	Ala	Leu	Ala 605	Ala	Thr	Met
Glu	Gln 610	Thr	Tyr	Gly	Val	Arg 615	Pro	Gly	Ala	Val	Val 620	Gly	His	Ser	Met
Gly 625	Glu	Ser	Ala	Ala	Ala 630	Val	Val	Ala	Gly	Ala 635	Leu	Ser	Leu	Glu	Asp 640
Ala	Ala	Arg	Val	Ile 645	Суз	Arg	Arg	Ser	Lys 650	Leu	Met	Thr	Arg	Ile 655	Ala
Gly	Ala	Gly	Ala 660	Met	Gly	Ser	Val	Glu 665	Leu	Pro	Ala	ГЛа	Gln 670	Val	Asn
Ser	Glu	Leu 675	Met	Ala	Arg	Gly	Ile 680	Asp	Asp	Val	Val	Val 685	Ser	Val	Val
Ala	Ser 690	Pro	Gln	Ser	Thr	Val 695	Ile	Gly	Gly	Thr	Ser 700	Asp	Thr	Val	Arg
Asp 705	Leu	Ile	Ala	Arg	Trp 710	Glu	Gln	Arg	Asp	Val 715	Met	Ala	Arg	Glu	Val 720
Ala	Val	Asp	Val	Ala 725	Ser	His	Ser	Pro	Gln 730	Val	Asp	Pro	Ile	Leu 735	Asp
Asp	Leu	Ala	Ala 740	Ala	Leu	Ala	Asp	Ile 745	Ala	Pro	Met	Thr	Pro 750	Lys	Val
Pro	Tyr	Tyr 755	Ser	Ala	Thr	Leu	Phe 760	Asp	Pro	Arg	Glu	Gln 765	Pro	Val	Суз
Asp	Gly 770	Ala	Tyr	Trp	Val	Asp 775	Asn	Leu	Arg	Asn	Thr 780	Val	Gln	Phe	Ala
Ala 785	Ala	Val	Gln	Ala	Ala 790	Met	Glu	Asp	Gly	Tyr 795	Arg	Val	Phe	Ala	Glu 800
Leu	Ser	Pro	His	Pro 805	Leu	Leu	Thr	His	Ala 810	Val	Glu	Gln	Thr	Gly 815	Arg
Ser	Leu	Asp	Met 820	Ser	Val	Ala	Ala	Leu 825	Ala	Gly	Met	Arg	Arg 830	Glu	Gln
Pro	Leu	Pro 835	His	Gly	Leu	Arg	Gly 840	Leu	Leu	Thr	Glu	Leu 845	His	Arg	Ala
Gly	Ala 850	Ala	Leu	Asp	Tyr	Ser 855	Ala	Leu	Tyr	Pro	Ala 860	Gly	Arg	Leu	Val
Asp 865	Ala	Pro	Leu	Pro	Ala 870	Trp	Thr	His	Ala	Arg 875	Leu	Phe	Ile	Asp	Aap 880
Asp	Gly	Gln	Glu	Gln 885	Arg	Ala	Gln	Gly	Ala 890	Сүз	Thr	Ile	Thr	Val 895	His

Pro Leu Leu Gly Ser His Val Arg Leu Thr Glu Glu Pro Glu Arg His 900 Val Trp Gln Gly Asp Val Gly Thr Ser Val Leu Ser Trp Leu Ser Asp 915 916 917 918 Gln Val His Asn Val Ala Ala Leu Pro Gly Ala Ala Tyr Cys Glu 945 945 945 946 947 948 948 949 949 940 945 945 946 947 948 950 </th
915920925His Gin Val His Am Val Ala Ala Leu Pro Gly Ala Ala Tyr Cys Glu 930Met Ala Leu Ala Ala Ala Ala Glu Val Phe Gly Glu Ala Ala Glu Val 955Arg Asp Ile Thr Phe Glu Gin Met Leu Leu Leu Asp Glu Gin Thr Pro 970916Arg Asp Ala Val Ala Ser Ile Asp Ala Pro Gly Val Val Asp Thr Ala Ala 995Val Glu Thr Asn Arg Asp Gly Glu Thr Thr Arg His Ala Thr Ala Ala 995Leu Arg Ala Ala Glu Asp Asp Cys Pro Pro Pro Gly Tyr Asp Ile 100010011025Thr Ala Leu Leu Gin Ala His Pro His Ala Val Asp Gly Thr Ala 1025Met Arg Glu Ser Phe Ala Glu Arg Gly Val Thr Leu Gly Ala Ala 1056Phe Gly Gly Leu Thr Thr Ala His Thr Ala Glu Ala Glu Ala Gly Ala Ala 1055Chi Gly Leu Thr Thr Ala His Pro Ala Ser Ile Arg Phe Gln 1055Chi Ser Val Gly Ala Gly Val Gli Ala Ala Chy Phe 1050Gln Ser Val Gly Ala Gly Val Gli Ala Gly Thr Ala 1055Gli Ser Val Gly Ala Gly Val Gli Ala Gly Thr Ala Thr Gly Gly 1100Leu Leu Pro Leu Gly Val Arg Ser Leu Arg Ala 1105Glin Ser Val Gly Thr Arg Gly Gly Glu Ala Asp Leu Asp 1115Thr Arg Asm Ala Arg Tyr Cys Tyr Thr Arg Leu Thr 1105Glu His Gly Thr Val Leu Leu Ala Val Arg Gly Leu Asp 1165Glu His Gly Thr Val Leu Leu Ala Val Arg Gly Leu Asp 1165Glu His Gly Thr Val Leu Leu Ala Val Arg Gly Leu 1185Arg Leu Leu Thr Leu Gly Trp Gli Gli Arg Asp Alg Leu 1195Arg Leu Leu Thr Leu Gly Trp Gli Gli Arg Asp Arg Leu 1195Arg Leu Leu Thr Leu Gly Trp Gli Gli Arg Asp Alg Leu Pro Gli Val 1190Arg Leu Leu Thr Leu Gly Trp Gli Gli Arg Asp Arg Leu 1195Arg Leu Leu Thr Leu Gly Trp
930935940Met Ala Lau Ala Ala Ala Ala Glu Val Phe Gly Glu Ala Ala Glu Val 950950Arg Asp Ile Thr Phe Glu Gln Met Leu Leu Leu Asp Glu Gln Thr Pro 960Arg Asp Ala Val Ala Ser Ile Asp Ala Pro Gly Val Val Asn Phe Thr 980980Val Glu Thr Ann Arg Asp Gly Glu Thr Thr Arg His Ala Thr Ala Ala 10101010Leu Arg Ala Ala Glu Asp Asp Cys Pro Pro Pro Gly Tyr Asp Ile 10101025Thr Ala Leu Leu Gln Ala His Pro His Ala Val Asn Gly Thr Ala 1030Met Arg Gly Gly Clu Thr Thr Arg His Ala Gly Ala Ala 10401025Phe Gly Gly Leu Thr Thr Ala His Thr Ala Glu Ala Gly Ala Ala 10461055Thr Val Leu Ala Glu Val Arg Gly Val Thr Leu Gly Ala Ala 104610551060Gln Gly Ala Tyr Arg Ile His Pro Ala Leu Leu Asp Ala Cys Phe 1085108Gln Gly Ala Tyr Arg Ile His Pro Ala Leu Leu Asp Ala Cys Phe 10851081110Leu Leu Pro Leu Gly Val Arg Ser Leu Arg Ala 11201115Leu Leu Pro Leu Gly Val Arg Ser Leu Arg Ala 11201116111611171118Asn Ala Arg Tyr Cys Tyr Thr Arg Leu Thr Lys Ala Phe 11501116111611171118Asn Ala Arg Gly Gly Glu Ala Asp Leu Asp Leu Asp 1150111911101110111011111110111111111111111111111111111111111111 </td
945950955960Arg Asp Ile Thr phe Glu Gln Met Leu Leu Asp Glu Gln Thr Pro 965970Ile Asp Ala Val Ala Ser Ile Asp Ala Pro Gly Val Val Asp Phe Thr 980Val Glu Thr Asn Arg Asp Gly Glu Thr Thr Arg His Ala Thr Ala Ala 995Leu Arg Ala Ala Glu Asp Asp Cy Pro Pro Pro Gly Tyr Asp IleThr Ala Leu Leu Gln Ala His 1005Phe Arg Glu Ser Phe Ala Glu Arg Gly Val Thr Leu Gly Ala Ala 1005Phe Gly Gly Leu Thr Thr Ala His Thr Ala Glu Ala 1005Glu Ser Phe Ala Glu Val Asp Er O Ala Ser Ile 1005Phe Gly Gly Leu Thr Thr Ala 1065Glu Ser Phe Ala Glu Val Ala Ser Ile 1070Glu Ser Phe Ala Glu Val Ala Ser Ile 1075Glu Ser Phe Ala Glu Val Ala Glu Arg Gly Val Thr Leu 1065Glu Gly Gly Leu Thr Thr Ala 1065Hi 1060Glu Ser Phe Ala Glu Val Ala 1075Glu Ser Phe Ala Glu Val Ala 1075Glu Ala Glu Val Ala 1075Glu Gly Ala Tyr Arg Ile Hiso 1105Fhr Val 1110Leu Ala Glu Val Ala 1075Glu Ser An Ala Arg Tyr Cys 11105Fri Hiso 1110Ang Asn Ala Arg Tyr Cys 1110Fri Hiso 1115Glu Thr Arg Gly Gly Glu Ala Alar Gly Leu 1115Glu Thr Arg Gly Gly Glu Ala Alar Glu Arg Gly Leu 1110Ang Asn Ala Arg Tyr Cys 1150Glu Ala App Crys 1150Glu Ala App Gly Thr Arg Gly Gly Glu Ala Asp Leu Asp 1155Glu Thr Arg Glu Gly Glu Ala Alar Gly Leu 1150Glu Alar App Gly Chy 1150Glu Alar App Crys 1150Glu Alar App Crys 1150Glu Alar App Crys 11
965970975Ile Asp Ala Val Ala Ser Ile Asp Ala Pro Gly Val Val Asn Phe Thr 980980Val Glu Thr Asn Arg Asp Gly Glu Thr Thr Arg His Ala Thr Ala Ala 1005Leu Arg Ala Ala Glu Asp Asp Cys Pro Pro Pro Gly Tyr Asp Ile 1010Thr Ala Leu Leu Gln Ala His 1045Met Arg Glu Ser Phe Ala Glu Arg Gly Val Thr Leu 1065Gly Cly Leu Thr Thr Ala 1065Phe Gly Gly Leu Thr Thr Ala 1065Thr Val Leu Ala Glu Val Ala 1065Gln Gly Ala Tyr Arg Ile 1066His 1085Gln Ser Val Gly Ala Gly Val Gln Ala Gly Thr Ala 1065Clin Ser Val Gly Ala Gly Val Thr Leu Leu Arg 1100Gln Ser Val Gly Ala Gly Val 1115Fhr Arg Gly Ala Arg Tyr Cys 1115Fhr Arg Gly Thr Arg Gly Clin Ala Gly Thr 1106Leu Leu 1115Fhr Arg Gly Thr Arg Gly Glu Ala Gly Thr Arg Leu 1120Fhr Arg Ash Ala Gly Val 1110Gln Ser Val Gly Ala Gly Val 1110Gln Ser Val Gly Ala Gly Val 1110Fhr Arg Ash Ala Arg Tyr Cys 1115Fhr Arg Ash Ala Arg Tyr Cys 1115Fhr Arg Ash Ala Arg Tyr Cys 1150Glu Ala Ser Ila 1120Fhr Arg Gly Thr Arg Gly Gly Glu Ala Asp Leu Arg 1155Glu His 1160Gly Thr Val Leu Leu 1160Ash Asp Gly Thr Val Leu Leu 1160Asp Gly Glu Ala Gly Trp 1160Glu Arg Asp Gly Glu Ala Gly Thr 1160Asp Gly Glu Ala Gly Trp 1160Glu Arg Asp Arg Leu 1160Asp Gly Glu Ala Gly Trp 1160Glu Arg Asp Gly Glu Ala Cy Trp 1160Glu Arg Asp Gly Glu Ala Gly Trp <b< td=""></b<>
ya0ya5y90Val Glu Thr Asn Arg Asp Gly Glu Thr Thr Arg His Ala Thr Ala Ala 10051000Leu Arg Ala Ala Glu Asp Asp 1010Cys Pro Pro Pro Gly Tyr Asp Ile 1020Thr Ala Leu Leu Gln Ala His 1040Pro His Ala Val Asn 1035Met Arg 1040Glu Ser Phe Ala Glu 1045Arg Gly Val Thr Leu 1045Phe Gly 1055Gly Leu Thr Thr Ala 1065His Thr Ala Glu Ala Glu Val Ala 1055His Thr Ala Glu Ala Gly Ala Ala 1065Phe Gly 1055Gly Leu Thr Thr Ala 1060His Thr Ala Glu Ala Glu Val Ala 1065Leu Arg Phe Gln 1065Gln Gly Ala Tyr Arg Ile His 1000Pro Ala Leu Leu Asp Ala Cys Phe 1095Gln Ser 1110Val Gly Ala Gly Val 1105Gln Ser 1115Val Gly Ala Gly Val 1105Leu Leu 1115Pro Leu Gly Val 1120Arg Gely Thr Arg Gly Gly 1120Glu His 1130Gly Thr Arg Gly Gly 1150Glu Ala Asp Leu Asp 1150Glu His 1130Gly Thr Arg Gly Gly Glu Ala Asp Leu Asp 1150Glu His 1160Gly Thr Val Leu Leu 1165Ash Asp 1160Glu Ala Gly Thr Val Leu Leu 1165Glu His 1160Glu Ala Asp Leu Arg Gly Leu 1165Glu His 1160Glu Ala Asp Asp Arg Leu 1165Glu His 1160Glu Ala Gly Ser 1165<
99510001005Leu ArgAla Ala Glu AspAspCysProProGlyTyrAspIle1010Ala AlaGlu AspAspCysProProGlyTyrAspIleThrAlaLeu Leu Gln AlaHisProHisAla ValAsnGlyThrAla1040Glu SerPheAlaGluArgGlyValThrLeuGlyAlaAla1040GlyLeu ThrThrAlaGluArgGlyAlaAla1050GlyLeu ThrThrAlaHisThrAlaGluAla1050GlyLeu ThrThrAlaHisThrAlaGluAla1050GlyLeu ThrThrAlaHisThrAlaGluAla1050GlyLeu ThrThrAlaLeuProAlaCysPhe1050GlyAlaTyrThrAlaGluAlaAlaCysPhe1070CuAlaGlyAlaGluAlaCysPheGluAlaAla1070CuAlaGlyAlaGluAlaCysPheGluAlaCysPhe1070CuAlaGlyAlaCuArgSerLeuArgAlaCysPheGlu1080CuAlaArgSer
101010151020Thr AlaLeu Leu Gln AlaHisPro His Ala ValAsnGly Thr Ala1025Glu Ser Phe AlaGlu Arg Gly ValThrLeuGly Ala Ala1040Glu Ser Phe AlaGlu Arg Gly ValThrLeuGly Ala Ala1055Gly Leu Thr ThrAlaHisThr AlaGlu Ala1056Gly Leu Thr ThrAlaHisThr AlaGlu Ala1070Leu AlaGlu ValAlaSerIle1070Leu AlaGlu ValAlaSerIle1070AlaTyr Arg IleHisPro AlaLeu Asp 1090Ala CysGln SerValGly AlaGlyValGly1010ValGlyAlaGlyAla1020Thr ArgAsnAlaCys1090Pro AlaLeu Asp 1109AlaCysGln SerValGly AlaGlyAla1100ValGlyAlaCys1115Cu AlaGlyThr AlaThr Gly1120ProLeuArgAla1130ProLeuArgSer1131Asn AlaArgTyrTyr1132Asn AlaArgTyrTyr1133Asn AlaArgTyr1145GlyThr ArgGly1155Glu AlaAspLeu1165AlaValArg1165Glu ArgAsp<
1025 1030 1035 Met Arg Glu Ser Phe Ala Glu Arg Gly Val Th Leu Gly Ala Ala 1040 Gly Leu Thr Thr Ala Glu Ala Gly Ala Ala 1065 Thr Val Leu Ala Glu Val Ala His Thr Ala Glu Ala Gly Ala Ala 1070 Leu Ala Glu Val Ala Leu Pro Ala Ser Ile Arg Phe Gln 1081 Gly Ala Ala Tyr Arg Ile His Thr Ala Gly Ala Ala 1080 Rer Pho Ala Gly Ala Ala Tyr Arg Ile His The Ala Gly Thr Ala Ala Srg Phe Gln 1081 Gly Ala Gly Ala Gly Val Gln Ala Gly Thr Ala Gly Ala Cys Phe Gln Ser Val Gly Ala Gly Val Gln Ala Gly Thr Ala Thr Gly Gly Leu Leu Pro Leu Gly Val Arg Ser Leu Arg Ala Tyr Gly Pro 1115 Arg Arg Tyr Cys Tyr Thr Arg Leu Thr Lue Asp 1136 Arg Arg Tyr Cys Tyr Thr Arg Leu Asp Lue Asp 1145 Gly Thr Arg Gly Gly Gly Ala Val Arg Gly Leu Asp Lue Asp 1145 Gly Thr Val L
104010451050PheGlyGly LeuThrThrAlaHisThrAlaGlyAlaAlaAla1055GlyLeuAlaGluValAlaIbosGlyAlaAlaAlaThrValLeuAlaGluValAlaLeuProAlaSerIbosArgPheGlnGlnGlyAlaTyrArgIbHisProAlaLeuLeuAspAlaCysPheGlnSerValGlyAlaGlyAlaGlyThrAlaGlyGlyGlyGlyGlyGlyGlyGlyLeuLeuLeuProLeuGlyValGlyAlaGlyThrGlyGlyGlyGlyGlyFroGlyFroGlyFroGlyFro <td< td=""></td<>
105510601065ThrValLeuAlaGluValAlaLeuProAlaSerIleArgPheGlnGlnGlyAlaTyrArgIleHisProAlaLeuAepAlaCysPheGlnSerValGlyAlaGlyValGlnAlaGlyThrAlaThrGlyGlyGlnSerValGlyAlaGlyValGlnAlaGlyThrGlyGlyLeuLeuLeuProLeuGlyValArgSerLeuArgGlyPro1115LeuProLeuGlyValArgSerLeuArgAlaPro1115LeuProLeuArgSerTyrGlyAlaPro1125ThrArgGlyAlaArgSerCysTyrThrArgLeuAsp1130AsnAlaArgTyrCysTyrThrArgLeuAspPro1145GlyThrArgGlyGluAlaAspLeuAspArgMetGly1145GlyThrValLeuLeuArgArgLeuArgMetGlyArgArgMetGly1145GlyThrValLeuLeuArgArgLeuArgMet<
107010751080GlnGlyAlaTyrArgIleHis 1090ProAlaLeuAsp 1095AlaCysPheGlnSer 1100ValGlyAlaGlyVal 1105GlnAlaGlyTh AlaAlaThr GlyGlyLeuLeuLeuProLeuGlyVal 1105ArgSerLeuArgArgThr AlaThr GlyGlyProThrArgAsnAlaArgTyrCys 1135Thr Thr ArgLeuAng AspPheAsnAsp 1166GlyThr ValLeuLeuAng 1165GluAlaAsp AspLeuAspGluHis 1166GlyThr ValLeuLeuAng 1165Ang AspAngAspAng AspAngAspGluHis 1166GlyThr ValLeuLeuAng 1165Ang 1165Ang 1176AngAng 1185AngAngGluHis 1167GluThr ValLeuLeuAng 1186AngAngAngAngAngGluHis 1168GlyThr ValLeuLeuAng 1185AngAngAngAngAngGluHis 1169GlyThr 1180GluAng 1180AngAngAngAngAngAngAngGluHis
108510901085Gln Ser Val Gly Ala Gly Ala Gly Val Gln Ala Gly Thr Ala Thr Gly Gly 1105Gln Ala Gly Thr Ala Thr Gly Gly 1110Thr Gly Gly 1110Leu Leu Leu Pro Leu Gly Val Arg Ser Leu Arg Ala Tyr Gly Pro 1115Thr Arg Asn Ala Arg Tyr Cys 1135Tyr Thr Arg Leu Thr Lys Ala Phe 1140Asn Asp Gly Thr Arg Gly Gly Glu Ala Asp Leu Asp 1145Gly Thr Arg Gly Glu Ala Asp Leu Asp 1155Val Leu Asp 1155Glu His 1160Gly Thr Val Leu Leu Ala Val Arg Gly Leu Arg Met Gly 1165Arg Met Gly 1185Thr Gly Thr Ser Glu Arg Asp Asp Arg Leu Ala Ser Glu 1185Val Ser Glu 1200Arg Leu Leu Thr Leu Gly Trp Gln Gln Arg Ala Leu Pro Glu Val 1205Glu Ala Gly Ser Trp Leu Leu Ile Asp 1215Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
110011051110LeuLeuProLeuGlyValArgSerLeuArgAlaTyrGlyPro1115LeuProLeuGlyTyrTyrTyrArgLeuTyrGlyPro1130AsnAlaArgTyrCysTyrThrArgLeuThrLysAlaPheAsnAspGlyThrArgGlyGlyGluAlaAspLeuAspYalAspGluHisGlyThrValLeuLeuAlaValArgGlyLeuAsp1165ThrValLeuLeuAlaValArgGlyLeuAspGluHisGlyThrValLeuLeuAlaArgGlyLeuArgMetGlyThrGlyThrSerGluAlaAspArgAspArgLeuYalSerGluArgLeuLeuThrLeuGlyTrpGluAlaLeuProGluVal1190LeuThrLeuGlySerTrpLeuLeuIleAspThrSerAsn1190LeuThrLeuGlySerTrpLeuLeuIleAspThrSerAsn1205GlyGlyAlaGlySerTrpLeuLeu </td
111511201125Thr Arg Asn Ala Arg Tyr Cys Tyr Thr Arg Leu Thr Lys Ala Phe 11301135Thr Arg Leu Thr Lys Ala Phe 1140Asn Asp Gly Thr Arg Gly Gly Glu Glu Ala Asp Leu Asp Val Leu Asp 1145Glu Arg Gly Leu Asp Val Leu Asp 1155SolutionGlu His 1160Gly Thr Val Leu Leu Ala Val Arg Gly Leu Arg Met Gly 1165Arg Met Gly 1180Solut Arg Asp Arg Leu Val Ser Glu 1185Thr Gly 1175Thr Ser Glu Arg Asp 1180Glu Arg Asp Arg Leu Pro Glu Val 1190Pro Glu Val 1205Gly Asp 1205Gly Glu Ala Gly Ser 1210Trp Leu Leu Ile Asp 1215Thr Ser Asn 1215Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
113011351140Asn Asp Gly Thr Arg Gly Gly Glu Ala Asp Leu Asp Val Leu Asp 11451145Glu His 1160Gly Thr Val Leu Leu Ala Val Arg Gly Leu Arg Met Gly 1165Arg Met Gly 1170Thr Gly 1175Thr Ser Glu Arg Asp Glu Arg Asp Arg Leu Val Ser Glu 1180Arg Leu Leu Thr Leu Gly 1190Trp Gln Gln Arg Ala Leu Pro Glu Val 1200Gly Asp Gly Glu Ala Gly Ser Trp Leu Leu Ile Asp Thr Ser Asn 1210Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
114511501155Glu His 1160Gly Thr Val Leu Leu Ala Val Arg Gly Leu Arg Met Gly 1165Arg Gly Leu Arg Met Gly 1170Thr Gly 1175Thr Ser Glu Arg Asp Glu Arg Asp Arg Leu Val Ser Glu 1180Val Ser Glu 1185Arg Leu Leu Thr Leu Gly 1190Trp Gln Gln Arg Ala Leu Pro Glu Val 1205Pro Glu Val 1215Gly Asp Gly Glu Ala Gly Ser 1210Trp Leu Leu Ile Asp Thr Ser Asn 1215Thr Asp Ala
116011651170Thr Gly Thr Ser Glu Arg Asp Glu Arg Asp Arg Leu 11751170Thr Gly Thr Ser Glu Arg Asp Glu Arg Asp Arg Leu 1185Val Ser Glu 1185Arg Leu Leu Thr Leu Gly Trp Gln Gln Arg Ala Leu Pro Glu Val 11901195Gly Asp Gly Glu Ala Gly Ser Trp Leu Leu Ile Asp Thr Ser Asn 12151215Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
1175 1180 1185 Arg Leu Leu Thr Leu Gly Trp Gln Gln Arg Ala Leu Pro Glu Val 1190 1200 Gly Asp Gly Glu Ala Gly Ser Trp Leu Leu Ile Asp Thr Ser Asn 1215 Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
119011951200Gly Asp Gly Glu Ala Gly Ser Trp Leu Leu Ile Asp Thr Ser Asn 12051210Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
1205 1210 1215 Ala Val Asp Thr Pro Asp Met Leu Ala Ser Thr Leu Thr Asp Ala
Leu Lys Ser His Gly Pro Gln Gly Thr Glu Cys Ala Ser Leu Ser 1235 1240 1245
Trp Ser Val Gln Asp Thr Pro Pro Asn Asp Gln Ala Gly Leu Glu 1250 1255 1260
Lys Leu Gly Ser Gln Leu Arg Gly Arg Asp Gly Val Val Ile Val 1265 1270 1275
Tyr Gly Pro Arg Val Gly Asp Pro Asp Glu His Ser Leu Leu Ala

-continued

											-001	1011	IUCC	
	1280					1285					1290			
Gly	Arg 1295		Gln	Val	Arg	His 1300		Val	Arg	Ile	Thr 1305	Arg	Glu	Leu
Ala	Glu 1310		Glu	Gly	Glu	Leu 1315		Arg	Leu	Phe	Val 1320	Val	Thr	Arg
Gln	Ala 1325		Ile	Val	Lya	Pro 1330	His	Asp	Ser	Gly	Glu 1335	Arg	Ala	Asn
Leu	Glu 1340		Ala	Gly	Leu	Arg 1345	_	Leu	Leu	Arg	Val 1350	Ile	Ser	Ser
Glu	His 1355		Met	Leu	Arg	Thr 1360		Leu	Ile	Asp	Val 1365	Asp	Glu	His
Thr	Asp 1370			Arg		Ala 1375	Gln	Gln	Leu	Leu	Ser 1380	Gly	Ser	Glu
Glu	Asp 1385		Thr	Ala	Trp	Arg 1390	Asn		Asp	_	Tyr 1395	Val	Ala	Arg
Leu	Thr 1400		Ser	Pro	Leu	Gly 1405	His	Glu	Glu	Arg	Arg 1410	Thr	Ala	Val
Leu	Asp 1415	Pro	Asp	His	Asp	Gly 1420		Arg			Val 1425	Arg	Arg	Pro
Gly	Asp 1430		Gln	Thr	Leu	Glu 1435		Val	Ala	Ser	Asp 1440	Arg	Val	Pro
Pro	Gly 1445			Gln		Glu 1450	Val	Ala	Val	Ser	Met 1455	Ser	Ser	Ile
Asn	Phe 1460			Val		Ile 1465	Ala		Gly		Phe 1470	Pro	Ile	Ile
Asp	Asp 1475			Pro	Gln	Leu 1480	-		Asp		Val 1485	Gly	Val	Val
Thr	Ala 1490		Gly		Gly	Val 1495				Gln	Val 1500	Gly	Asp	Arg
Val	Gly 1505			Ser	Glu	Gly 1510					Thr 1515	Phe	Leu	Thr
Сүз	Asp 1520		Asn	Leu	Ala	Val 1525					Gly 1530	Leu	Thr	Asp
Glu	Gln 1535		Ile	Thr	Ala	Ala 1540				Ala	Thr 1545	Ala	Trp	Tyr
Gly	Leu 1550					Gln 1555	Ile	Lys	Ala	Gly	Asp 1560	Lys	Val	Leu
Ile	His 1565	Ser	Ala	Thr	Gly	Gly 1570	Val	Gly	Gln	Ala	Ala 1575	Ile	Ser	Ile
Ala	Arg 1580	Ala	Гλа	Gly	Ala	Glu 1585	Ile	Phe	Ala	Thr	Ala 1590	Gly	Asn	Pro
Ala	Lys 1595	Arg	Ala	Met	Leu	Arg 1600	Asp	Met	Gly	Val	Glu 1605	His	Val	Tyr
Asp	Ser 1610	Arg	Ser	Val	Glu	Phe 1615	Ala	Glu	Gln	Ile	Arg 1620	Arg	Asp	Thr
Asp	Gly 1625	Tyr	Gly	Val	Asp	Ile 1630	Val	Leu	Asn	Ser	Leu 1635	Thr	Gly	Ala
Ala	Gln 1640	Arg	Ala	Gly	Leu	Glu 1645	Leu	Leu	Ala	Phe	Gly 1650	Gly	Arg	Phe
Val	Glu 1655	Ile	Gly	Lys	Ala	Asp 1660	Val	Tyr	Gly	Asn	Thr 1665	Arg	Leu	Gly

-continued

Leu	Phe 1670	Pro	Phe	Arg	Arg	Gly 1675	Leu	Thr	Phe	Tyr	Tyr 1680	Leu	Asp	Leu
Ala	Leu 1685	Met	Ser	Val	Thr	Gln 1690	Pro	Asp	Arg	Val	Arg 1695	Glu	Leu	Leu
Ala	Thr 1700	Val	Phe	Lys	Leu	Thr 1705	Ala	Asp	Gly	Val	Leu 1710	Thr	Ala	Pro
Gln	Cys 1715	Thr	His	Tyr	Pro	Leu 1720	Ala	Glu	Ala	Ala	Asp 1725	Ala	Ile	Arg
Ala	Met 1730	Ser	Asn	Ala	Glu	His 1735	Thr	Gly	Lys	Leu	Val 1740	Leu	Asp	Val
Pro	Arg 1745	Ser	Gly	Arg	Arg	Ser 1750	Val	Ala	Val	Thr	Pro 1755	Glu	Gln	Ala
Pro	Leu 1760	Tyr	Arg	Arg	Asp	Gly 1765	Ser	Tyr	Ile	Ile	Thr 1770	Gly	Gly	Leu
Gly	Gly 1775	Leu	Gly	Leu	Phe	Phe 1780	Ala	Ser	Lys	Leu	Ala 1785	Ala	Ala	Gly
Сүз	Gly 1790	Arg	Ile	Val	Leu	Thr 1795	Ala	Arg	Ser	Gln	Pro 1800	Asn	Pro	ГЛа
Ala	Arg 1805	Gln	Thr	Ile	Glu	Gly 1810	Leu	Arg	Ala	Ala	Gly 1815	Ala	Asp	Ile
Val	Val 1820	Glu	Суз	Gly	Asn	Ile 1825	Ala	Glu	Pro	Asp	Thr 1830	Ala	Asp	Arg
Leu	Val 1835	Ser	Ala	Ala	Thr	Ala 1840	Thr	Gly	Leu	Pro	Leu 1845	Arg	Gly	Val
Leu	His 1850	Ser	Ala	Ala	Val	Val 1855	Glu	Aab	Ala	Thr	Leu 1860	Thr	Asn	Ile
Thr	Asp 1865	Glu	Leu	Ile	Asb	Arg 1870	Aab	Trp	Ser	Pro	Lys 1875	Val	Phe	Gly
Ser	Trp 1880	Asn	Leu	His	Arg	Ala 1885	Thr	Leu	Gly	Gln	Pro 1890	Leu	Asp	Trp
Phe	Cys 1895	Leu	Phe	Ser	Ser	Gly 1900	Ala	Ala	Leu	Leu	Gly 1905	Ser	Pro	Gly
Gln	Gly 1910	Ala	Tyr	Ala	Ala	Ala 1915	Asn	Ser	Trp	Val	Asp 1920	Val	Phe	Ala
His	Trp 1925	Arg	Arg	Ala	Gln	Gly 1930	Leu	Pro	Val	Ser	Ala 1935	Ile	Ala	Trp
Gly	Ala 1940	Trp	Gly	Glu	Val	Gly 1945	Arg	Ala	Thr	Phe	Leu 1950	Ala	Glu	Gly
Gly	Glu 1955	Ile	Met	Ile	Thr	Pro 1960	Glu	Glu	Gly	Ala	Tyr 1965	Ala	Phe	Glu
Thr	Leu 1970	Val	Arg	His	Asp	Arg 1975	Ala	Tyr	Ser	Gly	Tyr 1980	Ile	Pro	Ile
Leu	Gly 1985	Ala	Pro	Trp	Leu	Ala 1990	Asp	Leu	Val	Arg	Arg 1995	Ser	Pro	Trp
Gly	Glu 2000	Met	Phe	Ala	Ser	Thr 2005	Gly	Gln	Arg	Ser	Arg 2010	Gly	Pro	Ser
ГЛа	Phe 2015	Arg	Met	Glu	Leu	Leu 2020	Ser	Leu	Pro	Gln	Asp 2025	Glu	Trp	Ala
Gly	Arg 2030	Leu	Arg	Arg	Leu	Leu 2035	Val	Glu	Gln	Ala	Ser 2040	Val	Ile	Leu

Arg Arg Thr Ile Asp Ala Asp Arg Ser Phe Ile Glu Tyr Gly Leu 2055 2045 2050 Asp Ser Leu Gly Met Leu Glu Met Arg Thr His Val Glu Thr Glu 2060 2065 2070 Thr Gly Ile Arg Leu Thr Pro Lys Val Ile Ala Thr Asn Asn Thr 2075 2080 2085 Ala Arg Ala Leu Ala Gln Tyr Leu Ala Asp Thr Leu Ala Glu Glu 2090 2095 2100 Gln Ala Ala Ala Pro Ala Ala Ser 2105 2110 <210> SEQ ID NO 20 <211> LENGTH: 1149 <212> TYPE: DNA <213> ORGANISM: Mycobacterium bovis <400> SEQUENCE: 20 ctggtggaag gcctgcgtga agttgccgat ggtgatgcac tgtatgatgc agcagtgggt 60 catggcgatc gtggtccggt ttgggtgttt agcggccagg gttctcagtg ggcagcgatg 120 ggcacccage tgetggcaag egaaceggtt tttgeegeaa egattgeaaa aetggaaceg 180 gtgatcgcgg ccgaaagtgg cttcagcgtt accgaagcaa ttacggcgca gcagaccgtg 240 300 acqqqtatcq ataaaqtqca qccqqccqtt ttcqcaqttc aqqtqqcqct qqcaqcqacq atggaacaga cgtacggcgt tcgtccgggt gcagtggttg gtcacagtat gggtgaaagc 360 gccgcagcgg tggttgcagg cgccctgagt ctggaagatg ccgcacgtgt gatttgccgt 420 cgcagcaaac tgatgacccg tatcgcaggt gcaggtgcga tgggcagcgt ggaactgccg 480 gcaaaacagg ttaactctga actgatggcg cgcggtattg atgatgtggt tgtgtctgtt 540 600 gcgcgttggg aacagcgcga tgtgatggcg cgcgaagttg ccgtggatgt tgcaagccat 660 teteegeagg ttgateegat tetggatgat etggeggegg caetggeaga tattgeaceg 720 atgaccccga aagtgccgta ttacagcgcg acgctgtttg atccgcgtga acagccggtg 780 tgtgatggcg cctattgggt tgataacctg cgcaataccg tgcagtttgc ggcggcagtt 840 caggeggega tggaagatgg ttaccgtgtg ttegeggaac tgteteegea teegetgetg 900 acccacgcag tggaacagac gggtcgctct ctggatatga gtgttgcagc actggccggt 960 atgcgtcgcg aacagccgct gccgcatggc ctgcgtggtc tgctgaccga actgcaccgt 1020 gcaggtgcag cactggatta tagcgcactg tacccggcag gtcgtctggt ggatgcaccg 1080 ctgccggcat ggacgcacgc acgtctgttc atcgatgatg atggccagga acagcgcgca 1140 cagggtgcg 1149 <210> SEQ ID NO 21 <211> LENGTH: 1149 <212> TYPE: DNA <213> ORGANISM: Mycobacterium bovis <400> SEQUENCE: 21 ctcgtcgagg gtttgcgcga ggtggccgac ggtgacgccc tctatgacgc ggcggtggga 60 cacqqtqatc qaqqaccqqt ctqqqtcttc tccqqqcaaq qqtcqcaqtq qqcqqcqatq 120 180 qqcacqcaat tqctcqccaq cqaaccaqtq ttcqcqqcca ccatcqccaa qctqqaqccq

gtgatcgccg caga							
	atcggg a	ttctcggtg	accgaggcga	taacggcgca	gcagaccgtg	240	
accggaatcg acaa	agtgca g	ccggcagtg	ttcgccgttc	aggtcgcgtt	ggccgccacc	300	
atggagcaaa ccta	cggagt g	cggccgggc	gcggtcgtcg	gacactcgat	gggtgagtcg	360	
geegeggeeg tegt	cacaaa a	gcactgtcg	ctcgaggacg	cggcgcgcgt	catttgccgc	420	
cgctcgaagc tgat	gacccg c	atagccggt	gctggtgcca	tgggctcggt	ggaattgccc	480	
gccaagcaag tgaa	ttcgga g	ctgatggca	cgcggaatcg	acgatgttgt	ggtctcggtg	540	
gtggcgtccc cgca	atccac g	gtgatcggc	ggtacgagcg	acaccgttcg	tgacctcatc	600	
gcccgttggg agca	gcggga c	gtgatggcg	cgcgaggtgg	ccgtcgacgt	ggcgtcgcac	660	
tcgcctcaag tcga	tccgat a	ctcgacgat	ttggccgcgg	cgctggcgga	cattgctccg	720	
atgacgccca aggt	gccgta c	tactcggcg	accctgttcg	acccgcgcga	gcagccggtg	780	
tgcgatggcg ctta	ctgggt g	gacaatctg	cgcaacacgg	tgcagttcgc	cgcggcggtg	840	
caggctgcga tgga	ggacgg c	taccgggtc	ttcgcggagc	tgtcgcccca	cccgctgctt	900	
acccacgccg tcga	acagac g	ggccgaagc	ctcgacatgt	cggtcgccgc	cctggccggc	960	
atgcggcgag agca	geetet g	ccgcatggt	ctgcgcggct	tgctgacgga	gctgcaccgc	1020	
gegggegeeg ettt	ggacta t	teggegetg	tatcccgctg	ggcggctggt	ggatgcgccg	1080	
ctgccggcgt ggac	ccacgc c	cgcctattc	atcgacgatg	atgggcaaga	acagcgggca	1140	
caaggtgcc						1149	
<pre><213> ORGANISM: <300> PUBLICATI <308> DATABASE <309> DATABASE <313> RELEVANT</pre>	ON INFOR ACCESSIO ENTRY DA	MATION: N NUMBER: TE: 1999-	GenBank / . 08-05				
400 00000000							
<400> SEQUENCE:	22						
<pre><400> SEQUENCE: Met Ser Phe Ser 1</pre>		Tyr Gln .	Arg Ser Ile 10	Asn Glu Pro	Glu Ala 15		
Met Ser Phe Ser	Glu Phe 5	- Arg Arg	10		15		
Met Ser Phe Ser 1 Phe Trp Ala Glu	Glu Phe 5 Gln Ala	Arg Arg	10 Ile Asp Trp 25	Arg Gln Pro 30	15 > Phe Thr		
Met Ser Phe Ser 1 Phe Trp Ala Glu 20 Gln Thr Leu Asp	Glu Phe 5 Gln Ala His Ser	Arg Arg Arg Pro 1 40	10 Ile Asp Trp 25 Pro Phe Ala	Arg Gln Prc 30 Arg Trp Phe 45	15 > Phe Thr e Cys Gly		
Met Ser Phe Ser 1 Phe Trp Ala Glu 20 Gln Thr Leu Asp 35 Gly Thr Thr Asn	Glu Phe 5 Gln Ala His Ser Leu Cys	Arg Arg Arg Pro 40 His Asn 55	10 Ile Asp Trp 25 Pro Phe Ala Ala Val Asp	Arg Gln Pro 30 Arg Trp Phe 45 Arg Trp Arg 60	15 Phe Thr Cys Gly Asp Lys		
Met Ser Phe Ser 1 Phe Trp Ala Glu 20 Gln Thr Leu Asp 35 Gly Thr Thr Asn 50 Gln Pro Glu Ala	Glu Phe 5 Gln Ala His Ser Leu Cys Leu Ala 70	Arg Arg Arg Pro 40 His Asn 55 Leu Ile	10 Ile Asp Trp 25 Pro Phe Ala Ala Val Asp Ala Val Ser 75	Arg Gln Pro 30 Arg Trp Phe 45 Arg Trp Arg 60 Ser Glu Thr	15 Phe Thr Cys Gly Asp Lys Asp Glu 80		
Met Ser Phe Ser 1 Phe Trp Ala Glu 20 Gln Thr Leu Asp 35 Gly Thr Thr Asn 50 Gln Pro Glu Ala 65	Glu Phe 5 Gln Ala His Ser Leu Cys Leu Ala 70 Thr Phe 85	Arg Arg Arg Pro 40 His Asn 55 Leu Ile . Ser Gln 1 Leu Gly 1	10 Ile Asp Trp 25 Pro Phe Ala Ala Val Asp Ala Val Ser 75 Leu His Asp 90	ArgGlnPro 30ArgTrpPhe 45ArgTrpArg 50SerGluThnGluValAsr	15 Phe Thr Cys Gly Asp Lys Asp Glu 80 1 Ile Val 95 Val Leu		
Met Ser Phe Ser 1 Trp Ala Glu Phe Trp Ala Glu Gln Thr Leu Asp Gly Thr Leu Asp Gly Thr Nr Asn Gln Pro Glu Ala Ala Ala Met Leu	Glu Phe 5 Gln Ala His Ser Leu Cys Leu Ala 70 Thr Phe 85 Leu Ser	Arg Arg Arg Pro 40 His Asn 55 Leu Ile Ser Gln Leu Gly	10 Ile Asp Trp 25 Pro Phe Ala Ala Val Asp Ala Val Ser 75 Leu His Asp 90 Val Gln Arg 105	Arg Gln Property 30 Arg Trp Phere Arg Trp Arg 60 Trp Arg Ser Glu Thr Glu Val Asr Gly Asp Arg	15 Phe Thr Cys Gly Asp Lys Asp Glu 80 11e Val 95 Val Leu		
MetSerPheSer1TrpAlaGluPheTrpAlaGluGlnThrLeuAspGlyThrThrAsnGluProGluAlaGluArgThrPheAlaAlaMetLeuValTyrMetPro	Glu Phe 5 Gln Ala His Ser Leu Cys Leu Ala 70 Thr Phe 85 Leu Ser Met Ile	Arg Arg Arg Pro 40 His Asn 40 Ser Gln 5 Leu Gly 7 Ala Glu 40 120	10 Ile Asp Trp 25 Pro Phe Ala Ala Val Asp Ala Val Ser 75 Leu His Asp 90 Val Gln Arg 105 Ala Gln Ile	ArgGlnPropertyArgTrpPheArgTrpArgGoTrpArgGluValAsrGlyAspArgThrLeuLeu	15 Phe Thr Cys Gly Asp Lys Asp Glu 80 1 Ile Val 95 Val Leu Ala Cys		
MetSerPheSer1TrpAlaGluPheTrpAlaGluGlnThrLeuAspGlyThrThrAsnGlnProGluAlaGluArgThrPheAlaAlaMetLeuValTyrMetProAlaArgIleGly	Glu Phe 5 Gln Ala His Ser Leu Cys Leu Ala 70 Thr Phe 85 Leu Ser Met Ile Ala Ile	ArgArgArgProArgPro40HisAsn55LeuIleSerGlnLeuGlyLeuGlyAlaGlu120HisSer135IleAsp	10 Ile Asp Trp 25 Pro Phe Ala Ala Val Asp Ala Val Ser 75 Leu His Asp 90 Val Gln Arg 105 Ala Gln Ile Val Val Phe	ArgGlnPropertyArgTrpPheArgTrpArgGluTrpArgGluValAsrGlyAspArgThrLeuLeu140GlyPhe	15 Phe Thr Cys Gly Asp Lys Asp Glu 80 11e Val 95 Val Leu Ala Cys Ala Ser		

Ser	Ala	Asp	Ala	Gly 165	Ala	Arg	Gly	Gly	Lys 170	Ile	Leu	Pro	Tyr	Lys 175	Lys
Leu	Leu	Asp	Asp 180	Ala	Ile	Ala	Gln	Ala 185	Gln	His	Gln	Pro	Lys 190	His	Val
Leu	Leu	Val 195	Asp	Arg	Gly	Leu	Ala 200	Lys	Met	Ala	Trp	Val 205	Asp	Gly	Arg
Asp	Leu 210	Asp	Phe	Ala	Thr	Leu 215	Arg	Gln	Gln	His	Leu 220	Gly	Ala	Ser	Val
Pro 225	Val	Ala	Trp	Leu	Glu 230	Ser	Asn	Glu	Thr	Ser 235	СЛа	Ile	Leu	Tyr	Thr 240
Ser	Gly	Thr	Thr	Gly 245	Lys	Pro	Lys	Gly	Val 250	Gln	Arg	Asp	Val	Gly 255	Gly
Tyr	Ala	Val	Ala 260	Leu	Ala	Thr	Ser	Met 265	Asp	Thr	Ile	Phe	Gly 270	Gly	Lys
Ala	Gly	Gly 275	Val	Phe	Phe	Сүз	Ala 280	Ser	Asp	Ile	Gly	Trp 285	Val	Val	Gly
His	Ser 290	Tyr	Ile	Val	Tyr	Ala 295	Pro	Leu	Leu	Ala	Gly 300	Met	Ala	Thr	Ile
Val 305	Tyr	Glu	Gly	Leu	Pro 310	Thr	Tyr	Pro	Aab	Cys 315	Gly	Val	Trp	Trp	Lys 320
Ile	Val	Glu	Lys	Tyr 325	Gln	Val	Asn	Arg	Met 330	Phe	Ser	Ala	Pro	Thr 335	Ala
Ile	Arg	Val	Leu 340	LÀa	Lys	Phe	Pro	Thr 345	Ala	Gln	Ile	Arg	Asn 350	His	Asp
Leu	Ser	Ser 355	Leu	Glu	Ala	Leu	Tyr 360	Leu	Ala	Gly	Glu	Pro 365	Leu	Asp	Glu
Pro	Thr 370	Ala	Ser	Trp	Val	Thr 375	Glu	Thr	Leu	Gly	Val 380	Pro	Val	Ile	Asp
Asn 385	Tyr	Trp	Gln	Thr	Glu 390	Ser	Gly	Trp	Pro	Ile 395	Met	Ala	Leu	Ala	Arg 400
Ala	Leu	Aab	Asp	Arg 405	Pro	Ser	Arg	Leu	Gly 410	Ser	Pro	Gly	Val	Pro 415	Met
Tyr	Gly	Tyr	Asn 420	Val	Gln	Leu	Leu	Asn 425	Glu	Val	Thr	Gly	Glu 430	Pro	Сув
Gly	Ile	Asn 435	Glu	Lys	Gly	Met	Leu 440	Val	Ile	Glu	Gly	Pro 445	Leu	Pro	Pro
Gly	Cys 450	Ile	Gln	Thr	Ile	Trp 455	Gly	Asp	Asb	Ala	Arg 460	Phe	Val	Lys	Thr
Tyr 465	Trp	Ser	Leu	Phe	Asn 470	Arg	Gln	Val	Tyr	Ala 475	Thr	Phe	Asp	Trp	Gly 480
Ile	Arg	Aab	Ala	Glu 485	Gly	Tyr	Tyr	Phe	Ile 490	Leu	Gly	Arg	Thr	Asp 495	Asp
Val	Ile	Asn	Ile 500	Ala	Gly	His	Arg	Leu 505	Gly	Thr	Arg	Glu	Ile 510	Glu	Glu
Ser	Ile	Ser 515	Ser	Tyr	Pro	Asn	Val 520	Ala	Glu	Val	Ala	Val 525	Val	Gly	Ile
Lys	Asp 530	Ala	Leu	Lys	Gly	Gln 535	Val	Ala	Val	Ala	Phe 540	Val	Ile	Pro	Lys
Gln 545	Ser	Asp	Thr	Leu	Ala 550	Asp	Arg	Glu	Ala	Ala 555	Arg	Asp	Glu	Glu	Asn 560

Ala Ile Met Ala Leu Val Asp Asn Gln Ile Gly His Phe Gly Arg Pro 565 570 575 Ala His Val Trp Phe Val Ser Gln Leu Pro Lys Thr Arg Ser Gly Lys 580 585 590 Met Leu Arg Arg Thr Ile Gln Ala Ile Cys Glu Gly Arg Asp Pro Gly 595 600 605 Asp Leu Thr Thr Ile Asp Asp Pro Ala Ser Leu Gln Gln Ile Arg Gln 610 615 620 Ala Ile Glu Glu 625 <210> SEQ ID NO 23 <211> LENGTH: 1884 <212> TYPE: DNA <213> ORGANISM: Salmonella enterica <400> SEQUENCE: 23 atgtetttta gegaatttta teagegttee attaaegaae eggaggegtt etgggeegag 60 caggeeegge gtategaetg gegaeageeg tttaegeaga egetggatea tageegteea 120 ccgtttgccc gctggttttg cggcggcacc actaacttat gtcataacgc cgtcgaccgc 180 tggcgggata aacagccgga ggcgctggcg ctgattgccg tctcatcaga gaccgatgaa 240 gagegeacat ttacetteag ceagttgeat gatgaagtea acattgtgge egecatgttg 300 ctgtcgctgg gcgtgcagcg tggcgatcgc gtattggtct atatgccgat gattgccgaa 360 gegeagataa cectgetgge etgegegege attggegega tecatteggt ggtetttgge 420 ggttttgcct cgcacagcgt ggcggcgcgc attgacgatg ccagaccggc gctgattgtg 480 tcqqcqqatq ccqqaqcqcq qqqcqqtaaa atcctqccqt ataaaaaqct qctcqatqac 540 gctattgcgc aggcgcagca tcagccgaaa cacgttctgc tggtggacag agggctggcg 600 aaaatggcat gggtggatgg gcgcgatctg gattttgcca cgttgcgcca gcagcatctc 660 720 qqcqcqaqcq tqccqqtqqc qtqqctqqaa tccaacqaaa cctcqtqcat tctttacacc teeggeacta ceggeaaace gaaaggegte cagegegacg teggeggtta tgeggtggeg 780 ctggcaacct cgatggacac catttttggc ggcaaggegg geggegtatt cttttgegca 840 tcggatatcg gctgggtcgt cggccactcc tatatcgttt acgcgccgtt gctggcaggc 900 atggcgacta ttgtttacga aggactgccg acgtacccgg actgcggggt ctggtggaaa 960 attgtcgaga aataccaggt taaccggatg ttttccgccc cgaccgcgat tcgcgtgctg 1020 aaaaaattcc cgacggcgca aatccgcaat cacgatctct cctcgctgga ggcgctttat 1080 ctggccggtg agccgctgga cgagccgacg gccagttggg taacggagac gctgggcgta 1140 ccggtcatcg acaattattg gcagacggag tccggctggc cgatcatggc gctggcccgc 1200 gcgctggacg acaggccgtc gcgtctggga agtcccggcg tgccgatgta cggttataac 1260 gtccagctac tcaatgaagt caccggcgaa ccttgcggca taaatgaaaa ggggatgctg 1320 gtgatcgaag ggccgctgcc gccgggctgt attcagacta tttggggcga cgatgcgcgt 1380 tttgtgaaga cttactggtc gctgtttaac cgtcaggttt atgccacttt cgactgggga 1440 atccgcgacg ccgaggggta ttactttatt ctgggccgta ccgatgatgt gattaatatt 1500 gcgggtcatc ggctggggac gcgagaaata gaagaaagta tctccagcta cccgaacgta 1560 gcggaagtgg cggtagtggg gataaaagac gctctgaaag ggcaggtagc ggtggcgttt 1620

gtcatteega ageagagega taegetggeg gategegagg eggegegega egaggaaaae
gcgattatgg cgctggtgga caaccagatc ggtcactttg gtcgtccggc gcatgtctgg
tttgtttcgc ageteeccaa aacgegttee ggaaagatge ttegeegeae gateeaggeg
atotgogaag googogatoo gggogatotg acaaccattg acgatocogo gtogttgoag
caaattcgcc aggcgatcga agaa
<210> SEQ ID NO 24 <211> LENGTH: 616 <212> TYPE: PRT <213> ORGANISM: Streptomyces cinnamonensis
<400> SEQUENCE: 24
Met Thr Val Leu Pro Asp Asp Gly Leu Ser Leu Ala Ala Glu Phe Pro 1 5 10 15
Asp Ala Thr His Glu Gln Trp His Arg Leu Val Glu Gly Val Val Arg 20 25 30
Lys Ser Gly Lys Asp Val Ser Gly Thr Ala Ala Glu Glu Ala Leu Ser 35 40 45
Thr Thr Leu Glu Asp Gly Leu Thr Thr Arg Pro Leu Tyr Thr Ala Arg 50 55 60
Asp Ala Ala Pro Asp Ala Gly Phe Pro Gly Phe Ala Pro Phe Val Arg 65 70 75 80
Gly Ser Val Pro Glu Gly Asn Thr Pro Gly Gly Trp Asp Val Arg Gln
85 90 95 Arg Tyr Ala Ser Ala Asp Pro Ala Arg Thr Asn Glu Ala Val Leu Thr
100 105 110
Asp Leu Glu Asn Gly Val Thr Ser Leu Trp Leu Thr Leu Gly Ser Ala 115 120 125
Gly Leu Pro Val Thr Gly Leu Glu Arg Ala Leu Asp Gly Val Tyr Leu 130 135 140
Asp Leu Val Pro Val Ala Leu Asp Ala Gly Ser Glu Ala Ala Thr Ala 145 150 155 160
Ala Arg Glu Leu Leu Arg Leu Tyr Glu Ala Ala Gly Val Ala Asp Asp 165 170 175
Ala Val Arg Gly Thr Leu Gly Ala Asp Pro Leu Gly His Glu Ala Arg 180 185 190
Thr Gly Glu Lys Ser Thr Ser Phe Ala Ala Val Ala Glu Leu Ala Arg 195 200 205
Leu Cys Gly Glu Arg Tyr Pro Gly Leu Arg Ala Leu Thr Val Asp Ala 210 215 220
Leu Pro Tyr His Glu Ala Gly Ala Ser Ala Ala Gln Glu Leu Gly Ala 225 230 235 240
Ser Leu Ala Thr Gly Val Glu Tyr Leu Arg Ala Leu His Asp Lys Gly 245 250 255
Leu Gly Val Glu Lys Ala Phe Ala Gln Leu Glu Phe Arg Phe Ala Ala
260 265 270 Thr Ala Asp Gln Phe Leu Thr Ile Ala Lys Leu Arg Ala Ala Arg Arg
275 280 285 Leu Trp Ala Arg Val Ala Glu Val Ser Gly Val Pro Ala Ala Gly Ala
290 295 300

											-	con	tin	ued							
Gln 305	Arg	Gln	His	Ala	Val 310	Thr	Ser	Pro	Val	Met 315	Met	Thr	Arg	Arg	Asp 320						
Pro	Trp	Val	Asn	Met 325	Leu	Arg	Thr	Thr	Val 330	Ala	Сув	Leu	Gly	Ala 335	Gly	7					
Val	Gly	Gly	Ala 340	_	Ala	Val	Thr	Val 345	Leu	Pro	Phe	Asp	His 350	Glu	Leu	ι					
Gly	Leu	Pro 355	Asp	Ala	Phe	Ala	Arg 360		Ile	Ala	Arg	Asn 365	Thr	Ser	Thr						
Ile	Leu 370	Leu	Glu	Glu	Ser	His 375	Leu	Ala	Arg	Val	Ile 380	Asp	Pro	Ala	Gly	7					
Gly 385	Ser	Trp	Tyr	Val	Glu 390	Arg	Leu	Thr	Asp	Glu 395	Leu	Ala	His	Ala	Ala 400						
Trp	Asp	Phe	Phe	Lys 405	Glu	Ile	Glu	Arg	Ala 410	Asp	Gly	Gln	Val	Ala 415	Ala	ı					
Leu	Arg	Ser	Gly 420	Leu	Val	Gly	Asp	Arg 425	Ile	Ala	Ala	Thr	Trp 430	Ala	Glu	L					
Arg	Arg	Lys 435		Leu	Ala	Arg	Arg 440	Arg	Glu	Pro	Ile	Thr 445	Gly	Val	Ser	7					
Glu	Phe 450	Pro	Leu	Leu	Thr	Glu 455	Arg	Pro	Val	Glu	Arg 460	Glu	Pro	Ala	Pro	`					
Ala 465	Ala	Pro	Pro	Gly	Gly 470	Leu	Pro	Arg	Val	Arg 475	Arg	Asp	Glu	Ala	Tyr 480						
Glu	Glu	Leu	Arg	Gly 485	Arg	Ser	Asp	Ala	His 490	Leu	Glu	Ala	Thr	Gly 495	Ala	ı					
Arg	Pro	Lys	Val 500	Phe	Ile	Ala	Ala	Leu 505	Gly	Pro	Ala	Ala	Ala 510	His	Thr						
Ala	Arg	Ala 515		Phe	Ala	Ala	Asn 520	Leu	Phe	Met	Ala	Gly 525	Gly	Val	Glu	ι					
Pro	Val 530	His	Asp	Pro	Val	Ser 535	Val	Asp	Ala	Glu	Thr 540	Ala	Ala	Glu	Ala	ı					
Phe 545	Ala	Ala	Ser	Gly	Ala 550	Thr	Val	Ala	Сув	Leu 555	Сув	Ser	Ser	Asp	Val 560						
Leu	Tyr	Ala	Glu	Gln 565	Ala	Glu	Ala	Val	Ala 570	Arg	Ala	Leu	Lys	Ser 575	Ala	L					
Gly	Ala	Leu	Arg 580	Val	Phe	Leu	Ala	Gly 585	Arg	Gly	Glu	Phe	Ala 590	Asp	Ile	ž					
Asp	Glu	Tyr 595	Val	Phe	Ala	Gly	Cys 600	Asp	Ala	Val	Ala	Val 605	Leu	Thr	Ser						
Thr	Leu 610	Asp	Arg	Met	Gly	Val 615	Ala														
<21 <21	0> SI 1> LI 2> TY 3> OH	ENGTI YPE :	H: 7 PRT	33	eptor	myce	s cin	namo	onen	sis											
<40	0> SI	EQUEI	NCE :	25																	
Met 1	Arg	Ile	Pro	Glu 5	Phe	Asp	Asp	Ile	Glu 10	Leu	Gly	Ala	Gly	Gly 15	Gly	r					
Pro	Ser	Gly	Ser 20	Ala	Glu	Gln	Trp	Arg 25	Ala	Ala	Val	Lys	Glu 30	Ser	Val						
Jly	Lys	Ser 35	Glu	Ser	Asp	Leu	Leu 40	Trp	Glu	Thr	Pro	Glu 45	Gly	Ile	Ala	ı					

Val	Lys 50	Pro	Leu	Tyr	Thr	Gly 55	Ala	Asp	Val	Glu	Gly 60	Leu	Asp	Phe	Leu
Glu 65	Thr	Tyr	Pro	Gly	Val 70	Ala	Pro	Tyr	Leu	Arg 75	Gly	Pro	Tyr	Pro	Thr 80
Met	Tyr	Val	Asn	Gln 85	Pro	Trp	Thr	Ile	Arg 90	Gln	Tyr	Ala	Gly	Phe 95	Ser
Thr	Ala	Glu	Glu 100	Ser	Asn	Ala	Phe	Tyr 105	Arg	Arg	Asn	Leu	Ala 110	Ala	Gly
Gln	Lys	Gly 115	Leu	Ser	Val	Ala	Phe 120	Asp	Leu	Pro	Thr	His 125	Arg	Gly	Tyr
Asp	Ser 130	Asp	His	Pro	Arg	Val 135	Thr	Gly	Asp	Val	Gly 140	Met	Ala	Gly	Val
Ala 145	Ile	Asp	Ser	Ile	Tyr 150	Asp	Met	Arg	Gln	Leu 155	Phe	Asp	Gly	Ile	Pro 160
Leu	Asp	Lys	Met	Thr 165	Val	Ser	Met	Thr	Met 170	Asn	Gly	Ala	Val	Leu 175	Pro
Val	Leu	Ala	Leu 180	Tyr	Ile	Val	Ala	Ala 185	Glu	Glu	Gln	Gly	Val 190	Pro	Pro
Glu	Lys	Leu 195	Ala	Gly	Thr	Ile	Gln 200	Asn	Asp	Ile	Leu	Lys 205	Glu	Phe	Met
Val	Arg 210	Asn	Thr	Tyr	Ile	Tyr 215	Pro	Pro	Lys	Pro	Ser 220	Met	Arg	Ile	Ile
Ser 225	Asp	Ile	Phe	Ala	Tyr 230	Thr	Ser	Gln	Lys	Met 235	Pro	Arg	Tyr	Asn	Ser 240
Ile	Ser	Ile	Ser	Gly 245	Tyr	His	Ile	Gln	Glu 250	Ala	Gly	Ala	Thr	Ala 255	Asp
Leu	Glu	Leu	Ala 260	Tyr	Thr	Leu	Ala	Asp 265	Gly	Val	Glu	Tyr	Leu 270	Arg	Ala
Gly	Gln	Glu 275	Ala	Gly	Leu	Asp	Val 280	Asp	Ala	Phe	Ala	Pro 285	Arg	Leu	Ser
Phe	Phe 290	Trp	Ala	Ile	Gly	Met 295	Asn	Phe	Phe	Met	Glu 300	Val	Ala	Гла	Leu
Arg 305	Ala	Ala	Arg	Leu	Leu 310	Trp	Ala	Lys	Leu	Val 315	Lys	Gln	Phe	Asp	Pro 320
Lys	Asn	Ala	Lys	Ser 325	Leu	Ser	Leu	Arg	Thr 330	His	Ser	Gln	Thr	Ser 335	Gly
Trp	Ser	Leu	Thr 340	Ala	Gln	Asp	Val	Phe 345	Asn	Asn	Val	Thr	Arg 350	Thr	Сув
Val	Glu	Ala 355	Met	Ala	Ala	Thr	Gln 360	Gly	His	Thr	Gln	Ser 365	Leu	His	Thr
Asn	Ala 370	Leu	Asp	Glu	Ala	Leu 375	Ala	Leu	Pro	Thr	Asp 380	Phe	Ser	Ala	Arg
Ile 385	Ala	Arg	Asn	Thr	Gln 390	Leu	Leu	Ile	Gln	Gln 395	Glu	Ser	Gly	Thr	Thr 400
Arg	Thr	Ile	Asp	Pro 405	Trp	Gly	Gly	Ser	Ala 410	Tyr	Val	Glu	ГЛа	Leu 415	Thr
Tyr	Asp	Leu	Ala 420	Arg	Arg	Ala	Trp	Gln 425	His	Ile	Glu	Glu	Val 430	Glu	Ala
Ala	Gly	Gly 435	Met	Ala	Gln	Ala	Ile 440	Asp	Ala	Gly	Ile	Pro 445	ГЛа	Leu	Arg

											-	con	tin	ued	
Val	Glu 450	Glu	Ala	Ala	Ala	Arg 455	Thr	Gln	Ala	Arg	Ile 460	Asp	Ser	Gly	Arg
Gln 465	Pro	Val	Ile	Gly	Val 470	Asn	Гла	Tyr	Arg	Val 475	Asp	Thr	Asp	Glu	Gln 480
Ile	Asp	Val	Leu	Lys 485	Val	Asp	Asn	Ser	Ser 490	Val	Arg	Ala	Gln	Gln 495	Ile
Glu	Lys	Leu	Arg 500	Arg	Leu	Arg	Glu	Glu 505	Arg	Asp	Asp	Ala	Ala 510	Суз	Gln
Asp	Ala	Leu 515	Arg	Ala	Leu	Thr	Ala 520	Ala	Ala	Glu	Arg	Gly 525	Pro	Gly	Gln
Gly	Leu 530	Glu	Gly	Asn	Leu	Leu 535	Ala	Leu	Ala	Val	Asp 540	Ala	Ala	Arg	Ala
Lys 545		Thr	Val	Gly	Glu 550		Ser	Asp	Ala	Leu 555		Ser	Val	Tyr	Gly 560
	His	Ala	Gly	Gln 565		Arg	Thr	Ile	Ser 570		Val	Tyr	Arg	Thr 575	
Ala	Gly	Gln		Pro	Ser	Val	Glu			Arg	Ala	Leu			Ala
Phe	Asp		580 Ala	Glu	Gly	Arg		585 Pro	Arg	Ile	Leu		590 Ala	Lys	Met
Gly		595 Asp	Gly	His	Asp	-	600 Gly	Gln	Lys	Val		605 Ala	Ser	Ala	Phe
Ala	610 Asp	Leu	Gly	Phe	Asp	615 Val	Asp	Val	Gly	Pro	620 Leu	Phe	Gln	Thr	Pro
625 Ala	Glu	Val	Ala	Arg	630 Gln	Ala	Val	Glu	Ala	635 Asp	Val	His	Ile	Val	640 Gly
				645 Ala					650	_				655	_
			660			-		665					670		-
		675		Ala		-	680	_	_			685			_
-	690			Pro		695					700			-	
Thr 705	Ala	Val	Phe	Pro	Pro 710	Gly	Thr	Val	Ile	Pro 715		Ala	Ala	His	Asp 720
Leu	Val	Lys	Arg	Leu 725	Ala	Ala	Asp	Leu	Gly 730	His	Glu	Leu			
<210)> SH	EQ II	d No	26											
<211 <212	L> LH 2> TY	ENGTI YPE :	H: 1 PRT	46	onto			icou	-						
	> OF			Stre	eptoi	y cei	J 15/V.	LUEU	2						
				Ile	Asp	His	Ile	Gly	Ile	Ala	Cys	Phe	Asp	Leu	Asp
1			-	5	-			-	10		-		-	15	_
-			20	Phe	-			25	•	-			30		
		35		Glu			40					45			
Asn	Glu 50	Thr	Ser	Asp	Gly	Gly 55	Ala	Ser	Tyr	Leu	Gln 60	Leu	Leu	Glu	Pro
Thr 65	Arg	Pro	Asp	Ser	Thr 70	Val	Ala	ГЛа	Trp	Leu 75	Aap	ГЛа	Asn	Gly	Glu 80

Gly Val His His Ile Ala Phe Gly Thr Ala Asp Val Asp Gln Asp Ala 85 90 95 Ala Asp Ile Lys Asp Lys Gly Val Arg Val Leu Tyr Glu Glu Pro Arg 100 105 110 Arg Gly Ser Met Gly Ser Arg Ile Thr Phe Leu His Pro Lys Asp Cys 115 120 125 His Gly Val Leu Thr Glu Leu Val Thr Ser Ala Pro Val Glu Ser Pro 130 135 140 Glu His 145 <210> SEQ ID NO 27 <211> LENGTH: 4553 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic nucleotide <400> SEQUENCE: 27 gaattcaaaa ttaagaggta tatattaatg accgtgctgc cggatgacgg tctgagtctg 60 gcagccgaat ttccggatgc gacgcatgaa cagtggcacc gtctggttga aggcgtggtt 120 cgcaaatcag gcaaagatgt ctcgggcacc gcagctgaag aagccctgag caccacgctg 180 gaagacggte tgaccaegeg teegetgtat acggeacgtg atgeageace ggacgetggt 240 tttccqqqtt tcqcqccqtt tgtqcqtqgc tcaqttccqq aqqqtaacac cccqqqcqqt 300 tgggatgtgc gtcaacgtta cgcatcggca gacccggcac gtaccaacga agcagtgctg 360 acggatetgg aaaatggtgt taccageetg tggetgaege tgggttetge aggtetgeeg 420 gtgaccggtc tggaacgtgc actggatggt gtttatctgg acctggtccc ggtggcactg 480 gatgcaggta gcgaagcagc taccgcagca cgtgaactgc tgcgtctgta cgaagcagct 540 ggtgttgctg atgacgcagt ccgtggcacg ctgggtgcag atccgctggg ccatgaagca 600 cgcaccggtg aaaaaagtac gtcctttgca gcagtggcag aactggcacg tctgtgcggt 660 720 gaacgttatc cgggtctgcg cgctctgacc gttgatgcgc tgccgtacca tgaagctggc gcgtcagcag ctcaggaact gggcgcttcg ctggcgaccg gtgtggaata tctgcgtgcg 780 ctgcacgata aaggcctggg tgttgaaaaa gccttcgcac agctggaatt tcgcttcgcg 840 gccaccgcgg accaatttct gacgattgcc aaactgcgtg cagctcgtcg cctgtgggca 900 cgtgttgcag aagtcagtgg cgtgccggca gcaggtgcac agcgtcaaca tgcagtcacc 960 tccccggtga tgatgacgcg tcgcgatccg tgggtgaaca tgctgcgtac cacggttgct 1020 tgtctgggtg caggtgtcgg cggtgctgat gcagttaccg tcctgccgtt cgatcacgaa 1080 1140 ctgggtctgc cggacgcctt tgcacgtcgc attgcgcgta ataccagtac gatcctgctg 1200 gaagaatccc atctggcccg tgtcattgat ccggcaggcg gtagctggta tgtggaacgc ctgaccgatg aactggccca cgcagcttgg gactttttca aagaaatcga acgtgcagat 1260 ggtcaggtcg cagcactgcg tagcggcctg gtgggtgacc gcattgcagc tacctgggca 1320 gaacgtegea aaaaactgge gegtegeegt gaacegatea eeggtgtgte tgaattteeg 1380 ctgctgacgg aacgcccggt tgaacgtgaa ccggcaccgg cagcaccgcc gggcggtctg 1440 1500 ccqcqcqtqc qccqtqatqa aqcctacqaa qaactqcqtq qtcqttctqa cqcacacctq

		-continued	
gaagetaceg gtgeaegte	c gaaagtgttc attgcagctc	tgggtccggc agcagcaca	ut 1560
accgctcgtg cgacgttc	gc tgcgaacctg tttatggcgg	g gcggtgttga accggtcca	ac 1620
gateetgtga gegttgaeg	gc ggaaaccgcc gcagaagcct	ttgctgcgtc tggcgccad	:g 1680
gttgcatgcc tgtgtagct	c tgatgtcctg tatgcggaac	aagccgaagc agtcgctcg	jt 1740
gcgctgaaaa gtgccggtg	ge actgegtgtt tteetggeag	g geegeggtga atttgegga	lt 1800
atcgacgaat acgtgttto	gc aggttgcgat gctgtcgcag	g tgetgaeete eaegetgga	uc 1860
cgtatgggtg ttgcgtaat	g cgtattccgg aatttgatga	a categaaetg ggtgeegge	g 1920
gtggcccgtc aggttcggo	a gaacagtggc gtgcagcagt	: gaaagaaagc gttggtaaa	a 1980
gcgaatctga tctgctgtg	yg gaaaccccgg aaggcattgc	tgttaaaccg ctgtacacg	ig 2040
gtgccgatgt cgaaggcct	g gactteetgg aaacetatee	: gggtgtcgca ccgtacctg	gc 2100
gtggtccgta tccgaccat	g tacgtgaacc agccgtggac	: gatccgccaa tacgcgggt	t 2160
ttagcaccgc cgaagaato	t aacgcattet ategtegeaa	ı tetggeaget ggeeagaaa	ug 2220
gtctgagtgt ggcgtttga	at ctgccgaccc atcgtggcta	ı cgatteegae caecegegt	g 2280
tcacgggtga cgtgggtat	g geeggegtgg caattgatag	g catctatgac atgcgtcag	jc 2340
tgttcgatgg tattccgct	g gacaaaatga ccgtttctat	gacgatgaac ggcgctgtg	jc 2400
tgeeggttet ggegetgta	at atcgtggcgg ccgaagaaca	ı gggtgttccg ccggaaaaa	uc 2460
tggcgggcac catccaaaa	ac gatateetga aagaatttat	ggttcgtaac acgtacatc	t 2520
acccgccgaa accgagtat	g cgcattatct ccgatatctt	cgcctatacc tcacagaaa	a 2580
tgccgcgcta caacagtat	c tocatotoag gttatoatat	ccaagaagca ggcgctacc	g 2640
cggatctgga actggccta	ac acgctggcag acggtgttga	ı atatetgegt getggteag	ıg 2700
aagegggeet ggatgtega	ac gcctttgcac cgcgcctgag	g ctttttctgg gccattggc	a 2760
tgaacttttt catggaagt	g gcaaaactgc gtgcagctcg	g cctgctgtgg gcgaaactg	ıg 2820
ttaaacagtt tgatccgaa	aa aatgogaaat ogotgagoot	gegtaceeac teecagaeg	jt 2880
caggttggtc gctgaccgo	cc caagatgttt tcaacaatgt	caccegeaeg tgegtggaa	ug 2940
caatggcagc aacccagg	yt catacgcaat cactgcacac	caacgcgctg gatgaagct	c 3000
tggcgctgcc gaccgactt	t teggetegta ttgegegeaa	a tacgcagctg ctgatccag	gc 3060
aagaaagcgg caccacgco	gt accattgatc cgtggggtgg	g ctctgcgtat gtggaaaaa	ac 3120
tgacgtacga cctggcaco	yt cgcgcatggc agcatatcga	a gaagttgaa gcagcgggt	g 3180
gcatggccca agcaattga	at gegggeatee egaaaetgeg	y tgtggaagaa gcggcagca	ac 3240
gtacccaggc acgcattga	at tctggtcgtc aaccggtcat	cggcgtgaac aaatatcgc	g 3300
tggatacgga cgaacagat	t gatgttctga aagtcgacaa	ı tagetetgtt egegegeag	jc 3360
aaatcgaaaa actgcgtco	gc ctgcgtgaag aacgcgatga	ı cgctgcgtgt caggatgct	c 3420
tgcgtgcact gaccgcago	ca gctgaacgtg gtccgggtca	u gggtctggaa ggtaatctg	jc 3480
tggctctggc agtggatgo	ca gcacgtgcca aagcaaccgt	tggcgaaatt tcagacgca	ac 3540
tggaatcggt ctacggtco	gt catgcgggcc agattcgcad	e catcagtggt gtgtatcgc	a 3600
cggaagcggg ccaatctco	eg agtgtegaae gtaeeegege	: cctggtggat gcatttgac	g 3660
aagctgaagg tcgtcgcco	og ogtattotgg ttgocaaaat	gggtcaggat ggccacgac	c 3720
gcggccaaaa agtcatcgo	t teegegtttg eegatetggg	g tttcgatgtc gacgtgggt	c 3780

-continued	
cgctgttcca gaccccggcc gaagtggcac gtcaagctgt ggaagcggat gttcatat	tg 3840
ttggtgtcag ttccctggca gctggtcacc tgacgctggt tccggcactg cgtgaaga	ac 3900
tggeggeega aggtegegat gacattatga tegtggttgg tggegteatt eegeegea	ugg 3960
atgtggaagc cctgcatgaa gcaggtgcta ccgcggtttt tccgccgggc acggtcat	.cc 4020
cggatgcagc tcatgacctg gtgaaacgtc tggcagcaga tctgggtcac gaactgta	aa 4080
agettaaaat taagaggtat atattaatge tgaeeegeat egateaeatt ggeatege	at 4140
getttgatet ggataaaace gtagagttet ategegeeae etaeggettt gaggtgtt	tc 4200
atagogaagt aaaogaagaa cagggogtgo gtgaagocat gotgaaaato aaogaaao	ta 4260
gtgatggtgg ggcgagctat ctgcaactgc tggaaccgac acgcccggac tctacagt	tg 4320
ctaagtggct ggacaagaat ggcgaaggcg ttcatcacat tgcgttcggt acggctga	tg 4380
tggatcaaga cgcggcagat attaaagata agggtgtgcg tgttctgtac gaggagco	ac 4440
geogtggtag catgggtage ogtattaogt teetgeacee taaagaetgt catggtgt	.gc 4500
tgactgaget ggteacetet geeeeggteg aaagteegga acattaaggt ace	4553
<212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 28 Met Ser Arg Met Ser Asn Val Gln Glu Trp Gln Gln Leu Ala Asn Lys	1
1 5 10 15	
Glu Leu Ser Arg Arg Glu Lys Thr Val Asp Ser Leu Val His Gln Thr 20 25 30	
Ala Glu Gly Ile Ala Ile Lys Pro Leu Tyr Thr Glu Ala Asp Leu Asp 35 40 45	,
Asn Leu Glu Val Thr Gly Thr Leu Pro Gly Leu Pro Pro Tyr Val Arg 50 55 60	
Gly Pro Arg Ala Thr Met Tyr Thr Ala Gln Pro Trp Thr Ile Arg Gln 65 70 75 80	1
Tyr Ala Gly Phe Ser Thr Ala Lys Glu Ser Asn Ala Phe Tyr Arg Arg 85 90 95	1
Asn Leu Ala Ala Gly Gln Lys Gly Leu Ser Val Ala Phe Asp Leu Ala 100 105 110	ı
Thr His Arg Gly Tyr Asp Ser Asp Asn Pro Arg Val Ala Gly Asp Val 115 120 125	
Gly Lys Ala Gly Val Ala Ile Asp Thr Val Glu Asp Met Lys Val Leu 130 135 140	ı
Phe Asp Gln Ile Pro Leu Asp Lys Met Ser Val Ser Met Thr Met Asm 145 150 155 160	
Gly Ala Val Leu Pro Val Leu Ala Phe Tyr Ile Val Ala Ala Glu Glu 165 170 175	L
Gln Gly Val Thr Pro Asp Lys Leu Thr Gly Thr Ile Gln Asn Asp Ile 180 185 190	
Leu Lys Glu Tyr Leu Cys Arg Asn Thr Tyr Ile Tyr Pro Pro Lys Pro 195 200 205	
Ser Met Arg Ile Ile Ala Asp Ile Ile Ala Trp Cys Ser Gly Asn Met 210 215 220	

-continued

											-	con	tin	ued					
Pro 225	Arg	Phe	Asn	Thr	Ile 230	Ser	Ile	Ser	Gly	Tyr 235	His	Met	Gly	Glu	Ala 240				
Gly	Ala	Asn	Суз	Val 245	Gln	Gln	Val	Ala	Phe 250	Thr	Leu	Ala	Asp	Gly 255	Ile				
Glu	Tyr	Ile	Lys 260	Ala	Ala	Ile	Ser	Ala 265	Gly	Leu	ГЛа	Ile	Asp 270	Asp	Phe				
Ala	Pro	Arg 275	Leu	Ser	Phe	Phe	Phe 280	Gly	Ile	Gly	Met	Asp 285	Leu	Phe	Met				
Asn	Val 290	Ala	Met	Leu	Arg	Ala 295	Ala	Arg	Tyr	Leu	Trp 300	Ser	Glu	Ala	Val				
Ser 305		Phe	Gly	Ala	Gln 310	Asp	Pro	Lys	Ser	Leu 315	Ala	Leu	Arg	Thr	His 320				
Суз	Gln	Thr	Ser	Gly 325	Trp	Ser	Leu	Thr	Glu 330	Gln	Asp	Pro	Tyr	Asn 335	Asn				
Val	Ile	Arg	Thr 340	Thr	Ile	Glu	Ala	Leu 345	Ala	Ala	Thr	Leu	Gly 350	Gly	Thr				
Gln	Ser	Leu 355	His	Thr	Asn	Ala	Phe 360	Asp	Glu	Ala	Leu	Gly 365	Leu	Pro	Thr				
Asp	Phe 370	Ser	Ala	Arg	Ile	Ala 375	Arg	Asn	Thr	Gln	Ile 380	Ile	Ile	Gln	Glu				
Glu 385	Ser	Glu	Leu	Суз	Arg 390	Thr	Val	Asp	Pro	Leu 395	Ala	Gly	Ser	Tyr	Tyr 400				
Ile	Glu	Ser	Leu	Thr 405	Asp	Gln	Ile	Val	Lys 410	Gln	Ala	Arg	Ala	Ile 415	Ile				
Gln	Gln	Ile	Asp 420	Glu	Ala	Gly	Gly	Met 425	Ala	Lya	Ala	Ile	Glu 430	Ala	Gly				
Leu	Pro	Lys 435	Arg	Met	Ile	Glu	Glu 440	Ala	Ser	Ala	Arg	Glu 445	Gln	Ser	Leu				
Ile	Asp 450		Gly	ГЛа	Arg	Val 455	Ile	Val	Gly	Val	Asn 460	ГЛа	Tyr	Гла	Leu				
Asp 465		Glu	Asp	Glu	Thr 470	Asp	Val	Leu	Glu	Ile 475	Asp	Asn	Val	Met	Val 480				
Arg	Asn	Glu	Gln	Ile 485	Ala	Ser	Leu	Glu	Arg 490	Ile	Arg	Ala	Thr	Arg 495	Asp				
Asp	Ala	Ala	Val 500	Thr	Ala	Ala	Leu	Asn 505	Ala	Leu	Thr	His	Ala 510	Ala	Gln				
His	Asn	Glu 515	Asn	Leu	Leu	Ala	Ala 520	Ala	Val	Asn	Ala	Ala 525	Arg	Val	Arg				
Ala	Thr 530	Leu	Gly	Glu	Ile	Ser 535	Asp	Ala	Leu	Glu	Val 540	Ala	Phe	Asp	Arg				
Tyr 545		Val	Pro	Ser	Gln 550	СЛа	Val	Thr	Gly	Val 555	Ile	Ala	Gln	Ser	Tyr 560				
His	Gln	Ser	Glu	Lys 565	Ser	Ala	Ser	Glu	Phe 570	Asp	Ala	Ile	Val	Ala 575	Gln				
Thr	Glu	Gln	Phe 580	Leu	Ala	Asp	Asn	Gly 585	Arg	Arg	Pro	Arg	Ile 590	Leu	Ile				
Ala	Lys	Met 595	Gly	Gln	Asp	Gly	His 600	Asp	Arg	Gly	Ala	Lys 605	Val	Ile	Ala				
Ser	Ala 610	Tyr	Ser	Asp	Leu	Gly 615	Phe	Asp	Val	Asp	Leu 620	Ser	Pro	Met	Phe				
Ser	Thr	Pro	Glu	Glu	Ile	Ala	Arg	Leu	Ala	Val	Glu	Asn	Asp	Val	His				

-continued

-continued	
625 630 635 640	
Val Val Gly Ala Ser Ser Leu Ala Ala Gly His Lys Thr Leu Ile Pro 645 650 655	
Glu Leu Val Glu Ala Leu Lys Lys Trp Gly Arg Glu Asp Ile Cys Val 660 665 670	
Val Ala Gly Gly Val Ile Pro Pro Gln Asp Tyr Ala Phe Leu Gln Glu	
675 680 685	
Arg Gly Val Ala Ala Ile Tyr Gly Pro Gly Thr Pro Met Leu Asp Ser 690 695 700	
Val Arg Asp Val Leu Asn Leu Ile Ser Gln His His Asp 705 710 715	
<210> SEQ ID NO 29 <211> LENGTH: 2166 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic nucleotide	
<400> SEQUENCE: 29	
ggatccatgt ctagaatgag caacgtgcag gaatggcagc agctggcgaa taaagaactg	60
ageegtegeg aaaaaaeggt tgattetetg gtgeateaga eegeegaagg tategeaatt	120
aaaccgctgt ataccgaagc ggatctggat aacctggaag tgaccggtac gctgccgggt	180
etgeogoogt atgttogtgg toogogtgog accatgtaca oggoacagoo gtggaogatt	240
cgtcagtatg cgggcttcag caccgccaaa gaatctaacg cattttaccg tcgcaatctg	300
geggegggte agaaaggtet gagegtggeg tttgatetgg eeaceeaceg tggttaegat	360
tetgataaee egegegttge gggegatgtg ggtaaageag gegttgegat egataeggtg gaagatatga aagttetgtt egateagatt eegetggata aaatgagtgt tageatgaee	420
atgaatgcg cggttctgcc ggtgctggcc ttttatatcg tggcagcgga agaacagggt	540
gttacgccgg ataaactgac cggcacgatc cagaacgata ttctgaaaga atacctgtgc	600
cgtaatacct atatttaccc gccgaaaccg tctatgcgca ttatcgcaga tattatcgcg	660
tggtgtagtg gtaacatgcc gcgtttcaat acgatctcta ttagtggcta tcatatgggt	720
gaagcoggog caaactgogt toagcaggtg gootttacoo tggoagatgg tatogaatac	780
attaaagoog caatcagtgo gggootgaaa attgatgatt togoooogog ootgagottt	840
ttetttggea ttggtatgga tetgtttatg aatgtggeea tgetgegtge ggeeegetat	900
ctgtggageg aageagttte tggetttgge gegeaggaee egaaaageet ggeaetgegt	960
acccattgcc agacgagtgg ttggagcctg accgaacagg acccgtacaa caatgtgatc	1020
cgcaccacga ttgaagcgct ggcagcaacc ctgggtggta cgcagagcct gcacaccaac	1080
gegttegatg aageeetggg tetgeegaeg gattttageg eeegtatege aegeaataee	1140
cagattatca ttcaggaaga atctgaactg tgtcgtacgg ttgatccgct ggcgggcagt	1200
tattacatcg aaagcctgac cgatcagatt gttaaacagg cgcgtgcgat cattcagcag	1260
attgatgaag caggeggtat ggeaaaageg ategaagegg geetgeegaa aegtatgatt	1320
gaagaagoot otgoacgoga acagagtotg atogatoagg gtaaacgtgt gattgttggo	1380
gtgaacaaat acaaactgga tcatgaagat gaaaccgatg tgctggaaat cgataacgtt	1440
atggtgcgta atgaacagat cgccagcctg gaacgtattc gcgcaacccg cgatgatgcc	1500

			-contir	nued	
gcagttacgg cggccctgaa	cgcactgacc	catgcagcgc	agcacaacga	aaatctgctg	1560
gccgcagcgg tgaatgccgc	acgtgttcgc	gcgacgctgg	gtgaaatttc	tgatgcactg	1620
gaagtggcgt tcgatcgcta	tctggttccg	agtcagtgcg	ttaccggcgt	gatcgcccag	1680
agttaccatc agagcgaaaa	aagcgcatct	gaatttgatg	cgattgtggc	ccagaccgaa	1740
cagtttctgg cagataacgg	ccgtcgcccg	cgtatcctga	ttgccaaaat	gggtcaggat	1800
ggccacgatc gcggtgcgaa	agtgatcgcg	tctgcctata	gtgatctggg	cttcgatgtt	1860
gatctgtctc cgatgtttag	tacgccggaa	gaaattgcac	gtctggcggt	tgaaaatgat	1920
gtgcatgtgg ttggtgccag	ctctctggcg	gcgggtcaca	aaaccctgat	tccggaactg	1980
gtggaagcgc tgaaaaaatg	gggtcgcgaa	gatatctgtg	tggttgcggg	cggtgtgatt	2040
ccgccgcagg attatgcgtt	tctgcaagaa	cgtggtgttg	cagcaatcta	cggtccgggc	2100
accccgatgc tggatagtgt	tcgcgatgtg	ctgaatctga	ttagccagca	tcacgattaa	2160
gagete					2166
<pre><210> SEQ ID NO 30 <211> LENGTH: 1206 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI</pre>			de		
<400> SEQUENCE: 30					
ggatccatga aaataaaaac					60 120
atgttttccg cctcggctct ggcgataaag gctataacgg					120
attaaagtca ccgttgagca					240
actggcgatg gccctgacat					300
tctggcctgt tggctgaaat					360
acctgggatg ccgtacgtta					420
ttatcgctga tttataacaa					480
ccggcgctgg ataaagaact	gaaagcgaaa	ggtaagagcg	cgctgatgtt	caacctgcaa	540
gaaccgtact tcacctggcc	gctgattgct	gctgacgggg	gttatgcgtt	caagtatgaa	600
aacggcaagt acgacattaa	agacgtgggc	gtggataacg	ctggcgcgaa	agcgggtctg	660
accttcctgg ttgacctgat	taaaaacaaa	cacatgaatg	cagacaccga	ttactccatc	720
gcagaagctg cctttaataa	aggcgaaaca	gcgatgacca	tcaacggccc	gtgggcatgg	780
tccaacatcg acaccagcaa	agtgaattat	ggtgtaacgg	tactgccgac	cttcaagggt	840
caaccatcca aaccgttcgt	tggcgtgctg	agcgcaggta	ttaacgccgc	cagtccgaac	900
aaagagctgg cgaaagagtt	cctcgaaaac	tatctgctga	ctgatgaagg	tctggaagcg	960
gttaataaag acaaaccgct	gggtgccgta	gcgctgaagt	cttacgagga	agagttggcg	1020
aaagatccac gtattgccgc	caccatggaa	aacgcccaga	aaggtgaaat	catgccgaac	1080
atcccgcaga tgtccgcttt	ctggtatgcc	gtgcgtactg	cggtgatcaa	cgccgccagc	1140
ggtcgtcaga ctgtcgatga	agccctgaaa	gacgcgcaga	ctcgtatcac	caagtctaga	1200
gagete					1206

<210> SEQ ID NO 31 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEOUENCE: 31 gagaggtacc atggggggtt ctcatcatca tcatcatc 38 <210> SEQ ID NO 32 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 32 cagecaaget tttattaege accetgtgeg egetgtte 38 <210> SEQ ID NO 33 <211> LENGTH: 1263 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic nucleotide <400> SEQUENCE: 33 atggggggtt ctcatcatca tcatcatcat ggtatggcta gcatgactgg tggacagcaa 60 120 atgggtcggg atctgtacga cgatgacgat aaggatcgat ggggatccct ggtggaaggc ctqcqtqaaq ttqccqatqq tqatqcactq tatqatqcaq caqtqqqtca tqqcqatcqt 180 qqtccqqttt qqqtqtttaq cqqccaqqqt tctcaqtqqq caqcqatqqq cacccaqctq 240 ctggcaageg aaceggtttt tgeegeaaeg attgeaaaae tggaaeeggt gategeggee 300 gaaagtggct tcagcgttac cgaagcaatt acggcgcagc agaccgtgac gggtatcgat 360 aaagtgcagc cggccgtttt cgcagttcag gtggcgctgg cagcgacgat ggaacagacg 420 tacggegtte gteegggtge agtggttggt cacagtatgg gtgaaagege egeageggtg 480 gttgcaggcg ccctgagtct ggaagatgcc gcacgtgtga tttgccgtcg cagcaaactg 540 atgacccgta tcgcaggtgc aggtgcgatg ggcagcgtgg aactgccggc aaaacaggtt 600 aactctgaac tgatggcgcg cggtattgat gatgtggttg tgtctgttgt ggcgtctccg 660 cagagtaccg tgattggcgg caccagtgat acggttcgtg atctgatcgc gcgttgggaa 720 cagegegatg tgatggegeg egaagttgee gtggatgttg caageeatte teegeaggtt 780 gatecgatte tggatgatet ggeggeggea etggeagata ttgeacegat gaeeegaaa 840 gtgccgtatt acagcgcgac gctgtttgat ccgcgtgaac agccggtgtg tgatggcgcc 900 960 tattgggttg ataacctgcg caataccgtg cagttgcgg cggcagttca ggcggcgatg gaagatggtt accgtgtgtt cgcggaactg tctccgcatc cgctgctgac ccacgcagtg 1020 gaacagacgg gtcgctctct ggatatgagt gttgcagcac tggccggtat gcgtcgcgaa 1080 cageegetge egeatggeet gegtggtetg etgaeegaae tgeaeegtge aggtgeagea 1140 ctggattata gcgcactgta cccggcaggt cgtctggtgg atgcaccgct gccggcatgg 1200 acgcacgcac gtctgttcat cgatgatgat ggccaggaac agcgcgcaca gggtgcgtaa 1260

taa

-continued

<210> SEO ID NO 34 <211> LENGTH: 419 <212> TYPE: PRT <213> ORGANISM: Mycobacterium bovis <400> SEQUENCE: 34 Met Gly Gly Ser His His His His His His Gly Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Leu Tyr Asp Asp Asp Asp Lys Asp Arg Trp Gly Ser Leu Val Glu Gly Leu Arg Glu Val Ala Asp Gly Asp Ala Leu Tyr Asp Ala Ala Val Gly His Gly Asp Arg Gly Pro Val Trp Val Phe Ser Gly Gln Gly Ser Gln Trp Ala Ala Met Gly Thr Gln Leu Leu Ala Ser Glu Pro Val Phe Ala Ala Thr Ile Ala Lys Leu Glu Pro Val Ile Ala Ala Glu Ser Gly Phe Ser Val Thr Glu Ala Ile Thr Ala Gln Gln Thr Val Thr Gly Ile Asp Lys Val Gln Pro Ala Val Phe Ala Val Gln Val Ala Leu Ala Ala Thr Met Glu Gln Thr Tyr Gly Val Arg Pro Gly Ala Val Val Gly His Ser Met Gly Glu Ser Ala Ala Ala Val Val Ala Gly Ala Leu Ser Leu Glu Asp Ala Ala Arg Val Ile Cys Arg Arg Ser Lys Leu Met Thr Arg Ile Ala Gly Ala Gly Ala Met Gly Ser Val Glu Leu Pro Ala Lys Gln Val Asn Ser Glu Leu Met Ala Arg Gly Ile Asp Asp Val Val Val Ser Val Val Ala Ser Pro Gln Ser Thr Val Ile Gly Gly Thr Ser Asp Thr Val Arg Asp Leu Ile Ala Arg Trp Glu Gln Arg Asp Val Met Ala Arg Glu Val Ala Val Asp Val Ala Ser His Ser Pro Gln Val Asp Pro Ile Leu Asp Asp Leu Ala Ala Ala Leu Ala Asp Ile Ala Pro Met Thr Pro Lys Val Pro Tyr Tyr Ser Ala Thr Leu Phe Asp Pro Arg Glu Gln Pro Val Cys Asp Gly Ala Tyr Trp Val Asp Asn Leu Arg Asn Thr Val Gln Phe Ala Ala Ala Val Gln Ala Ala Met Glu Asp Gly Tyr Arg Val Phe Ala Glu Leu Ser Pro His Pro Leu Leu Thr His Ala Val Glu Gln Thr Gly Arg Ser Leu Asp Met Ser Val Ala

59

Ala Leu Ala Gly Met Arg Arg Glu Gln Pro Leu Pro His Gly Leu Arg 355 360 365 Gly Leu Leu Thr Glu Leu His Arg Ala Gly Ala Ala Leu Asp Tyr Ser 370 375 380 Ala Leu Tyr Pro Ala Gly Arg Leu Val Asp Ala Pro Leu Pro Ala Trp 400 385 390 395 Thr His Ala Arg Leu Phe Ile Asp Asp Asp Gly Gln Glu Gln Arg Ala 405 410 415 Gln Gly Ala <210> SEQ ID NO 35 <211> LENGTH: 464 <212> TYPE: DNA <213> ORGANISM: Kribbella flavida DSM <400> SEQUENCE: 35 gageteagga ggaattaace atggaacace tgaeggegae ceagaeeetg tttgaagega 60 ttgaccacgt tggcgttgca gttgcggatt ttgatgaagc agtgcgtttt tatgcagaaa 120 ccttcggcat gacggtggct catgaagaag ttaacgaaga acagggtgtt cgtgaagcaa 180 tgctgtcaat tggcgattcg ggtagctcta tccaactgct ggcgccgctg tccgatagtt 240 300 ccccqattqc caaatttctq qaccqcaatq qcccqqqtat ccaqcaactq qcctatcqtq tecocoatet geacecagte accesses tecoteaace tecoteaace tecoteaace 360 420 acgaaccgcg tcgcggcacg gctggttete gtattaactt catteateeg aaatcggegg gcggcgtcct ggtggaactg gtggaaccgg ctcgctaact gcag 464 <210> SEQ ID NO 36 <211> LENGTH: 145 <212> TYPE: PRT <213> ORGANISM: Kribbella flavida DSM <400> SEQUENCE: 36 Met Glu His Leu Thr Ala Thr Gln Thr Leu Phe Glu Ala Ile Asp His 1 5 10 15 Val Gly Val Ala Val Ala Asp Phe Asp Glu Ala Val Arg Phe Tyr Ala 20 25 30 Glu Thr Phe Gly Met Thr Val Ala His Glu Glu Val Asn Glu Glu Gln 35 40 45 Gly Val Arg Glu Ala Met Leu Ser Ile Gly Asp Ser Gly Ser Ser Ile 50 55 60 Gln Leu Leu Ala Pro Leu Ser Asp Ser Ser Pro Ile Ala Lys Phe Leu 65 70 75 80 Asp Arg Asn Gly Pro Gly Ile Gln Gln Leu Ala Tyr Arg Val Arg Asp 85 90 95 Leu Asp Ala Val Ser Ala Thr Leu Arg Glu Arg Gly Ala Gln Leu Leu 100 105 110 Tyr Asp Glu Pro Arg Arg Gly Thr Ala Gly Ser Arg Ile Asn Phe Ile 120 125 115 His Pro Lys Ser Ala Gly Gly Val Leu Val Glu Leu Val Glu Pro Ala 130 135 140 Arq

-continued

60

120

180

240

300

360

420

480

540

545

<210> SEQ ID NO 37 <211> LENGTH: 545 <212> TYPE: DNA <213> ORGANISM: Sorangium cellulosum <400> SEQUENCE: 37 gageteagga ggaattaace atggeteege eggeaaegeg teeggeteeg getgeaeega cgggcctgcc gacccaacgt gaaccgatga aagaccagat tccgggcttt ctgttcattg atcatatcgc gatggccgtg ccggcaggcc aactggacgc acaagttaaa gcctatgaaa tgctgggctt tcgtgaagtt catcgcgaag aagtccgtgg tgcggatcag gtgcgcgaag ttatgctgcg tattggtgat agcgacaacc acgtccaact gctggaaccg ctgagcccgg aatctccggt tcaaaaactg atcgagaaaa acggcggtcg cggcggtttc gcacatgtgg cttaccgtgt cagtgatgtg caagcggcct ttgacgaact gaaagcgcgt ggcttccgca ttatcgatgc agetcegegt cegggeagee gtggeaceae gattttettt gtteaecege getcaegega egatgeeeeg tteggteace tgattgaagt tgteeagtea eatggetaae tgcag <210> SEQ ID NO 38 <211> LENGTH: 172 <212> TYPE: PRT <213> ORGANISM: Sorangium cellulosum <400> SEQUENCE: 38 Met Ala Pro Pro Ala Thr Arg Pro Ala Pro Ala Ala Pro Thr Gly Leu 10 15 1 5 Pro Thr Gln Arg Glu Pro Met Lys Asp Gln Ile Pro Gly Phe Leu Phe 25 30 20 Ile Asp His Ile Ala Met Ala Val Pro Ala Gly Gln Leu Asp Ala Gln 35 40 45 Val Lys Ala Tyr Glu Met Leu Gly Phe Arg Glu Val His Arg Glu Glu 55 60 50 Val Arg Gly Ala Asp Gln Val Arg Glu Val Met Leu Arg Ile Gly Asp 65 70 75 80 Ser Asp Asn His Val Gln Leu Leu Glu Pro Leu Ser Pro Glu Ser Pro 85 90 95 Val Gln Lys Leu Ile Glu Lys Asn Gly Gly Arg Gly Gly Phe Ala His 100 105 110 Val Ala Tyr Arg Val Ser Asp Val Gln Ala Ala Phe Asp Glu Leu Lys 120 125 115 Ala Arg Gly Phe Arg Ile Ile Asp Ala Ala Pro Arg Pro Gly Ser Arg 135 130 140 Gly Thr Thr Ile Phe Phe Val His Pro Arg Ser Arg Asp Asp Ala Pro 155 145 150 160 Phe Gly His Leu Ile Glu Val Val Gln Ser His Gly 165 170 <210> SEQ ID NO 39

<210> SEQ ID NO 39
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

					-
- C	on	. t	lr	ıu	ea

-concinded	
<223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 39	
taagagctca ggaggaatta accatg	26
<210> SEQ ID NO 40 <211> LENGTH: 566 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 40	
catgccatgg cggacacgtt attgattctg ggtgatagcc tgagcgccgg gtatcgaatg	60
tctgccagcg cggcctggcc tgccttgttg aatgataagt ggcagagtaa aacgtcggta	120
gttaatgeea geateagegg egacaeeteg eaacaaggae tggegegeet teeggetetg	180
ctgaaacagc atcagccgcg ttgggtgctg gttgaactgg gcggcaatga cggtttgcgt	240
ggttttcagc cacagcaaac cgagcaaacg ctgcgccaga ttttgcagga tgtcaaagcc	300
gccaacgctg aaccattgtt aatgcaaata cgtctgcctg caaactatgg tcgccgttat	360
aatgaagoot ttagogooat ttacoocaaa otogooaaag agtttgatgt toogotgotg	420
ccctttttta tggaagaggt ctacctcaag ccacaatgga tgcaggatga cggtattcat	480
cccaaccgcg acgcccagcc gtttattgcc gactggatgg cgaagcagtt gcagccttta	540
gtaaatcatg actcataagg atccgc	566
<210> SEQ ID NO 41 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 41	
catgccatgg cggacacgtt attgattctg gg	32
<210> SEQ ID NO 42 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 42	
Met Ala Asp Thr Leu Leu Ile Leu Gly 1 5	
<210> SEQ ID NO 43 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 43	
geggateett atgagteatg atttactaaa ggetge	36
<pre><210> SEQ ID NO 44 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence</pre>	
<213> ORGANISM: ALUIIICIAI SEQUENCE	

```
-continued
```

33

35

<220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEOUENCE: 44 Ser Asp His Asn Val Leu Pro Gln Leu 1 5 <210> SEQ ID NO 45 <211> LENGTH: 183 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 45 Met Ala Asp Thr Leu Leu Ile Leu Gly Asp Ser Leu Ser Ala Gly Tyr 5 10 Arg Met Ser Ala Ser Ala Ala Trp Pro Ala Leu Leu Asn Asp Lys Trp 25 20 30 Gln Ser Lys Thr Ser Val Val Asn Ala Ser Ile Ser Gly Asp Thr Ser 40 45 35 Gln Gln Gly Leu Ala Arg Leu Pro Ala Leu Leu Lys Gln His Gln Pro 50 55 60 Arg Trp Val Leu Val Glu Leu Gly Gly Asn Asp Gly Leu Arg Gly Phe 65 70 80 Gln Pro Gln Gln Thr Glu Gln Thr Leu Arg Gln Ile Leu Gln Asp Val 90 85 Lys Ala Ala Asn Ala Glu Pro Leu Leu Met Gln Ile Arg Leu Pro Ala 105 100 110 Asn Tyr Gly Arg Arg Tyr Asn Glu Ala Phe Ser Ala Ile Tyr Pro Lys 120 125 115 Leu Ala Lys Glu Phe Asp Val Pro Leu Leu Pro Phe Phe Met Glu Glu 130 135 140 Val Tyr Leu Lys Pro Gln Trp Met Gln Asp Asp Gly Ile His Pro Asn 145 150 155 160 Arg Asp Ala Gln Pro Phe Ile Ala Asp Trp Met Ala Lys Gln Leu Gln 165 170 175 Pro Leu Val Asn His Asp Ser 180 <210> SEQ ID NO 46 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 46 cattactcga gcgcactccc gttctggata atg <210> SEQ ID NO 47 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 47 gggaagetta tgagteatga tttaetaaag getge

15

<210> SEO ID NO 48 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 48 Ser Asp His Asn Val Leu Pro Gln Leu 1 5 <210> SEQ ID NO 49 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic nucleotide <400> SEQUENCE: 49 ggatccatgt ctaga <210> SEQ ID NO 50 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 50 Met Gly Gly Ser His His His His His His Gly Met Ala Ser Met Thr 1 5 10 15 Gly Gly Gln Gln Met Gly Arg Thr Asp Asp Asp Asp Lys Asp Arg Trp 25 20 30 Gly Ser <210> SEQ ID NO 51 <211> LENGTH: 655 <212> TYPE: PRT <213> ORGANISM: Ehrlichia chaffeensis <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_507303 <309> DATABASE ENTRY DATE: 2010-05-14 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(655) <400> SEOUENCE: 51 Met Ile Lys Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile Ala Cys Arg 1 5 10 15 Val Met Arg Thr Ala Arg Lys Met Gly Ile Ser Cys Val Ala Val Tyr 25 30 20 Ser Asn Ala Asp Val Tyr Ser Leu His Val Leu Ser Ala Glu Glu Ala 40 35 45 Val Asn Ile Gly Pro Ala Pro Val Asn Gln Ser Tyr Leu Asn Met Glu 50 55 60 Lys Ile Cys Glu Val Ala Cys Asn Thr Gly Val Asp Ala Val His Pro 70 75 65 80 Gly Tyr Gly Phe Leu Ser Glu Asn Ala Asp Phe Pro Glu Lys Leu Glu 85 90 95 Gln Tyr Asn Ile Lys Phe Ile Gly Pro Ser Ser Thr Ser Ile Arg Met 100 105 110

-continued

											-	con	tin	ued		
Met	Ala	Asp 115	Lys	Ile	Thr	Ser	Lys 120	ГЛЗ	Ile	Ala	Glu	Ser 125	Ala	Lys	Val	
Asn	Ile 130	Ile	Pro	Gly	Tyr	Met 135	Gly	Ile	Val	Asp	Ser 140	Val	His	Glu	Ala	
Lys 145	Glu	Ile	Ala	ГÀа	Ser 150	Ile	Gly	Phe	Pro	Val 155	Met	Ile	ГЛа	Ala	Thr 160	
Ala	Gly	Gly	Gly	Gly 165	Гла	Gly	Met	Arg	Ile 170	Val	ГЛа	Ser	Ser	Glu 175	Glu	
Ile	Glu	Gln	Ala 180	Phe	Thr	Ser	Ala	Thr 185	Asn	Glu	Ala	Ala	Lys 190	Asn	Phe	
Arg	Asp	Gly 195	Arg	Ile	Phe	Ile	Glu 200	Lys	Tyr	Val	Glu	Leu 205	Pro	Arg	His	
Ile	Glu 210	Ile	Gln	Ile	Ile	Ala 215	Asp	Lys	His	Gly	Asn 220	Ile	Val	Суз	Leu	
Gly 225	Glu	Arg	Glu	Суз	Ser 230	Ile	Gln	Arg	His	Asn 235	Gln	Lys	Val	Ile	Glu 240	
Glu	Thr	Pro	Ser	Pro 245	Phe	Leu	Asp	Glu	Glu 250	Thr	Arg	Gln	Гла	Met 255	Tyr	
Gln	Gln	Суз	Val 260	Asn	Leu	Ala	Lys	Lys 265	Val	Gly	Tyr	Tyr	Ser 270	Ala	Gly	
Thr	Ile	Glu 275	Phe	Ile	Val	Asp	Gln 280	Aab	Lys	Gln	Phe	Tyr 285	Phe	Leu	Glu	
Met	Asn 290	Thr	Arg	Leu	Gln	Val 295	Glu	His	Pro	Val	Thr 300	Glu	Leu	Val	Thr	
Gly 305	Ile	Asp	Ile	Val	Glu 310	Glu	Met	Ile	Arg	Ile 315	Ala	Asp	Gly	Glu	Glu 320	
Leu	Arg	Phe	Thr	Gln 325	Gln	Asp	Val	Lys	Phe 330	Thr	Gly	Ser	Ala	Ile 335	Glu	
Ala	Arg	Val	Tyr 340	Ala	Glu	Asn	Pro	Thr 345	Lys	Asn	Phe	Leu	Pro 350	Ser	Ser	
Gly	Arg	Ile 355	Ala	Tyr	Tyr	Ser	Ala 360	Pro	Met	Pro	Asn	Asp 365	Asn	Leu	Arg	
Ile	Asp 370	Ser	Gly	Val	Phe	Glu 375	Gly	Ala	Glu	Val	Ser 380	Met	Phe	Tyr	Asp	
Pro 385	Met	Ile	Ala	Lys	Val 390	Сүз	Thr	Tyr	Gly	Lys 395	Asn	Arg	Asp	Glu	Ala 400	
	Ser	Phe	Met	Gln 405		Tyr	Leu	Asn	Glu 410		Tyr	Ile	Gly	Gly 415	Ile	
Ala	Asn	Asn	Ile 420		Phe	Leu	Leu	Ser 425		Phe	His	His	Pro 430		Phe	
Ile	Ser	Gly 435		Ile	Asn	Thr	Lys 440		Ile	Glu	Gln	Phe 445		Phe	Asp	
Gly	Phe 450	Gln	Gly	Asn	Pro	Leu 455	Thr	Lys	Ala	Суз	Ile 460	Lys	Leu	Phe	Ile	
Leu 465	Thr	Ser	Leu	Суз	Ile 470	Phe	Phe	Gln	Asp	Glu 475	Tyr	Gly	Ile	His	Gly 480	
Val	Glu	Leu	Сүз	Glu 485	Asn	Arg	Glu	Leu	Ala 490	Val	Tyr	Val	Asp	Gly 495	Gln	
Lys	Tyr	Leu	Ile 500	Ser	Ala	Lys	Tyr	Glu 505	Asn	Gly	Arg	Val	Leu 510	Ala	Ile	
Tyr	Asp	Gln		Glu	Tyr	Leu	Val		Ser	Thr	Trp	Asn		Asn	Phe	

-continued

												COIL	CIII	ued	
		515					520					525			
Lys	Ile 530	Leu	Gln	Ile	Gln	Val 535	Asn	Asn	Asp	Glu	Val 540	Phe	His	Val	Lys
Val 545	Asp	Ser	Arg	Leu	Asn 550	Lys	Tyr	Gln	Leu	Lys 555	Tyr	Ser	Ala	Met	Ser 560
Ala	Leu	Суз	Ala	Val 565	Tyr	Lys	Pro	Суз	Val 570	Ser	Asp	Leu	Leu	Pro 575	Ile
Met	Pro	Gln	Ile 580	Ser	Gly	Glu	Glu	Leu 585	Tyr	Ser	Ser	Asn	Val 590	Суз	Ser
Pro	Ile	Ser 595	Gly	Met	Ile	Val	Lys 600	Ile	Tyr	Val	Lys	Gln 605	Gly	Glu	Glu
Val	Gln 610	Pro	Gly	Gln	Pro	Leu 615	Leu	Val	Ile	Glu	Ala 620	Met	Lys	Met	Glu
Asn 625	Val	Ile	Tyr	Ser	Asp 630	Val	Lys	Ser	Ile	Val 635	Lys	Ser	Val	Leu	Phe 640
Ser	Glu	Gly	Asn	Ser 645	Val	Ala	Thr	Gly	Asp 650	Val	Ile	Ile	Glu	Phe 655	
		ATABA ELEVA								L)	(510))			
)> SI	EQUEI	ICE :	52											
<40		EQUEI Phe			Leu	Gln	Asp	Leu	Asn 10	Asn	Arg	Gln	Ser	Lys 15	Ser
<40 Met 1	Asn		Ala	Gly 5					10					15	
<40 Met 1 Tyr	Asn Asn	Phe	Ala Gly 20	Gly 5 Gly	Leu	Ser	Arg	Ile 25	10 Glu	Lys	Gln	His	Leu 30	15 Lys	Gly
<40 Met 1 Tyr Lys	Asn Asn Leu	Phe Gly Thr	Ala Gly 20 Ala	Gly 5 Gly Arg	Leu Glu	Ser Arg	Arg Leu 40	Ile 25 Thr	10 Glu Val	Lys Leu	Gln Leu	His Asp 45	Leu 30 Asp	15 Lys Asn	Gly Ser
<40 Met 1 Tyr Lys Phe	Asn Asn Leu Glu 50	Phe Gly Thr 35	Ala Gly 20 Ala Tyr	Gly 5 Gly Arg Gly	Leu Glu Ala	Ser Arg Phe 55	Arg Leu 40 Val	Ile 25 Thr Glu	10 Glu Val His	Lys Leu Arg	Gln Leu Cys 60	His Asp 45 Val	Leu 30 Asp Asn	15 Lys Asn Phe	Gly Ser Ser
<40 Met 1 Tyr Lys Phe Met 65	Asn Asn Leu Glu 50 Asp	Phe Gly Thr 35 Glu	Ala Gly 20 Ala Tyr Ser	Gly Gly Arg Gly Lys	Leu Glu Ala Ile 70	Ser Arg Phe 55 Pro	Arg Leu 40 Val Gly	Ile 25 Thr Glu Asp	10 Glu Val His Gly	Lys Leu Arg Val 75	Gln Leu Cys 60 Val	His Asp 45 Val Val	Leu 30 Asp Asn Gly	15 Lys Asn Phe Tyr	Gly Ser Ser Gly 80
<40 Met 1 Tyr Lys Phe Met 65 Thr	Asn Asn Leu Glu 50 Asp Ile	Phe Gly Thr 35 Glu Lys	Ala Gly 20 Ala Tyr Ser Gly	Gly 5 Gly Arg Gly Lys Arg 85	Leu Glu Ala Ile 70 Lys	Ser Arg Phe 55 Pro Val	Arg Leu 40 Val Gly Cys	Ile 25 Thr Glu Asp Ile	10 Glu Val His Gly Tyr 90	Lys Leu Arg Val 75 Ser	Gln Leu Cys 60 Val Gln	His Asp 45 Val Val Asp	Leu 30 Asp Asn Gly Phe	15 Lys Asn Phe Tyr Thr 95	Gly Ser Ser Gly 80 Val
<40 Met 1 Tyr Lys Phe Met 65 Thr Phe	Asn Asn Leu Glu 50 Asp Ile Gly	Phe Gly Thr 35 Glu Lys Asn	Ala Gly 20 Ala Tyr Ser Gly Ser 100	Gly 5 Gly Arg Gly Lys Arg 85 Leu	Leu Glu Ala Ile 70 Lys Ser	Ser Arg Phe 55 Pro Val Glu	Arg Leu 40 Val Gly Cys Ser	Ile 25 Thr Glu Asp Ile Asn 105	10 Glu Val His Gly Tyr 90 Ala	Lys Leu Arg Val 75 Ser Lys	Gln Leu Cys 60 Val Gln Lys	His Asp 45 Val Val Asp Ile	Leu 30 Asp Asn Gly Phe Cys 110	15 Lys Asn Phe Tyr Thr 95 Asn	Gly Ser Ser Gly 80 Val Ile
<40 Met 1 Tyr Lys Phe 65 Thr Phe Met	Asn Asn Leu Glu 50 Asp Ile Gly Asp	Phe Gly Thr 35 Glu Lys Gly Gly Lys	Ala Gly 20 Ala Tyr Ser Gly Ser 100 Ala	Gly Gly Arg Gly Lys Arg 85 Leu Ala	Leu Glu Ala Ile 70 Lys Ser Ser	Ser Arg Phe 55 Pro Val Glu Leu	Arg Leu 40 Val Gly Cys Ser Gly 120	Ile 25 Thr Glu Asp Ile Asn 105 Ile	10 Glu Val His Gly Tyr 90 Ala Pro	Lys Leu Arg Val 75 Ser Lys Ile	Gln Leu Cys 60 Val Gln Lys Ile	His Asp 45 Val Val Asp Ile Gly 125	Leu 30 Asp Asn Gly Phe Cys 110 Ile	15 Lys Asn Phe Tyr Thr 95 Asn Asn	Gly Ser Ser Gly 80 Val Ile Asp
<40 Met 1 Tyr Lys Phe 65 Thr Phe Met Ser	Asn Asn Leu Glu Asp Ile Gly Asp Gly 130	Phe Gly Thr 35 Glu Lys Asn Gly Lys 115	Ala Gly 20 Ala Tyr Ser Gly Ser 100 Ala Ala	Gly Gly Arg Gly Lys Arg 85 Leu Ala Arg	Leu Glu Ala Ile 70 Lys Ser Ser Ile	Ser Arg Phe 55 Pro Val Glu Leu Gln 135	Arg Leu 40 Val Gly Cys Ser Gly 120 Glu	Ile 25 Thr Glu Asp Ile Asn 105 Ile Gly	10 Glu Val His Gly Tyr 90 Ala Pro Val	Lys Leu Arg Val 75 Ser Lys Ile Asp	Gln Leu Cys 60 Val Gln Lys Ile Ser 140	His Asp 45 Val Val Asp Ile Gly 125 Leu	Leu 30 Asp Asn Gly Phe Cys 110 Ile Ser	15 Lys Asn Phe Tyr Thr 95 Asn Gly	Gly Ser Ser Gly 80 Val Ile Asp Tyr
<40 Met 1 Tyr Lys Phe 65 Thr Phe Met Ser Gly 145	Asn Asn Leu Glu Asp Ile Gly Asp Gly 130 Glu	Phe Gly Thr 35 Glu Lys Asn Gly Lys 115 Gly	Ala Gly 20 Ala Tyr Ser Gly Ser 100 Ala Ala Phe	Gly Gly Arg Gly Lys Arg 85 Leu Ala Arg Gln	Leu Glu Ala Ile To Ser Ser Ile Arg 150	Ser Arg Phe 55 Val Glu Leu Gln 135 Asn	Arg Leu 40 Val Gly Cys Ser Gly 120 Glu Val	Ile 25 Thr Glu Asp Ile Asn 105 Ile Gly Asn	10 Glu Val His Gly Tyr 90 Ala Pro Val Leu	Lys Leu Arg Val 75 Ser Lys Ile Asp Ser 155	Gln Leu Cys 60 Val Gln Lys Ile Ser 140 Gly	His Asp 45 Val Val Asp Ile Gly 125 Leu Val	Leu 30 Asp Asn Gly Phe Cys 110 Ile Ser Val	15 Lys Asn Phe Tyr Thr 95 Asn Gly Pro	Gly Ser Gly 80 Val Ile Asp Tyr Gln 160
<40 Met 1 Tyr Lys Phe Met 5 Thr Phe Ser Gly 145 Ile	Asn Asn Leu Glu 50 Asp Gly 130 Glu Ser	Phe Gly Thr 35 Glu Lys Asn Gly Lys 115 Gly Ile	Ala Gly 20 Ala Ser Gly Ser 100 Ala Ala Phe Ile	Gly Gly Arg Gly Lys Arg Arg Ala Arg Gln Met 165	Leu Glu Ala Ile Ser Ser Ile Arg 150 Gly	Ser Arg Phe 55 Pro Val Glu Leu Gln 135 Asn Pro	Arg Leu 40 Val Gly Cys Ser Gly Glu Val Cys	Ile Glu Asp Ile Asn 105 Ile Gly Asn Ala	10 Glu Val His Gly Tyr 90 Ala Pro Val Leu Gly 170	Lys Leu Arg Val 75 Ser Lys Ile Asp Ser 155 Gly	Gln Leu Cys 60 Val Gln Lys Ile Ser 140 Gly Ala	His Asp 45 Val Val Asp Ile Gly 125 Leu Val	Leu 30 Asp Asn Gly Phe Cys 110 Ile Ser Val Tyr	15 Lys Asn Phe Tyr Thr 95 Asn Gly Pro Ser 175	Gly Ser Gly 80 Val Ile Asp Tyr Gln 160 Pro

Gln	Glu 210	Asp	Leu	Gly	Gly	Ala 215	Гла	Val	His	Ala	Ser 220	ГЛа	Thr	Gly	Ile
Ala 225	Asp	Leu	Val	Phe	His 230	Asn	Glu	Ile	Glu	Ala 235	Leu	Leu	Gln	Val	Arg 240
Arg	Phe	Met	Asn	Phe 245	Ile	Pro	Ser	Asn	Asn 250	Met	Glu	Ser	Ile	Gly 255	Ser
Gln	Ser	Ala	Ser 260	Asn	Phe	Ile	Asn	Met 265	Glu	Asp	Leu	Ser	Leu 270	Asn	Thr
Leu	Val	Pro 275	Lys	Asn	Ser	Thr	Thr 280	Pro	Tyr	Asn	Met	Tyr 285	Glu	Leu	Leu
Glu	Lys 290	Val	Суз	Asp	Glu	Arg 295	Leu	Phe	Tyr	Glu	Ile 300	ГЛа	Pro	Asp	Phe
Ala 305	Arg	Asn	Ile	Ile	Ile 310	Gly	Phe	Gly	Lys	Ile 315	Gly	Gly	Tyr	Asn	Val 320
Gly	Leu	Val	Ala	Asn 325	Gln	Pro	Leu	His	Leu 330	Ala	Gly	Суз	Leu	Asp 335	Ile
Asp	Ala	Ser	Arg 340	Lys	Gly	Ala	Arg	Phe 345	Ile	Arg	Phe	Суз	Asp 350	Ala	Phe
Asn	Ile	Pro 355	Val	Ile	Thr	Phe	Ile 360	Asp	Val	Pro	Gly	Phe 365	Met	Pro	Gly
Val	Asn 370	Gln	Glu	His	Ser	Gly 375	Ile	Ile	Ala	His	Gly 380	Ala	Lys	Leu	Leu
Tyr 385	Ala	Tyr	Ala	Glu	Ala 390	Thr	Val	Pro	Lys	Ile 395	Ser	Val	Ile	Val	Arg 400
Lys	Ala	Tyr	Gly	Gly 405	Ala	Tyr	Ile	Val	Met 410	Asn	Ser	Lys	His	Leu 415	Суз
Gly	Asp	Val	Asn 420	Tyr	Ala	Trp	Gln	Asp 425	Ala	Glu	Ile	Ala	Val 430	Met	Gly
Ala	Glu	Gly 435	Ala	Val	Glu	Ile	Ile 440	Phe	Arg	Asn	Glu	Lys 445	Asp	Lys	Asp
ГÀа	Ile 450	Gln	His	Ile	Ile	Asp 455	Glu	Tyr	Arg	Thr	Thr 460	Ile	Val	Asn	Pro
Tyr 465	Val	Ala	Ala	Ser	Arg 470	Gly	Tyr	Ile	Asp	Asp 475	Ile	Ile	Val	Pro	Ser 480
Arg	Thr	Arg	Glu	His 485	Leu	Phe	Lys	Ser	Leu 490	Gln	Phe	Leu	Glu	Lys 495	Lys
LYa	Val		Lys 500		Met	Arg		His 505		Asn	Leu		Leu 510		
<21: <21: <21: <30: <30: <30: <31:	D> SI 1> LI 2> T 3> OI 0> P 3> D 3> D 3> R 3> R 1 0> SI	ENGTI YPE: RGAN JBLI ATABA ATABA	H: 60 PRT ISM: CATIO ASE 2 ASE 1 ANT 1	Agro DN II ACCES ENTRI RESII	NFORN SSION Y DA'	MATION NUN N NUN FE: 2	ON: MBER: 2010-	: NCH - 04 - (01				2		
Met 1	Ala	Ile	Ser	Lys 5	Ile	Leu	Ile	Ala	Asn 10	Arg	Gly	Glu	Ile	Ala 15	Суз
Arg	Val	Ile	Lys 20	Thr	Ala	ГЛЗ	Arg	Met 25	Gly	Ile	Ala	Thr	Val 30	Ala	Val

-continued

												0011	tın	aca	
Tyr	Ser	Asp 35	Ala	Asp	Ala	Asn	Ala 40	Leu	His	Val	Lys	Leu 45	Ala	Asp	Glu
Ala	Val 50	His	Ile	Gly	Pro	Ser 55	Pro	Ser	Asn	Gln	Ser 60	Tyr	Ile	Val	Ile
Asp 65	Lys	Ile	Leu	Glu	Ala 70	Ile	Arg	Gln	Thr	Gly 75	Ala	Asp	Ala	Val	His 80
Pro	Gly	Tyr	Gly	Phe 85	Leu	Ser	Glu	Asn	Ala 90	Ala	Phe	Ala	Glu	Ala 95	Leu
Asp	Lys	Ala	Gly 100	Val	Ala	Phe	Ile	Gly 105	Pro	Pro	Val	Gly	Ala 110	Ile	Lys
Ala	Met	Gly 115	Asp	ГЛа	Ile	Thr	Ser 120	Lys	Lys	Leu	Ala	Ala 125	Glu	Ala	Gly
Val	Ser 130	Thr	Val	Pro	Gly	His 135	Met	Gly	Leu	Ile	Ala 140	Asp	Ala	Asp	Glu
Ala 145		Lys	Ile	Ala	Ala 150		Ile	Gly	Tyr	Pro 155		Met	Ile	Lys	Ala 160
	Ala	Gly	Gly	Gly 165		Гла	Gly	Met	Arg 170		Ala	Trp	Asn	Asp 175	
Glu	Ala	Arg	Glu 180		Phe	Gln	Ser	Ser 185		Asn	Glu	Ala	Met 190		Ser
Phe	Gly	Asp 195		Arg	Ile	Phe	Ile 200	Glu	Lys	Phe	Val	Asp 205		Pro	Arg
His			Ile	Gln	Val			Asp	Lys	His	-		Val	Leu	Tyr
	210 Gly	Glu	Arg	Glu	-	215 Ser	Ile	Gln	Arg	-	220 Asn	Gln	Lys	Val	
225 Glu	Glu	Ala	Pro		230 Pro	Phe	Leu	Asp		235 Asp	Thr	Arg	Lys		240 Met
Gly	Glu	Gln		245 Val	Ala	Leu	Ala	Lys	250 Ala	Val	Gly	Tyr	-	255 Ser	Ala
Gly	Thr	Val	260 Glu	Phe	Ile	Val	Asp	265 Gly	Asn	Arg	Asn	Phe	270 Tyr	Phe	Leu
Glu	Met	275 Asn	Thr	Arg	Leu	Gln	280 Val	Glu	His	Pro	Val	285 Thr	Glu	Leu	Ile
	290			-		295		Met			300				
305	-		-		310			Val		315				-	320
				325					330					335	
		-	340	-			-	Pro 345	-	-			350		
		355					360					365			
Asp	Gly 370	Thr	Val	Val	Arg	Asn 375	Asp	Thr	Gly	Val	Phe 380	Glu	Gly	Gly	Glu
Ile 385	Ser	Met	Tyr	Tyr	Asp 390		Met	Val	Ala	Lys 395	Leu	Сүз	Thr	Trp	Gly 400
Pro												77-	T.011	Asp	Arq
Dho	Asp	Arg	Ile	Thr 405	Ala	Ile	Asp	Ala	Met 410	Ser	Ala	AIA	шец	415	5
File	-	-		405			-	Ala Asn 425	410					415	-

continued

											-	con	tin	ued	
		435					440					445			
Ala	Glu 450	Glu	Phe	Pro	Glu	Gly 455	Phe	Ser	Gly	Val	Glu 460	Pro	Asp	Glu	Met
Ala 465	Gly	Lys	Thr	Leu	Ala 470	Ala	Ile	Ala	Ala	Leu 475	Val	His	Gln	Arg	Arg 480
Glu	Ala	Arg	Ala	Ala 485	Gln	Val	Ser	Gly	Thr 490	Met	Gly	Asn	His	Ala 495	Arg
Thr	Ile	Gly	Arg 500	Asp	Trp	Val	Val	Gly 505	Leu	Ala	Glu	Gln	Asn 510	Tyr	Pro
Leu	Thr	Leu 515	Ser	Thr	Asp	Pro	Gly 520	Ser	Met	Met	Phe	Ala 525	Asp	Gly	Asn
Val	Leu 530	Ser	Val	Asp	Gly	Val 535	Trp	Gln	Pro	Gly	Gln 540	Thr	Leu	Ala	Ile
Phe 545	Thr	Val	Asn	Gly	Gln 550	Ser	Ile	Gly	Leu	Lys 555	Ile	Asp	Leu	Lys	Gly 560
Pro	Ala	Ile	Arg	Leu 565	Arg	Trp	Arg	Gly	Met 570	Asp	Val	Val	Ala	His 575	Val
Arg	Asn	Pro	Arg 580	Val	Ala	Glu	Leu	Ala 585	Arg	Leu	Met	Pro	Arg 590	Lys	Leu
Pro	Pro	Asp 595	Thr	Ser	Lya	Met	Leu 600	Leu	Суз	Pro	Met	Pro 605	Gly	Val	Val
Thr	Gly 610	Ile	Ala	Val	Ala	Glu 615	Gly	Asp	Ala	Val	Glu 620	Ala	Gly	Gln	Ala
Leu 625	Ala	Thr	Val	Glu	Ala 630	Met	Lys	Met	Glu	Asn 635	Ile	Leu	Гла	Ala	Glu 640
Arg	Arg	Gly	Val	Val 645	Lya	Arg	Leu	Val	Ala 650	Lys	Ala	Gly	Gln	Ser 655	Leu
Ala	Val	Asp	Glu 660	Leu	Ile	Met	Glu	Phe 665	Glu						
<212 <212 <212 <302 <302 <302	0> SI 1> LI 2> TY 3> OF 0> PU 8> DA 9> DA 3> RI	ENGTH YPE: RGANI JBLI ATABA	H: 5 PRT ISM: CATIONSE ASE I	10 Agro ON II ACCE ENTR	NFORI SSIOI Y DA'	MATI(N NU TE: :	ON: MBER 2010	: NCI -04-0	01)		
<40	0> SH	EQUEI	NCE :	54											
Met 1	Pro	Thr	Ile	Leu 5	Asp	Gln	Leu	Glu	Ser 10	Arg	Arg	Ala	Glu	Ala 15	Arg
Leu	Gly	Gly	Gly 20	Glu	Lys	Arg	Ile	Asp 25	Ala	Gln	His	Ala	Lуз 30	Gly	Lys
Leu	Thr	Ala 35	Arg	Glu	Arg	Ile	Glu 40	Ile	Leu	Leu	Asp	Glu 45	Gly	Ser	Phe
Glu	Glu 50	Tyr	Asp	Met	Tyr	Val 55	Thr	His	Arg	Суз	Ala 60	Asp	Phe	Gly	Met
Asp 65	Gly	Gln	Lys	Val	Ala 70	Gly	Asp	Gly	Val	Val 75	Thr	Gly	Trp	Gly	Thr 80
Ile	Asn	Gly	Arg	Gln 85	Val	Tyr	Val	Phe	Ser 90	Gln	Asp	Phe	Thr	Val 95	Leu
Gly	Gly	Ser	Leu 100	Ser	Glu	Thr	His	Ala 105	Gln	ГЛа	Ile	САа	Lys 110	Ile	Met

-continued

Asp	Met	Ala 115	Val	Arg	Val	Gly	Ala 120	Pro	Val	Ile	Gly	Ile 125	Asn	Asp	Ser
Gly	Gly 130	Ala	Arg	Ile	Gln	Glu 135	Gly	Val	Ala	Ser	Leu 140	Ala	Gly	Tyr	Ala
Glu 145	Val	Phe	Arg	Arg	Asn 150	Ala	Glu	Val	Ser	Gly 155	Val	Ile	Pro	Gln	Ile 160
Ser	Val	Ile	Met	Gly 165	Pro	Сүз	Ala	Gly	Gly 170	Ala	Val	Tyr	Ser	Pro 175	Ala
Met	Thr	Asp	Phe 180	Ile	Phe	Met	Val	Arg 185	Asp	Thr	Ser	Tyr	Met 190	Phe	Val
Thr	Gly	Pro 195	Asp	Val	Val	Lys	Thr 200	Val	Thr	Asn	Glu	Ile 205	Val	Thr	Ala
Glu	Glu 210	Leu	Gly	Gly	Ala	Gly 215	Thr	His	Thr	Lys	Lys 220	Ser	Ser	Val	Ala
Asp 225	Gly	Ala	Phe	Glu	Asn 230	Asp	Val	Glu	Ala	Leu 235	Glu	Gln	Val	Arg	Leu 240
Leu	Phe	Asp	Phe	Leu 245	Pro	Leu	Asn	Asn	Arg 250	Glu	Lys	Pro	Pro	Lys 255	Arg
Pro	Phe	Tyr	Asp 260	Asp	Pro	Ala	Arg	Leu 265	Glu	Met	Arg	Leu	Asp 270	Thr	Leu
Ile	Pro	Asp 275	Ser	Ser	Thr	Lys	Pro 280	Tyr	Asp	Met	Lys	Glu 285	Leu	Ile	His
Ala	Leu 290	Ala	Asp	Glu	Gly	Asp 295	Phe	Phe	Glu	Leu	Gln 300	Glu	Ala	Phe	Ala
Lys 305	Asn	Ile	Ile	Thr	Gly 310	Phe	Ile	Arg	Leu	Glu 315	Gly	Gln	Thr	Val	Gly 320
Val	Val	Ala	Asn	Gln 325	Pro	Met	Val	Leu	Ala 330	Gly	САа	Leu	Aab	Ile 335	Asp
Ser	Ser	Arg	Lys 340	Ala	Ala	Arg	Phe	Val 345	Arg	Phe	Сүз	Asp	Ala 350	Phe	Ser
Ile	Pro	Ile 355	Leu	Thr	Leu	Val	Asp 360	Val	Pro	Gly	Phe	Leu 365	Pro	Gly	Val
Ala	Gln 370	Glu	Tyr	Gly	Gly	Val 375	Ile	Lys	His	Gly	Ala 380	Lys	Leu	Leu	Phe
Ala 385	Tyr	Ser	Glu	Ala	Thr 390	Val	Pro	Met	Val	Thr 395	Leu	Ile	Thr	Arg	Lys 400
Ala	Tyr	Gly		Ala 405		Asp	Val		Ala 410		Гла	His	Ile	Gly 415	Ala
Asp	Val	Asn	Tyr 420	Ala	Trp	Pro	Thr	Ala 425	Glu	Ile	Ala	Val	Met 430	Gly	Ala
ГЛЗ	Gly	Ala 435	Thr	Glu	Ile	Leu	Tyr 440	Arg	Ser	Glu	Leu	Ala 445	Asp	Pro	Glu
ГЛа	Ile 450	Ala	Ala	Arg	Thr	Arg 455	Glu	Tyr	Glu	Glu	Arg 460	Phe	Ala	Asn	Pro
Phe 465	Val	Ala	Ala	Glu	Arg 470	Gly	Phe	Ile	Asp	Glu 475	Val	Ile	Met	Pro	His 480
Ser	Ser	Arg	ГЛа	Arg 485	Ile	Ala	Arg	Ala	Phe 490	Ala	Ser	Leu	Arg	Gly 495	Lys
Gln	Val	Ala	Thr 500	His	Trp	ГЛЗ	Lys	His 505	Asp	Thr	Ile	Pro	Leu 510		

<210> SEO ID NO 55 <211> LENGTH: 667 <212> TYPE: PRT <213> ORGANISM: Methylobacterium extorquens <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_003069256 <309> DATABASE ENTRY DATE: 2010-04-16 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(667) <400> SEQUENCE: 55 Met Phe Asp Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile Ala Cys Arg Ile Ile Lys Thr Ala Gln Lys Met Gly Ile Lys Thr Val Ala Val Tyr Ser Asp Ala Asp Arg Asp Ala Val His Val Ala Met Ala Asp Glu Ala Val Asn Ile Gly Pro Ala Pro Ala Ala Gln Ser Tyr Leu Leu Ile Glu Lys Ile Ile Asp Ala Cys Lys Gln Thr Gly Ala Gln Ala Val His Pro 65 70 75 80 Gly Tyr Gly Phe Leu Ser Glu Arg Glu Ser Phe Pro Lys Ala Leu Ala Glu Ala Gly Ile Val Phe Ile Gly Pro Asn Pro Gly Ala Ile Ala Ala Met Gly Asp Lys Ile Glu Ser Lys Lys Ala Ala Ala Ala Ala Glu Val 115 120 125 Ser Thr Val Pro Gly Phe Leu Gly Val Ile Glu Ser Pro Glu His Ala Val Thr Ile Ala Asp Glu Ile Gly Tyr Pro Val Met Ile Lys Ala Ser Ala Gly Gly Gly Gly Lys Gly Met Arg Ile Ala Glu Ser Ala Asp Glu 165 170 175 Val Ala Glu Gly Phe Ala Arg Ala Lys Ser Glu Ala Ser Ser Phe Gly Asp Asp Arg Val Phe Val Glu Lys Phe Ile Thr Asp Pro Arg His Ile Glu Ile Gln Val Ile Gly Asp Lys His Gly Asn Val Ile Tyr Leu Gly Glu Arg Glu Cys Ser Ile Gln Arg Arg Asn Gln Lys Val Ile Glu Glu Ala Pro Ser Pro Leu Leu Asp Glu Glu Thr Arg Arg Lys Met Gly Glu Gln Ala Val Ala Leu Ala Lys Ala Val Asn Tyr Asp Ser Ala Gly Thr Val Glu Phe Val Ala Gly Gln Asp Lys Ser Phe Tyr Phe Leu Glu Met Asn Thr Arg Leu Gln Val Glu His Pro Val Thr Glu Met Ile Thr Gly Leu Asp Leu Val Glu Leu Met Ile Arg Val Ala Ala Gly Glu Thr Leu Pro Leu Thr Gln Asp Gln Val Lys Leu Asp Gly Trp Ala Val Glu Ser Arg Val Tyr Ala Glu Asp Pro Thr Arg Asn Phe Leu Pro Ser Ile

-continued

											-	con	ιm	uea						
			340					345					350							
Gly	Arg	Leu 355	Thr	Thr	Tyr	Gln	Pro 360	Pro	Glu	Glu	Gly	Pro 365	Leu	Gly	Gly					
Ala	Ile 370	Val	Arg	Asn	Asp	Thr 375	Gly	Val	Glu	Glu	Gly 380	Gly	Glu	Ile	Ala					
Ile 385	His	Tyr	Asp	Pro	Met 390	Ile	Ala	Lys	Leu	Val 395	Thr	Trp	Ala	Pro	Thr 400					
Arg	Leu	Glu	Ala	Ile 405	Asp	Ala	Gln	Ala	Thr 410	Ala	Leu	Asp	Ala	Phe 415	Ala					
Ile	Glu	Gly	Ile 420	Arg	His	Asn	Ile	Pro 425	Phe	Leu	Ala	Thr	Leu 430	Met	Ala					
His	Pro	Arg 435	Trp	Arg	Asp	Gly	Arg 440	Leu	Ser	Thr	Gly	Phe 445	Ile	ГЛа	Glu					
Glu	Phe 450	Pro	Glu	Gly	Phe	Ile 455	Ala	Pro	Glu	Pro	Glu 460	Gly	Pro	Val	Ala					
His 465	Arg	Leu	Ala	Ala	Val 470	Ala	Ala	Ala	Ile	Asp 475	His	ГЛа	Leu	Asn	Ile 480					
Arg	Lys	Arg	Gly	Ile 485	Ser	Gly	Gln	Met	Arg 490	Asp	Pro	Ser	Leu	Leu 495	Thr					
Phe	Gln	Arg	Glu 500	Arg	Val	Val	Val	Leu 505	Ser	Gly	Gln	Arg	Phe 510	Asn	Val					
Thr	Val	Asp 515	Pro	Asp	Gly	Asp	Asp 520	Leu	Leu	Val	Thr	Phe 525	Asp	Asp	Gly					
Thr	Thr 530	Ala	Pro	Val	Arg	Ser 535	Ala	Trp	Arg	Pro	Gly 540	Ala	Pro	Val	Trp					
Ser 545	Gly	Thr	Val	Gly	Asp 550	Gln	Ser	Ile	Ala	Ile 555	Gln	Val	Arg	Pro	Leu 560					
Leu	Asn	Gly	Val	Phe 565	Leu	Gln	His	Ala	Gly 570	Ala	Ala	Ala	Glu	Ala 575	Arg					
Val	Phe	Thr	Arg 580	Arg	Glu	Ala	Glu	Leu 585	Ala	Aap	Leu	Met	Pro 590	Val	Lys					
Glu	Asn	Ala 595	Gly	Ser	Gly	ГЛа	Gln 600	Leu	Leu	Сүа	Pro	Met 605	Pro	Gly	Leu					
Val	Lys 610	Gln	Ile	Met	Val	Ser 615	Glu	Gly	Gln	Glu	Val 620	ГЛа	Asn	Gly	Glu					
Pro 625	Leu	Ala	Ile	Val	Glu 630	Ala	Met	Lys	Met	Glu 635	Asn	Val	Leu	Arg	Ala 640					
Glu	Arg	Asp	Gly	Thr 645	Ile	Ser	Lys	Ile	Ala 650	Ala	Гла	Glu	Gly	Asp 655	Ser					
Leu	Ala	Val	Asp 660	Ala	Val	Ile	Leu	Glu 665	Phe	Ala										
<211 <212 <213 <300 <308 <309 <313 <400	L> LI 2> TY 3> OF 0> PT 3> DA 3> DA 3> RI 0> SI	JBLI(ATAB# ATAB# ELEV# EQUE	H: 5: PRT ISM: CATIC ASE 1 ASE 1 ANT 1 NCE:	10 Meth ON II ACCE: ENTRY RESII 56	NFORI SSIOI Y DA' DUES	MATION NU N NU FE: 2 IN 3	ON: MBER 2010 SEQ	n ext : NCI -04-: ID NO	- 3I / L6 D: (:	YP_0	(510))								

-continued

Leu	Gly	Gly	Gly 20	Glu	Lys	Arg	Leu	Glu 25	Ala	Gln	His	Thr	Arg 30	Gly	Lys
Leu	Thr	Ala 35	Arg	Glu	Arg	Ile	Glu 40	Leu	Leu	Leu	Asp	His 45	Gly	Ser	Phe
Glu	Glu 50	Phe	Asp	Met	Phe	Val 55	Gln	His	Arg	Ser	Thr 60	Asp	Phe	Gly	Met
Glu 65	Lys	Gln	Lys	Ile	Pro 70	Gly	Asp	Gly	Val	Val 75	Thr	Gly	Trp	Gly	Thr 80
Val	Asn	Gly	Arg	Thr 85	Val	Phe	Leu	Phe	Ser 90	Lys	Asp	Phe	Thr	Val 95	Phe
Gly	Gly	Ser	Leu 100	Ser	Glu	Ala	His	Ala 105	Ala	Lys	Ile	Val	Lys 110	Val	Gln
Asp	Met	Ala 115	Leu	Lys	Met	Arg	Ala 120	Pro	Ile	Ile	Gly	Ile 125	Phe	Asp	Ala
Gly	Gly 130	Ala	Arg	Ile	Gln	Glu 135	Gly	Val	Ala	Ala	Leu 140	Gly	Gly	Tyr	Gly
Glu 145	Val	Phe	Arg	Arg	Asn 150	Val	Ala	Ala	Ser	Gly 155	Val	Ile	Pro	Gln	Ile 160
Ser	Val	Ile	Met	Gly 165	Pro	Суз	Ala	Gly	Gly 170	Asp	Val	Tyr	Ser	Pro 175	Ala
Met	Thr	Asp	Phe 180	Ile	Phe	Met	Val	Arg 185	Asp	Thr	Ser	Tyr	Met 190	Phe	Val
Thr	Gly	Pro 195	Asp	Val	Val	ГЛЗ	Thr 200	Val	Thr	Asn	Glu	Val 205	Val	Thr	Ala
Glu	Glu 210	Leu	Gly	Gly	Ala	Lys 215	Val	His	Thr	Ser	Lys 220	Ser	Ser	Ile	Ala
Asp 225	Gly	Ser	Phe	Glu	Asn 230	Asp	Val	Glu	Ala	Ile 235	Leu	Gln	Ile	Arg	Arg 240
Leu	Leu	Asp	Phe	Leu 245	Pro	Ala	Asn	Asn	Ile 250	Glu	Gly	Val	Pro	Glu 255	Ile
Glu	Ser	Phe	Asp 260	Asp	Val	Asn	Arg	Leu 265	Asp	ГÀа	Ser	Leu	Asp 270	Thr	Leu
Ile	Pro	Asp 275	Asn	Pro	Asn	Lys	Pro 280	Tyr	Asp	Met	Gly	Glu 285	Leu	Ile	Arg
Arg	Val 290	Val	Asp	Glu	Gly	Asp 295	Phe	Phe	Glu	Ile	Gln 300	Ala	Ala	Tyr	Ala
Arg 305	Asn	Ile	Ile	Thr	Gly 310	Phe	Gly	Arg	Val	Glu 315	Gly	Arg	Thr	Val	Gly 320
Phe	Val	Ala	Asn	Gln 325	Pro	Leu	Val	Leu	Ala 330	Gly	Val	Leu	Asp	Ser 335	Asp
Ala	Ser	Arg	Lys 340	Ala	Ala	Arg	Phe	Val 345	Arg	Phe	Сүз	Asn	Ala 350	Phe	Ser
Ile	Pro	Ile 355	Val	Thr	Phe	Val	Asp 360	Val	Pro	Gly	Phe	Leu 365	Pro	Gly	Thr
Ala	Gln 370	Glu	Tyr	Gly	Gly	Leu 375	Ile	Lys	His	Gly	Ala 380	ГЛа	Leu	Leu	Phe
Ala 385	Tyr	Ser	Gln	Ala	Thr 390	Val	Pro	Leu	Val	Thr 395	Ile	Ile	Thr	Arg	Lys 400
Ala	Phe	Gly	Gly	Ala 405	Tyr	Asp	Val	Met	Ala 410	Ser	Lys	His	Val	Gly 415	Ala

-continued

er Thr Arg Lys Arg 11e Ala Arg Ala Leu Gly Met Leu Arg Thr Lys 445 11 Met Glu Gln Pro Trp Lys Lys His Ap Aen 11e Pro Leu 505 210. SEO ID NO 57 211. LENGTH: 570 213. DECOMINS: Sinorhizohum melloci 305. PUBLICATION INFORMATION: 306. DIATAAAS ACCESSION NUMBER: WGT / NP.437988 305. PUBLICATION HYGENEX: WGT / NP.437988 306. PUBLICATION HYGENEX: WGT / NP.437988 307. PUBLICATION HYGENEX: WGT / NP.437988 308. PUBLICATION HYGENEX: WGT / NP.437988 309. PUBLICATION HYGENEX: WGT / NP.437988 300. PUBLICATION HYGENEX: WGT / NP.437988 300. PUBLICATION HYGENEX: WGT / NP.437988 301. A Val Tyr Ser Agp Ala Agp Arg Agp Ala Met Hi Val Arg Met Ala 40 40 40 40 40 40 40 40 40 40													con	cin	uea				
435 440 445 445 446 445 446 445 446 446 446 446	Asp	Leu	. Asn	-	Ala	Trp	Pro	Thr		Gln	Ile	Ala	Val		Gly	Ala			
450 450 455 460 460 455 460 460 475 460 460 475 460 475 460 475 475 475 475 475 475 475 475 475 475	Lys	Gly		Val	Glu	Ile	Ile		-	Ala	Glu	Ile	-	Asp	Ala	Asp			
475 480 er Thr Arg Lys Arg lie Ala Arg Ala Leu Gly Met Leu Arg Thr Lys 485 485 10 Met Glu Gln Pro Trp Lys Lys His Asp Asn Ile Pro Leu 510 505 DT DN 57 2125 TFFE: FRT 213. CHENTH: 670 2125 TFFE: FRT 213. CHENTH FET 213. CHENTH FEET DATE: 2010-04-01 213. RELWAN ERSTUDATE: 2010-04-01 213. RELWAN FEET DATE: 2010-04-01 213. RELWAN FEET DATE: 2010-04-01 213. RELWAN FEET DATE: 2010-04-01 215 216 Cly His Met Phe Lys Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile 215 126 Cly His Met Phe Lys Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile 216 217 Set And Arg Thr Thr Lys Ala Leu Gly Ile Pro Thr Val 20 20 218 Val Tyr Ser Asp Ala Asp Arg Asp Ala Met His Val Arg Met Ala 40 40 40 40 40 40 40 40 40 40	Lys			Glu	Arg	Thr		Glu	Tyr	Glu	Asp	-	Phe	Leu	Ser	Pro			
11. Met Glu Gin Pro Trp Lyø Lyø His App Am Ile Pro Leu 505 210. sEQ ID NO 57 505 211. LENGTH: 670 505 211. LENGTH: 670 505 211. JENGTH: 507 505 211. JENGTH: 670 110 211. JENGTH: 670 110 211. JENGTH: 500 11. JENGTH: 500 211. JENGTH: 510 11. JENGTH: 500 212. JENGTH: 510 11. JENGTH: 500 213. JENGTH: 510 11. JENGTH: 500 214. Law All A. JENG Alay Ang	Phe 465		. Ala	Ala	Glu		Gly	Tyr	Ile	Asp		Val	Ile	Met	Pro				
SubSubSubSub210. SEQ 1D NO 57211. SUBMITH: 670212. TYPE: PRT213. ORCANISM: Sinorhizobium mellioti300. PUBLICATION IMPORATION:302. DATABASE ACCESSION NUMBER: MODE () NP.437988303. DATABASE ACCESSION NUMBER: MODE () NP.437988304. DATABASE ACCESSION NUMBER: MODE () NP.437988305. DATABASE ACCESSION NUMBER: MODE () NP.437988306. DATABASE MITH OAT: Southouts () NP.437988307. DATABASE MITH OAT: Southouts () NP.437988308. DATABASE MITH OAT: Southouts () NP.437988309. DATABASE MITH OAT: Southouts () NP.437988300. SEQUENCE: 57et Gly His Met Phe Lys Lys II e Leu II e Ala Asm Arg Gly Glu II e 201a Val Tyr Ser Amp Ala Amp Arg Amp Ala Met His Val Arg Met Ala 40315at Val Tyr Ser Amp Ala Amp Arg Amp Ala Met His Val Arg Met Ala 40316at 11e Glu Ann II e Leu Ala Ala II e Arg Arg Thr Gly Ala Amp Ala 5317318318319319319310311311312313313314315315316317318318318319310311031113111312313313314315315316317318318319311031113111 <td>Ser</td> <td>Thr</td> <td>Arg</td> <td>Гла</td> <td>-</td> <td></td> <td>Ala</td> <td>Arg</td> <td>Ala</td> <td></td> <td>Gly</td> <td>Met</td> <td>Leu</td> <td>Arg</td> <td></td> <td>Гла</td> <td></td> <td></td> <td></td>	Ser	Thr	Arg	Гла	-		Ala	Arg	Ala		Gly	Met	Leu	Arg		Гла			
111 - LENGTH: 670 212 - TYPE: PRT 213 - ORCANISM: Sinorhizobium meliloti 306 - PUBLICATION INGOMENTION: 307 - DATABASE ACCESSION NUMERS: NCBI / NP_437988 308 - DATABASE EXTRY DATE: 2010-04-01 313 - RELEVANT RESIDUES IN SEQ ID NO: (1) (670) 400 - SEQUENCE: 57 et Gly His Met Phe Lys Lys lle Leu lle Ala Asn Arg Gly Glu IIe 5 10 14 Cys Arg Val 1le Arg Thr Thr Lys Ala Leu Gly IIe Pro Thr Val 20 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 21 20 21 20 20 20 21 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 21 21 21 21 21 21 21 21 21	Glu	Met	Glu		Pro	Trp	Lys	Lys		Asp	Asn	Ile	Pro						
iet Gly His Net Pre Lys Lys Ie Ie Ie As As Gly Gly Ie Se Gly Ie As As As Gly Gly Ie Ie Se Gly Ie As As <td< td=""><td><21 <21 <30 <30 <30</td><td>1> L 2> T 3> C 0> F 8> D 9> D</td><td>ENGTI YPE: PGAN OBLI ATAB</td><td>H: 6 PRT ISM: CATIO ASE 1 ASE 1</td><td>70 Sin ON II ACCE: ENTR</td><td>NFORI SSIOI Y DA'</td><td>MATI(N NU TE: 2</td><td>ON: MBER 2010</td><td>: NCH -04-0</td><td>BI / D1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	<21 <21 <30 <30 <30	1> L 2> T 3> C 0> F 8> D 9> D	ENGTI YPE: PGAN OBLI ATAB	H: 6 PRT ISM: CATIO ASE 1 ASE 1	70 Sin ON II ACCE: ENTR	NFORI SSIOI Y DA'	MATI(N NU TE: 2	ON: MBER 2010	: NCH -04-0	BI / D1									
5 10 15 1a Cys Arg Val Ile Arg Th Lys Ala GU Ile Pro Th Val 1a Val Tyr Ser Arg	<40	0> S	EQUEI	NCE :	57														
20 25 30 1a Val Tyr Ser Asp Asp<	Met 1	Gly	' His	Met		Гла	ГЛЗ	Ile	Leu		Ala	Asn	Arg	Gly		Ile			
35 40 45 spGluAlaValHisIleGlyProSerProSerGlnSerTyrIlealIleGluAsnIleLeuAlaAlaIleArgArgArgAlaAlaAspAlaAspAlaAspAlaSerSerGluAspAlaSerSerSerTyrIleSer <td>Ala</td> <td>Cys</td> <td>Arg</td> <td></td> <td>Ile</td> <td>Arg</td> <td>Thr</td> <td>Thr</td> <td></td> <td>Ala</td> <td>Leu</td> <td>Gly</td> <td>Ile</td> <td></td> <td>Thr</td> <td>Val</td> <td></td> <td></td> <td></td>	Ala	Cys	Arg		Ile	Arg	Thr	Thr		Ala	Leu	Gly	Ile		Thr	Val			
50 55 60 a1 11e As 11e Ala Ala Arg Arg Arg Ala As Ala Ala <td>Ala</td> <td>Val</td> <td></td> <td>Ser</td> <td>Asp</td> <td>Ala</td> <td>Asp</td> <td></td> <td>Asp</td> <td>Ala</td> <td>Met</td> <td>His</td> <td></td> <td>Arg</td> <td>Met</td> <td>Ala</td> <td></td> <td></td> <td></td>	Ala	Val		Ser	Asp	Ala	Asp		Asp	Ala	Met	His		Arg	Met	Ala			
5 70 75 80 a1 His Pro Gly Tyr Gly Phe Leu Se Glu Asn Ala Ala Phe Ala Glu Se la Leu Glu Lys Asp Gly Val Thr Phe Ile Gly Pro Pro Val Arg Ala Glu Arg Ala Ile Glu Arg Ala Ile Glu Arg Ala Ile Glu Arg Ala Ile Glu Pro Pro Val Arg Ala Glu Ala Ala Ala Glu Ala Glu Ala Glu Ala Ala Ala Glu Ala Glu Ala Glu Ala Glu Ala Glu Ala Glu Ala Flo Flo Flo Flo Flo Flo Flo Flo	Aap		. Ala	Val	His	Ile		Pro	Ser	Pro	Ser		Gln	Ser	Tyr	Ile			
85 90 95 1a Leu Glu Lys Asp Gly Val Thr Phe Ile Gly Pro Yal Arg Ala le Glu Ala Met Gly Val Thr Phe Ile Gly Pro Yal Arg Ala la Glu Ala Met Gly Val Thr Phe Ile Gly Pro Yal Ala Ala Ala Ala Ala Glu 130 Val Phe In Val Pro Gly Ile Ile Gly Leu Ile Ala Ala Glu Ala Ala Ala Ile Ile <td< td=""><td>Val 65</td><td>Ile</td><td>e Glu</td><td>Asn</td><td>Ile</td><td></td><td>Ala</td><td>Ala</td><td>Ile</td><td>Arg</td><td>-</td><td>Thr</td><td>Gly</td><td>Ala</td><td>Asp</td><td></td><td></td><td></td><td></td></td<>	Val 65	Ile	e Glu	Asn	Ile		Ala	Ala	Ile	Arg	-	Thr	Gly	Ala	Asp				
100 105 110 1e Glu Ala Met Gly Asp Lys Ile Thr Ser Lys Leu Ala Ala Glu 1a Gly Val Phe Thr Val Pro Gly Hie Gly Leu Ala Ala Glu 130 Val Phe Thr Val Pro Gly Hie Gly Leu Ala Ala Glu 130 Val Phe Thr Val Pro Gly Heu Ile Glu Asp Ala 130 Val Phe Thr Val Pro Gly Pro Val Met Ile 145 Glu Ala Ala Gly	Val	His	Pro	Gly	-	Gly	Phe	Leu	Ser		Asn	Ala	Ala	Phe		Glu			
115 120 125 1a Gly Val Phe Thr Val Pro Gly His Met Gly Leu Ile Glu Asp Ala sp Glu Ala Arg Ile Ala Ala Gly Gly His Met Gly Heu Ile Glu Asp Ala sp Glu Ala Arg Ile Ala Ala Gly Gly Gly Met Gly Pro Val Met Ile ys Ala Ser Ala Gly Gly Gly Met Arg Ile Ala Trp Asn ys Ala Ser Ala Gly Met Gly Met Arg Ile Ala Trp Asn ys Ala Ser Ala Gly Met Gly Met Arg Ile Ala Trp Asn ys Ala Arg Glu Ala Phe Ile Ala Phe Ile<	Ala	Leu	Glu	-	Asp	Gly	Val	Thr		Ile	Gly	Pro	Pro		Arg	Ala			
130 135 140 sap 01 A1a A1	Ile	Glu		Met	Gly	Asp	Lys		Thr	Ser	Lys	Lys		Ala	Ala	Glu			
45150155160ysAlaSerAlaGlyGlyGlyGlyMetArgIleAlaTrpAsn1uArgGluAlaArgGluGlyGlyPheGlnSerSerArgAlaTrpAsn1uArgGluAlaArgGluGlyPheGlnSerSerArgAlaLys1uArgGlyAspAspArgGluPheGluLysSerGluAlaLys1uArgGlyAspAspArgIleGluPheGluLysPheValThrGlu1uArgHisIleGluIleGluAspLysPheValThrGlu1uArgHisGluGluArgGluCysSerIleGluAspArgAspIle1uHisGluGluArgGluCysSerIleGluArgArgArgArgArg210HisGluGluArgGluCysSerIleGluArgArgArgArgArg20ThrLysLysLysLysLysLysLysLysLys20ThrLysLysLysLysLysLysLysLys20LysLysLysLys <td< td=""><td>Ala</td><td></td><td></td><td>Phe</td><td>Thr</td><td>Val</td><td></td><td>Gly</td><td>His</td><td>Met</td><td>Gly</td><td></td><td>Ile</td><td>Glu</td><td>Asp</td><td>Ala</td><td></td><td></td><td></td></td<>	Ala			Phe	Thr	Val		Gly	His	Met	Gly		Ile	Glu	Asp	Ala			
165 170 175 Flu Arg Glu Ala Arg Glu Gly Phe Gln Ser Ser Arg Asn Glu Ala Lys 180 180 185 185 er Ser Phe Gly Asp Asp Arg Ile Phe Ile Glu Lys Phe Val Thr Glu 205 ro Arg His Ile Glu Ile Gln Val Leu Gly Asp Lys His Gly Asn Ile 210 eu Tyr Leu Gly Glu Arg Glu Cys Ser Ile Gln Arg Arg Asn Gln Lys 235	Asp 145		. Ala	Ala	Arg		Ala	Ala	Glu	Ile	-	Phe	Pro	Val	Met				
180 185 190 er Ser Phe Gly Asp Asp Arg Ile Phe Ile Glu Lys Phe Val Thr Glu 195 200 Phe Ile Glu Lys Phe Val Thr Glu 205 ro Arg His Ile Glu Ile Gln Val Leu Gly Asp Lys His Gly Asn Ile 210 110 Glu Val Leu Gly Asp Lys His Gly Asn Ile 220 eu Tyr Leu Gly Glu Arg Glu Cys Ser Ile Gln Arg Arg Asn Gln Lys 25 230 235 240	Lys	Ala	Ser	Ala	-	_	Gly	Gly	Lys			Arg	Ile	Ala		Asn			
195 200 205 ro Arg His Ile Glu Ile Gln Val Leu Gly Asp Lys His Gly Asn Ile 210 210 215 220 eu Tyr Leu Gly Glu Arg Glu Cys Ser Ile Gln Arg Arg Asn Gln Lys 235 25 230 235	Glu	Arg	Glu		-	Glu	Gly	Phe		Ser	Ser	Arg	Asn		Ala	Lys			
210215220eu Tyr Leu Gly Glu Arg Glu Cys Ser Ile Gln Arg Arg Asn Gln Lys2523025240	Ser	Ser		Gly	Asp	Asp	Arg			Ile	Glu	Lys		Val	Thr	Glu			
25 230 235 240	Pro			Ile	Glu	Ile		Val	Leu	Gly	Asp	-	His	Gly	Asn	Ile			
al Ile Glu Glu Ala Pro Ser Pro Phe Leu Asp Glu Lys Thr Arg Arg	Leu 225	-	Leu	Gly	Glu	-		Суа	Ser	Ile		Arg	Arg	Asn	Gln	-			
	Val	Ile	glu	Glu	Ala	Pro	Ser	Pro	Phe	Leu	Asp	Glu	Lys	Thr	Arg	Arg			

-continued

											-	con	tin	ued	
				245					250					255	
Ala	Met	Gly	Glu 260		Ala	Val	Ala	Leu 265		Lys	Ala	Val	Gly 270	Tyr	His
Ser	Ala	Gly 275	Thr	Val	Glu	Phe	Ile 280	Val	Asp	Ala	Gly	Arg 285	Asn	Phe	Tyr
Phe	Leu 290	Glu	Met	Asn	Thr	Arg 295		Gln	Val	Glu	His 300	Pro	Val	Thr	Glu
Leu 305		Thr	Gly	Leu	Asp 310	Leu	Val	Glu	Gln	Met 315	Ile	Arg	Val	Ala	Ala 320
Gly	Ala	Lys	Leu	Ala 325	Phe	Ala	Gln	Lys	Asp 330	Val	Lys	Leu	Asp	Gly 335	Trp
Ala	Ile	Glu	Ser 340	-	Leu	Tyr	Ala	Glu 345	Asp	Pro	Tyr	Arg	Thr 350	Phe	Leu
Pro	Ser	Ile 355	Gly	Arg	Leu	Thr	Arg 360	Tyr	Arg	Pro	Pro	Glu 365	Glu	Gly	Thr
Gln	Ala 370	Asp	Gly	Thr	Val	Ile 375	-	Asn	Asp	Thr	Gly 380	Val	Phe	Glu	Gly
Gly 385		Ile	Ser	Met	Tyr 390	Tyr	Asp	Pro	Met	Ile 395	Ala	Lys	Leu	Суз	Thr 400
Trp	Gly	Pro	Asp	Arg 405	Leu	Thr	Ala	Val	Arg 410	Ala	Met	Ala	Asp	Ala 415	Leu
Asp	Ala	Phe	Glu 420	Val	Glu	Gly	Ile	Gly 425	His	Asn	Leu	Pro	Phe 430	Leu	Ala
Ala	Val	Met 435	Gln	Gln	Glu	Arg	Phe 440	His	Glu	Gly	Arg	Leu 445	Thr	Thr	Ala
Tyr	Ile 450	Ala	Glu	Glu	Phe	Ala 455	-	Gly	Phe	His	Gly 460	Val	Ala	Leu	Aab
Asp 465	Ala	Ser	Ala	Arg	Lys 470	Leu	Ala	Ala	Val	Ala 475	Ala	Thr	Val	Asn	Gln 480
Thr	Leu	Gln	Glu	Arg 485	Ala	Ser	Arg	Ile	Ser 490	Gly	Thr	Ile	Gly	Asn 495	His
Arg	Arg	Val	Val 500	Gly	His	Glu	Trp	Val 505	Thr	Ser	Leu	Aap	Gly 510	His	Glu
Ile	Gln	Val 515	Thr	Суз	Glu	Val	Ser 520	Ala	Asp	Gly	Thr	Tyr 525	Val	Arg	Phe
Ala	Asp 530		Thr	Ser	Val	Ser 535		Ala	Thr	Asp	Trp 540		Pro	Gly	Arg
Thr 545	Arg	Ala	Ala	Phe	Asn 550	Ile	Asp	Asn	Gln	Pro 555		Ser	Val	Lys	Val 560
		Ala	Gly	Pro 565			Arg	Leu	Arg 570	Trp	Arg	Gly	Ile	Asp 575	
Val	Ala	Arg	Val 580	Arg	Ser	Pro	Arg	Ile 585	Ala		Leu	Ala	Arg 590		Met
Pro	Lys	Lys 595			Pro	Asp	Thr 600	Ser		Met	Leu	Leu 605	Сув	Pro	Met
Pro			Val	Thr	Ser		Thr		Lys	Ala			Thr	Val	Glu
	-	Gln	Ala	Ile		615 Val		Glu	Ala		620 Lys	Met	Glu	Asn	
625 Leu		Ala	Glu	-	-	Ala	Ile	Val	-	-	Val	Ala	Ile		640 Ala
				645					650					655	

<210> SEQ ID NO 58 <211> LENGTH: 510 <212> TYPE: PRT <213> ORGANISM: Sinorhizobium meliloti <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / NP_437987 <309> DATABASE ENTRY DATE: 2010-04-01 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(510) <400> SEQUENCE: 58 Met Arg Ala Val Leu Glu Gln Val Glu Ala Arg Arg Ala Glu Ala Arg Ala Gly Gly Glu Arg Arg Ile Ala Ala Gln His Gly Lys Gly Lys Leu Thr Ala Arg Glu Arg Ile Asp Val Leu Leu Asp Glu Gly Ser Phe Glu Glu Tyr Asp Met Tyr Val Thr His Arg Ser Val Asp Phe Gly Met Ala Gly Gln Lys Ile Pro Gly Asp Gly Val Val Thr Gly Trp Gly Thr Ile Asn Gly Arg Gln Val Tyr Val Phe Ser Gln Asp Phe Thr Val Leu Gly Gly Ser Leu Ser Glu Thr His Ala Gln Lys Ile Cys Lys Ile Met 100 105 Asp Met Ala Ala Arg Asn Gly Ala Pro Val Ile Gly Leu Asn Asp Ser Gly Gly Ala Arg Ile Gln Glu Gly Val Ala Ser Leu Ala Gly Tyr Ala Glu Val Phe Arg Arg Asn Ala Glu Val Ser Gly Val Ile Pro Gln Ile Ser Val Ile Met Gly Pro Cys Ala Gly Gly Ala Val Tyr Ser Pro Ala Met Thr Asp Phe Ile Phe Met Val Arg Asp Ser Ser Tyr Met Phe Val Thr Gly Pro Asp Val Val Lys Thr Val Thr Asn Glu Ile Val Thr Ala Glu Glu Leu Gly Gly Ala Arg Thr His Thr Thr Lys Ser Ser Val Ala Asp Gly Ala Tyr Glu Asn Asp Ile Glu Ala Leu Glu His Val Arg Leu Leu Phe Asp Phe Leu Pro Leu Asn Asn Arg Glu Lys Pro Pro Val Arg Pro Phe His Asp Asp Pro Gly Arg Leu Glu Met Arg Leu Asp Ser Leu Ile Pro Asp Ser Ala Ala Lys Pro Tyr Asp Met Lys Glu Leu Ile Leu - 280 Ala Ile Ala Asp Glu Ala Asp Phe Phe Glu Leu Gln Ala Ser Phe Ala Arg Asn Ile Ile Thr Gly Phe Ile Arg Ile Glu Gly Gln Thr Val Gly

Gly Ala Ser Leu Ala Val Asp Glu Leu Ile Met Glu Phe Glu

-continued

Yal lie Als Am Gin Pro Met Val Leu Als Guy Cyo Leu Ang Lie Amp 225 Ser Ser Arg Lye Als Ala Arg Phe Val Arg Phe Cyo Ang Ala Phe Ser 250 Jao Jao <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>con</th><th>tin</th><th>ued</th><th></th><th></th></tr<>												-	con	tin	ued		
340 345 350 11e Pro 11e Leu Thr Leu Val App Val Pro Oly Phe Leu Pro Oly Thr 350 350 341 of Olt Tyr Gly Oly Val The Lys Hie Oly Ala Lys Leu Leu Phe 300 340 345 390 700 345 390 700 345 390 700 345 340 700 345 340 700 345 340 700 345 340 700 345 340 700 345 340 700 345 345 345 340 700 700 700 340 700 700 700 340 700 700 700 340 700 700 700 340 700 700 700 340 700 700 700 340 700 700 700 340 700 700 700 340 700 700 700 341 160 100 10	Val	Ile	Ala	Asn		Pro	Met	Val	Leu		Gly	Суз	Leu	Asp		Aab	
255260265Ala Ghu Glu Tyr Gly Gly Yal The Lye Hie Gly Ala Lye Leu Leu Phe 370300Ala Tyr Ser Glu Ala Thr Val Pro Met Val Thr Leu Ile Thr Arg Lye 385Ala Tyr Gly Gly Ala Tyr Arg Val Met Ala Ser Lye Hie Ile Gly Ala 405Ala Tyr Gly Gly Ala Tyr Arg Val Met Ala Ser Lye Hie Ile Gly Ala 405Ala Tyr Gly Gly Ala Tyr Arg Val Met Ala Ser Lye Hie Ile Gly Ala 410Aug Val Asm Tyr Ala Trp Pro Thr Ala Glu Ile Ala Val Met Gly Ala 425Lye Gly Ala Thr Glu Ile Leu Tyr Arg Ser Glu Leu Gly App Pro Ala 425400410425426427428429 </td <td>Ser</td> <td>Ser</td> <td>Arg</td> <td>-</td> <td>Ala</td> <td>Ala</td> <td>Arg</td> <td>Phe</td> <td></td> <td>Arg</td> <td>Phe</td> <td>Сүз</td> <td>Asp</td> <td></td> <td>Phe</td> <td>Ser</td> <td></td>	Ser	Ser	Arg	-	Ala	Ala	Arg	Phe		Arg	Phe	Сүз	Asp		Phe	Ser	
And Tyr Ser Gin Ala Tur Val Pro Met Val Thr Leu Tie Thr Arg Lys 395 T Ser Gin Ala Thr Val Pro Met Val Thr Leu Tie Thr Arg Lys 396 Ala Tyr Giy Giy Ala Thr Val Pro Met Val Thr Leu Tie Thr Arg Lys 400 Ala Tyr Giy Giy Ala Tyr Asg Val Met Ala Ser Lyg His Tie Giy Ala 410 Ang Val Ann Tyr Ala Tyr Pro Thr Ala Giu Tie Ala Val Met Giy Ala 420 420 Ang Tyr Ala Thr Cu Tie Leu Tyr Arg Ser Giu Leu Giy Ang Pro Ala 420 440 440 440 440 420 440 440 440 440 420 440 440 440 440 420 440 440 440 440 440 440 440 440 440	Ile	Pro		Leu	Thr	Leu	Val		Val	Pro	Gly	Phe		Pro	Gly	Thr	
285 1 390 295 400 Ala Tyr Gly Gly Ala Tyr Asp Val Met Ala Ser Lys His He Gly Ala 405 405 405 405 405 405 405 405 405 405	Ala		Glu	Tyr	Gly	Gly		Ile	Lys	His	Gly		Lys	Leu	Leu	Phe	
App Val Aan Tyr Ala Typ Pro Th Ala Glu IIe Ala Val Met Gly Ala 420 420 420 420 420 420 420 420			Ser	Gln	Ala		Val	Pro	Met	Val		Leu	Ile	Thr	Arg		
Amp Val Am Tyr Ala Trp Pro Thr Ala Glu Ile Ala Val Met Gly Ala 420 420 420 420 420 420 420 420	Ala	Tyr	Gly	Gly		Tyr	Asp	Val	Met		Ser	Гла	His	Ile	_	Ala	
Lyg Gly Ala Thr Glu Ile Leu Tyr Arg Ser Glu Leu Gly Aep Pro Ala 455 460 465 465 465 465 465 465 465 465 465 465	Asp	Val	Asn	-		Trp	Pro	Thr			Ile	Ala	Val			Ala	
Ly 11e Ala Ala Arg Thr Lyg Glu Tyr Glu Glu Arg Phe Ala Asn Pro 450 Phe Val Ala Ala Glu Arg Gly Phe IIe Asp Glu Val IIe Met Pro Hag Ser Ser Arg Arg Arg IIe Ala Arg Ala Phe Ala Ser Leu Arg Asn Lyg 495 Gln Val Glu Thr Arg Trp Arg Lyg His Asp Thr IIe Pro Leu 500 210 > 8E0 ID NO 55 211 > LENGTH: 691 $211 > LENGTH: 691211 > Control INFORMATION: 200 > DATABASE METRY DATE: 2010-06-29 211 > LENGTH: 700 NUMBER: NCDE J YP_166352 200 > DATABASE METRY DATE: 2010-06-29 211 > LENGTH: 700 NUMBER: NCDE J YP_166352 200 > DATABASE METRY DATE: 2010-06-29 211 > ELSCHART RESIDUES IN SEQ ID NO: (1)(691)400 > SEQUENCE: 59Met Phe Asn Lyg IIe Leu IIe Ala Asn Arg Gly Glu IIe Ala Cys Arg120 = Na Arg Lyg Met Gly IIe Ser Thr Val Ala IIe Tyr 20 = Na Ala Arg Lyg Met Gly IIe Ser Thr Val Ala IIe Tyr 20 = Na Ala Arg Lyg Met Gly IIe Ser Thr Val Ala IIe Tyr 20 = Na Ala Arg Lyg Met Gly Ala Gln Met Ala Arg Glu Ala 400 + 40 + 40 + 40 + 45 + 40 - 41 - 40 + 45 + 40 - 41 - 40 + 45 + 40 - 41 - 40 + 45 + 40 - 41 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 45 + 40 - 40 + 40 + 40 + 40 + 40 + 40 + 40$	Lys	Gly			Glu	Ile	Leu	-		Ser	Glu	Leu			Pro	Ala	
Phe Val Ala Ala Glu Arg Gly Phe Ile Asp Glu Val Ile Met Pro His 465 Ser Ser Arg Arg Arg Ile Ala Arg Ala Phe Ala Ser Leu Arg Asm Lys 495 Gln Val Glu Thr Arg Trp Arg Lys His Asp Thr Ile Pro Leu 500 Soo 50 Soo 70 Soo 70 So	Lys			Ala	Arg	Thr	_		Tyr	Glu	Glu	-		Ala	Asn	Pro	
Ser Ser Arg Arg Arg Ile Ala Arg Ala Phe Ala Ser Leu Arg Asn Lys 495 Gln Val Glu Thr Arg Trp Arg Lys His Asp Thr Ile Pro Leu 500 2110 SEQ ID NO 59 2111 LENGTH: 661 21215 TPER 2125 TPER 2135 TORENTER 2135 TORENTSM: Ruegeria pomeroyi 2305 PORLATION INFORMATION: 23065 DATABASE ACCESSION NUMBER: NCEI / YP_166352 2305 DATABASE ACCESSION NUMBER: NCEI / YP_166352 2305 DATABASE ACCESSION NUMBER: NCEI / YP_166352 2305 DATABASE ACCESSION NUMBER: NCEI / YP_166352 2305 DATABASE MITY DATE: 2010-66.29 2313 RELEVANT RESIDUES IN SEQ ID NO: $(1) (681)44005$ SEQUENCE: 59 Met Phe Asn Lys Ile Leu Ile Ala Asn Arg Gly Glu Ile Ala Cys Arg 1 1 1 1 1 1 1 1		Val	Ala	Ala	Glu			Phe	Ile	Asp			Ile	Met	Pro		
Gin Val Giu Thr Arg Trp Arg Lys His Asp Thr Ile Pro Leu 510 <210 SEQ ID NO 55 <2112 LENGTH: 681 <2125 TYPE: PRT <2130 ORGANISM: Ruegeria pomeroyi <2000 PUBLICATION INFORMATION: <2000 PUBLICATION INFORMATION INFORMATION: <20			Arg	Arg	-		Ala	Arg	Ala			Ser	Leu	Arg			
<pre><210> SEQ ID NO 59 <211> LENCTH: 681 <212> TYPE PRT <213> ORGANISM: Ruegeria pomeroyi <200> PUBLICATION INFORMATION: <300> DATABASE ACCESSION NUMBER: NCBI / YP_166352 <309> DATABASE ACCESSION NUMBER: NCBI / YP_166352 <309> DATABASE ACCESSION NUMBER: NCBI / YP_166352 <309> DATABASE MITRY DATE: 2010-06-29 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(681) <400> SEQUENCE: 59 Met Phe Agen Lys Ile Leu Ile Ala Agen Arg Gly Glu Ile Ala Cys Arg 1 10 10 115 Val Ile Lys Thr Ala Arg Lys Met Gly Ile Ser Thr Val Ala Ile Tyr 20 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	Gln	Val	Glu			Trp	Arg	Lys			Thr	Ile	Pro		495		
MetPheAsnLysI beLueI beAlaAsnArgGlyGluI beAlaCysArgValI beYsThrAlaArgLysMetGlyI beSerThrValAlaI beTyrSerAspAlaAspLysGlnAlaLeuHisValGlnAlaAspGluAlaVal $\frac{1}{50}$ AlaAspLysGlnAlaLeuHisValGlnAlaAspGluAlaVal $\frac{1}{50}$ AlaAspLysGlnAlaLeuHisValGlnAlaAspGluAlaVal $\frac{1}{50}$ I beGluAlaAspGlnSerTyrI beAspGluAspGlnAspLysValMetAlaAlaI beGluAspGlnSerTyrI beAspGluAspLysValMetAlaAlaThrGluAspGluAlaAspSerSerAlaMetAlaAlaThrGluAspGluAlaGluAspSerSerLysValMetAlaAlaThrGluAlaGluAlaLeuGluAlaLysMetAlaAlaSerLysMetAlaSerSerSerSerAla<	<30 <30	8> Di 9> Di	ATABA ATABA	ASE . ASE :	ACCE: ENTRI	SSION Y DAT	N NUI TE: 2	MBER 2010-	-06-2	29							
1 10 15 Val Ie Ie Ie Ie Ie Val Ie Ie Ie Ie Ie Ie Val Ie Ie Ie Ie Ie Ie Ie Val Ie Ie Val Ie Ie Ie Ie See Asp Ala Asp Ie Ie Ie Ie Ie Val Asp Ala Asp Ie Ie Ie Ie Ie Ie Val Asp Asp Ala Asp Ie Asp Glu Asp Ie Asp Val Mas Asp Ie Asp Ie Asp Ie Asp Val Mas Ie Asp Ie Asp Ie Asp Ie Asp Val Mas Ie Mas Ie Mas Ie Ie <th><40</th> <th>0> S1</th> <th>equei</th> <th>ICE :</th> <th>59</th> <th></th>	<40	0> S1	equei	ICE :	59												
20 25 30 Ser Asp Ala Asp Lys Gln Ala Leu His Val Gln Met Ala Asp Glu Ala 35 Val His Ile Gly Pro Pro Pro Pro Ala Asn Gln Ser Tyr Ile Val Ile Asp 50 Val Met Ala Ala Ile Arg Ala Thr Gly Ala Gln Ala Val His Pro 65 Val Met Ala Ala Ile Arg Ala Pro Pro Pro Pro Pro Pro Pro Pro 70 70 70 71 Gly Ala Glu Ala Val His Pro 61 70 70 70 75 Glu Ala Glu Ala Val His Pro 61 70 70 70 70 75 Glu Ala Glu Ala Val His Pro 61 70 70 70 70 70 70 70 70 61 70 70 70 70 70 70 70 70 70 70 61 70		Phe	Asn	Lys		Leu	Ile	Ala	Asn	-	Gly	Glu	Ile	Ala	-	Arg	
35 40 45 Val His Ile Support From Support Ale Support Support Support Support Lys Val Met Ala Ala Support Ala Support Support <td>Val</td> <td>Ile</td> <td>Lys</td> <td></td> <td>Ala</td> <td>Arg</td> <td>ГЛа</td> <td>Met</td> <td></td> <td>Ile</td> <td>Ser</td> <td>Thr</td> <td>Val</td> <td></td> <td>Ile</td> <td>Tyr</td> <td></td>	Val	Ile	Lys		Ala	Arg	ГЛа	Met		Ile	Ser	Thr	Val		Ile	Tyr	
50 55 60 1/20 Val Ale Bro G1 Yr Ale Ale Ale Ale Ale Ale Ale Ale Bro G1 Yr Ale Ale Ale Ale Ale Ale Bro G1 Yr Ale Ale Ale Ale Ale Bro Bro G1 Yr Ale Ale Ale Ale Bro Bro Ale G1v Ale Inte Bro Bro Bro Bro Ale G1v Ale Inte Ale Bro Bro Bro Met G1v Ale Inte Fro Bro Bro Bro Bro Bro Met Ale Bro Ale Bro Ale Bro Bro Ale Met Ale Bro Ale Bro Ale	Ser	Asp		Asp	Lys	Gln	Ala		His	Val	Gln	Met		Asp	Glu	Ala	
65 70 75 80 Gly Tyr Gly Phe Leu Ser Glu Asn Ser Lys Phe Ala Glu Ala Leu Glu Ala Glu Val Ile Phe Val Gly Pro <	Val		Ile	Gly	Pro	Pro		Ala	Asn	Gln	Ser		Ile	Val	Ile	Asp	
85 90 95 Ala Glu Gly Val Ile Phe Val Gly Pro Pro Lys Gly Ala Ile Glu Ala 100 100 Met Gly Asp Lys Ile Thr Ser Lys Lys Ile Ala Gln Glu Ala Gln Glu Ala Asn Val 115 120 Ser Thr Val Pro Gly Tyr Met Gly Leu Ile Glu Asp Ala Asp Glu Ala 130 140	_	Val	Met	Ala	Ala		Arg	Ala	Thr	Gly		Gln	Ala	Val	His		
100 105 110 Met Gly Asp Lys Ile Thr Ser Lys Lys Ile Ala Gln Glu Ala Asn Val 115 110 Ser Thr Val Pro Gly Tyr Met Gly Leu Ile Glu Asp Ala Asp Glu Ala 130 110	Gly	Tyr	Gly	Phe		Ser	Glu	Asn	Ser	-	Phe	Ala	Glu	Ala		Glu	
115 120 125 Ser Thr Val Pro Gly Tyr Met Gly Leu Ile Glu Asp Ala Asp Glu Ala 130 135 140	Ala	Glu	Gly		Ile	Phe	Val	Gly		Pro	Lys	Gly	Ala		Glu	Ala	
130 135 140	Met	Gly		Lys	Ile	Thr	Ser		Lys	Ile	Ala	Gln		Ala	Asn	Val	
Val Lys Ile Ser Asn Gln Ile Gly Tyr Pro Val Met Ile Lys Ala Ser	Ser		Val	Pro	Gly	Tyr			Leu	Ile	Glu	_	Ala	Asp	Glu	Ala	
	Val	Lys	Ile	Ser	Asn	Gln	Ile	Gly	Tyr	Pro	Val	Met	Ile	Lys	Ala	Ser	

-continued

												con	tin	ued	
145					150					155					160
Ala	Gly	Gly	Gly	Gly 165	Гλа	Gly	Met	Arg	Ile 170	Ala	Trp	Asn	Asp	Gln 175	Glu
Ala	Arg	Glu	Gly 180	Phe	Gln	Ser	Ser	Lys 185	Asn	Glu	Ala	Ala	Asn 190	Ser	Phe
Gly	Asp	Asp 195	Arg	Ile	Phe	Ile	Glu 200	Lys	Phe	Val	Thr	Gln 205	Pro	Arg	His
Ile	Glu 210	Ile	Gln	Val	Leu	Cys 215	Asp	Ser	His	Gly	Asn 220	Gly	Ile	Tyr	Leu
Gly 225	Glu	Arg	Glu	Суз	Ser 230	Ile	Gln	Arg	Arg	Asn 235	Gln	Гла	Val	Val	Glu 240
Glu	Ala	Pro	Ser	Pro 245	Phe	Leu	Asp	Glu	Ala 250	Thr	Arg	Arg	Ala	Met 255	Gly
Glu	Gln	Ala	Val 260	Ala	Leu	Ala	Lys	Ala 265	Val	Gly	Tyr	Ala	Ser 270	Ala	Gly
Thr	Val	Glu 275	Phe	Ile	Val	Asp	Gly 280	Gln	Lys	Asn	Phe	Tyr 285	Phe	Leu	Glu
Met	Asn 290	Thr	Arg	Leu	Gln	Val 295	Glu	His	Pro	Val	Thr 300	Glu	Leu	Ile	Thr
Gly 305	Val	Asp	Leu	Val	Glu 310	Gln	Met	Ile	Arg	Val 315	Ala	Ala	Gly	Glu	Pro 320
Leu	Ser	Ile	Thr	Gln 325	Gly	Asp	Val	Lys	Leu 330	Thr	Gly	Trp	Ala	Ile 335	Glu
Asn	Arg	Leu	Tyr 340	Ala	Glu	Asp	Pro	Tyr 345	Arg	Gly	Phe	Leu	Pro 350	Ser	Ile
Gly	Arg	Leu 355	Thr	Arg	Tyr	Arg	Pro 360	Pro	Ala	Glu	Thr	Ala 365	Ala	Gly	Pro
Leu	Leu 370	Val	Asn	Gly	Lys	Trp 375	Gln	Gly	Asp	Ala	Pro 380	Ser	Gly	Glu	Ala
Ala 385	Val	Arg	Asn	Asp	Thr 390	Gly	Val	Tyr	Glu	Gly 395	Gly	Glu	Ile	Ser	Met 400
Tyr	Tyr	Asp	Pro	Met 405	Ile	Ala	Lys	Leu	Cys 410	Thr	Trp	Ala	Pro	Thr 415	Arg
Ala	Ala	Ala	Ile 420	Glu	Ala	Met	Arg	Ile 425	Ala	Leu	Asp	Ser	Phe 430	Glu	Val
Glu	Gly	Ile 435	Gly	His	Asn	Leu	Pro 440	Phe	Leu	Ser	Ala	Val 445	Met	Asp	His
Pro	Lys 450	Phe	Ile	Ser	Gly	Asp 455	Met	Thr	Thr	Ala	Phe 460	Ile	Ala	Glu	Glu
Tyr 465	Pro	Glu	Gly	Phe	Glu 470	Gly	Val	Asn	Leu	Pro 475	Glu	Thr	Asp	Leu	Arg 480
Arg	Val	Ala	Ala	Ala 485	Ala	Ala	Ala	Met	His 490	Arg	Val	Ala	Glu	Ile 495	Arg
Arg	Thr	Arg	Val 500	Ser	Gly	Arg	Met	Asp 505	Asn	His	Glu	Arg	Arg 510	Val	Gly
Thr	Glu	Trp 515	Val	Val	Thr	Leu	Gln 520	Gly	Ala	Asp	Phe	Pro 525	Val	Thr	Ile
Ala	Ala 530	Asp	His	Asp	Gly	Ser 535	Thr	Val	Ser	Phe	Asp 540	Asp	Gly	Ser	Ser
Met 545	Arg	Val	Thr	Ser	Asp 550	Trp	Thr	Pro	Gly	Asp 555	Gln	Leu	Ala	Asn	Leu 560

Met Val Asp Gly Ala Pro Leu Val Leu Lys Val Gly Lys Ile Ser Gly Gly Phe Arg Ile Arg Thr Arg Gly Ala Asp Leu Lys Val His Val Arg Thr Pro Arg Gln Ala Glu Leu Ala Arg Leu Met Pro Glu Lys Leu Pro Pro Asp Thr Ser Lys Met Leu Leu Cys Pro Met Pro Gly Leu Ile Val Lys Val Asp Val Glu Val Gly Gln Glu Val Gln Glu Gly Gln Ala Leu Cys Thr Ile Glu Ala Met Lys Met Glu Asn Ile Leu Arg Ala Glu Lys Lys Gly Val Val Ala Lys Ile Asn Ala Ser Ala Gly Asn Ser Leu Ala Val Asp Asp Val Ile Met Glu Phe Glu <210> SEQ ID NO 60 <211> LENGTH: 510 <212> TYPE: PRT <213> ORGANISM: Ruegeria pomeroyi <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_166345 <309> DATABASE ENTRY DATE: 2010-06-29 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(510) <400> SEQUENCE: 60 Met Lys Asp Ile Leu Ser Glu Leu Glu Thr Arg Arg Glu Ala Ala Arg Leu Gly Gly Gly Gln Lys Arg Ile Asp Ala Gln His Ala Arg Gly Lys $% \left({{\left({{{\left({{{}_{{\rm{S}}}} \right)}} \right)}} \right)$ Leu Thr Ala Arg Glu Arg Ile Glu Leu Leu Leu Asp Glu Asp Ser Phe Glu Glu Phe Asp Met Phe Val Ser His Arg Cys Thr Asp Phe Gly Met Glu Lys Gln Arg Pro Ala Gly Asp Gly Val Val Thr Gly Trp Gly Thr Ile Asn Gly Arg Met Val Tyr Val Phe Ser Gln Asp Phe Thr Val Phe Gly Gly Ser Leu Ser Glu Thr His Ala Gln Lys Ile Cys Lys Ile Met Asp Met Ala Val Gln Asn Gly Ala Pro Val Ile Gly Ile Asn Asp Ser Gly Gly Ala Arg Ile Gln Glu Gly Val Ala Ser Leu Ala Gly Tyr Ala Glu Val Phe Gln Arg Asn Ile Met Ala Ser Gly Val Val Pro Gln Ile Ser Val Ile Met Gly Pro Cys Ala Gly Gly Ala Val Tyr Ser Pro Ala Met Thr Asp Phe Ile Phe Met Val Lys Asp Thr Ser Tyr Met Phe Val Thr Gly Pro Asp Val Val Lys Thr Val Thr Asn Glu Val Val Thr Ala

Glu Glu Leu Gly Gly Ala Ser Thr His Thr Arg Lys Ser Ser Val Ala 210 215 Asp Gly Ala Phe Glu Asn Asp Val Glu Ala Leu Ala Glu Val Arg Arg 225 230
225 230 235 240
Leu Val Asp Phe Leu Pro Leu Asn Asn Arg Glu Lys Pro Pro Val Arg 245 250 255
Pro Phe Phe Asp Glu Pro Gly Arg Ile Glu Ala Ser Leu Asp Thr Leu 260 265 270
Val Pro Glu Asn Ala Asn Thr Pro Tyr Asp Met Lys Glu Leu Ile Asn 275 280 285
Lys Ile Ala Asp Glu Gly Asp Phe Tyr Glu Ile Gln Glu Asp Phe Ala 290 295 300
Lys Asn Ile Ile Thr Gly Phe Ile Arg Leu Glu Gly Gln Thr Val Gly 305 310 315 320
Val Val Ala Asn Gln Pro Met Ile Leu Ala Gly Cys Leu Asp Ile Asp 325 330 335
Ser Ser Arg Lys Ala Ala Arg Phe Val Arg Phe Cys Asp Cys Phe Glu
Ile Pro Ile Leu Thr Leu Val Asp Val Pro Gly Phe Leu Pro Gly Thr
355 360 365 Ser Gln Glu Tyr Gly Gly Val Ile Lys His Gly Ala Lys Leu Leu Phe
370 375 380 Ala Tyr Gly Glu Ala Thr Val Pro Lys Val Thr Val Ile Thr Arg Lys
385390395400Ala Tyr Gly Gly Ala Tyr Asp Val Met Ala Ser Lys His Leu Arg Gly
405 410 415 Asp Phe Asn Tyr Ala Trp Pro Thr Ala Glu Ile Ala Val Met Gly Ala
420 425 430 Lys Gly Ala Thr Glu Ile Ile His Arg Ala Asp Leu Gly Asp Ala Asp
435 440 445
Lys Ile Ala Ala His Thr Lys Asp Tyr Glu Gly Arg Phe Ala Asn Pro 450 455 460
Phe Val Ala Ala Glu Arg Gly Phe Ile Asp Glu Val Ile Gln Pro Arg 465 470 475 480
Ser Thr Arg Lys Arg Val Ser Arg Ala Phe Ala Ser Leu Arg Gly Lys 485 490 495
Ser Leu Lys Asn Pro Trp Lys Lys His Asp Asn Ile Pro Leu 500 505 510
<pre><210> SEQ ID NO 61 <211> LENGTH: 678 <212> TYPE: PRT <213> ORGANISM: Bacillus megaterium <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_003564880 <309> DATABASE ENTRY DATE: 2010-12-17 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(678)</pre>
<400> SEQUENCE: 61 Met Lys Thr Asn Thr Leu Ser Phe His Glu Phe Thr Arg Thr Pro Lys
1 5 10 15 Glu Asp Trp Ala Gln Glu Val Ser Lys Asn Thr Ala Ile Ser Ser Lys
20 25 30
Glu Thr Leu Glu Asn Ile Phe Leu Lys Pro Leu Tyr Phe Glu Ser Asp

											-	con	tin	ued	
		35					40					45			
Thr	Ala 50	His	Leu	Asp	Tyr	Leu 55	Gln	Gln	Ser	Pro	Ala 60	Gly	Ile	Asp	Tyr
Leu 65	Arg	Gly	Ala	Gly	Lys 70	Glu	Ser	Tyr	Ile	Leu 75	Gly	Glu	Trp	Glu	Ile 80
Thr	Gln	Lys	Ile	Asp 85	Leu	Pro	Ser	Ile	Lys 90	Glu	Ser	Asn	Lys	Leu 95	Leu
Leu	His	Ser	Leu 100	Arg	Asn	Gly	Gln	Asn 105	Thr	Ala	Ala	Phe	Thr 110	Суз	Ser
Glu	Ala	Met 115	Arg	Gln	Gly	Lys	Asp 120	Ile	Asp	Glu	Ala	Thr 125	Glu	Ala	Glu
Val	Ala 130	Ser	Gly	Ala	Thr	Ile 135	Ser	Thr	Leu	Glu	Asp 140	Val	Ala	His	Leu
Phe 145	Gln	His	Val	Ala	Leu 150	Glu	Ala	Val	Pro	Leu 155	Phe	Leu	Asn	Thr	Gly 160
Сув	Thr	Ser	Val	Pro 165	Leu	Leu	Ser	Phe	Leu 170	ГЛа	Ala	Tyr	Суз	Val 175	Asp
His	Asn	Phe	Asn 180	Met	Arg	Gln	Leu	Lys 185	Gly	Thr	Val	Gly	Met 190	Asp	Pro
Leu	Gly	Thr 195		Ala	Glu	Tyr	Gly 200	Arg	Val	Pro	Leu	Ser 205	Thr	Arg	Asp
Leu	Tyr 210		His	Leu	Ala	Tyr 215		Thr	Arg	Leu	Ala 220		Ser	Asn	Val
Pro 225		Leu	Lys	Thr	Ile 230		Val	Ser	Ser	Ile 235		Tyr	His	Asn	Ser 240
	Ala	Asn	Ala	Val 245		Glu	Leu	Ala	Tyr 250		Leu	Ala	Thr	Gly 255	
Gln	Tyr	Ile			Суз	Ile	Lys	Arg		Leu	Ser	Leu			Val
Leu	Pro		260 Met	Thr	Phe	Ser		265 Ser	Val	Ser	Ser		270 Leu	Phe	Met
Glu		275 Ser	Гла	Leu	Arg		280 Phe	Arg	Met	Leu	_	285 Ala	Asn	Val	Val
Arg	290 Ala	Phe	Asp	Asp	Thr	295 Ala	Val	Ser	Val	Pro	300 Phe	Ile	His	Thr	Glu
305				_	310			Glu		315					320
				325					330					335	
Arg	Ser	Thr	Val 340		Ala	Phe	Ala	Ser 345	Ile	Val	Gly	Gly	Ala 350	Asp	Ser
Leu	His	Ile 355	Glu	Pro	Tyr	Asp	Ser 360	Val	Thr	Ser	Ser	Ser 365	Ser	Gln	Phe
Ala	His 370	Arg	Leu	Ala	Arg	Asn 375		His	Leu	Ile	Leu 380	Gln	His	Glu	Thr
His 385	Ile	Ser	Lys	Val	Met 390		Pro	Ala	Gly	Gly 395	Ser	Trp	Tyr	Val	Glu 400
Ala	Tyr	Thr	His	Glu 405		Met	Thr	Гла	Ala 410	Trp	Glu	Leu	Phe	Gly 415	Asn
Ile	Glu	Asp	His 420		Gly	Met	Glu	Glu 425	Ala	Leu	Lys	Gln	Gly 430	Arg	Ile
Gln	Aab	Glu 435	Val	Glu	Gln	Met	Lys 440	Val	Lys	Arg	Gln	Glu 445	Asp	Ile	Glu

Cvs	Arq	Ile	Glu	Arg	Leu	Ile	Glv	Val	Thr	His	Tvr	Ala	Pro	Lvs	Gln
- 2	450			5		455	1				460			-1-	
Gln 465	Asb	Ala	Ser	Gln	Glu 470	Ile	Lys	Ser	Thr	Pro 475	Phe	Lys	Lys	Glu	Glu 480
Ile	Lys	Met	Asp	Lys 485	Tyr	Ser	Aab	Gln	Asn 490	Ala	Ser	Glu	Phe	Ser 495	Ser
Asn	Leu	Ser	Leu 500	Glu	Asp	Tyr	Thr	Lys 505	Leu	Ala	Ser	Lys	Gly 510	Val	Thr
Ala	Gly	Trp 515	Met	Leu	Lys	Gln	Met 520	Ala	Lys	Gln	Thr	Gln 525	Pro	Asp	Ser
Val	Val 530	Pro	Leu	Thr	Lys	Trp 535	Arg	Ala	Ala	Glu	Lys 540	Phe	Glu	Lys	Ile
Arg 545	Val	Tyr	Thr	ГЛа	Gly 550	Met	Ser	Ile	Gly	Ile 555	Met	Glu	Leu	Thr	Asp 560
Pro	Ser	Ser	Arg	Lys 565	Lys	Ala	Glu	Ile	Ala 570	Arg	Ser	Leu	Phe	Glu 575	Ser
Ala	Gly	Phe	Ala 580	Суз	Glu	Thr	Ile	Lys 585	Asn	Ile	Asp	Ser	Tyr 590	Val	Glu
Ile	Ala	Asp 595	Trp	Met	Asn	Glu	Gln 600	Lys	His	Glu	Ala	Tyr 605	Val	Ile	Суз
Gly	Ser 610	Asp	Glu	Leu	Val	Glu 615	Lys	Leu	Leu	Thr	Lys 620	Ala	Met	Thr	Tyr
Phe 625	Glu	Glu	Asp	Ser	Val 630	Tyr	Val	Tyr	Val	Val 635	Gly	Glu	Glu	His	Val 640
Ser	Arg	Lys	Thr	Gln 645	Trp	Gln	Gln	Lys	Gly 650	Val	Met	Ser	Val	Ile 655	His
Pro	Lys	Thr	Asn 660	Val	Ile	Gln	Cys	Val 665	Lys	Lys	Leu	Leu	Cys 670	Ala	Leu
Glu	Val	Glu 675	Val	His	Val										
<212 <212 <212 <300 <309 <309	0> P(3> D/ 9> D/	ENGTH YPE: RGAN JBLI ATABA	H: 7: PRT ISM: CATIO ASE A ASE I		IFORI SSIOI (DA'	MATIO N NUN FE: 2	DN: MBER: 2010-	: NCH - 12 - 1	L7)		
<40)> SI	EQUEI	ICE :	62											
Met 1	Tyr	Lys	Lys	Pro 5	Ser	Phe	Ser	Asn	Ile 10	Pro	Leu	Ser	Phe	Ser 15	Lys
Gln	Gln	Arg	Glu 20	Asp	Asp	Val	Thr	Gln 25	Ser	Ser	Tyr	Thr	Ala 30	Phe	Gln
Thr	Asn	Glu 35	Gln	Ile	Glu	Leu	Lys 40	Ser	Val	Tyr	Thr	Lys 45	Lys	Asp	Arg
Asp	Asn 50	Leu	Asp	Phe	Ile	His 55	Phe	Ala	Pro	Gly	Val 60	Pro	Pro	Phe	Val
Arg 65	Gly	Pro	Tyr	Ala	Thr 70	Met	Tyr	Val	Asn	Arg 75	Pro	Trp	Thr	Ile	Arg 80
Gln	Tyr	Ala	Gly	Tyr 85	Ser	Thr	Ala	Glu	Glu 90	Ser	Asn	Ala	Phe	Tyr 95	Arg

-continued

											-	con	tin	uea						
Arg	Asn	Leu	Ala 100	Ala	Gly	Gln	ГЛЗ	Gly 105	Leu	Ser	Val	Ala	Phe 110	Asp	Leu					
Ala	Thr	His 115	Arg	Gly	Tyr	Asp	Ser 120	Asp	His	Pro	Arg	Val 125	Val	Gly	Asp					
Val	Gly 130	-	Ala	Gly	Val	Ala 135	Ile	Asp	Ser	Met	Met 140	Asp	Met	Lys	Gln					
Leu 145	Phe	Glu	Gly	Ile	Pro 150	Leu	Asp	Gln	Met	Ser 155	Val	Ser	Met	Thr	Met 160					
Asn	Gly	Ala	Val	Leu 165	Pro	Ile	Leu	Ala	Phe 170	Tyr	Ile	Val	Thr	Ala 175	Glu					
Glu	Gln	Gly	Val 180	Lys	Lys	Glu	Lys	Leu 185	Ala	Gly	Thr	Ile	Gln 190	Asn	Asp					
Ile	Leu	Lys 195	Glu	Tyr	Met	Val	Arg 200	Asn	Thr	Tyr	Ile	Tyr 205	Pro	Pro	Glu					
Met	Ser 210		Arg	Ile	Ile	Ala 215	Asp	Ile	Phe	Lys	Tyr 220	Thr	Ala	Glu	Tyr					
Met 225	Pro	Lys	Phe	Asn	Ser 230	Ile	Ser	Ile	Ser	Gly 235	Tyr	His	Met	Gln	Glu 240					
Ala	Gly	Ala	Pro	Ala 245	Asp	Leu	Glu	Leu	Ala 250	Tyr	Thr	Leu	Ala	Asp 255	Gly					
Leu	Glu	Tyr	Val 260	Arg	Thr	Gly	Leu	Lys 265	Ala	Gly	Ile	Thr	Ile 270	Asp	Ala					
Phe	Ala	Pro 275	Arg	Leu	Ser	Phe	Phe 280	Trp	Ala	Ile	Gly	Met 285	Asn	Tyr	Phe					
Met	Glu 290		Ala	ГЛа	Met	Arg 295	Ala	Gly	Arg	Leu	Leu 300	Trp	Ala	ГЛа	Leu					
Met 305	Lys	Gln	Phe	Glu	Pro 310	Asp	Asn	Pro	Lys	Ser 315	Leu	Ala	Leu	Arg	Thr 320					
His	Ser	Gln	Thr	Ser 325	Gly	Trp	Ser	Leu	Thr 330	Glu	Gln	Asp	Pro	Phe 335	Asn					
Asn	Val	Ile	Arg 340	Thr	Сүз	Val	Glu	Ala 345	Leu	Ala	Ala	Val	Ser 350	Gly	His					
Thr	Gln	Ser 355	Leu	His	Thr	Asn	Ala 360	Leu	Asp	Glu	Ala	Ile 365	Ala	Leu	Pro					
Thr	Asp 370	Phe	Ser	Ala	Arg	Ile 375	Ala	Arg	Asn	Thr	Gln 380	Leu	Tyr	Leu	Gln					
Asn 385	Glu	Thr	Glu	Ile	Сув 390	Ser	Val	Ile	Asp	Pro 395	Trp	Gly	Gly	Ser	Tyr 400					
Tyr	Val	Glu	Ser	Leu 405	Thr	Asn	Glu	Leu	Met 410		Lys	Ala	Trp	Lys 415	His					
Leu	Glu	Glu	Ile 420	Glu	Gln	Leu	-	Gly 425	Met	Thr	Lys	Ala	Ile 430	Glu	Ala					
Gly	Val	Pro 435	Lys	Met	Lys	Ile	Glu 440	Glu	Ala	Ala	Ala	Arg 445	Arg	Gln	Ala					
Arg	Ile 450	_	Ser	Gln	Ala	Glu 455	Ile	Ile	Val	Gly	Val 460	Asn	Gln	Phe	Gln					
Pro 465	Glu	Gln	Glu	Glu	Pro 470	Leu	Asp	Ile	Leu	Asp 475	Ile	Asp	Asn	Thr	Ala 480					
Val	Arg	Met	Lys	Gln 485	Leu	Glu	Lys	Leu	Lys 490	Lys	Ile	Arg	Ser	Glu 495	Arg					
Asn	Glu	Gln	Ala	Val	Ile	Glu	Ala	Leu	Asn	Arg	Leu	Thr	Asn	Суз	Ala					

-continued

1 Phe Val His Årg Asp Gln Ile Glu Glu Val Årg Lys Leu Thr Åla 565 1 Phe Leu Glu Gly Glu Gly Arg Årg Pro Årg Ile Leu Val Åla Lys 580 2 Gly Gln Åsp Gly His Åsp Årg Gly Ser Lys Val Ile Ser Thr Åla 605 2 Ala Åsp Leu Gly Phe Åsp Val Åsp Ile Gly Pro Leu Phe Gln Thr 610 610 611 Glu Thr Åla Årg Gln Åla Val Glu Åsn Åsp Val His Val Ile 630 630 631 Glu Thr Åla Årg Gln Åla Val Glu Åsn Åsp Val His Val Ile 645 640 7 Ile Ser Ser Leu Åla Åla Gly His Lys Thr Leu Leu Pro 645 640 7 Ile Ser Ser Leu Åla Åla Gly His Lys Thr Leu Leu Pro 655 1 Åsp Glu Leu Lys Lys Leu Glu Årg Åsp Åsp Ile Val Val Ile Val 660 655 640 7 Gly Val Ile Pro Lys Gln Åsp Tyr Ser Phe Leu Leu Glu His Gly 685 685 685 685 7 Val Leu His Glu Ile Lys Lys Årg Leu Glu Glu 710 715 10> SEQ ID NO 63 11> LENGTH: 615 12> TYPE: PRT 13> ORGANISM: Mycobacterium tuberculosis 10> SEQ ID NO 63 11> LEUKOTH: 615 12> TYPE: PRT 13> ORGANISM: Mycobacterium tuberculosis 10> PUBLICATION INFORMATION: 20> PUBLICATION INFORMATION: 20> DATABASE ACCESSION NUMBER: NCBI / YP_001282809 203 DATABASE ENTRY DATE: 2010-05-13 13> RELEVANT RESIDUES IN SEQ ID NO: (1) (615) 200> SEQUENCE: 63 t Ser Ile Asp Val Pro Glu Arg Åla Åsp Leu Glu Gln Val Årg Gly 50 9 Ser Åla Gln Leu Gly Åsp His Pro Glu Årg Leu Ser Lys Ser Åsm Årg Thr 20 9 Ser Åla Gln Leu Gly Asp His Pro Glu Årg Leu Leu Asp Thr Gln 35 40 70 715 715 715 715 715 715 715 715												-	con	tin	ued	
515 520 525 a Arg Ala Thr Leu Gly Glu IIe Ser Glu Ala IIe Glu Uys Val Ala 530 Glu Ala Thr Ser Lys Ser Val Ser Gly Val Tyr Ser Ala 555 a Mrg His Gln Ala Thr Ser Lys Ser Val Ser Gly Val Tyr Ser Ala 555 a Phe Val His Arg Asp Gln IIe Glu Glu Val Arg Lys Leu Thr Ala 565 a Gly Gln Asp Gly His Asp Arg Gly Ser Lys Val IIe Ser Thr Ala 565 a Ma Asp Leu Gly Phe Asp Val Asp IIe Gly Pro Leu Phe Gln Thr 610 a Gli Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val IIe 635 a Gli Glu Thr Ala Arg Gln Ala Cly His Lys Thr Leu Leu Pro Gln Leu 645 a Arg Ala IIe Pro Lys Gln Asp Tyr Ser Phe Leu Leu Val Val IIe 760 a Ser Ala IIe Phe Gly Pro Gly Thr Val IIe Pro Lys Ala Ala Val 690 cy Cli No 63 cy Tyr Fr Prt cy Cli No 63 cy DataBase Accession NUMBER: NCBI / YP-001282809 cy Ser Ala Si Pro Glu Arg Ala Asp Leu Glu Glu Thr 300 cy Ser Ala Gli Leu Gly Asp His Pro Glu Arg Leu Ser Lys Ser Asn Arg Thr 300 cy Ser Ala Gli Leu Gly Asp His Pro Glu Arg Leu Ser Lys Ser Asn Arg Thr 20 cy Ser Ala Gli Leu Gly Asp Arg Leu Glu Glu Glu Tropo 150 cy Ser Marker Accession NUMBER: NCBI / YP-001282809 cy Ser Ala Si Pro Glu Arg Ala Asp Leu Glu Glu Val Arg Gly 15 cy Ser Ala Gli Leu Gly Asp His Pro Glu Arg Leu Ser Lys Ser Asn Arg Thr 30 cy AraAse Accession NUMBER: NCBI / YP-001282809				500					505					510		
530 535 540 y Arg His Gln Ala Thr Ser Lys Ser Val Ser Gly Val Tyr Ser Ala 555 Ser Val Ser Gly Val Tyr Ser Ala 555 1 Phe Val His Arg Arg Gn IIe Glu Glu Val Arg Lys Leu Thr Ala 555 1 Phe Leu Glu Gly Glu Gly Arg Arg Pro Arg IIe Leu Val Ala Lys 590 1 Phe Leu Glu Gly Glu Gly Arg Arg Cly Ser Lys Val IIe Ser Thr Ala 505 1 Phe Leu Glu Gly His Asp Arg Gly Ser Lys Val IIe Ser Thr Ala 610 2 Gln Glu Thr Ala Arg Gln Ala Val Glu Aan Asp Val His Val IIe 630 2 Gln Glu Thr Ala Arg Gln Ala Val Glu Aan Asp Val His Val IIe 640 3 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp IIe Val Val IIe Val 660 6 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp IIe Val Val IIe Val 660 6 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp IIe Val Val IIe 700 6 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp IIe Val Val Ala Val 690 6 Asp Glu Leu Lys Lys Gln Asp Tyr Ser Phe Leu Leu Glu His Gly 675 7 Val Leu His Glu IIe Lys Lys Arg Leu Glu Glu Glu 715 10 > SEQ ID NO 63 11 > LENGTH: 615 12 > TYPE: PRT 13 > RELEVANT RESIDUES IN SEQ ID NO: (1) (615) 00 > SEQUENCE: 63 t Ser IIe Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly Gly 70 10 > 15 11 Asp Glu Pro Ala Ala Gly Val Leu Ser Lys Ser Asn Arg Thr 20 12 > RELEVANT RESIDUES IN SEQ ID NO: (1) (615) <	rÀa ,	Thr	-	Glu	Gly	Asn	Leu			Phe	Ala	Val		Ala	Ala	Arg
5 550 555 560 1 Phe Val His Arg Asp Gln Ile Glu Glu Val Arg Lys Leu Thr Ala 565 550 1 Phe Leu Glu Gly Glu Gly Arg Arg Pro Arg Ile Leu Val Ala Lys 590 590 c Gly Gln Asp Gly His Asp Arg Gly Ser Lys Val Ile Ser Thr Ala 600 590 a Ala Asp Leu Gly Phe Asp Val Asp Ile Gly Pro Leu Phe Gln Thr 610 615 o Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 645 635 o Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 645 631 a Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 665 641 a Ser Ala Ile Phe Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 669 700 r Val Leu His Glu Ile Lys Lys Arg Leu Glu Glu 710 715 10> SEQ ID NO 63 112 112 11> ELMSTH: 615 112 12> TPE PRT 12 110 13> RELEVANT RESIDUES IN NUMEER: NCEI / YP_001282809 14> Seq UENCE: 63 11 15 11 Ala Asp Asp Ala Chas Ang Thr 20 16> SEQUENCE: 63 12 15 13< RELEVANT RESIDUES IN SUG ID NO: (1)(615)		-	Ala	Thr	Leu	Gly			Ser	Glu	Ala		Glu	Lys	Val	Ala
565 570 575 1 Phe Leu Glu Gly Glu Gly Arg Arg Pro Arg Ile Leu Val Ala Lys 580 590 Ala Lys 590 c Gly Gln Aep Gly His Aep Arg Gly Ser Lys Val Ile Ser Thr Ala 605 590 Ala Asp Leu Gly Phe Aep Val Aep Ile Gly Pro Leu Phe Gln Thr 610 c Gln Glu Thr Ala Arg Gln Ala Val Glu Aen Aep Val His Val Ile 635 Gln Glu Thr Ala Arg Gln Ala Cly His Lys Thr Leu Leu Pro Gln Leu 645 c Gln Glu Leu Lys Lys Leu Glu Arg Aep Aep Jle Val Val Ile Val 665 Gln Glu His Gly Pro Lys Gln Aep Tyr Ser Phe Leu Leu Glu His Gly 675 a Ser Ala Ile Phe Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 699 610 c Sto I D NO 63 710 c Sto I D NO 63 710 c Sto I D NO 63 715 c Sto I D NO 64 710 c Sto	Gly 2 545	Arg	His	Gln	Ala		Ser	Lys	Ser	Val		Gly	Val	Tyr	Ser	
580585590t Gly Gln Asp Gly His Asp Arg Gly Ser Lys Val Ile Ser Thr Ala 600Ser Thr Ala 605a Ala Asp Leu Gly Phe Asp Val Asp Ile Gly Pro Leu Phe Gln Thr 615Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630b Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 635b Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 645Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 635a Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 660Gly Val Ile Pro Lys Gln Asp Tyr Ser Phe Leu Leu Glu His Gly 680a Ser Ala Ile Phe Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 690Ger Val Leu His Glu Ile Lys Lys Arg Leu Glu Glu 710r Val Leu His Glu Ile Lys Lys Arg Leu Glu Glu 71071510> SEQ ID NO 63 11> LENGTH: 615 L2> TYPE: PRT 13> ORCANISM: Mycobacterium tuberculosis 00> PUELTATION INFORMATION: 00> PUELTATION INFORMATION: 00> PUELTATION INFORMATION: 00> SEQUENCE: 63ct Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 15ct Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 15ct Ser Jle Asp Val Pro Glu Arg Ala Asp Leu Leu Asp Thr Gln 40f Thr Aca Asp Gly Phe Ala Ile Arg Ala Leu Tyr Thr Ala Phe Asp Glu 60c Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 40f Glu Pro Pro Leu Pro Gly Gln Trp Pro Phe Val Arg Gly Gly 70p Ser Ala Gln Leu Gly Asp His Ser Gly Trp Lys Val Ala Glu Ala Phe 85o Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 85o Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala P	Glu 1	Phe	Val	His	-	_	Gln	Ile	Glu		Val	Arg	Lys	Leu		Ala
595 600 600 605 Ala Asp Leu Gly Phe Asp Val Asp Ile Gly Pro Leu Phe Gln Thr 610 Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630 Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630 Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630 Gln Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630 Gln Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val I Ile Val 660 600 Geo 7 Gly Val Ile Pro Lys Gln Asp Tyr Ser Phe Leu Leu Glu His Gly 675 680 700 For Cly Thr Val Ile Pro Lys Ala Ala Val 690 700 For Val Leu His Glu Ile Lys Lys Arg Leu Glu Glu 710 715 10> SEQ ID NO 63 11> LENGTH: 615 12> TYPE: PRT 10> SEQ ID NO 63 11> LENGTH: 615 12> TYPE: PRT 13> RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 00> SEQUENCE: 63 t Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 13 Sequence: 63 t Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Ser Lys Ser Asn Arg Thr 20 Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 40 40 45 r Pro Glu Pro Pro Clu Arg Lae Tyr Thr Ala Phe Asp Glu 50 Pro Leu Arg Asp Val His Ser Gly Thr Pro Phe Val Arg Gly Gly 60 Pro Leu Arg Asp Val His Ser Gly Thr Lys Val Ala Glu Ala Glu Ala 100 10 100 100 100 100 100 100 100 100	Glu 1	Phe	Leu		Gly	Glu	Gly	Arg	-		Arg	Ile	Leu		Ala	Lys
610 615 620 610 617 Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 630 618 Glu Thr Ala Arg Gln Ala Val Glu Asn Asp Val His Val Ile 640 7 Ile Ser Ser Leu Ala Ala Gly His Lys Thr Leu Leu Pro Gln Leu 645 655 1 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 660 665 675 9 Gly Val Ile Pro Lys Gln Asp Tyr Ser Phe Leu Leu Glu His Gly 675 686 675 1 Asp Glu Leu His Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 690 70 1 Val Leu His Glu Ile Lys Lys Arg Leu Glu Glu 710 715 10> SEQ ID NO 63 11> LENGTH: 615 12> TYPE: PRT 13> ORGANISM: Mycobacterium tuberculosis 00> PUBLICATION INFORMATION: 13> RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 10> SEQUENCE: 63 1 Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 10 SEQUENCE: 63 1 Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Ser Lys Ser Asn Arg Thr 20 9 Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 45 10 Seq Gly Phe Ala Ile Arg Ala Leu Tyr Thr Ala Phe Asp Glu 50 1 Pro Glu Pro Pro Leu Pro Gly Gln Trp Pro Phe Val Arg Gly Gly 70 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 9 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 80 91 92 Ala Asn Gly Ala Thr Ala Asp Thr Asn Ala Ala Val Leu Ala Ala 100 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Gly Ser Gly 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Gly Ser Gly	Met (Gly		Asp	Gly	His	Asp	-	-	Ser	Lys	Val		Ser	Thr	Ala
5 630 635 640 Y Ile Ser Ser Leu Ala Ala Gly His Lys Thr Leu Leu Pro Gln Leu 645 Asp Glu Leu Lys Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 660 1 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 660 665 1 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 660 665 y Gly Val Ile Pro Lys Gly Asp Tyr Ser Phe Leu Leu Glu His Gly 675 680 a Ser Ala Ile Phe Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 690 690 710 715 10> SEQ ID NO 63 11> LENGTH: 615 710 715 715 11> LENGTH: 615 710 710 715 715 11> LENGTH: 615 710 710 715 12> TYPE: PRT 710 710 715 715 13> ORGANISM: Mycobacterium tuberculosis 700 710 715 700 DATABASE ACCESSION NUMBER: NCBI / YP_001282809 70 71 75 70 DATABASE ACCESSION NUMBER: NCBI			Asp	Leu	Gly	Phe	_	Val	Asp	Ile	Gly		Leu	Phe	Gln	Thr
645 650 655 1 Asp Glu Leu Lys Lys Leu Glu Arg Asp Asp Ile Val Val Ile Val 660 70 11 Val 7 Gly Val Ile Pro Lys Gln Asp Tyr Ser Phe Leu Leu Glu His Gly 675 11 Pro Lys Gln Asp Tyr Ser Phe Leu Leu Glu His Gly 675 11 Pro Lys Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 690 70 710 70 715 715 10 SEQ ID NO 63 11 LEUGTH: 615 12 TYPE: PRT 13 ORGANISM: Mycobacterium tuberculosis 00 PUBLICATION INFORMATION: 03 DATABASE ENTRY DATE: 2010-05-13 13 RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 13 RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 14 Seq Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 15 The Asp Cly Phe Ala Cly Val Leu Ser Lys Ser Asn Arg Thr 20 Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 40 Ser Ala Asp Gly Phe Ala Ile Arg Ala Leu Tyr Thr Ala Phe Asp Glu 50 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Glu Ala 10 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Arg Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Arg Val Ala Glu Ala Phe 90 Pro Leu Arg Asp Val His Ser Gly Trp Arg Val Ala Clu Ala Ala 100 Pro Leu Arg Asp Val His Ser Gly Trp Arg Val Ala Clu Ala Ala 100 La Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly 10 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly 10 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly	Pro (625	Gln	Glu	Thr	Ala			Ala	Val	Glu		Asp	Val	His	Val	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gly	Ile	Ser	Ser		Ala	Ala	Gly	His			Leu	Leu	Pro		Leu
675 680 685 a Ser Ala Ile Phe Gly Pro Gly Thr Val Ile Pro Lys Ala Ala Val 690 700 700 r Val Leu His Glu Ile Lys Lys Arg Leu Glu Glu 710 715 10 > SEQ ID NO 63 11 > LENGTH: 615 12 > TYPE: PRT 13 > ORGANISM: Mycobacterium tuberculosis 00 > PUBLICATION INFORMATION: $08 > DATABASE ACCESSION NUMBER: NCBI / YP_001282809$ $09 > DATABASE ACCESSION NUMBER: NCBI / YP_001282809$ 09 > DATABASE ENTRY DATE: 2010-05-13 13 > RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 00 > SEQUENCE: 63 t Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 10 15 g Trp Arg Asn Ala Val Ala Gly Val Leu Ser Lys Ser Asn Arg Thr 20 25 10 40 45 r Ala Asp Gly Phe Ala Ile Arg Ala Leu Tyr Thr Ala Phe Asp Glu 50 Pro Glu Pro Pro Leu Pro Gly Gln Trp Pro Phe Val Arg Gly Gly 70 75 10 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 85 0 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 85 0 Ala Asn Gly Ala Thr Ala Asp Thr Asn Ala Ala Val Leu Ala Ala 100 10 10 10 10 10 10 10	Val i	Asp	Glu		Lys	Lys	Leu	Glu		Asp	Asp	Ile	Val		Ile	Val
690 695 700 r Val Leu His Glu IIe Lys Lys Arg Leu Glu Glu 710 715 10> SEQ ID NO 63 11> LENGTH: 615 12> TYPE: PRT 13> ORGANISM: Mycobacterium tuberculosis 00> PUBLICATION INFORMATION: 00> DATABASE ACCESSION NUMBER: NCBI / YP_001282809 00> DATABASE ENTRY DATE: 2010-05-13 13> RELEVANT RESIDUES IN SEQ ID NO: (1) (615) 00> SEQUENCE: 63 t Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 5 10 10 15 15 15 16 17 17 10 15 17 10 15 10 10 15 10 15 10 15 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15	Gly (Gly		Ile	Pro	ГЛа	Gln			Ser	Phe	Leu		Glu	His	Gly
5 710 715 10> SEQ ID NO 63 11> LENGTH: 615 12> TYPE: PRT 13> ORGANISM: Mycobacterium tuberculosis 00> PUBLICATION IMFORMATION: 00> PUBLICATION IMFORMATION: 00> DATABASE ACCESSION NUMBER: NCBI / YP_001282809 09> DATABASE ENTRY DATE: 2010-05-13 13> RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 00> SEQUENCE: 63 13 t Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 15 10 10 15 15 10 15 15 10 25 10 25 10 15 15 10 25 10			Ala	Ile	Phe	Gly		Gly	Thr	Val	Ile		Lys	Ala	Ala	Val
<pre>11> LENGTH: 615 12> TYPE: PRT 13> ORGANISM: Mycobacterium tuberculosis 00> PUBLICATION IMFORMATION: 00> DUBLICATION IMFORMATION: 00> DATABASE ACCESSION NUMBER: NCBI / YP_001282809 09> DATABASE ENTRY DATE: 2010-05-13 13> RELEVANT RESIDUES IN SEQ ID NO: (1)(615) 00> SEQUENCE: 63 t Ser Ile Asp Val Pro Glu Arg Ala Asp Leu Glu Gln Val Arg Gly 5 10 15 g Trp Arg Asn Ala Val Ala Gly Val Leu Ser Lys Ser Asn Arg Thr 20 25 30 p Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 35 40 45 r Ala Asp Gly Phe Ala Ile Arg Ala Leu Tyr Thr Ala Phe Asp Glu 50 55 60 1 Pro Glu Pro Pro Leu Pro Gly Gln Trp Pro Phe Val Arg Gly Gly 80 p Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 85 90 p Ala Asn Gly Ala Thr Ala Asp Thr Asn Ala Ala Val Leu Ala Ala 100 10 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly</pre>	Ser 705	Val	Leu	His	Glu		Lys	Lys	Arg	Leu		Glu				
5 10 15 g Trp Arg Asn Ala Val Ala Gly Val Leu Ser Lys Ser Asn Arg Thr 20 Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 45 o Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln 50 Ser Gly Phe Ala 11e Arg Ala Leu Tyr Thr Ala Phe Asp Glu 55 a Pro Glu Pro Pro Leu Pro Gly Gln Trp Pro Phe Val Arg Gly Gly 80 o Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Phe 95 a Asn Gly Ala Thr Ala Asp Thr Asn Ala Ala Ala Val Leu Ala Ala 110 a Gly Glu Gly Val Ser Ala Leu Leu Leu Ile Arg Val Gly Glu Ser Gly	<211 <212 <213 <300 <308 <309 <313	> LE > TY > OF > PU > DZ > DZ > RE	ENGTH PE: RGANI JBLIC ATABA ATABA ELEVA	H: 63 PRT ISM: CATIO ASE 1 ASE 1 ANT 1	Myco ON II ACCE ENTR RESII	NFORI SSIOI Y DA'	MATION NUI TE: 2	ON: MBER 2010	: NCI -05-:	BI / 13	YP_(9		
20 25 30 o Ser Ala Gln Leu Gly Asp His Pro Glu Arg Leu Leu Asp Thr Gln a Asp Gly Phe Ala Ife Asp Ala Leu Thr Ala Asp Gly Asp Asp Asp Gly Asp Asp Gly Asp Asp Asp Gly Asp Asp Asp Gly Asp Asp Asp Gly Asp	Met : 1	Ser	Ile	Asp	Val 5	Pro	Glu	Arg		-		Glu	Gln	Val	Arg 15	Gly
35 40 45 r Ala Asp Gly Phe Ala Ile Arg Arg St Arg Arg Cly The Ala Ile Arg Arg Cly St Fee Trop St The Ala Phe Asp Cly St 1 Pro Glu Pro Cleu Arg Asp Val His Ser Cly Ala Arg	Arg '	Trp	Arg		Ala	Val	Ala	Gly		Leu	Ser	Lys	Ser		Arg	Thr
50 55 60 1 Pro Glu Pro Pro Leu Pro Gly Gln Trp Pro Phe Val Arg Gly Gly 70 70 70 70 70 75 76 74 75 80 0 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Glu Ala Phe 85 85 71 70 70 70 70 70 75 76 76 76 80 80 0 Pro Leu Arg Asp Val His Ser Gly Trp Lys Val Ala Glu Ala Glu Ala Phe 95 90 70 70 90 90 95 76 0 Ala Asn Gly Ala Thr Ala Asp Thr Asn Ala Ala Ala Val Leu Ala Ala 100 100 100 105 76 80 76 80 76 80 76	Asp :	Ser		Gln	Leu	Gly	Asp		Pro	Glu	Arg	Leu		Asp	Thr	Gln
70 75 80 p Pro Leu Arg Asp Val His Ser Gly 30 Trp Lys Val Ala Glu Ala Glu Ala Phe 35 p Ala Asn Gly Ala Thr Ala Asp 105 Thr Asn Ala Ala Val Leu Ala Ala 110 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Glu Ser Gly			Asp	Gly	Phe	Ala		Arg	Ala	Leu	Tyr		Ala	Phe	Asp	Glu
85 90 95 D Ala Asn Gly Ala Thr Ala Asp Thr Asn Ala Ala Val Leu Ala Ala 100 10 105 110 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly	Leu 1 65	Pro	Glu	Pro	Pro		Pro	Gly	Gln	Trp		Phe	Val	Arg	Gly	
100 105 110 1 Gly Glu Gly Val Ser Ala Leu Leu Ile Arg Val Gly Glu Ser Gly	Aap 1	Pro	Leu	Arg		Val	His	Ser	Gly		Lys	Val	Ala	Glu		Phe
	Pro i	Ala	Asn		Ala	Thr	Ala	Asp		Asn	Ala	Ala	Val		Ala	Ala
	Leu (Gly		Gly	Val	Ser	Ala			Ile	Arg	Val		Glu	Ser	Gly

-continued

Val	Ala 130	Pro	Asp	Arg	Leu	Thr 135	Ala	Leu	Leu	Ser	Gly 140	Val	Tyr	Leu	Asn
Leu 145	Ala	Pro	Val	Ile	Leu 150	Asp	Ala	Gly	Ala	Asp 155	Tyr	Arg	Pro	Ala	Cys 160
Asp	Val	Met	Leu	Ala 165	Leu	Val	Ala	Gln	Leu 170	Asp	Pro	Gly	Gln	Arg 175	Asp
Thr	Leu	Ser	Ile 180	Asp	Leu	Gly	Ala	Asp 185	Pro	Leu	Thr	Ala	Ser 190	Leu	Arg
Asp	Arg	Pro 195	Ala	Pro	Pro	Ile	Glu 200	Glu	Val	Val	Ala	Val 205	Ala	Ser	Arg
Ala	Ala 210	Gly	Glu	Arg	Gly	Leu 215	Arg	Ala	Ile	Thr	Val 220	Asp	Gly	Pro	Ala
Phe 225	His	Asn	Leu	Gly	Ala 230	Thr	Ala	Ala	Thr	Glu 235	Leu	Ala	Ala	Thr	Val 240
Ala	Ala	Ala	Val	Ala 245	Tyr	Leu	Arg	Val	Leu 250	Thr	Glu	Ser	Gly	Leu 255	Val
Val	Ser	Asp	Ala 260	Leu	Arg	Gln	Ile	Ser 265	Phe	Arg	Leu	Ala	Ala 270	Asp	Aap
Asp	Gln	Phe 275	Met	Thr	Leu	Ala	Lys 280	Met	Arg	Ala	Leu	Arg 285	Gln	Leu	Trp
Ala	Arg 290	Val	Ala	Glu	Val	Val 295	Gly	Asp	Pro	Gly	Gly 300	Gly	Ala	Ala	Val
Val 305	His	Ala	Glu	Thr	Ser 310	Leu	Pro	Met	Met	Thr 315	Gln	Arg	Asp	Pro	Trp 320
Val	Asn	Met	Leu	Arg 325	Суз	Thr	Leu	Ala	Ala 330	Phe	Gly	Ala	Gly	Val 335	Gly
Gly	Ala	Asp	Thr 340	Val	Leu	Val	His	Pro 345	Phe	Asp	Val	Ala	Ile 350	Pro	Gly
Gly	Phe	Pro 355	Gly	Thr	Ala	Ala	Gly 360	Phe	Ala	Arg	Arg	Ile 365	Ala	Arg	Asn
Thr	Gln 370	Leu	Leu	Leu	Leu	Glu 375	Glu	Ser	His	Val	Gly 380	Arg	Val	Leu	Asp
Pro 385	Ala	Gly	Gly	Ser	Trp 390	Phe	Val	Glu	Glu	Leu 395	Thr	Asp	Arg	Leu	Ala 400
Arg	Arg	Ala	Trp	Gln 405	Arg	Phe	Gln	Ala	Ile 410	Glu	Ala	Arg	Gly	Gly 415	Phe
Val	Glu	Ala	His 420	Asp	Phe	Leu	Ala	Gly 425	Gln	Ile	Ala	Glu	Сув 430	Ala	Ala
Arg	Arg	Ala 435	Asp	Asp	Ile	Ala	His 440	Arg	Arg	Leu	Ala	Ile 445	Thr	Gly	Val
Asn	Glu 450	Tyr	Pro	Asn	Leu	Gly 455	Glu	Pro	Ala	Leu	Pro 460	Pro	Gly	Asp	Pro
Thr 465	Ser	Pro	Val	Arg	Arg 470	Tyr	Ala	Ala	Gly	Phe 475	Glu	Ala	Leu	Arg	Asp 480
Arg	Ser	Asp	His	His 485	Leu	Ala	Arg	Thr	Gly 490	Ala	Arg	Pro	Arg	Val 495	Leu
Leu	Leu	Pro	Leu 500	Gly	Pro	Leu	Ala	Glu 505	His	Asn	Ile	Arg	Thr 510	Thr	Phe
Ala	Thr	Asn 515	Leu	Leu	Ala	Ser	Gly 520	Gly	Ile	Glu	Ala	Ile 525	Asp	Pro	Gly

-continued

Thr Val Asp Ala Gly Thr Val Gly Asn Ala Val Ala Asp Ala Gly Ser Pro Ser Val Ala Val Ile Cys Gly Thr Asp Ala Arg Tyr Arg Asp Glu Val Ala Asp Ile Val Gln Ala Ala Arg Ala Ala Gly Val Ser Arg Val Tyr Leu Ala Gly Pro Glu Lys Ala Leu Gly Asp Ala Ala His Arg Pro Asp Glu Phe Leu Thr Ala Lys Ile Asn Val Val Gln Ala Leu Ser Asn Leu Leu Thr Arg Leu Gly Ala <210> SEQ ID NO 64 <211> LENGTH: 750 <212> TYPE: PRT <213> ORGANISM: Mycobacterium tuberculosis <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_001282810 <309> DATABASE ENTRY DATE: 2010-05-13 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(750) <400> SEQUENCE: 64 Met Thr Thr Lys Thr Pro Val Ile Gly Ser Phe Ala Gly Val Pro Leu His Ser Glu Arg Ala Ala Gln Ser Pro Thr Glu Ala Ala Val His Thr His Val Ala Ala Ala Ala Ala Ala His Gly Tyr Thr Pro Glu Gln Leu Val Trp His Thr Pro Glu Gly Ile Asp Val Thr Pro Val Tyr Ile Ala Ala Asp Arg Ala Ala Ala Glu Ala Glu Gly Tyr Pro Leu His Ser Phe 65 70 75 80 Pro Gly Glu Pro Pro Phe Val Arg Gly Pro Tyr Pro Thr Met Tyr Val Asn Gln Pro Trp Thr Ile Arg Gln Tyr Ala Gly Phe Ser Thr Ala Ala Asp Ser Asn Ala Phe Tyr Arg Arg Asn Leu Ala Ala Gly Gln Lys Gly Leu Ser Val Ala Phe Asp Leu Ala Thr His Arg Gly Tyr Asp Ser Asp His Pro Arg Val Gln Gly Asp Val Gly Met Ala Gly Val Ala Ile Asp Ser Ile Leu Asp Met Arg Gln Leu Phe Asp Gly Ile Asp Leu Ser Thr Val Ser Val Ser Met Thr Met Asn Gly Ala Val Leu Pro Ile Leu Ala Leu Tyr Val Val Ala Ala Glu Glu Gln Gly Val Ala Pro Glu Gln Leu Ala Gly Thr Ile Gln Asn Asp Ile Leu Lys Glu Phe Met Val Arg Asn Thr Tyr Ile Tyr Pro Pro Lys Pro Ser Met Arg Ile Ile Ser Asp Ile Phe Ala Tyr Thr Ser Ala Lys Met Pro Lys Phe Asn Ser Ile Ser Ile

											-	con	tin	ued	
				245					250					255	
Ser	Gly	Tyr	His 260	Ile	Gln	Glu	Ala	Gly 265	Ala	Thr	Ala	Asp	Leu 270	Glu	Leu
Ala	Tyr	Thr 275	Leu	Ala	Asp	Gly	Val 280	Asp	Tyr	Ile	Arg	Ala 285	Gly	Leu	Asn
Ala	Gly 290	Leu	Asp	Ile	Asp	Ser 295	Phe	Ala	Pro	Arg	Leu 300	Ser	Phe	Phe	Trp
Gly 305	Ile	Gly	Met	Asn	Phe 310	Phe	Met	Glu	Val	Ala 315	Lys	Leu	Arg	Ala	Gly 320
Arg	Leu	Leu	Trp	Ser 325	Glu	Leu	Val	Ala	Gln 330	Phe	Ala	Pro	Lys	Ser 335	Ala
ГЛа	Ser	Leu	Ser 340	Leu	Arg	Thr	His	Ser 345	Gln	Thr	Ser	Gly	Trp 350	Ser	Leu
Thr	Ala	Gln 355	Asp	Val	Phe	Asn	Asn 360	Val	Ala	Arg	Thr	Cys 365	Ile	Glu	Ala
Met	Ala 370	Ala	Thr	Gln	Gly	His 375	Thr	Gln	Ser	Leu	His 380	Thr	Asn	Ala	Leu
Asp 385		Ala	Leu	Ala	Leu 390	Pro	Thr	Asp	Phe	Ser 395	Ala	Arg	Ile	Ala	Arg 400
	Thr	Gln	Leu	Val 405	Leu	Gln	Gln	Glu	Ser 410		Thr	Thr	Arg	Pro 415	
Asp	Pro	Trp	_		Ser	Tyr	Tyr			Trp	Leu	Thr			Leu
Ala	Arg		420 Ala	Arg	Ala	His		425 Ala	Glu	Val	Ala		430 His	Gly	Gly
Met		435 Gln	Ala	Ile	Ser		440 Gly	Ile	Pro	Гла	Leu	445 Arg	Ile	Glu	Glu
Ala	450 Ala	Ala	Arg	Thr	Gln	455 Ala	Arg	Ile	Asp	Ser	460 Gly	Gln	Gln	Pro	Val
465 Val	Glv	Val	Agn	Lvs	470 Tyr	Gln	Val	Pro	Glu	475 Asp	нія	Glu	TIP	Glu	480 Val
	-			485	-				490	-				495	
	-		500		Ser			505					510	-	
Gln	Arg	Leu 515	Arg	Ala	Gly	Arg	Asp 520	Glu	Pro	Ala	Val	Arg 525	Ala	Ala	Leu
Ala	Glu 530	Leu	Thr	Arg	Ala	Ala 535	Ala	Glu	Gln	Gly	Arg 540	Ala	Gly	Ala	Asp
Gly 545	Leu	Gly	Asn	Asn	Leu 550	Leu	Ala	Leu	Ala	Ile 555	Asp	Ala	Ala	Arg	Ala 560
Gln	Ala	Thr	Val	Gly 565	Glu	Ile	Ser	Glu	Ala 570	Leu	Glu	ГЛЗ	Val	Tyr 575	Gly
Arg	His	Arg	Ala 580	Glu	Ile	Arg	Thr	Ile 585	Ser	Gly	Val	Tyr	Arg 590	Asp	Glu
Val	Gly	Lys 595	Ala	Pro	Asn	Ile	Ala 600	Ala	Ala	Thr	Glu	Leu 605	Val	Glu	Lys
Phe	Ala 610	Glu	Ala	Asp	Gly	Arg 615	Arg	Pro	Arg	Ile	Leu 620	Ile	Ala	Lys	Met
Gly 625	Gln	Asp	Gly	His	Asp 630	Arg	Gly	Gln	Lys	Val 635	Ile	Ala	Thr	Ala	Phe 640
Ala	Asb	Ile	Gly	Phe 645	Asp	Val	Asp	Val	Gly 650	Ser	Leu	Phe	Ser	Thr 655	Pro

-continued

Glu Glu Val Ala Arg Gln Ala Ala Asp Asn Asp Val His Val Ile Gly Val Ser Ser Leu Ala Ala Gly His Leu Thr Leu Val Pro Ala Leu Arg Asp Ala Leu Ala Gln Val Gly Arg Pro Asp Ile Met Ile Val Val Gly Gly Val Ile Pro Pro Gly Asp Phe Asp Glu Leu Tyr Ala Ala Gly Ala Thr Ala Ile Phe Pro Pro Gly Thr Val Ile Ala Asp Ala Ala Ile Asp Leu Leu His Arg Leu Ala Glu Arg Leu Gly Tyr Thr Leu Asp <210> SEQ ID NO 65 <211> LENGTH: 616 <212> TYPE: PRT <213> ORGANISM: Corynebacterium glutamicum <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_225814 <309> DATABASE ENTRY DATE: 2010-12-14 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(616) <400> SEQUENCE: 65 Met Thr Asp Leu Thr Lys Thr Ala Val Pro Glu Glu Leu Ser Glu Asn Leu Glu Thr Trp Tyr Lys Ala Val Ala Gly Val Phe Ala Arg Thr Gln 20 25 30 Lys Lys Asp Ile Gly Asp Ile Ala Val Asp Val Trp Lys Lys Leu Ile Val Thr Thr Pro Asp Gly Val Asp Ile Asn Pro Leu Tyr Thr Arg Ala Asp Glu Ser Gln Arg Lys Phe Thr Glu Val Pro Gly Glu Phe Pro Phe Thr Arg Gly Thr Thr Val Asp Gly Glu Arg Val Gly Trp Gly Val Thr Glu Thr Phe Gly His Asp Ser Pro Lys Asn Ile Asn Ala Ala Val Leu Asn Ala Leu Asn Ser Gly Thr Thr Thr Leu Gly Phe Glu Phe Ser Glu Glu Phe Thr Ala Ala Asp Leu Lys Val Ala Leu Glu Gly Val Tyr Leu Asn Met Ala Pro Leu Leu Ile His Ala Gly Gly Ser Thr Ser Glu Val Ala Ala Ala Leu Tyr Thr Leu Ala Glu Glu Ala Gly Thr Phe Phe Ala Ala Leu Thr Leu Gly Ser Arg Pro Leu Thr Ala Gln Val Asp Gly Ser His Ser Asp Thr Ile Glu Glu Ala Val Gln Leu Ala Val Asn Ala Ser Lys Arg Ala Asn Val Arg Ala Ile Leu Val Asp Gly Ser Ser Phe Ser 210 215 Asn Gln Gly Ala Ser Asp Ala Gln Glu Ile Gly Leu Ser Ile Ala Ala

-continued

	_	_		_	_									
Val	Aab	Tyr	Val 245	Arg	Arg	Leu	Val	Asp 250	Ala	Gly	Leu	Ser	Thr 255	Glu
Ala	Leu	Lys 260	Gln	Val	Ala	Phe	Arg 265	Phe	Ala	Val	Thr	Asp 270	Glu	Gln
Ala	Gln 275	Ile	Ser	Lys	Leu	Arg 280	Val	Ala	Arg	Arg	Leu 285	Trp	Ala	Arg
Cys 290	Glu	Val	Leu	Gly	Phe 295	Pro	Glu	Leu	Ala	Val 300	Ala	Pro	Gln	His
Val	Thr	Ala	Arg	Ala 310	Met	Phe	Ser	Gln	Arg 315	Asp	Pro	Trp	Val	Asn 320
Leu	Arg	Ser	Thr 325	Val	Ala	Ala	Phe	Ala 330	Ala	Gly	Val	Gly	Gly 335	Ala
Asp	Val	Glu 340	Val	Arg	Thr	Phe		Asp	Ala	Ile	Pro	Asp 350	Gly	Val
Gly		Ser	Arg	Asn	Phe		His	Arg	Ile	Ala	-	Asn	Thr	Asn
		Leu	Glu	Glu			Leu	Gly	His			Asp	Pro	Ala
	Ser	Tyr	Phe			Ser	Phe	Thr			Leu	Ala	Glu	Lys 400
Trp	Ala	Val			Gly	Ile	Glu			Gly	Gly	Tyr		
Cys	Ala			Thr	Val	Thr			Leu	Asp	Gln			Glu
Thr			Asp	Val	Ala			Lys	ГЛа	Гла			Gly	Ile
		Pro	Asn	Leu			Ser	Pro	Leu			Asp	Arg	Arg
	Pro	Ala	Gly			Arg	Trp	Ala			Phe	Glu	Ala	
Asn	Arg	Ser	_	Ala	Phe	Leu	Glu	-		Gly	Ala	Arg		480 Gln
Thr	Met				Gly	Pro			Lys	His	Asn	Ile		Thr
Phe	Thr	500 Ser	Asn	Leu	Leu	Ala	505 Ser	Gly	Gly	Ile	Glu	510 Ala	Ile	Asn
Gly	515 Gln	Leu	Val	Pro	Gly	520 Thr	Asp	Ala	Phe	Ala	525 Glu	Ala	Ala	Gln
530					535					540				
	-			550		-	-		555			-		560
-		-	565			-		570			-		575	-
		580	•			-	585			-		590		
Asp	Gly 595	-	Leu	Asn	Met	Thr 600	Ile	Asp	Ala	Ala	Ala 605	Thr	Leu	Ala
						Ala								
	Ala Ala Cys 290 Val Leu Asp Gly Cys Cys Trp Cys Glu Cys Glu Asn Thr Glu Asn Thr Glu Asn Cly Cys Cys Cys Cys Cys Cys Cys Cys Cys Cy	AlaLeuAlaGln 275CysGluValThrLeuArgAspValGlySerGlySerTrpAlaGlySerTrpAlaGluPheGluPheGluPheGluFheGluFheGluFheGluGluAsnArgThrMetPheThrGlyGlnAlaGlyGlyGlnLeuLeuAspGly	AlaLeuLysAlaGlnIleCysGluValCysGluValCysGluYalLeuArgSerAspValGluGlyYalSerGlySerTyrTrpAlaYalGlySerTyrTrpAlaSerGluPreAlaGluPreAlaGluPreAlaGluPreSerThrArgSerGluPreSerGluPreSerGluPreSerGluGlnLeuAsnArgSerGlyGlnLeuAlaGlyIleGlyGluGlyLeuLeuAsAspGlyTyr	245AlaLeuLysGlnAlaGlnIleSer275GluValLeu290GluValLeu290GluValArgValThrAlaArgLeuArgSerThrAspValGluYalGlyYalSerArgGlyLeuLeuGluGlySerTyrPheTrpAlaYalAspGluPheTroAlaGluPheProAsnGluPheProAspGluPheSerAspGluPheSerAspGluPheSerAspGluPheSerAspGluPheSerAspGluGluLeuYalAspGluLeuYalAlaGlyIleValGlyGluClyAspGlyGluClyAspGlyGluClyAspGlyGluClyAspGlyGluClyAspLeuAspGlyAspSoloClySeAspGlyGlySeSeLowSeGlyAspSoloClySeSeSoloGlySeSeSoloClySeSeSoloSe	245AlaLeuLysGlnValAlaGlnLusCysGluValLeuCysGluValLeuGlyYalThrAlaArgAlaArgArgSerThrAlaArgValGluYalArgArgYalGluYalArgGlyYalGluYalArgGlyYalGluGluArgGlyKerForGluGluGlySerTyrPheYalGlyAlaSerGlyThrArgAlaArgGlyThrGluProAlaAspValGluProAlaGlyYalAsnArgSerAspAlaGluProAlaGlyYalAsnArgSerAspAlaGluProAlaGlyYalAsnArgSerAspAlaFinSerAspAspAlaGlyGlnLeuValYalAlaGlyIlaValSerGlyGlnLeuValYalGlyGluGlyKalYalGlyGluGlyKalYalGlyGluGlyKalYalGlyGluKalKalYalGlyGluKalKalKal </td <td>245AlaLeuLysGlnValAlaAlaGlnIleSerLysLeuCysGluValLeuGlyPhe290GluValLeuGlyPhe290GluValLeuGlyPhe290GluValLeuGlyPhe290GluValArgGlyPhe295ValAlaArgAlaAlaLeuArgSerThrAlaArgAspValGluGluArgThrGlyValSerArgAspPhe101SerTyrPheNaiGluGlySerTyrPheNaiSerGlyAlaSerGlyThrValGlyAlaSerGlyThrValGlyAlaSerGlyThrValGluPheAlaAspValAlaGluPheAlaAspValAlaGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAsp<!--</td--><td>245AlaLeuLysGlnValAlaPheAlaGlnIleSerLysLeuArg275GluValLeuGlyPhePro290GluValLeuGlyPhePro290GluValLeuGlyPhePro290GluValArgGlyPhePro290GluValArgAlaMetPhe291ThrAlaArgAlaAlaAlaAngSerArgArgArgThrPheGlyXalSerArgAsnPheAlaSinoLeuGluGluGluSerHisGlySerTyrPheValAsnSerGlyAlaSerGlyThrValFroTrAlaSerGlyThrValSerGluPheAsnLeuAlaSerGlyGluPhoAsnLeuAlaSerGluPhoAsnLeuAsnAsnAsnGluPhoAsnLeuAsnAsnAsnGluPhoAsnAsnLeuAsnAsnGluPhoAsnAsnLeuAsnAsnGluPhoAsnLeuAsnLeuAsnGluSerAsnAsnLeuAsn</td><td>245AlaLeuLysGlnValAlaPheArg260GlnValLeuArgValArgArgYal290GluValLeuGlyPheProGlu290GluValLeuGlyPheProGlu290GluValArgArgArgProGlu290GluValArgArgArgProGlu290GluValArgArgArgProGlu290GluValArgArgArgArgPro290GluValArgArgArgArgArg101ArgSerThrValArgArgArg111KanSerArgArgArgArgArg111ArgArgGluArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg112ArgArgArgArgArgArgArg113ArgArgArgArgArgArgArg114ArgArgArgArgArgArgArg11</td><td>AlaLeuZ45250AlaLeuLysGlnValAlaPheAcgPheAlaGlnI.euSerLysLeuArgValAlaCysGluValLeuGlyPheProGluLeuCysGluValLeuGlyPhePhoGluLeuCysGluValLeuArgMatPhoSerGlnLeuArgSerTyrValArgArgMatArgGlyValGluGluArgGluAlaArgGlySerTyrPhoMatArgSrrGluArgGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerGlyThrValSerGluSerPhoGlyAlaSerGlyThrValSerPhoSerGlySerGlyThrKaSerGlySerPhoGlySerGlyThrKaSerGlyAlaSerGlyPhoAlaSerGlyThrKaSerPho<t< td=""><td>AlaLeuLysGlnValAlaPheArgCMAlaAlaGlnIleSerLysLeuArg265PheAlaAlaGlnValLeuGlyLeuArg280ValAlaArgCysGluValLeuGlyPheProGluLeuAla290GluValLeuGlyPheProGluLeuAla290GluValArgAlaMetPheSerGlnArg290GluValArgAlaMetPheSerGlnArg290GluValArgAlaAlaAlaAlaAla290GluValGluYalArgAlaAlaAlaArgSerThrAlaAlaAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaSorValGluGluGluSerArgAlaAlaGluValGluGluGluSerAlaAlaAlaSorAlaSerArgAlaSerAlaAlaGluSerTyrPheSerGluSerArgAlaArgAlaArgSerGluAlaArg</td><td>A1a Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Gln Ile Ser Lys Leu Arg Yal Ala Arg Arg Ala Gln Val Leu Gly Phe Arg Ala Arg Arg Cys Glu Val Leu Gly Phe Pro Glu Leu Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Ala Ala Yal 201 Clu Arg Arg Ala Ala Ala Ala 310 Val Arg Arg Arg Arg Ala Ala 345 Ser Arg Arg Arg Ala Ala 340 Glu Glu</td><td>245 250 Ala Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Ala Gln Ile Ser Lys Leu Arg Pro 280 Val Ala Arg Leu 285 Cys Glu Val Leu Glu Phe Pro Glu Leu Ala Yal Yal Ala Yal Ala Ala Ala Yal Yal</td><td>245 250 Ala Lys Gln Val Ala Phe Arg Phe Ala Val Th Asp Ala Gln Ile Ser Lys Leu Arg Val Ala Arg Arg Leu Thr Asp Cys Glu Val Leu Gly Phe Pro Glu Leu Ala Arg Arg Arg Pro Th Ala Arg Arg</td><td>Ala Lys Gu Val Ala Phe Ala Val Ala Arp Ala Ala Arp Arp Ala Arp Ala Arp Ala Arp Arp Ala Arp Ala Arp Arp Ar</td></t<></td></td>	245AlaLeuLysGlnValAlaAlaGlnIleSerLysLeuCysGluValLeuGlyPhe290GluValLeuGlyPhe290GluValLeuGlyPhe290GluValLeuGlyPhe290GluValArgGlyPhe295ValAlaArgAlaAlaLeuArgSerThrAlaArgAspValGluGluArgThrGlyValSerArgAspPhe101SerTyrPheNaiGluGlySerTyrPheNaiSerGlyAlaSerGlyThrValGlyAlaSerGlyThrValGlyAlaSerGlyThrValGluPheAlaAspValAlaGluPheAlaAspValAlaGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAspGluPheAlaAspAlaAsp </td <td>245AlaLeuLysGlnValAlaPheAlaGlnIleSerLysLeuArg275GluValLeuGlyPhePro290GluValLeuGlyPhePro290GluValLeuGlyPhePro290GluValArgGlyPhePro290GluValArgAlaMetPhe291ThrAlaArgAlaAlaAlaAngSerArgArgArgThrPheGlyXalSerArgAsnPheAlaSinoLeuGluGluGluSerHisGlySerTyrPheValAsnSerGlyAlaSerGlyThrValFroTrAlaSerGlyThrValSerGluPheAsnLeuAlaSerGlyGluPhoAsnLeuAlaSerGluPhoAsnLeuAsnAsnAsnGluPhoAsnLeuAsnAsnAsnGluPhoAsnAsnLeuAsnAsnGluPhoAsnAsnLeuAsnAsnGluPhoAsnLeuAsnLeuAsnGluSerAsnAsnLeuAsn</td> <td>245AlaLeuLysGlnValAlaPheArg260GlnValLeuArgValArgArgYal290GluValLeuGlyPheProGlu290GluValLeuGlyPheProGlu290GluValArgArgArgProGlu290GluValArgArgArgProGlu290GluValArgArgArgProGlu290GluValArgArgArgArgPro290GluValArgArgArgArgArg101ArgSerThrValArgArgArg111KanSerArgArgArgArgArg111ArgArgGluArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg112ArgArgArgArgArgArgArg113ArgArgArgArgArgArgArg114ArgArgArgArgArgArgArg11</td> <td>AlaLeuZ45250AlaLeuLysGlnValAlaPheAcgPheAlaGlnI.euSerLysLeuArgValAlaCysGluValLeuGlyPheProGluLeuCysGluValLeuGlyPhePhoGluLeuCysGluValLeuArgMatPhoSerGlnLeuArgSerTyrValArgArgMatArgGlyValGluGluArgGluAlaArgGlySerTyrPhoMatArgSrrGluArgGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerGlyThrValSerGluSerPhoGlyAlaSerGlyThrValSerPhoSerGlySerGlyThrKaSerGlySerPhoGlySerGlyThrKaSerGlyAlaSerGlyPhoAlaSerGlyThrKaSerPho<t< td=""><td>AlaLeuLysGlnValAlaPheArgCMAlaAlaGlnIleSerLysLeuArg265PheAlaAlaGlnValLeuGlyLeuArg280ValAlaArgCysGluValLeuGlyPheProGluLeuAla290GluValLeuGlyPheProGluLeuAla290GluValArgAlaMetPheSerGlnArg290GluValArgAlaMetPheSerGlnArg290GluValArgAlaAlaAlaAlaAla290GluValGluYalArgAlaAlaAlaArgSerThrAlaAlaAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaSorValGluGluGluSerArgAlaAlaGluValGluGluGluSerAlaAlaAlaSorAlaSerArgAlaSerAlaAlaGluSerTyrPheSerGluSerArgAlaArgAlaArgSerGluAlaArg</td><td>A1a Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Gln Ile Ser Lys Leu Arg Yal Ala Arg Arg Ala Gln Val Leu Gly Phe Arg Ala Arg Arg Cys Glu Val Leu Gly Phe Pro Glu Leu Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Ala Ala Yal 201 Clu Arg Arg Ala Ala Ala Ala 310 Val Arg Arg Arg Arg Ala Ala 345 Ser Arg Arg Arg Ala Ala 340 Glu Glu</td><td>245 250 Ala Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Ala Gln Ile Ser Lys Leu Arg Pro 280 Val Ala Arg Leu 285 Cys Glu Val Leu Glu Phe Pro Glu Leu Ala Yal Yal Ala Yal Ala Ala Ala Yal Yal</td><td>245 250 Ala Lys Gln Val Ala Phe Arg Phe Ala Val Th Asp Ala Gln Ile Ser Lys Leu Arg Val Ala Arg Arg Leu Thr Asp Cys Glu Val Leu Gly Phe Pro Glu Leu Ala Arg Arg Arg Pro Th Ala Arg Arg</td><td>Ala Lys Gu Val Ala Phe Ala Val Ala Arp Ala Ala Arp Arp Ala Arp Ala Arp Ala Arp Arp Ala Arp Ala Arp Arp Ar</td></t<></td>	245AlaLeuLysGlnValAlaPheAlaGlnIleSerLysLeuArg275GluValLeuGlyPhePro290GluValLeuGlyPhePro290GluValLeuGlyPhePro290GluValArgGlyPhePro290GluValArgAlaMetPhe291ThrAlaArgAlaAlaAlaAngSerArgArgArgThrPheGlyXalSerArgAsnPheAlaSinoLeuGluGluGluSerHisGlySerTyrPheValAsnSerGlyAlaSerGlyThrValFroTrAlaSerGlyThrValSerGluPheAsnLeuAlaSerGlyGluPhoAsnLeuAlaSerGluPhoAsnLeuAsnAsnAsnGluPhoAsnLeuAsnAsnAsnGluPhoAsnAsnLeuAsnAsnGluPhoAsnAsnLeuAsnAsnGluPhoAsnLeuAsnLeuAsnGluSerAsnAsnLeuAsn	245AlaLeuLysGlnValAlaPheArg260GlnValLeuArgValArgArgYal290GluValLeuGlyPheProGlu290GluValLeuGlyPheProGlu290GluValArgArgArgProGlu290GluValArgArgArgProGlu290GluValArgArgArgProGlu290GluValArgArgArgArgPro290GluValArgArgArgArgArg101ArgSerThrValArgArgArg111KanSerArgArgArgArgArg111ArgArgGluArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg111ArgArgArgArgArgArgArg112ArgArgArgArgArgArgArg113ArgArgArgArgArgArgArg114ArgArgArgArgArgArgArg11	AlaLeuZ45250AlaLeuLysGlnValAlaPheAcgPheAlaGlnI.euSerLysLeuArgValAlaCysGluValLeuGlyPheProGluLeuCysGluValLeuGlyPhePhoGluLeuCysGluValLeuArgMatPhoSerGlnLeuArgSerTyrValArgArgMatArgGlyValGluGluArgGluAlaArgGlySerTyrPhoMatArgSrrGluArgGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerTyrPhoSerGluSerPhoAlaGlySerGlyThrValSerGluSerPhoGlyAlaSerGlyThrValSerPhoSerGlySerGlyThrKaSerGlySerPhoGlySerGlyThrKaSerGlyAlaSerGlyPhoAlaSerGlyThrKaSerPho <t< td=""><td>AlaLeuLysGlnValAlaPheArgCMAlaAlaGlnIleSerLysLeuArg265PheAlaAlaGlnValLeuGlyLeuArg280ValAlaArgCysGluValLeuGlyPheProGluLeuAla290GluValLeuGlyPheProGluLeuAla290GluValArgAlaMetPheSerGlnArg290GluValArgAlaMetPheSerGlnArg290GluValArgAlaAlaAlaAlaAla290GluValGluYalArgAlaAlaAlaArgSerThrAlaAlaAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaSorValGluGluGluSerArgAlaAlaGluValGluGluGluSerAlaAlaAlaSorAlaSerArgAlaSerAlaAlaGluSerTyrPheSerGluSerArgAlaArgAlaArgSerGluAlaArg</td><td>A1a Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Gln Ile Ser Lys Leu Arg Yal Ala Arg Arg Ala Gln Val Leu Gly Phe Arg Ala Arg Arg Cys Glu Val Leu Gly Phe Pro Glu Leu Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Ala Ala Yal 201 Clu Arg Arg Ala Ala Ala Ala 310 Val Arg Arg Arg Arg Ala Ala 345 Ser Arg Arg Arg Ala Ala 340 Glu Glu</td><td>245 250 Ala Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Ala Gln Ile Ser Lys Leu Arg Pro 280 Val Ala Arg Leu 285 Cys Glu Val Leu Glu Phe Pro Glu Leu Ala Yal Yal Ala Yal Ala Ala Ala Yal Yal</td><td>245 250 Ala Lys Gln Val Ala Phe Arg Phe Ala Val Th Asp Ala Gln Ile Ser Lys Leu Arg Val Ala Arg Arg Leu Thr Asp Cys Glu Val Leu Gly Phe Pro Glu Leu Ala Arg Arg Arg Pro Th Ala Arg Arg</td><td>Ala Lys Gu Val Ala Phe Ala Val Ala Arp Ala Ala Arp Arp Ala Arp Ala Arp Ala Arp Arp Ala Arp Ala Arp Arp Ar</td></t<>	AlaLeuLysGlnValAlaPheArgCMAlaAlaGlnIleSerLysLeuArg265PheAlaAlaGlnValLeuGlyLeuArg280ValAlaArgCysGluValLeuGlyPheProGluLeuAla290GluValLeuGlyPheProGluLeuAla290GluValArgAlaMetPheSerGlnArg290GluValArgAlaMetPheSerGlnArg290GluValArgAlaAlaAlaAlaAla290GluValGluYalArgAlaAlaAlaArgSerThrAlaAlaAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaArgSerArgArgThrAlaAlaAlaAlaSorValGluGluGluSerArgAlaAlaGluValGluGluGluSerAlaAlaAlaSorAlaSerArgAlaSerAlaAlaGluSerTyrPheSerGluSerArgAlaArgAlaArgSerGluAlaArg	A1a Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Gln Ile Ser Lys Leu Arg Yal Ala Arg Arg Ala Gln Val Leu Gly Phe Arg Ala Arg Arg Cys Glu Val Leu Gly Phe Pro Glu Leu Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Arg 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Met Phe Ser Gln Arg Asp 290 Clu Val Arg Ala Ala Ala Yal 201 Clu Arg Arg Ala Ala Ala Ala 310 Val Arg Arg Arg Arg Ala Ala 345 Ser Arg Arg Arg Ala Ala 340 Glu Glu	245 250 Ala Leu Lys Gln Val Ala Phe Arg Phe Ala Val Ala Ala Gln Ile Ser Lys Leu Arg Pro 280 Val Ala Arg Leu 285 Cys Glu Val Leu Glu Phe Pro Glu Leu Ala Yal Yal Ala Yal Ala Ala Ala Yal Yal	245 250 Ala Lys Gln Val Ala Phe Arg Phe Ala Val Th Asp Ala Gln Ile Ser Lys Leu Arg Val Ala Arg Arg Leu Thr Asp Cys Glu Val Leu Gly Phe Pro Glu Leu Ala Arg Arg Arg Pro Th Ala Arg Arg	Ala Lys Gu Val Ala Phe Ala Val Ala Arp Ala Ala Arp Arp Ala Arp Ala Arp Ala Arp Arp Ala Arp Ala Arp Arp Ar

<211> LENGTH: 737 <212> TYPE: PRT

-	cont	าทบ	led

<213> ORGANISM: Corynebacterium glutamicum <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_225813 <309> DATABASE ENTRY DATE: 2010-12-14 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(737) <400> SEOUENCE: 66 Met Thr Ser Ile Pro Asn Phe Ser Asp Ile Pro Leu Thr Ala Glu Thr Arg Ala Ser Glu Ser His Asn Val Asp Ala Gly Lys Val Trp Asn Thr Pro Glu Gly Ile Asp Val Lys Arg Val Phe Thr Gln Ala Asp Arg Asp Glu Ala Gln Ala Ala Gly His Pro Val Asp Ser Leu Pro Gly Gln Lys
 Pro
 Phe
 Arg
 Gly
 Pro
 Tyr
 Pro
 Thr
 Asn
 Gln
 Pro
 Trp

 65
 70
 75
 80
 Thr Ile Arg Gln Tyr Ala Gly Phe Ser Thr Ala Ala Glu Ser Asn Ala Phe Tyr Arg Arg Asn Leu Ala Ala Gly Gln Lys Gly Leu Ser Val Ala Phe Asp Leu Ala Thr His Arg Gly Tyr Asp Ser Asp Asn Glu Arg Val Val Gly Asp Val Gly Met Ala Gly Val Ala Ile Asp Ser Ile Leu Asp 130 135 140 Met Arg Gln Leu Phe Asp Gly Ile Asp Leu Ser Ser Val Ser Val Ser Met Thr Met Asn Gly Ala Val Leu Pro Ile Leu Ala Phe Tyr Ile Val Ala Ala Glu Glu Gln Gly Val Gly Pro Glu Gln Leu Ala Gly Thr Ile Gln Asn Asp Ile Leu Lys Glu Phe Met Val Arg Asn Thr Tyr Ile Tyr Pro Pro Lys Pro Ser Met Arg Ile Ile Ser Asn Ile Phe Glu Tyr Thr Ser Leu Lys Met Pro Arg Phe Asn Ser Ile Ser Ile Ser Gly Tyr His Ile Gln Glu Ala Gly Ala Thr Ala Asp Leu Glu Leu Ala Tyr Thr Leu Ala Asp Gly Ile Glu Tyr Ile Arg Ala Gly Lys Glu Val Gly Leu Asp Val Asp Lys Phe Ala Pro Arg Leu Ser Phe Phe Trp Gly Ile Ser Met Tyr Thr Phe Met Glu Ile Ala Lys Leu Arg Ala Gly Arg Leu Leu Trp Ser Glu Leu Val Ala Lys Phe Asp Pro Lys Asn Ala Lys Ser Gln Ser Leu Arg Thr His Ser Gln Thr Ser Gly Trp Ser Leu Thr Ala Gln Asp Val Tyr Asn Asn Val Ala Arg Thr Ala Ile Glu Ala Met Ala Ala Thr Gln Gly His Thr Gln Ser Leu His Thr Asn Ala Leu Asp Glu Ala Leu

90

Ala	Leu 370	Pro	Thr	Asp	Phe	Ser 375	Ala	Arg	Ile	Ala	Arg 380	Asn	Thr	Gln	Leu
Leu 385	Leu	Gln	Gln	Glu	Ser 390	Gly	Thr	Val	Arg	Pro 395	Val	Asp	Pro	Trp	Ala 400
Gly	Ser	Tyr	Tyr	Val 405	Glu	Trp	Leu	Thr	Asn 410	Glu	Leu	Ala	Asn	Arg 415	Ala
Arg	Lys	His	Ile 420	Asp	Glu	Val	Glu	Glu 425	Ala	Gly	Gly	Met	Ala 430	Gln	Ala
Thr	Ala	Gln 435	Gly	Ile	Pro	Lys	Leu 440	Arg	Ile	Glu	Glu	Ser 445	Ala	Ala	Arg
Thr	Gln 450	Ala	Arg	Ile	Asp	Ser 455	Gly	Arg	Gln	Ala	Leu 460	Ile	Gly	Val	Asn
Arg 465	Tyr	Val	Ala	Glu	Glu 470	Asp	Glu	Glu	Ile	Glu 475	Val	Leu	Lys	Val	Asp 480
Asn	Thr	Lys	Val	Arg 485	Ala	Glu	Gln	Leu	Ala 490	Lys	Leu	Ala	Gln	Leu 495	Гла
Ala	Glu	Arg	Asn 500	Asp	Ala	Glu	Val	Lys 505	Ala	Ala	Leu	Asp	Ala 510	Leu	Thr
Ala	Ala	Ala 515	Arg	Asn	Glu	His	Lys 520	Glu	Pro	Gly	Asp	Leu 525	Asp	Gln	Asn
Leu	Leu 530	Lys	Leu	Ala	Val	Asp 535	Ala	Ala	Arg	Ala	Lys 540	Ala	Thr	Ile	Gly
Glu 545	Ile	Ser	Asp	Ala	Leu 550	Glu	Val	Val	Phe	Gly 555	Arg	His	Glu	Ala	Glu 560
Ile	Arg	Thr	Leu	Ser 565	Gly	Val	Tyr	Lys	Asp 570	Glu	Val	Gly	Lys	Glu 575	Gly
Thr	Val	Ser	Asn 580	Val	Glu	Arg	Ala	Ile 585	Ala	Leu	Ala	Asp	Ala 590	Phe	Glu
Ala	Glu	Glu 595	Gly	Arg	Arg	Pro	Arg 600	Ile	Phe	Ile	Ala	Lys 605	Met	Gly	Gln
Asp	Gly 610	His	Asp	Arg	Gly	Gln 615	Lya	Val	Val	Ala	Ser 620	Ala	Tyr	Ala	Asp
Leu 625	Gly	Met	Asp	Val	Asp 630	Val	Gly	Pro	Leu	Phe 635	Gln	Thr	Pro	Ala	Glu 640
Ala	Ala	Arg	Ala	Ala 645	Val	Asp	Ala	Asp	Val 650	His	Val	Val	Gly	Met 655	Ser
Ser	Leu	Ala	Ala 660	Gly	His	Leu	Thr	Leu 665	Leu	Pro	Glu	Leu	Lys 670	Lys	Glu
Leu	Ala	Ala 675	Leu	Gly	Arg	Asp	Asp 680	Ile	Leu	Val	Thr	Val 685	Gly	Gly	Val
Ile	Pro 690	Pro	Gly	Asp	Phe	Gln 695	Asp	Leu	Tyr	Asp	Met 700	Gly	Ala	Ala	Ala
Ile 705	Tyr	Pro	Pro	Gly	Thr 710	Val	Ile	Ala	Glu	Ser 715	Ala	Ile	Asp	Leu	Ile 720
Thr	Arg	Leu	Ala	Ala 725	His	Leu	Gly	Phe	Asp 730	Leu	Asp	Val	Asp	Val 735	Asn
Glu															

<210> SEQ ID NO 67 <211> LENGTH: 631 <212> TYPE: PRT

<213> ORGANISM: Rhodococcus erythropolis <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NCBI / YP_002766535 <309> DATABASE ENTRY DATE: 2010-05-12 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(631) <400> SEOUENCE: 67 Met Ser Leu Ala Ser Glu Ala Glu Ala Val Glu Gln Ala Tyr Ala Glu Trp Gln Arg Ser Val Ala Gly Val Leu Ala Lys Ser Arg Arg Val Asp 2.0 Ala Ala Glu Leu Gly Pro Glu Pro Gln Lys Leu Leu Glu Thr Val Thr Tyr Asp Gly Val Thr Val Ala Pro Leu Tyr Ser Pro Arg Asp Glu Arg
 Pro Glu Gln Ser Leu Pro Gly Thr Phe Pro Tyr Val Arg Gly Val Asp

 65
 70
 75
 80
 Ala His Arg Asp Val Asn Ala Gly Trp Leu Val Ser Ala Ala Phe Gly Thr Ala Ser Ala Ala Glu Thr Asn Arg Ala Ile Leu Asp Ala Leu Glu Asn Gly Val Ser Ala Leu Trp Leu Lys Val Gly Ala Asp Gly Val Pro Val Thr Asp Leu Ala Ala Ala Leu Glu Gly Val Leu Leu Asp Leu Ala Pro Leu Thr Leu Asp Ala Gly Ala Glu Val Asn Asp Ala Ala Arg Ala Leu Phe Ser Leu Leu Asp Ala Arg Gly Glu Ala Gly Asp Gly Val Ser Asp Arg Ser Ser Ile Arg Val His Leu Gly Ala Ala Pro Leu Thr Ser Ser Phe Ser Gly Ala Ala Asp Val Glu Phe Ala Gly Ala Val Glu Leu Ala Ala Leu Ala Ala Ala Arg Ala Glu Thr Val His Ala Ile Thr Val Asp Gly Thr Ala Phe His Asn Ala Gly Ala Gly Asp Ala Glu Glu Leu Gly Ala Ala Ile Ala Ala Gly Leu Glu Tyr Leu Arg Ala Leu Thr Ala Glu Ser Gly Leu Thr Ile Gly Ala Ala Leu Ser Gln Leu Ala Phe Arg Tyr Ser Ala Thr Asp Asp Gln Phe Gln Thr Ile Ala Lys Phe Arg Ala Ala Arg Leu Val Trp Ala Arg Ile Ala Gln Val Cys Gly Ala Ser Asp Phe Gly Gly Ala Pro Gln His Ala Val Thr Ser Ala Ala Met Met Ala Gln Arg Asp Pro Trp Val Asn Met Leu Arg Thr Thr Leu Ala Ala Phe Gly Ala Gly Val Gly Gly Ala Asp Ala Val Thr Val Leu Pro Phe Asp Val Ala Leu Ala Asp Gly Thr Leu Gly Val Ser Lys Ser Phe Ser Ser

-continued

Arg	Ile 370	Ala	Arg	Asn	Thr	Gln 375	Leu	Leu	Leu	Leu	Glu 380	Glu	Ser	His	Leu
Gly 385	Arg	Val	Leu	Asp	Pro 390	Ser	Ala	Gly	Ser	Trp 395	Tyr	Val	Glu	Asp	Leu 400
Thr	Gln	Gln	Ile	Ala 405	Ala	Thr	Ala	Trp	Glu 410	Phe	Phe	Gln	Glu	Ile 415	Glu
Ala	Ala	Gly	Gly 420	Tyr	Leu	Ala	Ala	Leu 425	Glu	Ala	Gly	Ile	Val 430	Ser	Gly
Arg	Ile	Ala 435	Ala	Thr	Lys	Ala	Lys 440	Arg	Asp	Ser	Asp	Ile 445	Ala	His	Arg
Lys	Thr 450	Thr	Val	Thr	Gly	Val 455	Asn	Glu	Phe	Pro	Asn 460	Leu	Gly	Glu	Thr
Pro 465	Leu	Ser	Ala	Glu	Ala 470	Val	Glu	Pro	Gly	Gln 475	Ser	Val	Ala	Arg	Tyr 480
Ala	Ala	Ala	Phe	Glu 485	Ala	Leu	Arg	Aab	Arg 490	Ser	Asp	Ala	Phe	Leu 495	Ala
Ala	Gly	Gly	Ala 500	Arg	Pro	Thr	Ala	Leu 505	Leu	Ala	Pro	Leu	Gly 510	Ser	Val
Ala	Glu	His 515	Asn	Val	Arg	Thr	Thr 520	Phe	Ala	Ser	Asn	Leu 525	Leu	Ala	Ser
Gly	Gly 530	Ile	Asp	Ala	Val	Asn 535	Pro	Gly	Pro	Leu	Glu 540	Val	Gly	Ala	Glu
Ala 545	Ile	Ser	Ala	Ala	Val 550		Ala	Ser	Gly	Val 555	Thr	Val	Ala	Val	Leu 560
Суз	Gly	Thr	Asp	Lys 565	Arg	Tyr	Gly	Glu	Ser 570	Ala	Ala	Ala	Ala	Val 575	Ala
Glu	Leu	Arg	Ala 580	Ala	Gly	Ile	Thr	Lys 585	Val	Leu	Leu	Ala	Gly 590	Pro	Glu
ГЛа	Ala	Val 595	Ala	Asp	Ala	Thr	Gly 600	Glu	Ser	Arg	Pro	Asp 605	Gly	Phe	Leu
Thr	Ala 610	Arg	Ile	Asp	Ala	Val 615	Ser	Ala	Leu	Thr	Glu 620	Leu	Leu	Asp	Phe
Ile 625	Glu	Thr	Gly	Ser	Ser 630	Lys									
<212 <212 <212 <302 <302 <302	0 > SI 1 > LI 2 > T 3 > OI 0 > PT 3 > D 9 > D 3 > RI 3 > RI	ENGTH YPE: RGANI JBLI(ATABA	H: 7 PRT ISM: CATIO ASE J ASE J	50 Rhod DN II ACCES	NFORN SSION Y DA'	MATION NUN N NUN FE: 2	DN: MBER 2010-	: NCH -05-1	3I / L2	YP_C			5		
<40	0> SI	EQUEI	ICE :	68											
Met 1	Thr	Thr	Arg	Glu 5	Val	Lys	His	Val	Ile 10	Gly	Ser	Phe	Ala	Glu 15	Val
Pro	Leu	Glu	Asp 20	Pro	Gln	Ser	Pro	Ala 25	Pro	Thr	Pro	Pro	Ser 30	Val	Glu
Gln	Ala	Gln 35	Ala	Leu	Ile	Glu	Glu 40	Gly	Ala	Asn	Ala	Asn 45	Asn	Tyr	Ala
Ala	Glu 50	Gln	Val	Val	Trp	Ser 55	Thr	Pro	Glu	Gly	Ile 60	Asp	Val	Lys	Pro

-continued

											-	con	tın	ued						
Val 65	Tyr	Thr	Gly	Ala	Asp 70	Arg	Thr	Ala	Ala	Ala 75	Glu	Ser	Gly	Tyr	Pro 80					
Leu	Asp	Ser	Phe	Pro 85	Gly	Ala	Ala	Pro	Phe 90	Leu	Arg	Gly	Pro	Tyr 95	Pro					
Thr	Met	Tyr	Val 100	Asn	Gln	Pro	Trp	Thr 105	Ile	Arg	Gln	Tyr	Ala 110	Gly	Phe					
Ser	Thr	Ala 115	Ala	Glu	Ser	Asn	Ala 120	Phe	Tyr	Arg	Arg	Asn 125	Leu	Ala	Ala					
Gly	Gln 130	Lys	Gly	Leu	Ser	Val 135	Ala	Phe	Asb	Leu	Ala 140	Thr	His	Arg	Gly					
Tyr 145	Asp	Ser	Asp	His	Pro 150	Arg	Val	Ala	Gly	Asp 155	Val	Gly	Met	Ala	Gly 160					
Val	Ala	Ile	Asp	Ser 165	Ile	Leu	Asp	Met	Arg 170	Gln	Leu	Phe	Asp	Gly 175	Ile					
Asp	Leu	Ser	Gln 180	Val	Ser	Val	Ser	Met 185	Thr	Met	Asn	Gly	Ala 190	Val	Leu					
Pro	Ile	Leu 195	Ala	Leu	Tyr	Val	Ala 200	Ala	Ala	Gly	Glu	Gln 205	Gly	Val	Thr					
Pro	Asp 210	Lys	Leu	Ala	Gly	Thr 215	Ile	Gln	Asn	Asp	Ile 220	Leu	Lys	Glu	Phe					
Met 225	Val	Arg	Asn	Thr	Tyr 230	Ile	Tyr	Pro	Pro	Lys 235	Pro	Ser	Met	Arg	Ile 240					
Ile	Ser	Aab	Ile	Phe 245	Ala	Tyr	Ser	Ser	Ala 250	Glu	Met	Pro	Lys	Tyr 255	Asn					
Ser	Ile	Ser	Ile 260	Ser	Gly	Tyr	His	Ile 265	Gln	Glu	Ala	Gly	Ala 270	Thr	Ala					
Asp	Leu	Glu 275	Leu	Ala	Tyr	Thr	Leu 280	Ala	Asp	Gly	Val	Glu 285	Tyr	Ile	Arg					
Ala	Gly 290	Leu	Asp	Ala	Gly	Met 295	Asp	Ile	Asp	Lys	Phe 300	Ala	Pro	Arg	Leu					
Ser 305	Phe	Phe	Trp	Ala	Ile 310	Gly	Met	Asn	Phe	Phe 315	Met	Glu	Val	Ala	Lys 320					
Leu	Arg	Ala	Gly	Arg 325	Leu	Leu	Trp	Ala	Glu 330	Leu	Val	Ala	Гла	Phe 335	Asp					
Pro	Lys	Ser	Ala 340	Гла	Ser	Leu	Ser	Leu 345	Arg	Thr	His	Ser	Gln 350	Thr	Ser					
Gly	Trp	Ser 355	Leu	Thr	Ala	Gln	Asp 360	Val	Phe	Asn	Asn	Val 365	Pro	Arg	Thr					
Суз	Val 370	Glu	Ala	Met	Ala	Ala 375	Thr	Gln	Gly	His	Thr 380	Gln	Ser	Leu	His					
Thr 385	Asn	Ala	Leu	Asp	Glu 390	Ala	Ile	Ala	Leu	Pro 395	Thr	Asp	Phe	Ser	Ala 400					
Arg	Ile	Ala	Arg	Asn 405	Thr	Gln	Leu	Leu	Leu 410	Gln	Gln	Glu	Ser	Gly 415	Thr					
Val	Arg	Pro	Ile 420	Asp	Pro	Trp	Gly	Gly 425	Ser	Tyr	Tyr	Val	Glu 430	Trp	Leu					
Thr	Asn	Glu 435	Leu	Ala	Asn	Arg	Ala 440	Arg	Lys	His	Ile	Glu 445	Glu	Val	Glu					
Glu	Ala 450	Gly	Gly	Met	Ala	Gln 455	Ala	Ile	Asn	Glu	Gly 460	Ile	Pro	ГЛа	Leu					
Arg	Ile	Glu	Glu	Ala	Ala	Ala	Arg	Thr	Gln	Ala	Arg	Ile	Asp	Ser	Gly					

-continued

												0011	0 111	uea		
465					470					475					480	
Arg	Gln	Pro	Leu	Val 485	Gly	Val	Asn	Lys	Tyr 490	Val	Pro	Asp	Glu	Val 495	Asp	
Thr	Ile	Glu	Val 500	Leu	Lys	Val	Glu	Asn 505	Ser	Lys	Val	Arg	Lys 510	Glu	Gln	
Leu	Glu	Lys 515	Leu	Val	Arg	Leu	Arg 520	Ala	Glu	Arg	Asp	Pro 525	Glu	Ala	Val	
Glu	Ala 530	Ala	Leu	Ala	Asn	Leu 535	Thr	Arg	Ala	Ala	Ala 540	Ser	Thr	Glu	Gly	
Gly 545	Met	Glu	Asn	Asn	Leu 550	Leu	Ala	Leu	Ala	Val 555	Val	Ala	Ala	Arg	Ala 560	
Met	Ala	Thr	Val	Gly 565	Glu	Ile	Ser	Asp	Ala 570	Leu	Glu	ГЛЗ	Val	Tyr 575	Gly	
Arg	His	Gln	Ala 580	Glu	Ile	Arg	Thr	Ile 585	Ser	Gly	Val	Tyr	Arg 590	Asp	Glu	
Ala	Gly	Thr 595	Val	Ser	Asn	Ile	Ser 600	Lys	Ala	Met	Glu	Leu 605	Val	Glu	Lys	
Phe	Ala 610	Glu	Asp	Glu	Gly	Arg 615	Arg	Pro	Arg	Ile	Leu 620	Val	Ala	ГЛа	Met	
Gly 625		Aap	Gly	His	Asp 630	Arg	Gly	Gln	Lys	Val 635	Ile	Ser	Thr	Ala	Phe 640	
Ala	Asp	Ile	Gly	Phe 645	Asp	Val	Asp	Val	Gly 650	Pro	Leu	Phe	Gln	Thr 655	Pro	
Glu	Glu	Val	Ala 660	Asn	Gln	Ala	Ala	Asp 665	Asn	Asp	Val	His	Val 670	Val	Gly	
Val	Ser	Ser 675	Leu	Ala	Ala	Gly	His 680	Leu	Thr	Leu	Val	Pro 685	Ala	Leu	Arg	
Glu	Ala 690	Leu	Ala	Ala	Ala	Gly 695	-	Pro	Asp	Ile	Met 700	Ile	Val	Val	Gly	
Gly 705	Val	Ile	Pro	Pro	Gly 710	Asp	Phe	Asp		Leu 715	Tyr	Glu	Ala	Gly	Ala 720	
Ala	Ala	Ile	Phe	Pro 725	Pro	Gly	Thr	Val	Ile 730	Ala	Asp	Ala	Ala	Ser 735	Gly	
Leu	Leu	Glu	Lys 740	Leu	Ser	Ala	Gln	Leu 745	Gly	His	Asp	His	Ser 750			
<211 <212 <213 <300 <308 <309 <313	.> LE .> TY .> OF .> PU .> DZ .> DZ .> RE	JBLIC ATABA ATABA	H: 63 PRT ISM: CATIO ASE 1 ASE 1 ANT 1	Porp DN II ACCES ENTRY RESII	NFORI SSIOI Y DA'	MATION NUM N NUM FE: 2	as g: ON: MBER 2010- SEQ :	- NCE - 06 - 2	3I / 29	NP_9						
					Glu	Lys	Leu	Phe	Ser	Glu	Phe	Pro	Pro	Val	Ser	
1		-		5		-			10					15 Val		
-			20		-	-		25		-		-	30			
	JIU	цув 35	цүв	цец	var	ттЪ	40	1111	лан	Gru	сту	45	LOII	Val Thr	1167	

Leu 65	Pro	Asp	Glu	Tyr	Pro 70	Tyr	Val	Arg	Ser	Thr 75	Arg	Met	His	Asn	Glu 80
Trp	Leu	Val	Arg	Gln 85	Asp	Ile	Val	Val	Gly 90	Asp	Asn	Val	Ala	Glu 95	Ala
Asn	Glu	Lys	Ala 100	Leu	Asp	Leu	Leu	Asn 105	Lys	Gly	Val	Asp	Ser 110	Leu	Gly
Phe	Tyr	Leu 115	ГÀа	ГÀа	Val	His	Ile 120	Asn	Val	Asp	Thr	Leu 125	Ala	Ala	Leu
Leu	Lys 130	Asp	Ile	Glu	Leu	Thr 135	Ala	Val	Glu	Leu	Asn 140	Phe	Asn	Сув	Сув
Ile 145	Thr	Arg	Ala	Ala	Asp 150	Leu	Leu	Ser	Ala	Phe 155	Ser	Ala	Tyr	Val	Lys 160
Lys	Val	Gly	Ala	Asp 165	Pro	Asn	Lys	Сув	His 170	Gly	Ser	Val	Ser	Tyr 175	Asp
Pro	Phe	Lys	Lys 180	Gln	Leu	Val	Arg	Gly 185	Val	Ser	Asn	Pro	Asp 190	Trp	Val
ГЛЗ	Met	Thr 195	Leu	Pro	Val	Met	Asp 200	Ala	Ala	Arg	Glu	Leu 205	Pro	Ala	Phe
Arg	Val 210	Leu	Asn	Val	Asn	Ala 215	Val	Asn	Leu	Ser	Asp 220	Ala	Gly	Ala	Phe
Ile 225	Thr	Gln	Glu	Leu	Gly 230	Tyr	Ala	Leu	Ala	Trp 235	Gly	Ala	Glu	Leu	Leu 240
Aab	Lys	Leu	Thr	Asp 245	Ala	Gly	Tyr	Lys	Pro 250	Glu	Glu	Ile	Ala	Ser 255	Arg
Ile	Lys	Phe	Asn 260	Phe	Gly	Ile	Gly	Ser 265	Asn	Tyr	Phe	Met	Glu 270	Ile	Ala
ГЛа	Phe	Arg 275	Ala	Ala	Arg	Trp	Leu 280	Trp	Ala	Gln	Ile	Val 285	Gly	Ser	Tyr
Gly	Asp 290	Gln	Tyr	Lys	Asn	Glu 295	Thr	Ala	Lys	Ile	His 300	Gln	His	Ala	Thr
Thr 305	Ser	Met	Trp	Asn	Lys 310	Thr	Val	Phe	Asp	Ala 315	His	Val	Asn	Leu	Leu 320
Arg	Thr	Gln	Thr	Glu 325	Thr	Met	Ser	Ala	Ala 330	Ile	Ala	Gly	Val	Asp 335	Ser
Ile	Thr	Val	Leu 340	Pro	Phe	Asp	Val	Thr 345	Tyr	Gln	Gln	Ser	Asp 350	Asp	Phe
Ser		Arg 355		Ala	Arg		Gln 360		Leu	Leu		Lys 365	Glu	Glu	Сув
His	Phe 370	Asp	Lys	Val	Ile	Asp 375	Pro	Ser	Ala	Gly	Ser 380	Tyr	Tyr	Ile	Glu
Thr 385	Leu	Thr	Asn	Ser	Ile 390	Gly	Glu	Glu	Ala	Trp 395	ГЛЗ	Leu	Phe	Leu	Ser 400
Val	Glu	Asp	Ala	Gly 405	Gly	Phe	Thr	Gln	Ala 410	Ala	Glu	Thr	Ala	Ser 415	Ile
Gln	Lys	Ala	Val 420	Asn	Ala	Ser	Asn	Ile 425	Lys	Arg	His	Gln	Ser 430	Val	Ala
Thr	Arg	Arg 435	Glu	Ile	Phe	Leu	Gly 440	Thr	Asn	Gln	Phe	Pro 445	Asn	Phe	Thr
Glu	Val 450	Ala	Gly	Asp	Lys	Ile 455	Thr	Leu	Ala	Gln	Gly 460	Glu	His	Asp	Суз

-continued

_													con	tın	uea	
	sn 65	Суз	Val	Lys	Ser	Ile 470	Glu	Pro	Leu	Asn	Phe 475	Ser	Arg	Gly	Ala	Ser 480
G	lu	Phe	Glu	Ala	Leu 485	Arg	Leu	Ala	Thr	Glu 490	Lys	Ser	Gly	Гла	Thr 495	Pro
V	al	Val	Phe	Met 500	Leu	Thr	Ile	Gly	Asn 505	Leu	Ala	Met	Arg	Leu 510	Ala	Arg
S	er	Gln	Phe 515	Ser	Ser	Asn	Phe	Phe 520	Gly	Cya	Ala	Gly	Tyr 525	Lys	Leu	Ile
A	ab	Asn 530	Leu	Gly	Phe	Lys	Ser 535	Val	Glu	Glu	Gly	Val 540	Asp	Ala	Ala	Leu
	la 45	Ala	Lys	Ala	Asp	Ile 550	Val	Val	Leu	Cya	Ser 555	Ser	Asp	Asp	Glu	Tyr 560
		Glu	Tyr	Ala	Pro 565	Ala	Ala	Phe	Asp	Tyr 570	Leu	Ala	Gly	Arg	Ala 575	Glu
Ρ	he	Val	Val	Ala 580		Ala	Pro	Ala	Cys 585		Ala	Asp	Leu	Glu 590	Ala	Гла
G	ly	Ile			Tyr	Val	His			Ser	Asn	Val			Thr	Leu
A	rg		595 Phe	Asn	Asp	Lys		600 Gly	Ile	Arg			605			
		610					615									
< <	313 400	3> RI)> SI	elev? Equei	ANT 1 NCE :	RESII 70			2010- SEQ]			L)	(715))			
1		пла				T a second	7.000	т] с	7.~~	т1 -	T	Corr	77~	01	Dh a	17-1
A		-			5	-	_		_	10	-			_	Phe 15	
	la	-			5	-	_		_	10	-			_		
Т		Lys	Asp	Ala 20	5 Thr	Arg	Trp	Ala	Glu 25	10 Glu	Lys	Gly	Ile	Val 30	15	Asp
	'rp	Lys Arg	Asp Thr 35	Ala 20 Pro	5 Thr Glu	Arg Gln	Trp Ile	Ala Met 40	Glu 25 Val	10 Glu Lys	Lys Pro	Gly Leu	Ile Tyr 45	Val 30 Thr	15 Ala	Aab
A	'ab	Lys Arg Leu 50	Asp Thr 35 Glu	Ala 20 Pro Gly	5 Thr Glu Met	Arg Gln Glu	Trp Ile His 55	Ala Met 40 Leu	Glu 25 Val Asp	10 Glu Lys Tyr	Lys Pro Val	Gly Leu Ser 60	Ile Tyr 45 Gly	Val 30 Thr Leu	15 Ala Lys	Asp Asp Pro
А Р 6	rp sp he	Lys Arg Leu 50 Leu	Asp Thr 35 Glu Arg	Ala 20 Pro Gly Gly	5 Thr Glu Met Pro	Arg Gln Glu Tyr 70	Trp Ile His 55 Ser	Ala Met 40 Leu Gly	Glu 25 Val Asp Met	10 Glu Lys Tyr Tyr	Lys Pro Val Pro 75	Gly Leu Ser 60 Met	Ile Tyr 45 Gly Arg	Val 30 Thr Leu Pro	15 Ala Lys Pro	Asp Asp Pro Thr 80
A P 6 I	'rp Asp Phe 5 1e	Lys Arg Leu 50 Leu Arg	Asp Thr 35 Glu Arg Gln	Ala 20 Pro Gly Gly Tyr	5 Thr Glu Met Pro Ala 85	Arg Gln Glu Tyr 70 Gly	Trp Ile His 55 Ser Phe	Ala Met 40 Leu Gly Ser	Glu 25 Val Asp Met Thr	10 Glu Lys Tyr Tyr Ala 90	Lys Pro Val Pro 75 Glu	Gly Leu Ser 60 Met Glu	Ile Tyr 45 Gly Arg Ser	Val 30 Thr Leu Pro Asn	15 Ala Lys Pro Trp Ala	Asp Asp Pro Thr 80 Phe
A P 6 I T	rp Asp he 5 le	Lys Arg Leu 50 Leu Arg Arg	Asp Thr 35 Glu Arg Gln Arg	Ala 20 Pro Gly Gly Tyr Asn 100	5 Thr Glu Met Pro Ala 85 Leu	Arg Gln Glu Tyr 70 Gly Ala	Trp Ile His 55 Ser Phe Ser	Ala Met 40 Leu Gly Ser Gly	Glu 25 Val Asp Met Thr Gln 105	10 Glu Lys Tyr Tyr Ala 90 Lys	Lys Pro Val Pro 75 Glu Gly	Gly Leu Ser 60 Met Glu Leu	Ile Tyr 45 Gly Arg Ser Ser	Val 30 Thr Leu Pro Asn Val 110	15 Ala Lys Pro Trp Ala 95	Asp Asp Pro Thr 80 Phe Phe
A P 6 I T A	'rp Asp he 5 le yr	Lys Arg Leu 50 Leu Arg Arg Leu	Asp Thr 35 Glu Arg Gln Arg Ala 115	Ala 20 Pro Gly Gly Tyr Asn 100 Thr	5 Thr Glu Met Pro Ala 85 Leu His	Arg Gln Glu Tyr 70 Gly Ala Arg	Trp Ile His 55 Ser Phe Ser Gly	Ala Met 40 Gly Ser Gly Tyr 120	Glu 25 Val Asp Met Thr Gln 105 Asp	10 Glu Lys Tyr Tyr Ala 90 Lys Ala	Lys Pro Val Pro 75 Glu Gly Asp	Gly Leu Ser 60 Met Glu Leu His	Ile Tyr 45 Gly Arg Ser Ser Ser 125	Val 30 Thr Leu Pro Asn Val 110 Arg	15 Ala Lys Pro Trp Ala 95 Ala	Asp Asp Pro Thr 80 Phe Phe Val
A P 6 I T G	rp Asp Phe 5 le Yr Asp	Lys Arg Leu Leu Arg Arg Leu Arg 130	Asp Thr 35 Glu Arg Gln Arg Ala 115 Val	Ala 20 Pro Gly Gly Tyr Asn 100 Thr Gly	5 Thr Glu Met Pro Ala 85 Leu His Lys	Arg Gln Glu Tyr 70 Gly Ala Arg Ala	Trp Ile His 55 Ser Phe Ser Gly 135	Ala Met 40 Leu Gly Ser Gly Tyr 120 Val	Glu 25 Val Asp Met Thr Gln 105 Asp Ser	10 Glu Lys Tyr Tyr Ala 90 Lys Ala Ile	Lys Pro Val Pro 75 Glu Gly Asp Cys	Gly Leu Ser 60 Met Glu Leu His Ser 140	Ile Tyr 45 Gly Arg Ser Ser Ser 125 Leu	Val 30 Thr Leu Pro Asn Val 110 Arg Glu	15 Ala Lys Pro Trp Ala 95 Ala Val	Asp Asp Pro Thr 80 Phe Val Met
A P 6 I T G L 1	rp asp he 5 le yr asp aly 45	Lys Arg Leu 50 Leu Arg Leu Arg 130 Val	Asp Thr 35 Glu Arg Gln Arg Ala 115 Val Leu	Ala 20 Pro Gly Gly Tyr Asn 100 Thr Gly Phe	5 Thr Glu Met Pro Ala 85 Leu His Lys Asp	Arg Gln Glu Tyr 70 Gly Ala Arg Ala Gly 150	Trp Ile His 55 Ser Phe Ser Gly 135 Ile	Ala Met 40 Leu Gly Ser Gly Tyr 120 Val Pro	Glu 25 Val Asp Met Thr Gln 105 Asp Ser Leu	10 Glu Lys Tyr Tyr Ala 90 Lys Ala Ile Ser	Lys Pro Val Pro 75 Glu Gly Asp Cys Lys 155	Gly Leu Ser 60 Met Glu Leu His Ser 140 Met	Ile Tyr 45 Gly Arg Ser Ser Ser Leu Ser	Val 30 Thr Leu Pro Asn Val 110 Arg Glu Val	15 Ala Lys Pro Trp Ala Val Asp	Asp Asp Pro Thr 80 Phe Phe Val Met 160

-continued

											-	con	tın	ued							
			180					185					190								
Asn	Asp	Ile 195	Leu	Lys	Glu	Phe	Met 200	Val	Arg	Asn	Thr	Tyr 205	Ile	Tyr	Pro						
Pro	Glu 210	Phe	Ser	Met	Arg	Ile 215	Ile	Ala	Asp	Ile	Phe 220	Glu	Tyr	Thr	Ser						
Gln 225	Asn	Met	Pro	Lys	Phe 230	Asn	Ser	Ile	Ser	Ile 235	Ser	Gly	Tyr	His	Met 240						
Gln	Glu	Ala	Gly	Ala 245	Thr	Ala	Asp	Ile	Glu 250	Met	Ala	Tyr	Thr	Leu 255	Ala						
Asp	Gly	Met	Gln 260	Tyr	Leu	Lys	Ala	Gly 265	Ile	Asp	Ala	Gly	Ile 270	Asp	Val						
Asp	Ala	Phe 275	Ala	Pro	Arg	Leu	Ser 280	Phe	Phe	Trp	Ala	Ile 285	Gly	Val	Asn						
His	Phe 290	Met	Glu	Ile	Ala	Lys 295	Met	Arg	Ala	Ala	Arg 300	Leu	Leu	Trp	Ala						
Lys 305	Ile	Val	Lys	Ser	Phe 310	Gly	Ala	Lys	Asn	Pro 315	Lys	Ser	Leu	Ala	Leu 320						
Arg	Thr	His	Ser	Gln 325	Thr	Ser	Gly	Trp	Ser 330	Leu	Thr	Glu	Gln	Asp 335	Pro						
Phe	Asn	Asn	Val 340	Gly	Arg	Thr	Суа	Ile 345	Glu	Ala	Met	Ala	Ala 350	Ala	Leu						
Gly	His	Thr 355	Gln	Ser	Leu	His	Thr 360	Asn	Ala	Leu	Asp	Glu 365	Ala	Ile	Ala						
Leu	Pro 370	Thr	Asp	Phe	Ser	Ala 375	Arg	Ile	Ala	Arg	Asn 380	Thr	Gln	Ile	Tyr						
Ile 385	Gln	Glu	Glu	Thr	Leu 390	Val	Суз	Lys	Glu	Ile 395	Asp	Pro	Trp	Gly	Gly 400						
Ser	Tyr	Tyr	Val	Glu 405	Ser	Leu	Thr	Asn	Glu 410	Leu	Val	His	Lys	Ala 415	Trp						
Thr	Leu	Ile	Lys 420	Glu	Val	Gln	Glu	Met 425	Gly	Gly	Met	Ala	Lys 430	Ala	Ile						
Glu	Thr	Gly 435	Leu	Pro	Lys	Leu	Arg 440	Ile	Glu	Glu	Ala	Ala 445	Ala	Arg	Thr						
Gln	Ala 450	Arg	Ile	Asp	Ser	His 455	Gln	Gln	Val	Ile	Val 460	Gly	Val	Asn	Lys						
Tyr 465	Arg	Leu	Pro	Lys	Glu 470	Asp	Pro	Ile	Asp	Ile 475	Leu	Glu	Ile	Asp	Asn 480						
Thr	Ala	Val	Arg	Lys 485	Gln	Gln	Ile	Glu	Arg 490	Leu	Asn	Asp	Leu	Arg 495	Ser						
His	Arg	Asp	Glu 500	Lys	Ala	Val	Gln	Glu 505	Ala	Leu	Glu	Ala	Ile 510	Thr	Lys						
Суз	Val	Glu 515	Thr	Lys	Glu	Gly	Asn 520	Leu	Leu	Asp	Leu	Ala 525	Val	Lys	Ala						
Ala	Gly 530	Leu	Arg	Ala	Ser	Leu 535	Gly	Glu	Ile	Ser	Asp 540	Ala	Суз	Glu	Lys						
Val 545	Val	Gly	Arg	Tyr	Lys 550	Ala	Val	Ile	Arg	Thr 555	Ile	Ser	Gly	Val	Tyr 560						
Ser	Ser	Glu	Ser	Gly 565	Glu	Asp	Lys	Asp	Phe 570	Ala	His	Ala	Lys	Glu 575	Leu						
Ala	Glu	Lys	Phe 580	Ala	Гла	Гла	Glu	Gly 585	Arg	Gln	Pro	Arg	Ile 590	Met	Ile						

0	$\sim n$	+	i r	 ed

Ala	Гла	Met 595	Gly	Gln	Asp	Gly	His 600	Asp	Arg	Gly	Ala	Lys 605	Val	Val	Ala
Thr	Gly 610	Tyr	Ala	Asp	Суз	Gly 615	Phe	Asp	Val	Asp	Met 620	Gly	Pro	Leu	Phe
Gln 625	Thr	Pro	Glu	Glu	Ala 630	Ala	Arg	Gln	Ala	Val 635	Glu	Asn	Asp	Val	His 640
Val	Met	Gly	Val	Ser 645	Ser	Leu	Ala	Ala	Gly 650	His	Lys	Thr	Leu	Ile 655	Pro
Gln	Val	Ile	Ala 660	Glu	Leu	Glu	Lys	Leu 665	Gly	Arg	Pro	Asp	Ile 670	Leu	Val
Thr	Ala	Gly 675	Gly	Val	Ile	Pro	Ala 680	Gln	Aab	Tyr	Asp	Phe 685	Leu	Tyr	Gln
Ala	Gly 690	Val	Ala	Ala	Ile	Phe 695	Gly	Pro	Gly	Thr	Pro 700	Val	Ala	Tyr	Ser
Ala 705	Ala	Lys	Val	Leu	Glu 710	Ile	Leu	Leu	Glu	Glu 715					

What is claimed is:

1. A method for producing branched-chain fatty acid comprising a methyl on one or more even number carbons, the method comprising culturing a cell comprising

- (aa) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA and/or (bb) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA,
- under conditions allowing expression of the polynucleotide(s) and production of branched-chain fatty acid, wherein the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).

2. The method of claim 1 further comprising extracting from culture the branched-chain fatty acid or a product of the branched-chain fatty acid.

3. The method of claim **2**, wherein the polypeptide that catalyzes the conversion of propionyl-CoA to methylmalonyl-CoA is a propionyl-CoA carboxylase and/or the polypeptide that catalyzes the conversion of succinyl-CoA to methylmalonyl-CoA is a methylmalonyl-CoA mutase.

4. The method of claim **3**, wherein (i) the propionyl-CoA carboxylase is *Streptomyces coelicolor* PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalonyl-CoA mutase is *Janibacter* sp. HTCC2649 methylmalonyl-CoA mutase, *S. cinnamonensis* MutA and MutB, or *E. coli* Sbm.

5. The method of claim **3**, wherein (i) the methylmalonyl-CoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionyl-CoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.

6. The method of claim 3, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA

mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.

7. The method of claim 2, wherein the cell further comprises an exogenous or overexpressed polynucleotide encoding an acyl transferase lacking polyketide synthesis activity and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a thioesterase.

8. The method of claim **7**, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of *Mycobacterium* mycocerosic acid synthase.

9. The method of claim **2**, wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylmalonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.

10. The method of claim **2**, wherein the cell produces a Type II fatty acid synthase.

11. The method of claim 10, wherein the cell is *Escherichia coli*.

12. A branched-chain fatty acid produced by the method of claim 1.

13. A cell comprising:

- (i) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding an acyl transferase lacking polyketide synthesis activity, and
- (ii) an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a propionyl-CoA carboxylase and/or an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase,
- wherein the polynucleotide(s) are expressed and the cell produces more branched-chain fatty acid comprising a methyl on one or more even number carbons than an otherwise similar cell that does not comprise the polynucleotide(s).

14. The cell of claim 13, wherein (i) the propionyl-CoA carboxylase is *Streptomyces coelicolor* PccB and AccA1 or PccB and AccA2 and/or (ii) the methylmalonyl-CoA mutase

is Janibacter sp. HTCC2649 methylmalonyl-CoA mutase, S. cinnamonensis MutA and MutB, or E. coli Sbm.

15. The cell of claim **13**, wherein (i) the methylmalonyl-CoA mutase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 3, 4, or 28 and/or (ii) the propionyl-CoA carboxylase comprises an amino acid sequence having at least about 80% sequence identity to the amino acid sequence set forth in SEQ ID NOs: 9 and 10.

16. The cell of claim **13**, wherein the cell comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA mutase and further comprises an exogenous or overexpressed polynucleotide comprising a nucleic acid sequence encoding a methylmalonyl-CoA epimerase.

17. The cell of claim **13**, wherein the acyl transferase is FabD, an acyl transferase domain of a polyketide synthase, or an acyl transferase domain of *Mycobacterium* mycocerosic acid synthase.

18. The cell of claim **13**, wherein the cell further comprises an exogenous or overexpressed polynucleotide comprises a nucleic acid sequence encoding a thioesterase.

19. The cell of claim **13**, wherein the cell has been modified to attenuate endogenous methylmalonyl-CoA mutase activity, endogenous methylmalonyl-CoA decarboxylase activity, and/or endogenous acyl transferase activity.

20. The cell of claim **13**, wherein the cell is *Escherichia coli*.

* * * * *