Title: FFT CARRIER FREQUENCY OFFSET ESTIMATION FOR OFDM SIGNAL

Abstract: There is being disclosed an OFDM signal receiver for detecting carrier frequency offset. When FFT transform of the signal is processed in the receiver, an estimator applies the spectrum shape of the FFT transform for estimating the carrier frequency offset.
Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
FFT Carrier Frequency Offset Estimation for OFDM Signal

TECHNICAL FIELD OF THE INVENTION

The present invention concerns a receiver for receiving an OFDM signal. Furthermore, the invention concerns a mobile station, a sub-assembly, a chipset, a computer program and the use of such apparatuses for receiving an OFDM signal.

BACKGROUND ART

Multi-carrier signal radio technique such as Orthogonal Frequency Division Multiplexing (OFDM) radio technique is generally used for transmitting quite a lot of data via various frequencies. OFDM can be used in digital broadcasting systems such as DVB system. Environments and situations in the multi-carrier signal systems like broadcasting, which itself has a long history in television and radio even as a digitalised one, have clearly created a need for evaluating the multi-carrier signal technique in situations where it was not originally designed. An example of this kind of situation can be a mobile reception. Thus, the OFDM radio technique is facing the risen mobility challenge.

An example of a problem in the RF world can be frequency offset. When receiving such a signal, the carrier center frequency may be offset from the normal channel raster. The offset may be up to 0.5 MHz. Known ways, receivers, receiver chips or devices are only capable of synchronizing into signals with a limited maximum offset. Typically, this maximum offset is about 130 kHz. Therefore, channel search has to be performed with several offsets for every channel.

Such a known synchronization and channel search/tuning can be based on the following. During channel search, the RF demodulator scans over the nominal carrier frequency with a step of about 125 kHz. Thus, with four steps ($f_c - 0.375$ MHz, $f_c - 0.125$ MHz, $f_c + 0.125$ MHz, $f_c + 0.375$ MHz) the whole possible range is covered.
This is a very time consuming known solution. In particular, every channel search for a given frequency offset can take up to some seconds. Thus, synchronisation is too much time consuming for a mobile reception.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a receiver, a mobile station, a sub-assembly, a chipset and a computer program to reduce the required synchronization time. This object is achieved by the receiver according to claim 1. In accordance with further aspects of the invention, there is also provided the mobile station according to claim 17, the sub-assembly according to claim 18, the chipset according to claim 19 and the computer program according to claim 22. Furthermore, there is being provided the use and the data system of such apparatuses.

According to the invention, the spectrum shape of the received OFDM signal, which is FFT transformed, can be adapted to indicate the possible carrier frequency offset. Thus, there is no need for the known scanning process. Because the scanning process takes considerable amount of time, the invention achieves considerable savings in reception time. Furthermore the receiver can more directly tune into the desired frequency/channel.

A further embodiment of the invention discloses a receiver for receiving OFDM radio signal. An FFT transformation is performed for the received signal. By utilizing the existing FFT in the receiver, a rough carrier frequency offset estimation is derived, for example, with only one 2k FFT. The spectrum shape of the OFDM signal, e.g. the position of the guard bands, is adapted and processed for determining the carrier offset.

In another further embodiment an estimator (or so-called one-shot FFT block or also alternatively referred to as one-shot branch or a carrier frequency estimator) outputs a rough frequency offset estimation, which is rather directly available. This allows a direct tuning of the RF modulator of the receiver into the acquisition range of +/- 125 kHz. Therefore, no scanning is needed, which saves a considerable amount of time in the signal reception processing in the receiver.

Yet further embodiments of the invention have been specified in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, by way of examples only, with reference to the accompanying drawings, in which:

Figure 1 depicts an exemplary spectrum scenario without a frequency offset showing guard bands of FFT signal according to some further embodiments of the invention,

Figure 2 depicts a simplified partial block diagram of a receiver having a one-shot FFT in accordance with another further embodiments of the invention, and

Figure 3 depicts a functional block diagram of a one-shot block in accordance with still another further embodiments of the invention.

DESCRIPTION OF FURTHER EMBODIMENTS

A further embodiment of the invention relates to OFDM radio signal reception and especially the channel search during start-up of the receiver. The OFDM signal and the further embodiment are applicable in DVB-T/H system (e.g. terrestrial, wireless, hand held or mobile DVB systems).

As discussed briefly, figure 1 depicts a spectrum scenario (100) without a frequency offset showing guard bands (102) of FFT (Fast Fourier Transform) signal according to some further embodiments of the invention. An algorithm in accordance with some further embodiments is based on detecting the guard-bands (102). The guard bands (102) are clearly shown in figure 1. The FFT covers the full FFT range (101) from -4.6 to 4.6 MHz. Therefore it is possible to detect the guard bands (102), which are typically located from -4.2 to -3.8 MHz and 3.8 to 4.2 MHz. A spectrum shape can be prominently shown in the Fig. 1, for example in the receiver filtering (103).

Sliding window power summation in determining the carrier offset in various further embodiments

By using a sliding window power summation (SWPS) over 32 sub-carriers a power profile of the current channel can be derived:

$$ SWPS_n = \sum_{m=-u}^{u-1} |f_{n+m}|^2 \quad \text{with} \quad n \in \mathbb{N} \mid \{u \leq n \leq (2048-u)\} \quad \text{and} \quad u = 16 $$
N denotes all natural numbers in the formulae. In the example, the first value for n is 16, wherein the summation runs from f_0 to f_{31}. The next value for n can be 17 so that the next summation runs from f_1 to f_{32} etc. The last one is 2032 ($2048 - n$). Thus 2017 ($SWPS$)s can be calculated. It should be noted that the calculation does not need to be performed for all 2017 rounds. Accordingly, this feature is not essential for various embodiments. These shorter rounds and faster calculations are described in various another further embodiments.

 Principally, a sub-carrier is assumed to belong to the guard-band (102), if its associated $SWPS$ is below a certain percentage (p) of the overall power (P):

$$P = \sum_{m=0}^{2047} |f_m|^2.$$

However, in order to allow efficient implementation and shorter processing times the reference power ($P_{ref,n}$) is calculated based on the carriers, which are needed for calculating $SWPS_n$:

$$P_{ref,n} = \frac{\sum_{m=0}^{n} SWPS_m}{n}$$ and

$SWPS_n \in Guardband$ if $SWPS_n \leq p * P_{ref,n}$. The value of p can vary. Typically, $p \approx 0.5$.

A subsequent processing effectively filters false detections by checking that within a certain number of consecutive sub-carriers (typically ≈ 200) all sub-carriers fulfil this criterion. The lower corner of the guard band (102) is given by the first of these 200 consecutive sub-carriers.

A further embodiment of the invention can apply a one-shot FFT using a single 2k FFT, regardless of the actual transmission mode.

Various embodiments have been described in conjunction with 2k mode. For example, that a single 2k FFT is used, sometimes even regardless of the actual transmission mode (2k, 4k, 8k). It should be noted that in 4k mode from the frequency point of view two carriers are combined. Furthermore, in 8k mode respectively four carriers can be combined. Thus 4k and 8k modes are applicable by combining carriers. In 4k and 8k modes some of the carriers can be ignored, and there is being focused on the carrier coinci-
denting with the 2k mode. For example, the information of any additional carriers (e.g. positions between the 2k mode carriers) in 4k and 8k modes is partly collapsed into the 2k carriers. The 2k mode FFT is accurate enough and also the window power summation preferably uses 32 sub-carriers.

Various offset corrections

Further embodiments advantageously provide achieved accuracy within the range of ± 130 kHz. By correcting the carrier frequency accordingly, the remaining carrier frequency offset is advantageously within the range of the post-FFT carrier frequency synchronization.

Tolerance enabling further embodiments

Although the formulas in some further embodiments could indicate that the calculations should be made for all 2048 carriers, for example for the whole channel, the calculation process can be interrupted and the carrier offset estimation found. When enough results for carrier positions in the FFT have been calculated, the results can indicate that guard band (102) is found. Therefore, the carrier offset is determinable. Since the calculation of the reference power \(P_{\text{ref},n} \) is performed in parallel with the calculation of the sliding window power summation \((SWPS)_n \), both for the carriers 0 to 2047, the guard band can be detected before all values of \(P_{\text{ref},n} \) and \((SWPS)_n \) are calculated. This is possible, because not all carriers are necessary for the calculation, i.e. for \(P_{\text{ref},n} \) and \((SWPS)_n \) only carriers 0 to n are necessary.

Referring to the further embodiments of figure 2, there is being depicted a simplified partial block diagram of a receiver (200) having a one-shot FFT. The receiver (200) comprises an antenna for OFDM radio frequency signals receiving. A front end (201) follows the antenna in the receiver (200) for starting radio frequency receiving in the receiver (200). The receiver (200) has also FFT block (202) for performing the FFT transform for the received OFDM signals. It should be noted that the FFT block (202) is a standard block in the digital OFDM receiver. For example, normally the FFT transform is always performed for the RF signal. Therefore, it’s beneficiary to apply the results of the already existing FFT transform. Furthermore, the receiver (200) comprises the so-called one-shot block (203). As discussed the one-shot block (203) can alternatively referred to as the one-shot branch, thereby depicting the entire one-shot loop. Furthermore, the one-shot can
be also referred to as an estimator for estimating the carrier offset without
limiting the invention's scope to the example of Fig. 2.

Referring back to Fig. 2, the one-shot block (203) obtains the FFT of the
FFT block (202). The one-shot block (203) can thereby make a rough fre-
5 quency offset estimation directly. This can allow the direct tuning of the re-
ceiver into the desired frequency/channel. An output of the one-shot block
(203) is the center frequency of the first channel whose falling edge (in the
frequency band) is detected. Generally, the one-shot block (203) controls or
is adapted to control the tuning center frequency. Based on the center fre-
10 quency, the receiver can correct the carrier frequency accordingly. Thereby,
the remaining carrier frequency offset can be within the range of the post-
FFT carrier frequency synchronization.

One-shot branches in the receiver

Generally, the one-shot block (203) or the carrier offset estimator may not
be a part of the receiver's normal data path. It can be considered, for exam-
15 ple, as an additional part of the logic, i.e. running once to determine the
possible carrier frequency offset.

The control

The one-shot block (203) or the carrier offset estimator (or the like) can be a
stand-alone mode. The one-shot block (203) may be needed to be started
separately, for example if the channel scenario is unknown. The software,
20 the logic or the like etc. takes the result, tunes the center frequency of the
front end (201) and starts the normal reception. i.e. that the carrier offset is
compensated. The logic can have the full control over running one-shot
branch or the normal reception. However, it's also possible to make the one-
25 shot block (203) a default option in the reception. For example, that the sig-
nal is always checked by the one-shot block (203).

Referring to the figure 3, there is being shown a functional block diagram
(300) of the one-shot block in accordance with a further embodiment of the
invention. The example of Fig. 3 depicts a combined block and process dia-
30 gram. The inputs to various blocks are denoted with 'a' and 'b' and the out-
puts of the blocks are denoted with 'c'. The processing of the FFT signal in
the carrier frequency estimator begins with I and Q branches processing.
There is being determined $|I|^2 + |Q|^2$ values for the signal in the step (301). These values correspond in the implementation the value $|f_{n+m}|^2$ of the formula for $(SWPS_n)$. The block (302) illustrates a Fifo buffer. Basically, the value for each sub-carrier is input to the Fifo one by one. Fifo can, for example, hold values for 32 sub-carriers. In step (303) the window sum is determined. Adding one, i.e. next, sub-carrier and subcontracting the 'oldest' one the window sum for each n is calculated. For example, the window sum can represent the determination of the $(SWPS_n)$ for n variable. In step (304) the total sum is determined. The total sum is derived from the window sums. For example, $P_{ref,n}$ can be an example of the total sum, which is divided by count n in step (308) giving value 'Total sum/n' = $P_{ref,n}/n$. In step (305) the window sum is scaled. The scaling factor in this example is 1/p. In step (309) the scaled window sum is compared to the 'total sum' divided by n. If the scaled window sum is less than 'Total sum/n', it indicates that the sub-carrier n belongs to the guardband. If the scaled window sum is greater, it indicates that the subcarrier n does not belong to the guardband. The number of window sums being less than 'Total sum/n' is calculated in a loop 'cnt' between steps (309) and (310) and used in step (310) as input. This accumulated count value indicates the number of subcarriers, which belong to the guardband. In step (310) finally the frequency offset is estimated. The offset factor (306) is the sub-carrier spacing. The frequency offset (307) is n times the subcarrier spacing (306). The frequency offset can be valid for the actual sub-carrier for which a reliable threshold number of the window sums scale are smaller than the total sum divided by the index of this subcarrier.

The number of the sub-carrier multiplied by the offset factor can give the frequency offset with respect to the start of the FFT range.

Flexibility on tuning frequency

The tuning frequency can advantageously be defined by the logic. It could vary from country to country to allow a proper first initial value for the center frequency, even in the start-up phases.

Various scenarios for locking into the signal

Various further embodiments describe different scenarios for locking into the signal. It should be noted that in some cases the receiver can work without the carrier offset correction ability. However, there is a clear need for such anyway, for example, if the "standard" procedure fails etc.
(A) Channel and transmission parameters are known. Therefore, no scanning is needed.

(B) Channel is known, but transmission parameters are unknown. In this embodiment, no actual scanning is needed. However, the receiver checks the different parameters until a low enough bit error rate is received.

These two modes can include a backup solution in case the channel center frequency is not met accurately enough. For example, the digital base band receiver is capable of shifting the channel in a small range (500Hz). However, this procedure can be quite time consuming in some cases.

(C) If a new frequency band scenario is to be expected, the carrier frequency estimator or the one-shot branch can be used to detect the channel offsets. Afterwards one of the two scenarios above can be started to lock to a dedicated channel, advantageously without the need to utilize the time consuming digital shifting of the center frequency.

If the embodiments relating to (A) or (B) do not lead to a proper or desired reception, the one-shot branch or the carrier offset detection procedure may help the receiver to find out the offset. Therefore, the received signal can be corrected accordingly.

Further implementations

Various further embodiments of the invention can be implemented in many DVB-T/H receivers. In some embodiments this can be done by an ASIC for example. E.g. a chipset for receiving OFDM signal in accordance with the further embodiments may be one or more ASIC chip. However, it should be noted that similar principles could also be used for software implementation.

Ramifications and Scope

Although the description above contains many specifics, these are merely provided to illustrate the invention and should not be construed as limitations of the invention’s scope. Thus it will be apparent to those skilled in the art that various modifications and variations can be made in the apparatuses and processes of the present invention without departing from the spirit or scope of the invention.
Claims

1. A receiver for receiving an OFDM signal comprising guard bands, the receiver comprising:

 means for obtaining a FFT transformation of the OFDM signal, characterised in that, the receiver further comprises

 an estimator for estimating a carrier frequency offset for the OFDM signal so that a detectable spectrum shape of the OFDM signal is adapted to indicate the carrier frequency offset.

2. A receiver according to claim 1, wherein the detectable spectrum shape of the OFDM signal is based on a position of one or more of the guard bands within the FFT transformation.

3. A receiver according to claim 1, wherein the FFT transformation is adapted to cover a range so that the estimator is adapted to detect the position of the one or more guard bands in locations within the FFT transformation for estimating the carrier frequency offset.

4. A receiver according to claim 3, wherein the range is predetermined and the locations within the range are predetermined.

5. A receiver according to claim 1, wherein the estimator comprises means for determining a power profile of the OFDM signal for one or more sub-carriers so that a sub-carrier is associated with the guard bands, if the power profile is below a certain percentage of overall power of the signal.

6. A receiver according to claim 5, wherein said means comprises a sliding window power summation (SWPS).

7. A receiver according to claim 6, wherein the sliding window power summation is adapted to be calculated based on the following formulae:

 \[SWPS_n = \sum_{m=-\infty}^{u-1} |f_{n+m}|^2 \text{ with } n \in \mathbb{N} \cup \{u \leq n \leq (2048-u)\} \text{ and } u = 16. \]

8. A receiver according to claim 5, wherein the overall power of the signal is adapted to be calculated based on the following formulae:
9. A receiver according to claim 5, wherein the carrier frequency offset estimator further comprises means for determining a reference power for subsequent processing of the power profile determined OFDM signal for filtering false detections.

10. A receiver according to claim 9, wherein the estimator is adapted to apply the reference power instead of the overall power.

11. A receiver according to claim 9, wherein the sub-carrier is associated with the guard bands, if the power profile is below the reference power.

12. A receiver according to claim 11, wherein said reference power is adapted to be scaled by a factor.

13. A receiver according to claim 9, wherein the reference power is adapted to be calculated based on the following formulae:

\[
P_{\text{ref},n} = \frac{\sum_{m=0}^{n} SWPS_m}{n}.
\]

14. A receiver according to claim 1, wherein the estimator is configured to establish a feedback loop for tuning a center frequency of the FFT transformation based on the estimated carrier frequency offset.

15. A receiver according to claim 1, wherein the estimator is adapted to estimate the detectable carrier frequency offset with only one 2k mode FFT transformation.

16. A receiver according to claim 1, wherein the carrier frequency offset estimator is adapted to be started up when a channel of the OFDM signal is detected to have a quality, which is below a threshold.

17. A mobile station for receiving a OFDM signal comprising guard bands, the mobile station comprising:

- means for obtaining a FFT transformation of said OFDM signal, characterised in that, the mobile station further comprises
means for estimating a carrier frequency offset for the OFDM signal so that a detectable spectrum shape comprising the guard bands in the FFT transformation is adapted to indicate the carrier frequency offset.

18. A sub-assembly for receiving an OFDM signal comprising guard bands, the sub-assembly comprising:

means for obtaining a FFT transformation of the OFDM signal, characterised in that, the mobile station further comprises

means for estimating a carrier frequency offset for the OFDM signal so that a detectable spectrum shape comprising the guard bands in the FFT transformation is adapted to indicate the carrier frequency offset.

19. A chipset for receiving a OFDM signal comprising guard bands, the receiver comprising:

means for obtaining a FFT transformation of the OFDM signal, characterised in that, the mobile station further comprises

means for estimating a carrier frequency offset for the OFDM signal so that a detectable spectrum shape comprising the guard bands in the FFT transformation is adapted to indicate the carrier frequency offset.

20. A method for receiving a OFDM signal comprising guard bands, the method comprising:

obtaining a FFT transformation of the OFDM signal, characterised in that the method further comprising

estimating a carrier frequency offset for the OFDM signal so that a detectable spectrum shape comprising the guard bands in the FFT transformation is adapted to indicate the carrier frequency offset.

21. Data processing system comprising means for carrying out the steps of the method according to claim 20.

22. A computer program comprising computer program code means adapted to perform the steps of the method of claim 20 when said program is run on a computer.
23. A computer program as claimed in claim 22 embodied on a computer readable medium.

24. A computer readable medium comprising program code adapted to carry out the method of claim 20 when run on a computer.

25. A carrier medium carrying the computer executable program of claim 22.
Fig. 3
INTERNATIONAL SEARCH REPORT

International application No.: PCT/FI 2004/000390

A. CLASSIFICATION OF SUBJECT MATTER

| IPC7: | H04L 27/26, H04L 27/38, H04B 1/10, H04J 1/00 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC7: | H04L, H04B, H04J |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

| SE, DK, FI, NO classes as above |

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 2320868 A (ENSIGNIA LIMITED), 1 July 1998 (01.07.1998), claim 1, abstract</td>
<td>1-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 03028270 A1 (ATHEROS COMMUNICATIONS, INC.), 3 April 2003 (03.04.2003), claim 1, abstract</td>
<td>1-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1220505 A2 (SAMSUNG ELEKTRONICS COL., LTD.), 3 July 2002 (03.07.2002), figures 2,4, abstract</td>
<td>1-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. [X] See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "P" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search: **24 January 2005**

Date of mailing of the international search report: **2.5-01-2005**

Name and mailing address of the ISA/Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86

Authorized officer: **Nabil Sebaa/MN**

Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Filing Date</th>
<th>Country</th>
<th>Application Number</th>
<th>Filing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>2320868 A</td>
<td>01/07/1998</td>
<td>GB</td>
<td>9625094 D</td>
<td>00/00/0000</td>
</tr>
<tr>
<td>GB</td>
<td>9725555 D</td>
<td>00/00/0000</td>
<td>GB</td>
<td>9725555 D</td>
<td>00/00/0000</td>
</tr>
<tr>
<td>WO</td>
<td>03028270 A1</td>
<td>03/04/2003</td>
<td>US</td>
<td>20030152021 A</td>
<td>14/08/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>20030058966 A</td>
<td>27/03/2003</td>
</tr>
<tr>
<td>EP</td>
<td>1220505 A2</td>
<td>03/07/2002</td>
<td>CN</td>
<td>1361519 A</td>
<td>31/07/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP</td>
<td>3583391 B</td>
<td>04/11/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP</td>
<td>2002217865 A</td>
<td>02/08/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>20020126618 A</td>
<td>12/09/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>6757344 B</td>
<td>29/06/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>20020181617 A</td>
<td>05/12/2002</td>
</tr>
</tbody>
</table>