
USOO5982769A

United States Patent (19) 11 Patent Number: 5,982,769
Bond et al. (45) Date of Patent: Nov. 9, 1999

54) SWITCH RECONFIGURATION 58 Field of Search 395/653, 651,
395/82, 85, 183.09, 2005, 2003, 200.58;

75 Inventors: Stuart Bond, Girton; Jonathon 379/201, 10
Coward, Radwinter; Phillip William
Hobson, Bishops Stortford; Kevin John 56) References Cited
Twitchen, Harpenden, all of United
Kingdom U.S. PATENT DOCUMENTS

5,384,823 1/1995 Brenski et al. 379/10
73 Assignee: Northern Telecom Limited, Montreal, 5,533,109 7/1996 Baker 379/201

Canad
Ca Primary Examiner Hassan Kizou

21 Appl. No.: 08/894,582 ASSistant Examiner John Pezzlo
22 PCT Filed: Mar. 27, 1996 Attorney, Agent, or Firm-Lee, Mann, Smith, McWilliams,

Sweeney & Ohlson
86 PCT No.: PCT/GB96/00726 57 ABSTRACT

S371 Date: Aug. 21, 1997 The operationality of instructions arranged to control a
S 102(e) Date: Aug. 21, 1997 telecommunications Switch is tested by referring to origi

nating instructions. A module of instructions forming part of
87 PCT Pub. No.: WO96/31071 encoded Sets of originating instructions is identified, and the

PCT Pub. Date: Oct. 3, 1996 module is processed to obtain definitions of its interactivity
9 with other modules of the instruction set and the interactivity

30 Foreign Application Priority Data with Signal transmissions external to the module. This
Mar. 27, 1995 GB United Kingdom ostoo facilitates the generation of upgraded or replacement origi

nating instructions from which new executable instructions
51) Int. Cl. H04L 12/50; G06F 9/30; are obtainable after being embedded within the telecommu

HO4M 3/00 nications Switch.
52 U.S. Cl. 370/357; 370/360; 379/242;

395/375 12 Claims, 11 Drawing Sheets

Generate Encoded
Instructions

Instructions

606

Convert To Executable

608
DOWnload to Switch

6O5 601

612

Of Modules

613

Combine With Existing

East 609 Executable
Analyse Operationality Of instructions

Module to Produce
Interface Definitions

Switch

Another Module 2 st
II.

611 No 6O4
603

Generate New Instructions

Modules To Provide Fu Set

Convert To Executable
instructions

614

Download To Switch

U.S. Patent Nov. 9, 1999 Sheet 1 of 11 5,982,769

1 O S. Aer

O1
area 107

1 O7

Figure 1

U.S. Patent Nov. 9, 1999 Sheet 2 of 11 5,982,769

2O3 2O1 205 206

Figure 2

5,982,769 Sheet S of 11 Nov. 9, 1999 U.S. Patent

/09

-}SOEN € 19

709

G ?un61–

U.S. Patent Nov. 9, 1999 Sheet 6 of 11 5,982,769

606
Generate EnCOced

Instructions

6O7
Convert To Executable

instructions

608
DOwnload to Switch

6O5 601

. Executable
instructions

it
603

Analyse Operationality Of
Module To Produce
Interface Definitions

Another Module 2

Generate New Instructions

Combine With Existing
Modules To Provide Full Set

Of Modules

613
Convert TO Executable

instructions

614

Download To Switch

604

Figure 6

U.S. Patent Nov. 9, 1999 Sheet 7 of 11 5,982,769

7O

Select Procedure For Analysis

702 Parse Module TO Produce
Internal Representation And

User Comments

703
Tag Statements Relevant To

Interface information

704 Deduce Paths. Which include
Tagged Steps

705
Define interface Constraints

7O6

No
Embed AS Comments 2

Yes

Embed Constraints AS Comments
In Existing Procedure

61O

Figure 7

U.S. Patent Nov. 9, 1999 Sheet 8 of 11 5,982,769

7O

identify Procedure Name And 8O
Services Available

O O 802

ldentify Internal State Variables

O 803

ldentify External State Variables

804
identify Service Request Details

805
identify Pre-Conditions

identify Post Conditions And 806
Observables

807
ldentify Exceptions

ldentify Service Parameter 808
Type Expansions

809
ldentify Procedure Constraints

703 Figure 8

U.S. Patent Nov. 9, 1999 Sheet 9 of 11 5,982,769

Pre-Conditions

Conditions

U.S. Patent Nov. 9, 1999 Sheet 10 of 11 5,982,769

703

1 OO1
Initiate initial path

OO2
Examine Current Statement

1003
ls Current Statement End Yes

Of Procedure ?

No
ls Current Statement, OO4

Current Path Return POSition ?

Yes 1 O2
Goto Next
Statement ls Current Path Tagged ?

Yes No - O13

Flag Current Path Originator
1 OO6 As Not important

ls Current Statement
A Branch

Remove Path
Yes

1014
ls Current Statement

Tagged ? Exit
1008 1005

Ta
1009

Figure 10
1010

Set Current Statement
As Originator At New Path

1011
Set New Path. As NOT Tagged

U.S. Patent Nov. 9, 1999 Sheet 11 of 11 5,982,769

11 O
Initiate initial path

1 O9 11 O2
Goto Next Examine Current Path

Path 11 O3
ls Current Path The W Yes 11 O

End Path 2

No e 1108
O4

Goto. Next Get Statement
Statement

105
ls Statement Tagged ASV No

interface Contract?

1 O6
Add Statement To

interface Contract File

O7

ls Statement End. At Fath?

Yes

Figure 11

5,982,769
1

SWITCH RECONFIGURATION

The present invention relates to a method and apparatus
for analysing a Selected module from a plurality of modules
of originating instructions, to generate upgraded originating
instructions, the originating instructions being for conver
Sion into control instructions to control operations of a
telecommunications Switching means.

BACKGROUND OF THE INVENTION

In recent years it has been appreciated that the modifica
tion of control instructions in major Systems is by no means
a Straightforward matter and over the years improved tech
niques have been developed for constructing large collec
tions of instructions for operation in real time, in environ
ments where errors could result in major Systems failure.
A significant amount of time and money was often spent

in the development of control instructions and, although it is
often desirable to make upgrades, it is also desirable to
obtain maximum benefit from existing code. Although the
Size of existing instruction is large and is often not consistent
with modern development techniques, it does in itself pro
vide two distinctive advantages. Firstly, it exists, and does
not require additional investment in order for it to be created.
Secondly, given the fact that generally, it will have been in
operation for Several years, it is tried and tested.
To an operational manager deriving benefits from existing

Systems, the associated instructions are perceived as Some
thing of great value, and is often referred to as “heritage”
code. However, to the development engineer, the existing
code provides major problems, in that it, generally, is not
consistent with modern techniques and modern procedures.
In particular, it has been found in recent years that object
oriented environments are particularly Suited to defining
telecommunications functionality, given their inherent
modularity. Development Engineers tend not, therefore, to
See existing earlier instruction Suites in Such glowing light
and tend to refer to them as a “legacy' to be tolerated, rather
than an inheritance to be appreciated
When presented with a legacy System of this type it is not

uncommon to be referring to Several million lines of execut
able Statements and maintenance engineers may adopt one
of two clear Strategies.

Firstly, they could continue to operate in the manner
anticipated by their predecessors. Thus, they would continue
to use the earlier techniques and develop Systems in accor
dance with the tried and trusted methods. The second option
would be to effectively discard all of the previous legacy
instructions and Start again, defining each of the modules in
accordance with modern object-oriented techniques.
However, although appearing to be attractive, Such a strat
egy would in itself present Several risks. Firstly, it is possible
that the investment required would be too large, thereby
creating an intolerable burden in terms of the development
costs. Secondly, it is likely that the Systems must interface
with other systems, therefore it would not be entirely pos
Sible to disregard all of the legacy Systems because they may
belong to another party. Thirdly, a major re-write of all of the
instructions would take a Significant period of time. It is
therefore possible that procedures adopted at the beginning
of a development process, although modern in their time,
would rapidly become out of date.

IEEE International Conference on Communications, vol.
1, 23 May 1993, Geneva CH; pages 326–330 (Geyer et al)
shows a design method for object oriented Switching System
Software including identification of objects and relations
between objects.

15

25

35

40

45

50

55

60

65

2
IEEE Global Telecommunications Conference, vol. 2,

December 1991, Phoenix US; pages 1371–1377 (F. S.
Dworak) discusses the problems caused when new service
features are added to telecommunications networkS. Fea
tures of Services interact, and conflict detection becomes
difficult, particularly with multiparty, multimedia call con
trol. Interactions are extracted from State machines, and
expressed Separately, externally. Automated conflict detec
tion uses predefined generic conflicts which may arise in the
interactions.

GB-A-2264575 discusses upgrading software in a tele
communications network. A timestamp is Sent with each
call, indicating a start time. Any upgraded Software is Sent to
each Site in the network with an activation time indication.
This enables calls to be processed using a consistent upgrade
version of the Software.

WO-A-9429993 discusses another method of avoiding
interference between Services. Services are defined in terms
of action elements which may give rise to interference, ie
feature interaction. Interference event trees are formed, and
used to determine whether a new Service can be executed,
based on what Services are currently being executed for the
Same call.

None of these documents are concerned with the prob
lems of how to upgrade legacy code efficiently.

SUMMARY OF THE INVENTION

In a preferred embodiment, Statements within a Selected
module are grouped together to define a plurality of proce
dures and interface Statements are processed Sequentially for
each of Said procedures.

Preferably, the processing means examines paths through
the Statements, and retains paths which include Statements
labelled by the labelling means.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by way of example
only with reference to the accompanying drawings, in
which:

FIG. 1 shows a classical telecommunications environment
having a plurality of analogue telephones connected to a
local eXchange.

FIG. 2 shows a digital Switching Sub-System;
FIG. 3 shows part of a complex digital telecommunica

tions network;
FIG. 4 shows a hierarchical representation of a network of

the type identified in FIG. 3;
FIG. 5 shows an example of relationships between mod

ules of instructions for controlling operation of Switching
systems of the type shown in FIG. 3;

FIG. 6 illustrates a machine executable routine for pro
cessing modules of the type shown in FIG. 5 for execution
on a Switch of the type shown in FIG. 3, including a step
which analyses the operationality of a module to produce
interface definitions,

FIG. 7 details the analysis step identified in FIG. 6,
including a Step for the tagging of relevant procedures and
a step for deducing paths which include tagged Steps;

FIG. 8 details the parsing step shown in FIG. 7;
FIG. 9 shows an example of a module under analysis;
FIG. 10 details the tagging step of FIG. 3;
FIG. 11 details the deduction of paths step shown in FIG.

7; and

5,982,769
3

FIG. 12 details the definition of interface constraint step
identified in FIG. 7.

DESCRIPTION OF PREFERRED EMBODIMENT

A classical telecommunications environment is shown in
FIG. 1, in which a plurality of analogue telephones 101 are
connected to a local eXchange 102 via respective commu
nication links 103 in the form of a twisted pair of copper
conductors. The local eXchange 102 is also connected to
other similar local exchanges 104,105 and 106 and in a real
network, the number of local eXchanges connected to the
network would be very large indeed, covering large geo
graphical areas.

The local exchanges are connected via trunk cables 107
and traditionally these trunk cables were also provided in the
form of copper conducting cables. Consequently, the cost of
providing all this cabling was quite significant and repre
Sented a Substantial proportion of the overall cost of the
network. The total cost of the Switching apparatus was
relatively low, therefore more could be invested on this
apparatus an attempt to maximise the efficiency of the
available cable. This led to the use of frequency division
multiplexing, So as to increase the number of communica
tion channels which could be conveyed along a common
physical link.

The ability to increase the number of transmission paths
provided by a single physical link was enhanced in the 1970s
by the utilisation of digital transmission techniques, which
allowed many pulse code modulated Signals to be combined
by a process of byte multiplexing. Thus, a four kilohertz
analogue telephone signal could be represented as a Sixty
four kilobit per second digital bit stream, whereafter thirty of
Such channels could be combined, together with signalling
information, to provide a 2.048 megabit per Second multi
pleX.

In order to facilitate digital transmission of this type,
characteristics of the exchanges, Such as exchanges 102,
104, 105 and 106 in FIG. 1, became increasingly complex
and Significant circuit design was required in order to
provide platforms which in turn could make available the
required level of functionality. Thus, no longer were local
eXchanges, merely required to provide Switching mecha
nisms for analogue signals, they were required to provide
analogue-to-digital conversion, time Switching, in addition
to Space Switching, and multiplexing, where appropriate, for
transmission over multiplexed trunk cables.

It was soon realised that the level of multiplexing could be
increased and Standards were established for transmitting at
one hundred and forty megabits per Second and five hundred
and Sixty five megabits per Second, effectively giving a deep
hierarchy of available bit rates.

The transmission of digital data over Substantial band
width provision, enabled other communications Services to
be incorporated within a network which was originally
provided solely for the transmission of relatively low band
width speech Signals. AS Soon as it became apparent that a
premium charge could be placed on data transmission of this
type, the race was on for establishing connection points
within existing networks for commercial purposes. Thus, in
addition to Speech telephones being connected through
Switched telephone networks, it became possible to connect
data processing equipments Separated by large geographical
distances and thereby significantly improve the overall flow
of data between displaced sites.

This process was further enhanced by the introduction of
Synchronous transmission Systems which in turn facilitated

15

25

35

40

45

50

55

60

65

4
data ports to be provided at many different data rates,
without disrupting the overall integrity of the multiplexing
and transmissions Systems. This in turn led to a vast expan
sion in the number of services which could be provided
within the network and the level of intelligence which could
be embedded within the network. A retention of hard-wired
Switching Sub-systems would have effectively led to a
Stagnation of this expansion proceSS and it therefore became
inevitable that Switching systems of this type would be
replaced with adaptable programmable Systems, in which
general purpose hardware Switching matrices would be
configured in response to executable instructions. Thus, as
far as the Switching Sub-System is concerned, local execut
able instructions may be considered as the means, by which
Switching functionality, in terms of actual-hardware
components, is configured, So as to provide a level of System
functionality within the network environment.
A typical Switching Sub-System operating under these

conditions is illustrated in FIG. 2. A switching matrix 201
receives input channels 202 from a de-multiplexing device
203. The de-multiplexing device 203 in turn receives trunk
cables 204, each arranged to convey a plurality of multi
multiplexed signals.

Each line 202 supplied to the matrix 201 includes a thirty
channel time multiplex and within the matrix 201 time
Switching occurs, in which the positions of time slots are
re-arranged and Space Switching occurs in which data con
veyed within a particular multipleX is Switched to another
multiplex. Thereafter, the Switched time multiplexes are
supplied to a re-multiplexing circuit 205, which in turn
provides outputs on trunk cables 206, conveying higher
order digital multiplex Signals.
The matrix 201 itself contains all the physical elements

required to perform Switching operations. The actual Switch
ing operations themselves are effected under the control of
the central controlling device 207, that is itself arranged to
execute control instructions and Supply control signals to the
matrix 201 Over control lines 208.

Digital Switching sub-systems of the type shown in FIG.
1 allow telecommunications networks to be built up, as
illustrated in FIG. 3. Thus, in FIG. 3 a local exchange 301
is similar to local exchange 102 shown in FIG. 1. Similarly
telephones 302 and 303 may be identical to telephones 101
shown in FIG. 1 and communicate with the local eXchange
301 over analogue twisted pairs. However, at the local
eXchange the analogue signals are converted into digital
Signals, thereby facilitating transmission over trunk cables,
Such as trunk cable 304, in the form of a time division
multiplex.

Given that local exchange 301 operates within a digital
environment, it is also configured to communicate with
digital telephones 305. These digital telephones are
connected, via digital communication channels 306, to a line
concentrator 307. Thus, in the example shown in FIG. 3, five
digital telephones 305 are connected to the concentrator 304,
but only a total of three digital lines 308 are provided in
order to connect the concentrator 307 to the local exchange
301. At the local exchange 301 analogue signals received
from telephones 302 and 303 are converted into digital
Signals and combined with digital signals, originating from
concentrator 307 Such that, from the rest of the networks;
Standpoint, the Signals are effectively equivalent.
The trunk cable 304 in the example shown in FIG. 3 is

arranged to convey a thirty channel multiplex. However, this
cable is Supplied to an intermediate exchange 309, arranged
to receive similar multiplexes, such as on line 310 and

5,982,769
S

thereafter combine these multiplexes into a higher order of
multiplexing for transmission over a trunk cable 311.
Similarly, a further level of concentration may be provided
at an intermediate Switching Station 312 which in turn
provides an even higher level of multiplexing for transmis
sion over trunk cable 313. Furthermore, signals multiplexed
to this level of concentration may also be Supplied to
microwave links, illustrated by microwave dish 314.
The multiplexing performed by the configuration shown

in FIG. 3 is synchronous, such that it is possible for a two
megabit link to be provided to a data processing facility 315
over a direct data digital communication 316. Thus, at the
intermediate exchange 309, the digital multiplex received
from processing Station 315 may be considered in a Sub
Stantially similar way to the Speech multiplexes received on
communication trunks 304 and 310.

Similarly, intermediate exchange 312 may provide an
even higher digital bandwidth, Say Sixty four megabits per
Second, to a high powered data processing System 317 over
a direct digital link318. Again, at digital eXchange 312, data
received over the communication path 318 is considered in
Substantially the same way as the multiplex received from
exchange 309 over trunk 311.

The ability to reconfigure the functionality of individual
operating Sub-Systems, in response to executable
instructions, facilitates the construction of complex commu
nication environments as shown in FIG. 3. In addition, it will
readily be appreciated that a first level or layer of instruc
tions may be provided in order to control the operations of
individual components, with higher layers of functionality
being provided in order to co-ordinate the operation of
individual sub-systems within the overall network. Thus, the
development of Systems of this type has led to a hierarchical
and modular approach.

In conventional communication networks, hierarchies
were effectively geographical and the provision of resources
were dictated by the allocation of bandwidth. However, due
to increasing levels of multiplexing and the introduction of
relatively inexpensive optical fibre links, the cost of trans
mitting Signals over large distances has reduced
dramatically, therefore the hierarchy of distributed Switching
Systems may be considered in terms of their functionality,
rather than their geographical displacement.
An illustration of this hierarchical approach is shown in

FIG. 4. Thus, a first tier of communication represents the
highest level of bandwidth communication, provided
between central Switching Sites, which may in turn be
distributed globally. Below this a second tier 402 unifies
Switching operations being performed at a lower concentra
tion of multiplexing, with a similar reduced level of multi
plexed communication occurring at a third tier of operation
403.

Each unit within the tier will have its own set of control
instructions, with control instructions coordinating opera
tions within a tier and an overall operational control being
effected at a management control level 404.

In addition, greater levels of functionality have been
provided to individual telephone Subscribers, providing Ser
vices Such as call forward and automatic redial etc. These
Services may be added to existing networks by upgrading
and modifying instructions executable on Switching Sub
Systems. An advantage of Such an approach is that it is
possible to add additional functionality while minimising
the amount of time during which the Sub-System itself is
placed off-line. This is because new instructions may be
developed on independent development platforms, tested

15

25

35

40

45

50

55

60

65

6
and only then converted into an executable form, Suitable for
downloading onto the Switching System itself.

In many situations a modular approach has been adopted
in terms of creating modules of instructions, ultimately
executable on Switching Sub-Systems. Originating instruc
tions usually consist of identifiable lines and in many
Situations the number of lines present in the originating
instructions may run into many thousands, possibly mil
lions. These lines of instructions however do form part of
identifiable modules and in many circumstances it is pos
Sible to upgrade modules without needing to reconstruct the
whole Set of executable instructions. However, this exercise
is not as Straightforward as it may appear, given that, over
the years, modifications will have been made and a complete
analysis of the existing instructions may be difficult to locate
and comprehend.
A graphical representation of a Set of originating instruc

tions is illustrated in FIG. 5. The instructions are identified
as residing within respective modules. Thus, a Set of
instructions, possibly in the form of Several files each
containing Several thousand lines of instructions, are present
within a module 501, with a similar set within module 502,
a similar set within module 503 and so on for modules 504,
505, 506 and 507. FIG. 5 is merely illustrative and in a real
working Set of instructions the number of modules present
may be significantly larger.
The arrows connecting the modules shown in FIG. 5

represent their inter-dependency. Thus, when instructions
resident within module 501 are being executed, these
instructions may in turn make a call to instructions within
module 502, illustrated by arrow 508. Similarly, module 502
may call 503, which in turn may also call back to 502 in a
recursive manner or call module 507. Thus, a complex
network of inter-relations have been built up, in which new
modules are added, usually to provide enhanced
functionality, while at the Same time, making calls to exist
ing modules So as to make use of instruction Sets already
present within the Overall System and, ideally, to reduce the
total size of the instructions required in order to operate the
Switching System.

Within each module a degree of functionality is provided.
Thus, to provide an illustration, it is assumed that the
instructions defined within module 507 have become obso
lete and it would be desirable, in order for the Switch as a
whole to provide the new required level of functionality, to
replace the instructions contained within module 507 with
new instructions, possibly created using new techniques and
implementing new automated procedural tools etc.
On the whole, it should be a quite straightforward matter

to generate new instructions for execution within module
507, so as to provide the required level of functionality.
However, it should be appreciated from the inter
dependency of modules illustrated in FIG. 5, that it is not
possible to construct instructions for module 507 in com
plete isolation. Careful consideration must be taken of the
interactivity of the instructions contained within module 507
with its co-operating modules. Thus, a specification must be
drawn up which details the required level of functionality
required by new module 507. However, in addition, the
Specification must also include a detailed description of how
module 507 communicates or interfaces with the rest of the
overall instruction environment. Thus, in a particular
example, it can be seen that module 507 is itself invoked in
response to a call originating from module 503 or module
504. Thus, instructions contained within module 507 must
be responsible to these particular types of invocations,

5,982,769
7

which will be set in accordance with instructions resident
within modules 503 and 504. Modules 503 and 504 will
invoke module 507 in a particular way, therefore this defi
nition must include an interface Specification. Similarly,
module 507 is itself required to invoke the assistance of
module 506 and again the particular nature of this invocation
will be specified, such that the interface between modules
507 and 506 is maintained and module 506 is unaware that
module 507 has been replaced.

Ultimately, control Signals and other types of Signals must
be generated by the overall Set of instructions and, Similarly,
the instructions will be arranged to receive signals emanat
ing from their local eXchange hardware and, probably,
emanating from other units within the overall Structure.
Thus, as shown in FIG. 5, modules 501, 503 and 506 are
arranged to perform communications with external devices
and the nature of these communications must also be speci
fied for the respective module interfaces. Thus, before work
can Start in preparing new instructions for a particular
module, it is necessary to accurately define its interface with
other modules within the set of instructions. In order to do
this, the instructions themselves are processed, thereby
generating an indication as to the nature of the interface and
facilitating the creation of new instructions which, although
providing a new level of functionality within the overall
network, will interface with existing modules in Substan
tially the same way as the previous module that has been
replaced.

Each module is constructed from a plurality of inter
related procedures, each identified by its own procedure or
file name. The procedures contain a list of Statements which,
once converted and downloaded onto the Switch 602 are
executable on a line-by-line basis.

Internal procedures are shown within module 506. A call
from module 507 is directed towards procedure 501, result
ing in an invocation of said procedure. Procedure 501 may
therefore be identified as a “public' procedure, given that it
experiences a degree of communication which crosses the
module boundary. Procedure 501 may in turn call procedure
509 which in turn may call procedure 510. Procedures 509
and 510 do not communicate across the module boundary
and are therefore identified as “private” procedures. Proce
dure 511 is callable by procedure 510 and this procedure also
communicates acroSS the module boundary, therefore defin
ing it as a “public' procedure. Thus, in order for procedure
511 to interface correctly, pre-conditions 512, post
conditions 513 and data changes 514 must be specified.
A procedure for processing modules in order to define

interface constraints is shown in FIG. 6. A Switching System
601 includes a Switch 602, arranged to receive incoming
data on line 603 and to transmit outgoing data on line 604.
The operation and configuration of Switching mechanisms
within Switch 602 is accurately controlled in response to the
execution of executable instructions, received from a Storage
device 605.

Prior to the actual installation and commissioning of
Switching System 601, encoded instructions were generated
at a step 606 These instructions would have been converted
at step 607 into an executable form and at step 608 the
instructions were downloaded to the instruction Storage
memory device 605.
The instructions generated at step 606 were of the modu

lar type illustrated in FIG. 5 and it will be assumed that a
large number of upgrades and modifications have been
made, thereby creating a problem in terms of generating and
upgrading individual modules within the Suite.

15

25

35

40

45

50

55

60

65

8
In order to facilitate this upgrading and in order to Specify

the interface constraints for individual modules, the original
encoded instructions, representing the operationality of the
executable instructions Supplied to the Switch itself, are
analyzed at step 609. Thus, at step 609 the modules of
instructions are processed to obtain definitions of interac
tivity with other modules within the set of modules and to
obtain definitions of interactivity with Signal transmissions
external to the module. Thus, in this way, the generation of
replacement originating instructions, from which new
executable instructions are generatable, is significantly
facilitated, thereby providing enhanced functionality to the
Switching system 601 when the new executable instructions
have been embedded within the Switching system.
At Step 610 a question is asked as to whether another

module is to be analyzed and if answered in the affirmative,
control is returned to step 609.

If a question asked at Step 610 is answered in the negative,
new instructions are generated at Step 611 in response to the
interface analysis made at step 609. At step 612 the new
instructions are combined with the existing modules, that is
all the modules except for the module for which new
instructions have been produced, So as to generate a full Set
of instructions in encoded form.

At Step 613 these encoded instructions are converted to
executable form, a proceSS Similar to that performed at Step
607 and at step 614 the executable instructions are down
loaded onto the Switching system 601.
The analysis step 609 is detailed in FIG. 7. At step 701 a

module is Selected for analysis which, thereafter, is parsed to
produce an internal representation of the instructions to be
executed, along with details of user comments included in
the originating encoded instructions.

Thus, the parsing step 702 builds up an internal data
representation of the Source originating encoded instructions
and extracts user comments therefrom, which may be later
reproduced in the interface Specification. The parsing pro
ceSS is similar to initial procedures used to convert encoded
instructions into executable instructions, as identified at Step
607 in FIG. 6. This machine readable form of the encoded
instructions allows Subsequent processing to analyze these
instructions and thereafter produce a detailed account of the
behaviour of the procedures executed by instructions con
tained within the module. The behaviour of the procedure
represents the tasks that can be expected to be performed by
that particular module and this will be determined by the
transitions of inputs to outputs and changes made to global
variables and structures after an invocation of the routines
contained within the module. Thus, step 702 to 704 represent
procedures by which the encoded instructions may be
retained within memory locations of an analysing platform,
thereby allowing it to make a technical assessment of its
interface definitions.

At step 703 (detailed in FIG. 10) the procedures parsed at
step 702 are considered to identify particular individual
Steps which are relevant to interface information. Thus, at
step 703 it is possible to identify actual procedures which
may be perceived from an interface to the procedure and will
therefore undergo modification, possibly, when the proce
dure is invoked. Thus, it is these particular relationships
which will need to be considered in terms of an interface
definition, on the assumption that the interfaces are actually
invoked when the routine under consideration is called for
execution.

At step 704 (detailed in FIG. 11) executions of the parsed
code are simulated, and particular consideration is given to

5,982,769
9

the tagged steps identified at step 703. Thus, from an
interface Standpoint, only paths which include tagged Steps
are required to be deduced, in order that a full Specification
of the interface may be defined.

Thereafter, having Significantly reduced the number of
possible paths, to those procedures tagged at Step 703, the
definition of the interface constraints are defined.
At Step 706 a question is asked as to whether comments,

defining the interface constraints of the procedures deduced
by the previous steps, are to be embedded within the
encoded procedures of the module. If answered in the
affirmative, the constraints are embedded in the existing
module instructions, resulting in the Source instructions
being updated So as to include the constraints comments.
After step 707 or as a result of 706 being answered in the
negative, control is directed to Step 610 which, as shown in
FIG. 6, asks as to whether another module is to be consid
ered. If answered in the affirmative, control is returned to
step 701 and another module is selected.
AS previously Stated, the parsing Step at Step 702 is

substantially similar to procedures performed at steps 607
and 613, in order to convert the encoded instructions into an
executable form for execution on the Switching system 601.
After Step 702, the processing of the parsed encoded State
ments takes on a different form, in order to specify the
interface constraints. The passing of relevant Statements, at
step 702, is detailed in FIG. 8.
At step 801 the name of the a procedure under review is

identified and recorded. In addition, step 801 also searches
for the names of all procedures within the module which are
accessible from outside the module. AS used herein, Such
procedures will be referred to as being publicly accessible
while procedures which are purely accessible from within
the module itself and are not accessed from outside the
module, will be referred to as private procedures. Procedure
names are tagged So that they can be identified Subsequently,
whereafter they may be considered as Services, given that
each procedure which may be invoked externally represents
a particular service within the module which needs to be
expressed in the module interface.
At step 802 the names of internal state variables are

identified. These are the variables that are shared by the
service within the module but are entirely private to the
module. Interactions with these variables can only take place
through the Services of the module itself. It is only necessary
to identify the internal State variables that are used to
determine a particular outcome of a Service request, referred
to herein as a post-condition or those which form the basis
for a post-condition by Virtue of the given Service causing
them to be updated.

It is not necessary to model changes to variables that do
not directly affect the outcome of this or of other services
within the module. These internal variables are ignored.

Thus, internal variables which are relevant to the interface
operation of the module are tagged. Step 802 then goes on
to identify the particular type of the tagged variables, given
that it is necessary to have at least a high level type
expansion for each of the internal State variables So tagged.
At step 803 the names of the external state variables are

identified by tracking the instance of the variable to its
declaration. If it is declared in the module’s private
interface, it represents an internal State variable. However, if
it is declared in the module's public interface or in another
module, it represents an external State variable. If the
instance of the variable is a pointer, it is necessary to
determine whether the construction of the pointer is at an
internal or an external State variable.

15

25

35

40

45

50

55

60

65

10
The external state variables are those which are shared by

Services within the module and, in addition, are also acces
Sible to other modules and Services. The particular external
variables that are tagged consist of those which are used to
determine the particular outcome of a Service request, that is
to Say, a post-condition, and those which form the basis of
a post-condition by Virtue of the given Service updating
them.

External State variables are accessed by other Services and
modules and therefore it is important to capture changes that
may be made to them by the particular Service under
analysis. Again, the particular types of the variable is also
identified.

At step 804 an identification is made of the service request
details. Each Service includes a Service request rule, in the
form of the service name followed by the list of parameter
types associated to the request. The parameters and param
eter types are recorded and classified in accordance as to
whether they are read by the service or updated by the
Service.
At step 805 an identification is made of pre-conditions.

Pre-conditions represent constraints imposed upon the
requests made to the particular Service under consideration,
that must be Satisfied before the request Service can be
expected to perform in a predictable way.
The pre-conditions may be Summarised as Service request

pre-conditions, pre-conditions on Success and weak pre
conditions.

Service request pre-conditions are those expressed before
a Service can be requested. For example, it may be that a
Service can only be requested provided that another Service
has been Successfully requested previously. Another
example is a situation in which two State variables must be
equal before the Service can be requested.

Pre-conditions on Success are all the pre-conditions that
must be Satisfied in order to guarantee the Success of the
requested Service. The Service implementation will often
include checks to deal with the violation of pre-conditions.
This violation will generally produce an error therefore at
step 805 an examination is made as to how and where these
errors are generated, which in turn indicates the conditions
that need to be satisfied in order for the service to perform
Successfully.
Weak pre-conditions are conditions defining types of

variables, therefore a weak precondition of the Service is one
Stating that variables must be of the correct type.
At Step 806 post-conditions are identified, representing

the results of a Service request. Post-conditions of the given
Service will indicate the changes made to Step variables,
Service request parameters and return values. The Service
may terminate in a plurality of possible States, depending on
its behavioural characteristics. However, once the Service
parameters and State variables effected by the Service have
been identified, it is possible to determine the changes made
to them and hence to identify the post-conditions of the
Service.
At step 807 an identification is made of exceptions.

Exceptions are the error and Success return codes from the
Service request. These may be in the form of a return or
update parameter and they show if the Service request
finished with a Successful code or if Some error was
returned, due to the input parameters being incorrect or Some
other conditions not being met. Once an error return code
has been identified, it is possible to search the code for where
these error return codes are assigned. Exceptions can be
found if a precondition violation check fails.

5,982,769
11

At Step 808 Service parameter type expansions are iden
tified. Having collected all of the parameter types at Step
804, it is now necessary to discover the types that these
parameters refer to. The underlying definitions for the Ser
Vice parameter types will have been modelled as close to
defined types as possible, in order that the implications of
changes to them can be realised.
At step 809 an identification of module constraints is

made. These are constraints on State variables and Service
parameters that hold for the module as a whole. For
example, a constraint may consist of a constant that is
referred to in a Service and that is deemed to be of Signifi
cance in determining the Satisfaction of a precondition
Violation or the calculation of a post-condition.

Thus, after completing the step shown in FIG. 8, indi
vidual procedures will have been tagged, which are consid
ered to be relevant in terms of the interface Specification for
the module. It is now possible to deduce actual State paths
at step 704 from the tagged procedures identified at step 703.
A diagrammatic representation of a particular instruction

procedure, such as module 511 of module 506 shown in FIG.
5, is shown in FIG. 9. In order for the procedure to be
invoked, certain pre-conditions must be Satisfied and at the
termination of the invocation certain post-conditions will
have been Set. AS previously Stated, it is essential for these
pre-conditions and post-conditions to be known if the mod
ule is to be re-engineered and then Successfully embedded
within the executable instructions for the Switch.

The procedures executed upon invocation of the proce
dure shown in FIG. 9 may be represented as a plurality of
identifiable Statements. Thus, after invocation, Statement
901 is executed followed by the execution of statement 902.
Statement 902 takes the form of a question, usually in the
form of, IF a certain a condition is Satisfied, control is
directed to statement 903, ELSE control is directed to step
912.

Similarly, at statement 903 further branching occurs, such
that, in response to specified conditions, control would be
directed to statement 904 or statement 910. Similarly, after
execution of statement 904, statement 905 is executed, with
control then being directed to statement 906. As shown in
FIG. 9, after the execution of statement 910, control is
directed to statement 911, which again results in control
being directed to statement 906. Thus, statements 904 and
905 represent a first branch with statements 910 and 911
representing an alternative branch, both of these branches
being nested within the Structure lying between Statements
902 and 907.

After the execution of statement 907, control is directed
to statement 908 and thereafter control is directed to the end
condition, resulting in the final post-conditions being Satis
fied.

After implementing statement 902, control is directed to
Statement 913, consisting of a three-way branching point at
which, Subject to certain conditions being Satisfied, will
result in control being directed to statement 914,919 or 921.
After completion of statement 914, control is directed to
statement 915, which in turn is followed by statement 916,
followed by statement 917 and statement 918. Similarly,
after control has been directed to procedure 919, control is
directed to procedure 920, which terminates the level of
nesting by redirecting control to procedure 918.

Alternatively, if control is directed to procedure 921, this
is followed by procedure 922, followed by a return to
procedure 920. Thus, procedure 920 represents a point at
which a level of nesting is completed, the further level of

15

25

35

40

45

50

55

60

65

12
nesting being completed by control being directed to pro
cedure 918. Statement 922 is also capable of making a call
to another procedure, say public procedure 510, in the
module, as represented by arrow 923.

Thus, it can be seen that a plurality of paths are available
in order to traverse from the invocation of the module to the
termination of the module. In practice, the number of
possible paths can be extremely large, in the order of
millions. However, it is not necessary to consider all of these
paths in order to specify interface information. The task
involved in Specifying interface information can be reduced
Significantly, if the interface related paths may be separated
from those which do not affect the relationship between the
pre-conditions and the post-conditions.

Referring to FIG. 7, at step 703, procedures relevant to
interface information were identified and tagged. The tag
ging of such procedures is identified in FIG. 9 by the states
being enclosed in a Square tagging box 922. Thus, proce
dures 911, 915 and 917 are relevant in terms of. Specifying
the interfaces. Thus, in order to completely define the
interface, it is only necessary to consider the paths which
includes these tagged procedures. AS far as the interface
information is concerned, the other paths may be ignored,
thereby significantly reducing the size of the task in hand.
Typically, modules that include and define in the order of
over two million paths may be reduced to a Sub-set of leSS
than one hundred paths which need to be considered for
interface purposes.
At procedure 704 paths which include tagged procedures

are identified So that, by looking at these paths in greater
detail, the actual interface constraints may be defined at Step
705.

The tagging of procedures is detailed in FIG. 10 and the
deduction of paths which include tagged procedures is
detailed in FIG. 11. Referring to FIG. 10, at step 1001 an
initial path is initiated and at step 1002 the next statement
identified in that path is examined. At step 1003 a question
is asked as to whether the current Statement is an end of
procedure and if answered in the affirmative control is
directed to step 1005, at which the routine terminates.

If the question asked at step 1003 is answered in the
negative, to the effect that the current Statement is not an end
of procedure, a question is asked at step 1004 as to whether
the current Statement represents the return position for the
current path. If answered in the negative, control is directed
to step 1006, at which is asked as to whether the current
Statement is a branch. If answered in the negative, control is
directed to step 1007 at which a question is asked as to
whether the current Statement has been tagged. If answered
in the negative, the next Statement is considered and control
is returned to step 1002.

If a question asked at step 1007 is answered in the
affirmative, to the effect that the current statement has been
tagged, the path as a whole is tagged at Step 1008 and control
is then returned to step 1002.

If the question asked at step 1006 is answered in the
affirmative, to the effect that the current Statement is a
branch, a new path is initiated at step 1009 and at step 1010
a current Statement is Set to the effect that it originates a new
path. At step 1011 a new path, defined at step 1010, is
provisionally Set as not being tagged and control is then
returned to step 1002.

If a level of nesting has been identified, by the question
asked at step 1006 being answered in the affirmative, the
question asked at step 1004 will also, eventually, be
answered in the affirmative, given that the path must return

5,982,769
13

when a statement is identified at step 1004 as the current
path return position. Thus, when the question asked at Step
1004 is answered in the affirmative a question is asked at
step 1012 as to whether that current path has been tagged. If
this question is answered in the affirmative, control is
returned to step 1002.

If a question asked at step 1012 is answered in the
negative, the current path originator is flagged as not being
important at step 1013 and at step 1014 the path is removed
and the routine exits at step 1005.
At step 705 of FIG. 7 for defining interface constraints for

deduced paths which include tagged Steps, is detailed in
FIG. 12. An initial path is identified at step 1101 and
examined at step 1102. A question is asked at step 1103 as
to whether the current path is the end path and if answered
in the affirmative control exits at 1110.

If a question asked at step 1103 is answered in the
negative, a Statement is examined at Step 1104 and at Step
1105 a question is asked as to whether the statement has
been tagged as relating to the interface. If this question is
answered in the affirmative, control is directed to step 1106
at which the Statement is added to a file defining the
interface. Thereafter, control is returned to step 1104 and the
next Statement is examined.

If the statement identified at step 1104 has not been
tagged, the question asked at Step 1105 is answered in the
negative and control is directed to step 1107. At step 1107 a
question is asked as to whether the Statement is an end of
path. If answered in the negative control is returned to Step
1104 and the next statement of that path is considered.
Alternatively, if the question asked at step 1007 is answered
in the affirmative, control is returned to step 1102 and the
next path is considered.
We claim:
1. Apparatus for analysing a Selected module from a

plurality of modules of originating instructions So as to
generate upgraded originating instructions, the upgraded
originating instructions being for conversion into corre
sponding upgraded control instructions to control operations
of a telecommunications Switch, the apparatus comprising

analysing means for analysing the function specified by
the Selected module So as to generate an interface
Specification;

generating means for generating the upgraded originating
instructions on the basis of the interface Specification;

converting means for converting Said upgraded originat
ing instructions to produce Said control instructions,
and

downloading means for downloading Said upgraded con
trol instructions on to Said telecommunications Switch,

wherein Said analysing means comprises
Selecting means for Selecting a bounded module having

a plurality of Statements, executable by Said Switch
after conversion, of which Some are arranged to
communicate acroSS Said boundary;

labelling means for labelling Statements in Said module
arranged to control communication acroSS Said
boundary, which thereby represent the interface
characteristics of Said boundary, Said labelling means
incorporating means for labelling internal variables
relevant to Said interface information; and

processing means for processing Said labelled State
ments to produce Said interface Specification.

2. Apparatus according to claim 1, wherein Statements
within the Selected module are grouped together to define a

15

25

35

40

45

50

55

60

65

14
plurality of procedures and interface Statements are pro
cessed Sequentially for each of Said procedures.

3. Apparatus according to claim 1, wherein Said labelling
means includes means for labelling external variables rel
evant to Said interface information.

4. Apparatus according to claim 1, wherein Said labelling
means includes means for identifying pre-conditions rel
evant to Said interface information.

5. Apparatus according to claim 1, wherein Said labelling
means includes means for identifying post-conditions rel
evant to Said interface information.

6. Apparatus according to claim 1, wherein Said process
ing means examines paths through Said Statements, and
retains paths which include Statements labelled by Said
labelling means.

7. A method of analysing a Selected module from a
plurality of modules of originating instructions So as to
generate upgraded originating instructions, the upgraded
originating instructions being for conversion into corre
sponding upgraded control instructions to control operations
of a telecommunications Switch, the method comprising the
Steps of;

analysing the function specified by the Selected module SO
as to generate an interface Specification;

generating the upgraded originating instructions on the
basis of the interface Specification;

converting Said upgraded originating instructions to pro
duce Said control instructions, and

downloading Said upgraded control instructions on to Said
telecommunications Switch,

wherein said analysing step comprises
Selecting a bounded module having a plurality of

Statements, executable by Said Switch after
conversion, of which Some are arranged to commu
nicate acroSS Said boundary;

labelling Statements in Said module arranged to control
communication acroSS Said boundary, which thereby
represent the interface characteristics of Said
boundary, Said labelling means incorporating means
for labelling internal variables relevant to Said inter
face information; and

processing Said labelled Statements to produce Said
interface Specification.

8. A method according to claim 7, wherein Statements
within a Selected module are grouped together to define a
plurality of procedures, and interface Statements are pro
cessed Sequentially for each of Said procedures.

9. A method according to claim 7, wherein said step of
labelling Statements which communicate acroSS Said bound
ary includes labelling external variables relevant to Said
interface information.

10. A method according to claim 7, wherein said step of
labelling Statements which communicate acroSS Said bound
ary includes identifying pre-conditions relevant to Said inter
face information.

11. A method according to claim 7, wherein Said Step of
labelling Statements which communicate acroSS Said bound
ary includes labelling post-conditions relevant to Said inter
face information.

12. A method according to claim 7, wherein Said Step of
processing Said Statements includes examining paths
through Said Statements, and retaining paths which include
Said labelled Statements.

