The present invention is advantageous in that it provides improved vibration stimulation treatment.

According to the present invention, a device for vibration stimulation is provided. The device comprises a stimulation member adapted to impart vibrations to a body tissue (or treatment area) of a subject, and a vibration controller configured to control a vibration generator to bring the stimulation member to vibrate according to a vibration pattern. The vibration pattern comprises a main periodic element of a first frequency and an excitation stimulus of a second frequency higher than the first frequency. The present invention is advantageous in that it provides improved vibration stimulation treatment.
VIBRATION PATTERN FOR VIBRATION STIMULATION

Technical field
The present invention generally relates to devices and methods for imparting vibrations to a body tissue of a subject and, in particular, to vibration patterns for such devices and methods.

Background
Vibrations are registered in the mammalian body by mechanoreceptors. There are four main types of mechanoreceptors in the human body: Pacinian corpuscles, Meissner's corpuscles, Merkel's discs, and Ruffini corpuscles that are responsible for detection and communication of mechanical influence. Pacinian corpuscles (also known as lamellar corpuscles) detect rapid vibrations (200-300 Hz). Meissner's corpuscles (also known as tactile corpuscles) on the other hand detect changes in texture (vibrations around 50 Hz) and adapt rapidly. Merkel's discs (also known as Merkel nerve endings) detect sustained touch and pressure and adapt slowly. Ruffini corpuscles (also known as Ruffini's end organs, bulbous corpuscles, and Ruffini endings) are slowly adapting receptors that detect tension deep in the skin. Most studies of mechanoreceptors have been performed on the skin.

Pacinian corpuscles are distributed in connective tissue in various parts of the mammalian body; e.g. in skeletal muscles, in ligaments, in joint capsules, in the periosteum and beneath the interosseous membranes, in the epineurium, in the adventitia of blood vessels, in the pancreas, in the pleura, in the mesentery and in the mesocolon. They are also found in the mammalian skin, where they are localized in the corium and thus deeper than other dermal receptors. In addition, they are densely distributed under the volar surface of the human hand (Zelena J., Nerves and mechanoreceptors: the role of innervations in the development and maintenance of mammalian mechanoreceptors: p. 147 Springer 1994).

Vibration stimulation can be used for various kinds of medical treatment. One example of a vibration device is disclosed in WO 2008/1 38997. This PCT publication discloses a device for vibration stimulation in a body cavity, such as the nasal cavity or the intestine, of a patient. The device comprises a stimulation member and a vibration generator adapted to bring the stimulation member to vibrate. The device can
be arranged in a first state, in which the stimulation member can be introduced via a body opening into a body cavity and a second state, in which the stimulation member is expanded to a volume such that the stimulation member abuts against the tissue within the body cavity. For treatment of rhinitis, the stimulation member may be vibrated at a frequency of about 30-70 Hz for a period of 15 seconds to 7 minutes in the nasal cavity.

Summary
It is an object of the present invention to provide improved devices for vibration stimulation. More specifically, it is an object of the present invention to provide a vibration pattern for improving vibration stimulation treatment of a mammalian subject in need thereof.

These and other objects of the present invention are achieved by means of a device for vibration stimulation having the features defined in the independent claim. Embodiments of the invention are defined by the dependent claims.

According to a first aspect of the present invention, there is provided a device for vibration stimulation in a body cavity of a mammalian subject, the device comprising: an expandable stimulation member being arrangeable in a first state, in which the stimulation member is introducible into a body cavity of the subject, and a second state, in which the stimulation member is expanded to a volume such that an outer surface of the stimulation member is adapted to abut against body tissue in the body cavity and to impart vibrations to body tissue in the body cavity of the mammalian subject; and a vibration controller adapted to control a vibration generator to bring the stimulation member to vibrate according to a vibration pattern; wherein the vibration pattern comprises a main periodic element of a first frequency and an excitation stimulus of a second frequency higher than the first frequency.

When transferred via the outer surface of the stimulation member to the body tissue of a subject, vibrations are registered by different types of receptors as described above. Each receptor type responds to vibrations within a particular frequency range. To improve vibration stimulation treatment of a subject suffering from a disease that may be treated with vibration stimulation, it would be desirable to include frequencies in the vibration pattern that may stimulate other parts of the nervous system, such as other nerve cells in the neural network. Some of these frequencies might correspond to natural frequencies of other parts of the nervous system.
Further, the applicant has found that it in some instances may be
advantageous to (simultaneously) target the different receptor types
responsible for registering mechanical stimuli with vibrations in their individual
specific sensitivity range. In view of this, the applicant has realized that more
complex vibration patterns are needed to further improve vibration stimulation
treatment.

The present invention is based on the concept of combining two
different frequencies in a vibration pattern. The applicant has found that
combining a main periodic element of a lower frequency and an excitation
stimulus of a higher frequency in the vibration pattern (or vibration signal),
allows stimulation at one or more sensitivity ranges of the receptors and/or
matching of one or more natural frequencies of other parts of the nervous
system, and thereby provides an improved vibration stimulation treatment.

Hence, the vibration pattern according to the present invention
comprises both a component of a higher frequency; namely the excitation
stimulus, and a component of a lower frequency; namely the main periodic
element. In this context, the term "component" refers to any general part or
element of the vibration pattern, and not just to a frequency component of the
vibration signal. Further, such a combination may reduce any adverse effects,
which may be caused by vibrations at higher frequencies.

In the present disclosure, the term "main periodic element" may refer to
an element (or part) of the vibration pattern, which element provides a
periodicity of the first frequency to the vibration pattern.

Further, the term "excitation stimulus" may refer to a portion of the
vibration pattern providing one or more spatial shifts and/or shifts in abutting
pressure of (at least a portion of) the stimulation member.

The present invention is furthermore advantageous in that it enables
treatment of rather large tissues inside body cavities, which otherwise may be
difficult to access. The possibility to reduce the volume of the stimulation
member (i.e. bring the stimulation member to its first state) allows smoother
and less cumbersome insertion of the vibration stimulation member into the
body cavity. In its second state, the stimulation member has a volume such
that an outer surface of the stimulation member abuts the body tissue within
the body cavity. This enables vibrations to be imparted via the abutting outer
surface of the stimulation member to the body tissue.

According to an embodiment of the present invention, the first
frequency may be within the range of 10 - 100 Hz, for example within the
range of 50 - 90 Hz, such as within the range of 60 - 80 Hz, or within the range of 50 - 70 Hz, such as around 68 Hz (e.g. 68 ± 5 Hz). By clinical testing, e.g. vibration stimulation treatment in the nasal cavity of a human subject suffering from rhinitis, the applicant has realized that vibration frequencies within the range of 10 - 100 Hz are beneficial for achieving a desired therapeutic effect. Hence, by addition of a periodicity of a frequency within this range to the vibration pattern (by setting the main periodic element to such frequency), the desired therapeutic effect may be achieved. For example, tests wherein vibration stimulation was conducted in different parts of the nasal cavity of patients with diseases associated with abnormal activity in the hypothalamus (e.g., migraine, ALS, Meniere's disease and heart arrhythmia), have shown that such diseases may successfully be treated with vibration stimulation at frequencies between 40 and 100 Hz.

However, other frequency intervals are envisaged for vibration stimulation of other parts of the body and/or for other purposes.

According to embodiments of the present invention, the second frequency may be at least 1.5 times as high as the first frequency. This difference between the two frequencies allows an improved targeting of different parts of the nervous system, such as different nerve cells in the neural network, and/or natural frequency ranges of other parts of the nervous system, and/or different sensitivity ranges of the receptors. The second frequency may be 1.5 - 5, such as 1.9 - 4 times, as high as the first frequency. To high a frequency may however have an adverse impact on body tissue, as demonstrated by Kranjak et al (JOEM 2010, 52:584-594). In their study, vibration frequencies above 100 Hz were found to induce stress and strain, and to result in vascular changes that indicate dysfunction.

Therapeutic considerations as well as other factors may thus in practice put an upper limit to the second frequency. Factors limiting the obtainable maximum frequency are e.g. the inherent inertia in the device, type of vibration generator, configuration of the stimulation member (such as material and geometry), and configuration of the transmission between the vibration generator and the stimulation member.

The applicant has found that administering vibrations to the nasal cavity according to a vibration pattern including a single frequency (or periodicity) at around 60-80 Hz increases the patient's response to the vibration treatment. For several patients, the optimum frequency was found to be around 68 Hz, e.g. 68 ± 5 Hz. Further, it was found that the response
diminished at higher frequencies (up to 100 Hz). The current knowledge of the mechanoreceptors would seem to contradict this finding since the sensitivity of the Meissner corpuscles decreases already at frequencies above 50 Hz and the sensitivity of the Pacinian corpuscles increases up to frequencies around 200 - 300 Hz. The applicant has thus realized that the observed advantageous frequencies (around 60-80 Hz) may be related to some other part of the nervous system.

Thus, in an embodiment of the present invention, the first frequency may be set to approximately 60-80 Hz, or approximately 50-70 Hz, (e.g. approximately 68 Hz) and the second frequency may be set to approximately 90 - 400 Hz, such as to approximately 110 - 320 Hz. This may prove beneficial in that the vibration pattern comprises both a frequency (provided by the main periodic element) shown to be effective for vibration stimulation (i.e. 60-80 Hz) and a higher frequency (provided by the excitation stimulus) for increasing activation/stimulation of, in particular, the Pacinian corpuscles.

For example, the second frequency may be set to approximately 200 - 300 Hz for targeting the sensitivity maximum of the Pacinian corpuscles. Alternatively, the second frequency may be set to 100-180 Hz (such as 125-145 Hz or around 136 Hz) for obtaining a harmonic of the first frequency.

It will be appreciated that each one of the first and second frequencies may be set to a constant value within any one of the above mentioned intervals or, alternatively, vary/alternate between different frequencies within any one of the above mentioned intervals.

According to an embodiment of the present invention, the vibration pattern may have a continuous waveform. Further, the time derivate of the waveform may be continuous. For example, the vibration pattern may have a sine or cosine like waveform. With the present embodiment, the abutting pressure exerted by the stimulation member on the body tissue (or the fluid pressure in the stimulation member if the stimulation member is e.g. an expandable hollow body) and/or the spatial shift of the stimulation member, may vary according to a continuous waveform. The present embodiment is advantageous in that it requires less stiffness in the vibration stimulation member (and in any transmission between the vibration generator and the stimulation member) since less abrupt shifts are to be provided. Hence, a more flexible material may be used in the stimulation member, which, in particular, is advantageous for vibration stimulation treatment of sensitive tissues, such as the bone structures in the nasal cavity.
According to an embodiment, the body cavity is selected from the nasal cavity or the intestine of the subject, wherein the stimulation member in its second state is adapted to abut against the tissue of the nasal cavity or the intestine. Thus, when the body cavity is the nasal cavity of the subject, the outer surface of the stimulation member may in its second state be adapted to abut against the tissue in the nasal cavity. When vibration stimulation is performed in the nasal cavity, the first frequency may for example be within the range of 50-70 Hz, such as 68 Hz, while the second frequency may be within the range of 90-400 Hz, such as 110-320 Hz.

When the body cavity is the intestine of the subject, the outer surface of the stimulation member may in its second state be adapted to abut against the tissue in the intestine. The applicant has found that administering vibrations to the intestine according to a vibration pattern including a single frequency (or periodicity) at around 10-20 Hz increases the patient’s response to the vibration treatment. In addition, a single frequency at around 60-80 Hz, or 50-70 Hz, such as around 68 Hz, has also been found to generate a positive response in human subjects. When vibration stimulation is to be performed in the intestine, the first frequency may thus be set to a frequency within the range of 10-20 Hz. The second frequency may, when the body cavity is the intestine, be set to a frequency within the range of 50-70 Hz, such as 68 Hz. A vibration pattern for vibration stimulation with a device according to the invention in the intestine may thus comprise a first frequency within the range of 10-20 Hz and a second frequency within the range of 50-70 Hz, such as 68 Hz.

It is contemplated that various mammalian subjects may benefit from vibration stimulation with a vibration device as described herein. One example of a mammalian subject is a human subject.

Vibration stimulation may be directed to different parts of the nasal cavity of the human subject. Stimulation may for example be conducted in the posterior part of the nasal cavity for treatment of diseases associated with abnormal activity in the hypothalamus. Non-limiting examples of diseases associated with abnormal activity in the hypothalamus are migraine, Meniere’s disease, hypertension, cluster headache, arrhythmia, ALS (amyotrophic lateral sclerosis), irritable bowel syndrome, sleep disorders, diabetes, obesity, multiple sclerosis, tinnitus, respiratory disorders, Alzheimer’s disease, mood and anxiety disorders and epilepsy. Vibration stimulation in anterior parts of the nasal cavity may on the other hand be
useful for treatment of e.g. rhinitis and asthma. In addition, vibration stimulation as described herein may also be conducted in other body cavities of the subject, both air-conducting and liquid-conducting cavities such as blood vessels and gall ducts.

Furthermore, subjects suffering from, e.g. intestinal inflammation, e.g. in the colon, ulcerous colitis, Crohn's disease, and urethritis may benefit from vibration stimulation in the intestine.

According to an embodiment of the present invention, the vibrations may be generated by means of one or more of: a fluid pressure, a motor with an eccentric weight and an electroactive material (or any other convenient vibration generator). For example, the vibration generator may comprise a frequency regulating module for providing vibrations according to the vibration pattern to a pressurized fluid in the stimulation member. The frequency regulating module may e.g. comprise a squeeze type actuator or a peristaltic pump arranged at (or in proximity to) the stimulation member for providing vibrations in pressurized fluid therein. Alternatively (or as a complement), a motor with an eccentric weight may be arranged at (or in proximity to) the stimulation member, wherein the motor may be controlled to rotate and thereby vibrate according to the vibration pattern. Further, the stimulation member may comprise electroactive material, e.g. a dielectric elastomer, controlled such that the stimulation member vibrates according to the vibration pattern.

When the vibrations are generated by means of fluid pressure, the stimulation member is e.g. an expandable hollow body. The stimulation member thus allows flow of fluid to and from the stimulation member in order to achieve expansion. In relation to the body tissue in the body cavity, the stimulation member however constitutes a fluid tight chamber to prevent leakage of fluid into the body cavity.

The vibration generator may be comprised in the device or, alternatively, externally arranged and connectable to the device (to the vibration controller and the stimulation member) in order to provide vibrations to the stimulation member.

According to an embodiment of the present invention, the device may be configured such that the stimulation member abuts, or is adapted to abut, against the body tissue at a pressure of 20-170 mbar. In particular, the outer surface of the stimulation member may be adapted to abut against the body tissue at the defined pressure. The stimulation member may in its second
state e.g. abut against the tissue at a base pressure of around 20-120 mbar prior to starting the vibration treatment. During the vibration treatment, the abutting pressure of the stimulation member against the tissue may vary according to the vibration pattern, such as by a pressure of ±30-50 mbar (i.e., the amplitude of the vibration pattern may be within the range of 30-50 mbar).

For example, the fluid pressure within the stimulation member may be in the range of 20-120 mbar when expanded and arranged within the body cavity (i.e. when being in the second state). It will be appreciated that the abutting pressure may be adapted to the type of body tissue to be stimulated, the type of body cavity and purpose of the treatment. For example, for stimulation in the posterior part of the nasal cavity for treatment of disorders related to abnormal hypothalamic activity, the pressure may be 70-120 mbar, such as 75-100 mbar, plus/minus the amplitude of the vibrations (such as ±30-50 mbar).

A pressure regulating module (e.g. a pressure pump) adapted to pressurize the stimulation member such that the stimulation member abuts, or is adapted to abut, against the body tissue at a desired pressure (e.g. 20-170 mbar) may furthermore be comprised in the device, or alternatively, arranged externally and connectable to the device. Such a pressure regulating module may thus regulate the degree of expansion of the stimulation member when the stimulation member e.g. is an expandable hollow body. The pressure regulating module may for example be controlled by the vibration controller. According to an embodiment of the present invention, the main periodic element may be provided by (or comprise) a main stimulus of the first frequency, wherein the main stimulus is at least partly superposed with the excitation stimulus. Hence, the main stimulus may act as a carrier wave for the excitation stimulus. According to the present embodiment, the main periodic element (and thus a periodicity having the first frequency) is implemented in the vibration pattern by the main stimulus. Thus, a higher frequency and a lower frequency may be combined in the vibration pattern by providing a vibration of the second (higher) frequency (i.e. the excitation stimulus) added to (or superposed with) a vibration of the first (lower) frequency (i.e. the main stimulus). Thus, the vibration signal (or pattern) comprises a frequency component of the first frequency and a frequency component of the second frequency. The excitation stimulus may be superposed with portions of the main stimulus, while other portions of the main stimulus may be non-superposed. Alternatively, the excitation stimulus
may be continuously superposed with the main stimulus (i.e., without, or at least with less, interruptions in the excitation stimulus).

In the present disclosure, the term "main stimulus" may refer to a portion of the vibration signal providing one or more spatial shifts and/or shifts in abutting pressure of (at least a portion of) the stimulation member from a state of equilibrium. For example, the main stimulus may have continuous wave form, such as a waveform with a continuous time derivate (e.g. a sine or cosine like waveform).

According to an embodiment of the present invention, the vibration generator may comprise a first frequency regulating module and a second frequency regulating module, wherein the vibration controller may be configured to control the first frequency regulating module to provide vibrations of the first frequency (the main stimulus) and the second frequency regulating module to provide vibrations of the second frequency (the excitation stimulus). Further, the output of the first frequency regulating module and the output of the second frequency regulating module may be added for providing the vibration pattern. Consequently, a vibration pattern with the excitation stimulus added to (or superposed with) the main stimulus is provided.

For example, the two frequency regulating modules may provide vibrations to pressurized fluid supplied to the stimulation member. Alternatively, or as a complement, the frequency regulating modules may provide oscillating electrical signals, wherein the first frequency regulating module may generate a signal oscillating with the first frequency and the second frequency regulating module may generate a signal oscillating with the second frequency. By adding the outputs (i.e., the oscillating electrical signals) of the first and second frequency regulating modules, a control signal varying according to the vibration pattern is provided. Such a control signal may be used for controlling e.g. a linear motor or an electroactive material, which may be used for generating the vibrations.

According to another embodiment of the present invention, the main periodic element may be provided by (or comprise) a vibration profile repetitively initiated at the first frequency, wherein the vibration profile comprises a stimulation phase including the excitation stimulus and a rest phase (free from the excitation stimulus). Hence, the vibration pattern may comprise phases of excitation stimulus alternated with (or interrupted by) rest phases. With the present embodiment, a constant administration of vibrations
of the second (higher) frequency is avoided, whereby adverse effects on the body tissue, which may be caused by high frequency vibrations, may be reduced. For example, the stimulation phase may comprise one period, or a plurality of consecutive periods, of the excitation stimulus. Further, as the rest phase may be free from stimulation, (at least almost) no vibrations are imparted to the tissue (i.e. the stimulation member is still) during the rest phase.

In the present disclosure, the term "vibration profile" may refer to a portion of a vibration signal (or pattern), which portion is repeated (or repetitively initiated) at a certain frequency (namely the first frequency). It will be appreciated that the exact configuration of the vibration profile may vary (slightly) from repetition to repetition. For example, the phase shift, waveform and/or number of periods of the excitation stimulus in the vibration profile may vary from repetition to repetition.

According to an embodiment of the present invention, the rest phase may be at least as long as the stimulation phase, for example at least 1.5, such as at least 2, times as long as the stimulation phase. The present embodiment is advantageous in that it provides more distinct interruptions between the stimulation phases and allows longer phases for the receptors to recover or rest from stimulation between the stimulation phases.

According to an embodiment of the present invention, the vibration generator may comprise a frequency regulating module and a gate, wherein the vibration controller is configured to control the frequency regulating module to provide vibrations of the second frequency (the excitation stimulus) and the gate to selectively allow transmission of the vibrations (from the second frequency regulating module) to the stimulation member such that the transmission is repetitively initiated at the first frequency. In case the vibrations are generated by fluid pressure, the frequency regulating module may be adapted to provide vibrations in pressurized fluid and the gate may be a valve controlled to open and close the communication of vibrations in the fluid between the frequency regulating module and the stimulation member.

Alternatively, the frequency regulating module may be configured to output an electric signal oscillating at the second frequency, wherein a signal processing component (which may be seen as the gate) may be configured to process the output signal from the frequency regulating module, such that the signal comprises rest phases (such a phases of zero or constant voltage).
The control signal may be used to control a linear motor or an electroactive material for generating vibrations.

According to an embodiment of the present invention, the device comprises anchoring means, or an anchoring member, adapted to secure the stimulation member to the subject during the vibration stimulation. The anchoring means may comprise a headband, a facial mask, a pair of glasses, a helmet, a belt, a cuff, a vest and/or an adhesive patch. The type of anchoring means may be adapted to the particular body cavity. A headband is an example of an anchoring means suitable for securing a stimulation member for use in the nasal cavity.

According to a second aspect, a device for vibration stimulation is provided. The device comprises a stimulation member adapted to impart vibrations to body tissue (or treatment area) of a mammalian subject, and a vibration controller adapted to control a vibration generator to bring the stimulation member to vibrate according to a vibration pattern. The vibration pattern comprises a main periodic element of a first frequency and an excitation stimulus of a second frequency higher than the first frequency. It will be appreciated that the effects and advantages of the device according to the second aspect of the invention are the same as the effects and advantages of the device according to the first aspect of the invention.

According to an embodiment of the second aspect, the stimulation member may be expandable and adapted to be arranged in a first state, in which the stimulation member can be introduced into a body cavity of the subject (i.e. in which state the stimulation member may be collapsed or less expanded), and a second state, in which the stimulation member is expanded to a volume such that the stimulation member abuts against body tissue in the body cavity.

According to an embodiment of the second aspect, the stimulation member may be adapted to be applied to a body surface (rather than a body cavity), such as on the abdomen.

According to a third aspect of the invention, a method of treatment of a human subject is provided. The method comprises the step of imparting vibrations to a body tissue of the human subject according to a vibration pattern, wherein the vibration pattern comprises a main periodic element of a first frequency and an excitation stimulus of a second frequency higher than the first frequency. It will be appreciated that the effects and advantages of
the method according to the third aspect of the invention are the same as the effects and advantages of the device aspects of the invention.

According to a fourth aspect, there is provided a method of treatment of a human subject, comprising the steps of: introducing an expandable stimulation member into a body cavity of the human subject, said expandable stimulation member being adapted to impart vibrations to body tissue of the human subject; expanding the stimulation member to a volume such that the stimulation member abuts against body tissue within the body cavity; bringing the stimulation member to vibrate such that vibrations are imparted to the body tissue in the body cavity of the human subject according to a vibration pattern, wherein the vibration pattern comprises a main periodic element of a first frequency and an excitation stimulus of a second frequency higher than the first frequency. It will be appreciated that the effects and advantages of the method according to the fourth aspect of the invention are essentially the same as the effects and advantages of the previous device and method aspects of the invention. It will further be appreciated that the following embodiments are applicable to all aspects of the invention unless stated otherwise.

In an embodiment of the method aspects, the vibrations may be imparted using a device according to any one of the embodiments described in connection to the first aspect of the present invention. When introducing the stimulation member, it may be arranged in a first (collapsed or less expanded) state.

In an embodiment of the method aspects, the first frequency may be within the range of 10 - 100 Hz, such as 50 - 90 Hz, such as 60 - 80 Hz and such as around 68 Hz.

In an embodiment of the method aspects, the second frequency may be at least 1.5 times as high as the first frequency.

In an embodiment of the method aspects, the second frequency may be 1.5 - 5, such as 1.9 - 4 times as high as the first frequency.

In an embodiment, the vibration pattern may have a continuous waveform.

In an embodiment of the method aspects, the main periodic element may be provided by a main stimulus of the first frequency, wherein the main stimulus may be at least partly superposed with the excitation stimulus.

In an embodiment of the method aspects, the main periodic element may be provided by a vibration profile repetitively initiated at the first
frequency, the vibration profile comprising a stimulation phase including the excitation stimulus and a rest phase.

In an embodiment of the method aspects, the rest phase may be at least as long as the stimulation phase, such as at least 1.5 times as long as the stimulation phase, such as at least 2 times as long as the stimulation phase.

In an embodiment of the method aspects, the body cavity may be selected from the nasal cavity and the intestine of the subject.

When treatment is performed in the nasal cavity, the step of expanding may in an embodiment further comprise expanding the stimulation member to a volume such that the stimulation member abuts against body tissue in the nasal cavity at a pressure in a range of from 50 to 120 mbar.

Treatment according to method aspects described herein may be performed in the nasal cavity of human subjects suffering from a disease selected from the group consisting of rhinitis, asthma, migraine, Meniere’s disease, hypertension, cluster headache, arrhythmia, ALS, irritable bowel syndrome, sleep disorders, respiratory disorders, diabetes, obesity, multiple sclerosis, tinnitus, Alzheimer’s disease, mood and anxiety disorders, and epilepsy.

In particular, when the human subject suffers from a disease associated with abnormal activity in the hypothalamus, the stimulation member may advantageously abut against body tissue in the nasal cavity at a pressure in a range of from 70 to 120 mbar. A disease associated with abnormal activity in the hypothalamus is for example selected from the group consisting of migraine, Meniere’s disease, hypertension, cluster headache, arrhythmia, ALS, irritable bowel syndrome, sleep disorders, respiratory disorders, diabetes, obesity, multiple sclerosis, tinnitus, Alzheimer’s disease, mood and anxiety disorders, and epilepsy.

When treatment is conducted in the nasal cavity, the first frequency is in an embodiment of the method aspects within a range from of 50 to 70 Hz and the second frequency is within a range of from 110 to 320 Hz.

When treatment is conducted in the intestine, the step of expanding may in one embodiment comprise expanding the stimulation member to a volume such that the stimulation member abuts against body tissue in the intestine at a pressure in a range of from 20 to 50 mbar.

Treatment according to method aspects described herein may be performed in the intestine of a human subject suffering from a disease
selected from the group consisting of irritable bowel syndrome, intestinal inflammation, ulcerous colitis, and Crohn's disease.

When treatment is performed in the intestine, the first frequency is in an embodiment within a range of from 10 to 20 Hz and the second frequency is within a range of from 50 to 70 Hz.

According to a fifth aspect, there is provided a method of treatment of a human subject, comprising the steps of: applying a stimulation member to a body tissue of a human subject; said stimulation member being adapted to impart vibrations to body tissue of the human subject; selecting a first frequency by imparting vibrations to said body tissue at a variable frequency; gradually adjusting the variable frequency up to a maximum frequency; monitoring a bodily response to the treatment, the bodily response being indicative of a physiological (or health) condition of the subject; setting the first frequency to a frequency within ±20 Hz, such as ±10 Hz, of the variable frequency at which the bodily response is maximized (or at least increased), and imparting vibrations to the body tissue of the human subject according to a vibration pattern, wherein the vibration pattern comprises a main periodic element of the first frequency and an excitation stimulus of a second frequency higher than the first frequency.

The maximum frequency may in this context be understood as an upper frequency limit above which a vibration pattern cannot be imparted to the human subject. The frequency selection is thus bounded by this maximum obtainable frequency. The maximum frequency may be within a range of 200 - 500 Hz.

Hence, the first frequency is set to a value corresponding to the frequency of the main periodic element at which the bodily response is maximized ±20 Hz. So if the frequency of the main periodic element at which the bodily response is maximized is \(F_{\text{MAX}} \), the first frequency is set to a value within the range of \(F_{\text{MAX}} - 20 \text{ Hz} \) to \(F_{\text{MAX}} + 20 \text{ Hz} \). For example, the first frequency may be set to \(F_{\text{MAX}} \). If the bodily response is maximized at more than one frequency a lower frequency is preferably selected to avoid subjecting tissue to potentially damaging high frequency vibrations. The present embodiment is advantageous in that the vibration pattern is adjusted to provide an increased bodily response to the treatment. This means that the frequency (±20 Hz) having the largest influence on (or change in) the bodily response monitored is selected for vibration stimulation, since the largest influence on the bodily response is correlated to a desired effect on the
subject's health condition. Evidently, a desired effect on a subject's health
condition may be an upregulation as well as a downregulation.

Alternatively, a desired effect on a subject's health condition may be a
return from an upregulated or downregulated state to a normal state. The first
frequency is thus set to a frequency at which the bodily response is stabilized.

In an embodiment of the fifth aspect, the variable frequency may be
gradually adjusted between a first lower limit (e.g. being within the range of
10-60 Hz) and a first upper limit, the first upper limit being within the range of
80 - 120 Hz, such as around 100 Hz. The applicant has found that vibration
treatment at a first frequency between said first lower and upper limit
achieves a beneficial effect on the health condition of human subjects.

In an embodiment of the fifth aspect, the method may further comprise
selecting the second frequency by gradually adjusting the frequency of the
excitation stimulus from the first frequency up to the maximum frequency;
monitoring a bodily response to the treatment, the bodily response being
indicative of a physiological condition of the subject, and setting the second
frequency to a frequency within ±20 Hz, such as ±10 Hz, of the frequency of
the excitation stimulus at which the bodily response is maximized.

Hence, the second frequency is set to a value corresponding to the
frequency of the excitation stimulus at which the bodily response is
maximized ±20 Hz. So if the frequency of the excitation stimulus at which the
bodily response is maximized is \(F_{2,\text{MAX}} \), the second frequency is set to a value
within the range of \(F_{2,\text{MAX}} - 20 \) Hz to \(F_{2,\text{MAX}} + 20 \) Hz. For example, the second
frequency may be set to \(F_{2,\text{MAX}} \). The present embodiment is advantageous in
that the vibration pattern is adjusted to provide an increased bodily response
to the treatment. The frequency (±20 Hz) giving the largest change (whether
positive or negative) in bodily response is selected as the second frequency.
This is similar to the selection criteria described above in connection with
selection of the first frequency.

In an embodiment of the fifth aspect, the method may further comprise
selecting the first frequency and the second frequency in such a way so as to
maximize the therapeutic effect in the human subject while avoiding the use
of unnecessary high frequencies. This is accomplished by gradually
increasing the variable frequency (the frequency of the main periodic
element) starting from a lower limit (e.g. 10 Hz) while not applying any
excitation stimulus, monitoring a bodily response to the treatment, the bodily
response being indicative of a physiological (or health) condition of the
subject, and setting the first frequency to a frequency within ± 20 Hz, such as
± 10 Hz, of the frequency of the main periodic element at which the bodily
response is maximized (or at least increased). The second frequency is then
selected by gradually increasing the second frequency starting from the value
just selected for the first frequency, monitoring a bodily response to the
treatment, the bodily response being indicative of a physiological (or health)
condition of the subject, and setting the second frequency to a frequency
within ± 20 Hz, such as ± 10 Hz, of the frequency of the main periodic
element at which the bodily response is maximized (or at least increased).

The excitation stimulus may during this procedure comprise one full
oscillation period, i.e. the effect of increasing the second frequency will be to
increase a rest phase between single excitation pulses.

In an embodiment of the fifth aspect, the method may further comprise
selecting the first and second frequency by applying a number (such as
between four and nine) of different combinations of frequencies where the
second frequency is always higher than the first frequency and the first
frequency and the second frequency both are bounded by an upper limit,
and/or maximum frequency. This upper limit or maximum frequency may
either be imposed from clinical reasons or may be a practical limitation of any
system used for administering the vibration treatment. A bodily response to
the stimulation is recorded for each combination of frequencies applied and
the combination giving the most desired response is selected. In case several
combinations give the same response the one corresponding to the lowest
second frequency is selected. This selection procedure may either be
performed once per indication or for every subject to be treated.

In an embodiment of the fifth aspect, the frequency of the excitation
stimulus may be gradually adjusted between a second lower limit (e.g. being
within the range of 15 - 150 Hz) and second upper limit, the second upper
limit being within the range of 200 - 450 Hz, such as around 350 Hz.

In an embodiment of the fifth aspect, the stimulation member may be
expandable and the step of applying further comprises: introducing the
stimulation member into a body cavity of the subject; and expanding the
stimulation member to a volume such that the stimulation member abuts
against body tissue in the body cavity. The body cavity is for example
selected from the nasal cavity and the intestine of the subject.

The activity in a biological target, such as the hypothalamus, can be
measured by different qualitative and/or quantitative methods. In particular,
changes in physiological parameters such as for example blood flow, oxygen consumption and metabolic activity are correlated to changes in the level of activity of the biological target, such as the hypothalamus. Depending on the present health condition of a human subject treated with a device according to the first aspect, stimulation may alter the level of activity in the biological target, such as the hypothalamus, somewhat differently. If for example a human subject suffering from a medical condition associated with an abnormal activity in the hypothalamus is treated with a method according to this aspect, vibration stimulation may result in normalized hypothalamic activity. Normalization in this context may refer to a condition where the activity of a biological target is comparable to the activity in surrounding tissue. Thus, a normalized hypothalamic activity may refer to an activity which is comparable to the activity in surrounding brain tissue. The different measures of the activity of the biological target, such as the hypothalamus, can be monitored directly or indirectly.

Furthermore, the same reasoning is valid for other biological targets, such as the sphenopalatine ganglion. The activity in the sphenopalatine ganglion can be measured by different direct or indirect qualitative and/or quantitative methods.

The method of treatment may beneficially be administered to a human subject suffering from a disease, or medical condition, selected from the group consisting of rhinitis, migraine, Meniere's disease, hypertension, cluster headache, arrhythmia, ALS, irritable bowel syndrome, sleep disorders, diabetes, obesity, multiple sclerosis, tinnitus, respiratory disorders, e.g. tracheobronchomalacia, Alzheimer's disease, mood and anxiety disorders, epilepsy, intestinal inflammation, e.g. in the colon, ulcerous colitis, Crohn's disease, and urethritis. Treatment in either the nasal cavity or the intestine may in particular be advantageous when the subject suffers from one of the above mentioned diseases.

In an embodiment of the method aspects, the bodily response may be monitored by measuring one or more of: nasal secretion, sneeze frequency, pain sensation, pupil size, oxygen consumption in selected parts of the brain (which may be measured by functional magnetic resonance imaging, fMRI), metabolic activity in selected parts of the human body (which may be measured by means of positron emission tomography, PET), brain activity (which may be measured by means of magnetoencephalography, MEG, or electroencephalography, EEG), heart activity (which may be measured by
means of electrocardiography, ECG), muscle activity (which may be measured by means of electromyography, EMG), blood pressure, a fluid volume within an organ (which may be measured by means of a photoplethysmograph), tissue conductivity, body temperature, a pressure between the body tissue and a stimulation member imparting the vibrations. Pain sensation can be estimated by the human subject himself/herself by reference to a visual analogue scale (VAS). In case the bodily response is the pressure between the body tissue and the stimulation member, the stimulation member may comprise a pressure sensor for measuring the pressure exerted on the tissue as well as changes in the pressure due to body tissue response.

In an embodiment of the method aspects, the vibrations may be provided by one or more of: fluid pressure, a motor with an eccentric weight and an electroactive material. For example, the vibrations may be imparted by means of a vibration generator as described in connection to the first aspect of the present invention.

In an embodiment of the method aspects, the vibrations may be imparted to the body tissue with a pressure of 20-1 70 mbar. For example, the stimulation member, as described in connection to the first aspect of the present invention (or any other means for imparting the vibrations), may abut against the tissue at a pressure of 20-1 70 mbar. Further, an average pressure within the stimulation member, when imparting vibrations, may be within the range of 20-1 20 mbar.

In an embodiment of the method aspects, the first frequency and the second frequency target different receptor types responsible for registering mechanical stimuli with vibrations. The first and the second frequency may advantageously be selected from frequency intervals as defined herein in order to target specific receptor types. The first frequency may be selected within the range of 10-1 00 Hz, whereas the second frequency may independently be a harmonic of the first frequency or selected such as to target the sensitivity maximum of the Pacinian corpuscles as described hereinbefore.

It will be appreciated that the effects and advantages with the embodiments described in connection with the method aspects of the present invention are the same as the effects and advantages with the corresponding embodiments described in connection with the device aspects of the present invention.
Further objectives of, features of, and advantages with, the present invention will become apparent when studying the following detailed disclosure, the drawings and the appended claims. Those skilled in the art realize that different features of the present invention can be combined to create embodiments other than those described in the following. In particular, it will be appreciated that the various embodiments described for the device are all combinable with the method as defined in accordance with the third aspect of the present invention.

10 Brief description of the Drawings
The above, as well as additional objects, features and advantages of the present invention, will be better understood through the following illustrative and non-limiting detailed description of preferred embodiments of the present invention, with reference to the appended drawings, in which:

15 Figure 1a shows a device for vibration stimulation according an embodiment of the present invention;
 Figure 1b shows an example of a vibration pattern obtainable by the device shown in Figure 1a;
 Figure 1c shows another example of a vibration pattern obtainable by the device shown in Figure 1a;

20 Figure 2a shows a device for vibration stimulation according another embodiment of the present invention;
 Figure 2b shows an example of a vibration pattern obtainable by the device shown in Figure 2a;

25 Figure 3 shows a stimulation member of the device positioned within the nasal cavity of a human subject; and
 Figure 4 shows a stimulation member and an anchoring member of a device according to another embodiment of the present invention.

 All the figures are schematic, not necessarily to scale, and generally only show parts which are necessary in order to elucidate the invention, wherein other parts may be omitted or merely suggested.

Detailed description
With reference to Figures 1a-1c, a device for vibration stimulation according to an embodiment of the present invention will be described. Figure 1a is a schematic view of the device, and Figures 1b and 1c show two examples of vibration patterns obtainable by the device.
Figure 1a shows a vibration stimulation device 1 comprising a stimulation member 12 adapted to impart vibrations to a body tissue of a subject, and a vibration generator 10. In the present embodiment, the vibrations are generated by fluid pressure, wherein the stimulation member 12 may comprise an expandable balloon (or catheter or bladder) in fluid communication with the vibration generator 10 via a tubing 13. Hence, the stimulation member 12 may comprise a chamber for containing fluid supplied by the tubing 13.

The stimulation member 12 may be arranged in a collapsed (or less expanded) state for insertion in a body cavity, such as the nasal cavity or intestine, of a human subject. When inserted, the stimulation member 12 may be expanded to a volume such that an outer surface of the stimulation member abuts against the inside of the body cavity (which will be explained in more detail further on with reference to Figure 3). The supply of fluid to the stimulation member 12 via the tubing 13 influences the volume and degree of expansion of the stimulation member 12.

The stimulation member 12 may be made of a material not chemically or biologically affecting body tissues with which it comes into contact and the outer surface may be adapted to reduce friction between the stimulation member 12 and the surrounding tissue. The stimulation member 12 may e.g. be made of a material providing a smooth outer surface or be coated with a lubricant, such as e.g. a paraffin solution. Further, the stimulation member 12 may be elastic, whereby its surface area may depend on the fluid pressure in the stimulation member. Alternatively, the stimulation member 12 may be inelastic. Non-limiting examples of materials, which the stimulation member 12 may be made of, are plastic materials or rubber materials. In some instances, the stimulation member 12 may be made of latex.

Further details and embodiments of the stimulation member are described in the published international patent application WO 2008/138997, by the same applicant, which is hereby incorporated by reference.

The device 1 may include a pressure regulating module 15 (e.g. a pressure pump) adapted to pressurize fluid (such as air) entered via an inlet 18. The pressure regulating module 15 is in fluid communication with the vibration generator 10, which comprises a frequency regulating module 17 (e.g. an oscillation pump) adapted to provide vibrations to the pressurized fluid. The frequency regulating module 17 is adapted to provide vibrations of a selected frequency/frequencies and may also be adapted to regulate the
amplitude of the vibrations. The pressurized fluid and the vibrations are transmitted (or supplied) via the tubing 13 to the stimulation member 12. The vibration generator 10 further comprises a gate 19, such as a valve (e.g. an electromechanical valve), arranged to selectively allow the transmission of vibrations from the frequency regulating module 17 to the stimulation member 12, e.g. by opening and closing the fluid communication there between.

It will be appreciated that all of, or two of, the pressure regulating module 15, the frequency regulating module 17 and the gate 19 may be comprised in the same module, even though they are schematically depicted as separate units in Figure 1a. Further, it will be appreciated that the pressure regulating module 15 either may be an external module connected to the vibration generator 10 of the device 1, or comprised in the device 1.

In the present embodiment, the frequency regulating module 17 and the gate 19 are connected directly on a main fluid communication line connecting the pressure regulating module 15 to the tubing 13. Alternatively, the frequency regulating module and the gate may be arranged on a separate fluid communication line connected to the main fluid communication line via a T-junction.

Optionally, the device 1 may comprise a pressure sensor (not shown), such as a manometer adapted to measure the fluid pressure in the device 1, and/or a safety valve (not shown) arranged to release fluid from the device 1 if the pressure exceeds a predetermined threshold.

The device 1 further comprises a vibration controller 14 configured to control the vibration generator 10 to bring the stimulation member 12 to vibrate according to a vibration pattern. The vibration controller 14 may be configured to control the frequency regulating module 17 and thereby the frequency (and optionally also the amplitude) of the vibrations, and the opening and closing of the gate 19 (or valve) and thereby any interruptions in the vibrations. Optionally, the vibration controller 14 may further be configured to control the pressure regulating module 15 and thereby the fluid pressure in the device 1.

Two examples of vibration patterns, according to which the stimulation member 12 of the device 1 according to the present embodiment may be brought to vibrate, will be described with reference to Figures 1b and 1c.

Each one of Figures 1b and 1c schematically illustrate how the abutting pressure p of the stimulation member 12 against the body tissue varies over time t. The pattern according to which the pressure varies is the vibration
pattern (or vibration signal) of the device 1. The p-axis in Figures 1b and 1c may alternatively be seen as the spatial shift of the stimulation member 12 causing the vibrations or the fluid pressure inside the stimulation member 12.

The vibration pattern shown in Figure 1b comprises a vibration profile including a stimulation phase 151 and a rest phase 152, wherein the vibration profile 150 is repetitively initiated at a first frequency. The stimulation phase 151 comprises an excitation stimulus 170, which represents a shift (such as one or more increases and/or decreases) in the abutting pressure p. The excitation stimulus 170 has a second frequency being higher than the first frequency and may have a substantially continuous waveform, such as in the present example with a sine waveform. Continuous waveforms in the vibration pattern allows constructing the stimulation member 12 (and other parts of the device 1) in more flexible materials.

In the present example, the stimulation phase 151 comprises one period of the excitation stimulus 170, but it may alternatively comprise more than one period, such as 1.5, 2, 2.5, 3, or more periods. The number of periods may be selected based on the relation between the first and second frequencies and the desired lengths of the stimulation and rest phases 151, 152. In the present example, the second frequency is approximately 3.7 times as high as the first frequency and the rest phase 152 is approximately 2.7 times as long as the stimulation phase 151. In the present example, the first frequency may be set to approximately 68 Hz (or around 60-80 Hz) and the second frequency to approximately 250 Hz (or around 110-320 Hz) for targeting different parts of the nervous system being sensitive to vibrations.

However, other first and second frequencies are also envisaged, as they may be selected based on the purpose of the vibration stimulation treatment.

The rest phase 152 represents an interruption in the vibrations provided during the stimulation phase 151. Further, the abutting pressure p may be constant during the rest phase 152, whereby no vibrations are imparted to the body tissue during that phase. The alternation between the stimulation phase 151 and the rest phase 152 provides a main periodic element of the first frequency to the vibration pattern. For example, the main periodic element may be seen as the periodicity provided by repetitive alternation between the stimulation phase 151 and the rest phase 152.

The vibration pattern shown in Figure 1c is similar to the vibration pattern described with reference to Figure 1b except that the excitation stimulus 171 (in the stimulation phase 151 of the vibration profile 150) is
formed as an offset cosine wave. In this embodiment, the vibration pattern and its time derivative are continuous. This is achieved by providing an excitation stimulus 171 with the time derivative equal to zero at both end points. In the present example, the stimulation phase 151 comprises one period of the excitation stimulus 171, but it may alternatively comprise more than one period.

An example of how the above described vibration patterns may be provided by the device 1 according to the present embodiment will be described in the following. The vibration controller 14 controls the frequency regulating module 17 to provide vibrations of the second frequency in the pressurized fluid from the pressure regulating module 15. Further, the vibration controller 14 controls the gate 19 to repetitively open and close, such that transmission of the vibrations to the stimulating member 12 is allowed during the stimulation phases 151 and blocked during the rest phases 152. The timing of opening and closing the valve may be accurately controlled to achieve a continuity in the vibration pattern. Alternatively, the vibration controller 14 may be configured to control the frequency generator 17 to provide pulses of vibrations of the second frequency, such that the pulses are repetitively initiated at the first frequency, whereby a valve 19 may not be required.

A device for vibration stimulation according to another embodiment of the present invention will be described with reference to Figure 2a. The basic structure and basic operation principle of the device 2 and each one of its constituents shown in Figure 2a may be the same as the basic structure and basic operation principle of the device 1 and its constituents shown in Figure 1a, except for the configuration of the vibration generator 20 and the vibration controller 24.

In the present embodiment, the vibration generator 20 comprises a first frequency regulating module 26 and a second frequency regulating module 27. Each one of the first and second frequency regulating modules 26, 27 are in fluid communication with the pressure regulating module 25, which is arranged to pressurize fluid taken in at the inlet 28. The vibration controller 24 is configured to control the first frequency regulating module 26 to provide the pressurized fluid with vibrations of the first frequency and the second frequency regulating module 27 to provide the pressurized fluid with vibrations of the second frequency (which is higher than the first frequency). The outputs (i.e., the vibrations in the pressurized fluid) from the first and
second frequency regulating modules 26, 27 are added, such that pressurized fluid with vibrations of the first frequency superposed with vibrations of the second frequency is provided and may be transmitted via the tubing 23 to the stimulation member 22. Optionally, the device 1 may comprise one or more gates, such as valves, (not shown) for controlling the transmission of vibrations from the first and/or second generating modules 26, 27.

An example of a vibration pattern, according to which the stimulation member 22 of the device 2 according to the present embodiment may be brought to vibrate, will be described with reference to Figure 2b.

Figure 2b schematically illustrates how the abutting pressure \(p \) of the stimulation member 22 against the body tissue varies over time \(t \). The pattern according to which the pressure varies is the vibration pattern (or vibration signal) of the device 2. The \(p \)-axis in Figure 2b may alternatively be seen as the spatial shift of the stimulation member 22 causing the vibrations or the fluid pressure inside the stimulation member 22.

The vibration pattern comprises a main stimulus of the first frequency, the period of which is denoted with reference number 250 in Figure 2b. The main stimulus represents a shift (such as one or more increases and/or decreases) in the abutting pressure \(p \) occurring at the first frequency and is provided by the first frequency regulating module 26. Superposed with the main stimulus is an excitation stimulus of the second frequency, the period of which is denoted with reference number 251 in Figure 2b. The excitation stimulus is provided by the second frequency regulating module 27. Hence, the main stimulus acts as a carrier wave for the excitation stimulus, as the vibration outputs from the first and second frequency regulating modules 26, 27 are added.

The second frequency is higher than the first frequency, and in this non-limiting example, the second frequency is approximately 4.4 times as high as the first frequency. Hence, the vibration pattern comprises a main periodic element of the first frequency provided by the main stimulus (or the periodicity of the main stimulus), and an element (or component) of a higher frequency provided by the excitation stimulus. In the present example, the first frequency may be set to approximately 68 Hz (or around 60-80 Hz) and the second frequency to approximately 300 Hz (or around 110-320 Hz) for targeting different sensitivity ranges of the receptors sensitive to vibrations in the body. However, other first and second frequencies are also envisaged, as
they may be selected based on the purpose of the vibration stimulation treatment.

In the present example, the main stimulus and the excitation stimulus are continuously superposed (without interruptions). However, the excitation stimulus may alternatively be partly superposed with the main stimulus, such that phases with the two superposed stimuli are alternated with phases with the non-superposed main stimulus.

Further, the amplitude of the excitation stimulus may be lower than the amplitude of the main stimulus, whereby the main stimulus may dominate the vibration pattern, or alternatively, the amplitude of the excitation stimulus may be higher than the amplitude of the main stimulus, whereby the excitation stimulus may dominate the vibration pattern. Further, the amplitude of the excitation stimulus may vary over time, such as within each phase of the main stimulus.

The Pacinian corpuscles are more sensitive to velocity and acceleration as the vibration frequency increases. Hence, if the total amplitude of the vibration pattern is limited, it may be advantageous to have a lower amplitude for the excitation stimulus than for the main stimulus, since the receptors are more sensitive at higher frequencies (such as between 200 Hz and 300 Hz). However, this may provide that the achieved velocities and accelerations (of the vibrations) are smaller than what would be obtainable with the same amplitude limitation in the embodiment wherein the main periodic element is provided by the vibration profile with a stimulation phase and a rest phase. Thus, the embodiment wherein the main periodic element is provided by the vibration profile with a stimulation phase and a rest phase may be advantageous for obtaining higher velocities and accelerations of the vibrations.

It will be appreciated that shapes of the vibration patterns illustrated in the Figures are schematic and show the principles of the embodiments of the present invention.

With reference to Figure 3, an embodiment of a method of treatment of a human subject by means of device according to an embodiment of the present invention will be described. Figure 3 shows a stimulation member 32 inside the nasal cavity 35. For instance, the device may be constructed as any one of the devices described with reference to Figures 1a and 2a.
The purpose of the method according to the present embodiment may e.g. be
to treat a disease associated with the activity of hypothalamus (e.g., migraine,
ALS, Meniere's disease and heart arrhythmia) or rhinitis.

At a first stage, the stimulating member 32 is arranged in a collapsed
(first) state, in which its size is sufficiently small to be introduced into the nasal
cavity 35 of the human subject 30. The stimulation member 32 may also be
provided with a lubricant, e.g. paraffin, to facilitate the introduction through the
nostril. The stimulation member 32 is inserted into the nasal cavity 35 and if
any disease associated with the activity of hypothalamus is to be treated, the
stimulation member may be adapted for stimulation in the posterior part of the
nasal cavity 35 (as shown in Figure 3), and if e.g. rhinitis is to be treated, the
stimulation member 32 may be adapted for stimulation in the anterior part of
the nasal cavity (not shown). The stimulation member may be secured to the
human subject 30 via anchoring means for reducing the risk of displacement
of the stimulation member 32 during the treatment. Subsequently, the
stimulation member 32 is pressurized such that it expands until it abuts the
tissue of the selected parts of the nasal cavity 35 with a desired pressure
(which may be monitored by the manometer), such as 20-120 mbar.
Subsequently, the vibration controller controls the vibration generator to bring
the stimulation member 32 to vibrate according to a vibration pattern
comprising a main periodic element of a first frequency and an excitation
stimulus of a second frequency higher than the first frequency (such as any of
the previously described vibration patterns). The vibration treatment may e.g.
last 1 minute to 30 minutes.

With reference to Figure 4, an anchoring means and an alternative
vibration generator of a device according to an embodiment of the present
invention will be described. It will be appreciated that the following example
may be combined with any one of the preceding examples described above.
Figure 4 shows a stimulation member of the device inserted in the nasal
cavity of a human subject 40. The device comprises anchoring means 46,
which may comprise a headband 47, as shown in Figure 4. Alternatively, the
anchoring means may comprise a facial mask, a pair of glasses, a helmet, a
belt, a cuff, a vest and/or an adhesive patch (not shown).

Headbands, facial masks, glasses and helmets are in particular
suitable for anchoring the stimulation member in the nasal cavity and at parts
of the head and neck. Belts may be suitable for anchoring the stimulation
member at the torso, and cuffs may be suitable for anchoring the stimulation member at the extremities, i.e. an arm or a leg.

Further, the device comprises a pipe 44 (or rod) mounted to the headband 47 via an adjustable joint 42 and vibration generator comprising a squeeze actuator 48 mounted to the pipe 44 via a connector 49 (such as a mechanical or electrical connector). The squeeze actuator 48 may comprise a sleeve circumferentially mounted around a tubing 43 connected to the stimulation member and may be electrically connected to a vibration controller via wiring 41. The wiring 41 may be provided inside the pipe 44 to prevent the wiring from interfering with the treatment. In the present embodiment, a pressure regulating module (not shown) provides pressurized fluid via the tubing 43 to the stimulation member. The vibration controller is configured to control the squeeze actuator 48 to generate vibrations in the pressurized fluid according to a vibration pattern (such as described above). The squeeze actuator 48 provides the vibrations to the fluid by squeezing the tubing 43 according to the vibration pattern.

While specific embodiments have been described, the skilled person will understand that various modifications and alterations are conceivable within the scope as defined in the appended claims.

For example, even though only vibrations generated by fluid pressure are described with reference to the drawings, it will be appreciated that the vibrations may equally be generated by other means, such as by a motor with an eccentric weight positioned in, or in proximity to, the stimulation member, by electroactive material or any other convenient vibration generating means.
Claims

1. A device for vibration stimulation in a body cavity of a mammalian subject, the device comprising:
 an expandable stimulation member being arrangeable in a first state, in which the stimulation member is introducible into a body cavity of the subject, and a second state, in which the stimulation member is expanded to a volume such that an outer surface of the stimulation member is adapted to abut against body tissue in the body cavity and to impart vibrations to body tissue in the body cavity of the mammalian subject; and
 a vibration controller adapted to control a vibration generator to bring the stimulation member to vibrate according to a vibration pattern;
 wherein the vibration pattern comprises a main periodic element of a first frequency and an excitation stimulus of a second frequency higher than the first frequency.

2. The device according to claim 1, wherein the first frequency is within the range of 10 - 100 Hz, such as 50 - 90 Hz, such as 60 - 80 Hz and such as around 68 Hz.

3. The device according to claim 1 or 2, wherein the second frequency is at least 1.5 times as high as the first frequency.

4. The device according to any one of the preceding claims, wherein the second frequency is 1.5 - 5, such as 1.9 - 4 times as high as the first frequency.

5. The device according to any one of the preceding claims, wherein the vibration pattern has a continuous waveform.

6. The device according to any one of the preceding claims, wherein the body cavity is the nasal cavity of the subject, and wherein the outer surface of the stimulation member in its second state is adapted to abut against the tissue in the nasal cavity.
7. The device according to claim 6, further comprising an anchoring member adapted to secure the stimulation member to the subject.

8. The device according to claim 7, wherein said anchoring member comprises a head band.

9. The device according to any one of claims 6-8, wherein the first frequency is within the range of 50 - 70 Hz, such as 68 Hz, and the second frequency is within the range of 90 - 400 Hz such as 110 - 320 Hz.

10. The device according to any one of claims 1-5, wherein the body cavity is the intestine of the subject, and wherein the outer surface of the stimulation member in its second state is adapted to abut against the tissue in the intestine.

11. The device according to claim 10, wherein the first frequency is within the range of 10 - 20 Hz and the second frequency is within the range of 50 - 70 Hz, such as 68 Hz.

12. The device according to any one of the preceding claims, wherein the vibrations are generated by means of one or more of: a fluid pressure, a motor with an eccentric weight, and an electroactive material.

13. The device according to any one of the preceding claims, wherein the device is configured such that the stimulation member is adapted to abut against the body tissue at a pressure of 20 - 170 mbar.

14. The device according to any one of the preceding claims, wherein the main periodic element is provided by a main stimulus of the first frequency, wherein the main stimulus is at least partly superposed with the excitation stimulus.

15. The device according to claim 14, wherein the vibration generator comprises a first frequency regulating module and a second frequency regulating module, wherein the vibration controller is configured to control the first frequency regulating module to provide vibrations of the
first frequency and the second frequency regulating module to provide vibrations of the second frequency, and wherein the outputs of the first and second frequency regulating modules are added for providing the vibration pattern.

16. The device according to any one of claims 1-13, wherein the main periodic element is provided by a vibration profile repetitively initiated at the first frequency, the vibration profile comprising a stimulation phase including the excitation stimulus and a rest phase.

17. The device according to claim 16, wherein the rest phase is at least as long as the stimulation phase, such as at least 1.5 times as long as the stimulation phase, such as at least 2 times as long as the stimulation phase.

18. The device according to claim 16 or 17, wherein the vibration generator comprises a frequency regulating module and a gate, wherein the vibration controller is configured to control the frequency regulating module to provide vibrations of the second frequency and the gate to selectively allow transmission of the vibrations to the stimulation member such that the transmission is repetitively initiated at the first frequency.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61H21/00 A61H23/02 A61H23/04 A61H9/00

ADD.

According to International Patent Classification (IPC) and national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 86/01399 AI (ZALESKI JACEK [SE]; ANTOWSKI JERZY [SE]) 13 March 1986 (1986-03-13) page 2, line 31 - page 5, line 22; figures 1, 2</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>us 4 462 411 A (RICKARDS FIELD W [AU]) 31 July 1984 (1984-07-31) col umn 2, lines 44-61 page 3, lines 8-12; figure 1</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>us 2011/190668 AI (MISHELEVICH DAVID J [US]) 4 August 2011 (2011-08-04) paragraphs [0021], [0026]; figures 1A,4</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>us 2004/097850 AI (PLANTE LOUIS [CA]) 20 May 2004 (2004-05-20) paragraphs [0028], [0029]; figures</td>
<td>1-18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) on which it is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Z" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "s" document member of the same patent family

Date of the actual completion of the international search: 24 April 2013

Date of mailing of the international search report: 06/05/2013

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. +(31-70) 340-2040,
Fax: +(31-70) 340-3016

Authorized officer: Fischer, Elmar
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 May 2006 (2006-05-04) paragraph [0043] ; figure 1A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 November 2008 (2008-11-20) cited in the application on page 17, lines 18-20; figures</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 8601399 AI</td>
<td>13-03-1986</td>
<td>AU 4775085 A</td>
</tr>
<tr>
<td>EP 0229060 AI</td>
<td></td>
<td>JP 562500148 A</td>
</tr>
<tr>
<td>US 4754748 A</td>
<td></td>
<td>Wo 8601399 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4462411 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2011190668 AI</td>
<td>04-08-2011</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2004097850 AI</td>
<td>20-05-2004</td>
<td>CA 2449093 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004097850 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007225685 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006094992 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009247915 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2006050382 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2008138997 AI</td>
<td>20-11-2008</td>
<td>AU 2008249964 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2687390 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101677901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2155138 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1139584 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010526621 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100036248 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 0701222 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010274164 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008138997 AI</td>
</tr>
</tbody>
</table>