

(43) International Publication Date
13 February 2014 (13.02.2014)(51) International Patent Classification:
H01Q 1/24 (2006.01) **H04B 1/04** (2006.01)(74) Agent: **MOBARHAN, Ramin**; Attn: International IP Administration, 5775 Morehouse Drive, San Diego, California 92121 (US).

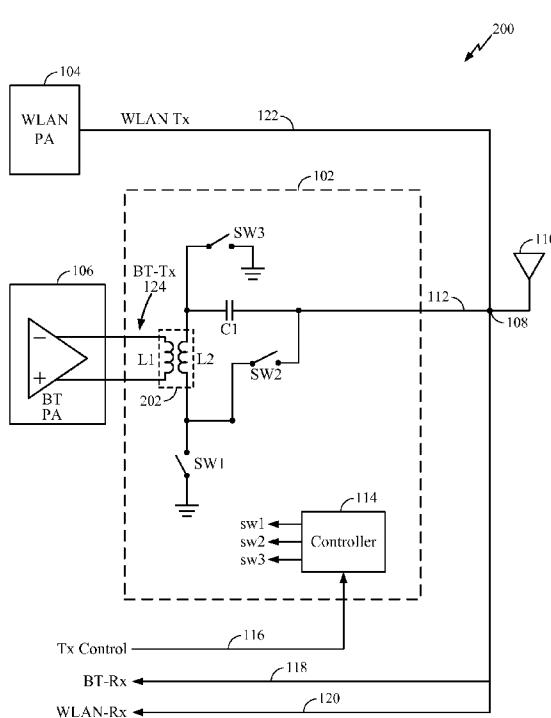
(21) International Application Number:

PCT/US2013/054418

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
9 August 2013 (09.08.2013)

(25) Filing Language: English


(26) Publication Language: English

(30) Priority Data:
13/570,895 9 August 2012 (09.08.2012) US(71) Applicant: **QUALCOMM INCORPORATED** [US/US];
Attn: International IP Administration, 5775 Morehouse Drive, San Diego, California 92121 (US).(72) Inventor: **SABOURI, Faramarz**; 5775 Morehouse Drive, San Diego, California 92121 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: FRONT END PARALLEL RESONANT SWITCH

(57) Abstract: A front end parallel resonant switch (102) is disclosed. In an exemplary embodiment, an apparatus includes an inductor (L2) and a capacitor (C1) configured to couple a first RF transmission (112) to an antenna (110), and at least one switch (SW1, SW2, SW3) configured to connect the inductor (L2) to the capacitor (C1) to form a matching network when transmitting the first RF transmission (112) from the antenna (110), and to connect the inductor (L2) to capacitor (C1) to form a parallel resonant circuit when transmitting a second RF transmission (122) from the antenna (110). The resonant switch operates without the use of in-line mode switches to eliminate insertion loss associated with the use of in-line mode switches. The resonant switch also operates to control the loading effects of one transmit signal on the other transmit signal so as to reduce signal degeneration.

FIG. 2

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — *as to the applicant's entitlement to claim the priority of SM, TR, OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, the earlier application (Rule 4.17(iii)) GW, KM, ML, MR, NE, SN, TD, TG).*

Declarations under Rule 4.17:

— *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))* — *with international search report (Art. 21(3))*

Published:

FRONT END PARALLEL RESONANT SWITCH

BACKGROUND

Field

[0001] The present application relates generally to the operation and design of electronic circuits, and more particularly, to the operation and design of analog front ends.

Background

[0002] A conventional multi-band front end uses one power amplifier and a matching network. Mode switches are used to select between multiple signal paths to enable one of the multiple bands. Insertion loss from the mode switches contributes to degradation of the overall efficiency of the front end. Therefore, it is desirable to eliminate this insertion loss.

[0003] Some front ends utilize combination chips that provide multiple power amplifiers where each power amplifier drives signals in a selected band. The amplifier outputs share a common RF input/output (RFIO) terminal that couples the amplifier outputs to an antenna. Managing the loading effect of one path on the other paths is a major challenge.

[0004] Accordingly, a novel front end parallel resonant switch is disclosed that allows switching between multiple power amplifier outputs while controlling the loading effects of one transmit path on other transmit paths.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The foregoing aspects described herein will become more readily apparent by reference to the following description when taken in conjunction with the accompanying drawings wherein:

[0006] **FIG. 1** illustrates an exemplary embodiment of a front end comprising a novel parallel resonant switch;

[0007] **FIG. 2** shows a detailed exemplary embodiment of the resonant switch shown in **FIG. 1**;

[0008] **FIG. 3** shows an exemplary embodiment of a controller;

[0009] **FIG. 4** shows an exemplary method for providing a parallel resonant switch to minimize insertion loss and control signal path loading;

[0010] **FIG. 5** shows a detailed exemplary embodiment of a parallel resonant switch for use in single-ended systems; and

[0011] **FIG. 6** shows an exemplary embodiment of a parallel resonant switch apparatus.

DETAILED DESCRIPTION

[0012] The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of the invention and is not intended to represent the only embodiments in which the invention can be practiced. The term "exemplary" used throughout this description means "serving as an example, instance, or illustration," and should not necessarily be construed as preferred or advantageous over other exemplary embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary embodiments of the invention. It will be apparent to those skilled in the art that the exemplary embodiments of the invention may be practiced without these specific details. In some instances, well known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary embodiments presented herein.

[0013] **FIG. 1** illustrates an exemplary embodiment of a front end **100** comprising a novel parallel resonant switch **102**. For example, the front end **100** is suitable for use in a wireless device. The front end **100** comprises a WLAN power amplifier (PA) **104** that outputs a WLAN transmit (Tx) signal **122** and a Bluetooth (BT) power amplifier **106** that outputs a BT Tx signal **124**. The WLAN-Tx signal **122** is received at an RFIO terminal **108**, which is further connected to antenna **110**. The BT-Tx signal **124** is received at the parallel resonant switch **102**, which outputs a switch output signal **112** that is also received at the RFIO terminal **108**.

[0014] The resonant switch **102** comprises a controller **114** that receives a Tx mode control signal **116** from another entity at the wireless device, such as a baseband (BB) processor, and uses this Tx mode control signal **116** to generate the switch output signal **112**. The RFIO terminal **108** is also coupled to receive two received (Rx) signals from the antenna (i.e., BT-Rx **118** and WLAN-Rx **120**) that are passed to receiver circuitry at the wireless device. As discussed in greater detail below, the resonant switch **102**

operates to switch between the two transmit signals (**122** and **112**) without the use of in-line mode switches to eliminate insertion loss associated with the use of in-line mode switches. The resonant switch **102** also operates to control the loading effects of one transmit signal on the other transmit signal so as to reduce signal degradation.

[0015] **FIG. 2** shows a detailed exemplary embodiment of the resonant switch **102** shown in **FIG. 1**. The resonant switch **102** comprises a transformer **202** having an input inductor L1 and an output inductor L2. The input inductor L1 is coupled to the BT-PA **106** that outputs the BT Tx signal **124**. The inductor L2 has a first terminal connected to a first terminal of switch (SW1) and a first terminal of a second switch (SW2). The inductor L2 has a second terminal connected to a first terminal of a third switch (SW3) and a first terminal of capacitor (C1). The capacitor (C1) has a second terminal connected to a second terminal of the second switch (SW2) and outputs the switch output signal **112** that is connected to the RFIO terminal **108**. The first switch (SW1) and the third switch (SW3) have second terminals connected to ground. The controller **114** outputs three switch control signals (sw1, sw2, and sw3) that operate to control (i.e., open and close) the switches SW1, SW2, and SW3. As further illustrated in **FIG. 2**, the RFIO terminal **108** is shared between the switch output **112**, WLAN Tx **122**, BT Rx **118** and WLAN Rx **120** signals.

[0016] During operation, the transformer **202** functions as a mode switch by changing a ground port location using the switches SW1 and SW3. Since the switches SW1 and SW3 are tied to ground, they contribute very little insertion loss. The controller **114** operates to generate the switch control signals (sw1, sw2, and sw3) based on the Tx mode signal **116**. The Tx mode signal **116** can be set to indicate any of the following modes.

BT Transmit Mode

[0017] In BT transmit mode, the controller outputs the switch control signals (sw1, sw2, and sw3) so that only switch SW1 is closed and switches SW2 and SW3 are open. The output power of the BT Tx signal **124** is coupled to the RFIO terminal **108** through coupling cap C1. In this mode the WLAN PA **104** is in an off state and so there is no WLAN Tx signal **122** at the RFIO terminal **108**. Since the SW1 switch is closed and is placed in a path to ground (rather than in the signal path) very little RF signal appears across its drain-source and it presents only a small "on" resistance providing good linearity.

WLAN Transmit Mode,

[0018] In WLAN Tx mode, the switches SW2 and SW3 are closed, the switch SW1 is open, and the BT-PA **106** is turned off. The inductor L2 and the capacitor C1 are therefore connected in parallel to form a parallel resonant circuit configured to resonate at the frequency of operation of the WLAN PA **104** to present high impedance at RFIO terminal **108**. This parallel resonant circuit prevents the output power of the WLAN PA **104** from being wasted across the otherwise low output impedance associated with the transformer **202** if the switches (SW1-SW3) were not utilized. In addition, the closed switch SW3 maintains very low voltage swing across the switch, which prevents switch breakdown under the large voltage swing of the output of the WLAN PA **104**.

BT or WLAN Receive Mode

[0019] In BT or WLAN receive mode, the switches SW2 and SW3 are closed and the switch SW1 is open as described above. The impedance at the RFIO terminal **108** is increased by the parallel resonant circuit formed by L2 and C1 and therefore not much Rx input power is wasted.

[0020] The exemplary embodiments described herein disclose a mechanism to share a common terminal (RFIO **108**) between multiple transmit signals (**122** and **112**) and multiple receive signals (**118** and **120**), while reducing the loading effect of an enabled transmit signal on the other signals. While the loading effect is reduced, the impairment of the TX switch is reduced because the switches are not in the signal path. In summary, the switches SW1-SW3 are configured to connect the inductor L2 and the capacitor C1 to form a matching network when transmitting a first RF transmission (the output signal **112**) from the antenna, and to connect the inductor L2 and capacitor C1 to form a parallel resonant circuit when transmitting a second RF transmission (the WLAN Tx signal **122**) from the antenna. The parallel resonance switch **102** provides improves linearity and provides reasonably high output impedance when the BT PA **106** is not being used.

[0021] **FIG. 3** shows an exemplary embodiment of the controller **114**. The controller **114** comprises processor **302** and switch interface **304** both coupled to communicate over bus **306**. It should be noted that the controller **114** is just one implementation and that other implementations are possible.

[0022] The switch interface **304** comprises hardware and/or hardware executing software that operates to allow the controller **114** to set the switch control signals (sw1,

sw2, and sw3) to enable a particular mode of operation. For example, the switch control signals (sw1, sw2, and sw3) are set to enable of the modes of operation described above. The switch interface **304** is controlled by communicating with the processor **302** using bus **306**.

[0023] The processor **302** comprises at least one of a CPU, processor, gate array, hardware logic, memory elements, and/or hardware executing software stored or embodied in a memory. The processor **302** operates to control the switch interface **304** to perform the functions described herein.

[0024] In an exemplary embodiment, the processor **302** receives the transmit mode control signal **116** from a baseband processor or other entity and operates to control the switch interface **304** based on the transmit mode control signal **116** to generate the switch control signals (sw1, sw2, sw3) so as to close and open the appropriate switches to enable a desired mode of operation as described above. For example, the following table illustrates switch positions associated with several operating modes.

<u>Switch</u>	<u>BT-Tx</u>	<u>WLAN-Tx</u>	<u>BT/WLAN Rx</u>
SW1	closed	open	open
SW2	open	closed	closed
SW3	open	closed	closed

[0025] **FIG. 4** shows an exemplary method **400** for providing a parallel resonant switch to minimize insertion loss and control signal path loading. For example, the method **400** is suitable for use by the controller **114** shown in **FIG. 3**. In one implementation, the processor **302** executes one or more sets of codes or instructions stored or embodied in a memory to control the controller **114** to perform the functions described below.

[0026] At block **402**, a transmit mode control signal is received. For example, the processor **302** receives the transmit mode control signal **116** from a baseband processor. The transmit mode control signal indicates a selected operating mode, which is to be enabled by the processor **302**.

[0027] At block **404**, a determination is made as to whether the transmit mode control signal indicates a WLAN Tx mode. The processor **302** makes this determination. If the transmit mode control signal indicates a WLAN Tx mode is desired, the method proceeds to block **410**. If not, the method proceeds to block **406**.

[0028] At block **410**, the switches (SW1-SW3) are set to enable the WLAN Tx mode. In an exemplary embodiment, the processor **302** controls the switch interface **304** to set the switch control signals (sw1, sw2, sw3) so that SW1=open, SW2=closed, and SW3=closed as indicated in the mode description above.

[0029] At block **404**, a determination is made as to whether the transmit mode control signal indicates a BT Tx mode. The processor **302** makes this determination. If the transmit mode control signal indicates a BT Tx mode is desired, the method proceeds to block **412**. If not, the method proceeds to block **408**.

[0030] At block **412**, the switches (SW1-SW3) are set to enable the BT Tx mode. In an exemplary embodiment, the processor **302** controls the switch interface **304** to set the switch control signals (sw1, sw2, sw3) so that SW1= closed, SW2=open, and SW3=open as indicated in the mode description above.

[0031] At block **404**, a determination is made as to whether the transmit mode control signal indicates a BT/WLAN Rx mode. The processor **302** makes this determination. If the transmit mode control signal indicates a BT/WLAN Rx mode is desired, the method proceeds to block **414**. If not, the method ends.

[0032] At block **414**, the switches (SW1-SW3) are set to enable the BT/WLAN Rx mode. In an exemplary embodiment, the processor **302** controls the switch interface **304** to set the switch control signals (sw1, sw2, sw3) so that SW1=open, SW2=closed, and SW3=closed as indicated in the mode description above.

[0033] Therefore, the method **400** provides a method for providing a parallel resonant switch to minimize insertion loss and control transmit signal path loading. It should be noted that the method **400** is just one implementation and that the operations of the method **400** may be rearranged or otherwise modified such that other implementations are possible.

[0034] **FIG. 5** shows a detailed exemplary embodiment of a parallel resonant switch **500** for use in a single-ended system. The resonant switch **500** comprises an inductor L2 that has a first terminal **502** connected to receive a single ended output of a BT-PA **504**. The first terminal **502** is also connected to capacitor C1. An output terminal **506** of capacitor C1 outputs the switch output signal **112** that is received by an RFIO terminal **508**, which is coupled to antenna **510**. A second terminal **512** of the inductor L2 is connected to a first switch (SW1) that is also connected to a power source VDD. The second terminal **512** of the inductor L2 is connected to a second switch (SW2) that

is also connected to the terminal **506** of capacitor C1. The controller **114** is modified to generate only two switch control signals (sw1 and sw2) based on the received Tx mode signal **116**. As further illustrated in **FIG. 5**, the RFIO terminal **508** is shared between switch output **112**, the WLAN Tx **122**, the BT Rx **118** and WLAN Rx **120** signals.

[0035] During operation, the controller **114** operates to generate the switch control signals (sw1 and sw2) based on the Tx mode signal **116** in accordance with the following table.

<u>Switch</u>	<u>BT-Tx</u>	<u>WLAN-Tx</u>	<u>BT/WLAN Rx</u>
SW1	closed	closed	closed
SW2	open	closed	closed

[0036] **FIG. 6** shows an exemplary embodiment of a parallel resonant switch apparatus **600**. For example, the apparatus **600** is suitable for use as the parallel resonant switch **114** having various aspects and embodiments illustrated in **FIGS. 1-5**. In an aspect, the apparatus **600** is implemented by one or more modules configured to provide the functions as described herein. For example, in an aspect, each module comprises hardware and/or hardware executing software.

[0037] The apparatus **600** comprises a first module comprising means **(602)** for receiving a transmission mode indicator, which in an aspect comprises the processor **302**.

[0038] The apparatus **600** also comprises a second module comprising means **(604)** for forming a matching network during a first RF transmission from an antenna, if a first transmission mode is indicated by the transmission mode indicator, which in an aspect comprises the switches (SW1, SW2, and SW3).

[0039] The apparatus **600** also comprises a third module comprising means **(606)** for switching the matching network to a parallel resonant circuit during a second RF transmission from the antenna, if a second transmission mode is indicated by the transmission mode indicator, which in an aspect comprises the switches (SW1, SW2, and SW3).

[0040] The apparatus **600** also comprises a fourth module comprising means **(608)** for utilizing the parallel resonant circuit to receive a third RF transmission from the antenna, if a third transmission mode is indicated by the transmission mode indicator, which in an aspect comprises the switches (SW1, SW2, and SW3).

[0041] Those of skill in the art would understand that information and signals may be represented or processed using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof. It is further noted that transistor types and technologies may be substituted, rearranged or otherwise modified to achieve the same results. For example, circuits shown utilizing PMOS transistors may be modified to use NMOS transistors and vice versa. Thus, the amplifiers disclosed herein may be realized using a variety of transistor types and technologies and are not limited to those transistor types and technologies illustrated in the Drawings. For example, transistors types such as BJT, GaAs, MOSFET or any other transistor technology may be used.

[0042] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary embodiments of the invention.

[0043] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices,

e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

[0044] The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

[0045] In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD),

laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

[0046] The description of the disclosed exemplary embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these exemplary embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the invention is not intended to be limited to the exemplary embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

CLAIMS**WHAT IS CLAIMED IS:**

1. An apparatus comprising:
an inductor and a capacitor configured to couple a first RF transmission to an antenna; and
at least one switch configured to connect the inductor to the capacitor to form a matching network when transmitting the first RF transmission from the antenna, and to connect the inductor to the capacitor to form a parallel resonant circuit when transmitting a second RF transmission from the antenna.
2. The apparatus of claim 1, the at least one switch configured to connect the inductor to the capacitor in series to form the matching network.
3. The apparatus of claim 1, the at least one switch configured to connect the inductor to the capacitor in parallel to form the parallel resonant circuit.
4. The apparatus of claim 1, further comprising a controller configured to control the at least one switch based on a transmit mode signal.
5. The apparatus of claim 1, the inductor comprising an output inductor of a transformer, the transformer configured to receive the first RF transmission as a differential signal.
6. The apparatus of claim 1, the inductor configured to receive the first RF transmission as a single-ended signal.
7. The apparatus of claim 1, the first RF transmission comprises a Bluetooth (BT) transmission and the second RF transmission comprises a wireless local area network (WLAN) transmission.

8. The apparatus of claim 1, the at least one switch comprising:
 - a first switch connected to a second inductor terminal of the inductor and operable to selectively connect the second inductor terminal to ground, the inductor having a first inductor terminal connected to a first capacitor terminal of the capacitor;
 - a second switch connected to the second inductor terminal and operable to selectively connect the second inductor terminal to a second capacitor terminal of the capacitor and to the antenna; and
 - a third switch connected to the first inductor terminal and operable to selectively connect the first inductor terminal to the ground.
9. The apparatus of claim 8, the first, second and third switches configured to connect the inductor to the capacitor in series to form the matching network and in parallel to form the parallel resonant circuit.
10. The apparatus of claim 8, the first, second and third switches configured to connect the inductor to the capacitor in parallel to form the parallel resonant circuit when receiving a third RF transmission from the antenna.
11. The apparatus of claim 8, further comprising a controller configured to selectively open and close the first, second, and third switches based on a transmit mode signal.
12. A method comprising:
 - receiving a transmission mode indicator;
 - forming a matching network during a first RF transmission from an antenna, if a first transmission mode is indicated by the transmission mode indicator; and
 - switching the matching network to a parallel resonant circuit during a second RF transmission from the antenna, if a second transmission mode is indicated by the transmission mode indicator.
13. The method of claim 12, the forming comprising connecting an inductor to a capacitor in series to form the matching network.

14. The method of claim 13, the switching comprising connecting the inductor to the capacitor in parallel to form the parallel resonant circuit.

15. The method of claim 12, further comprising utilizing the parallel resonant circuit to receive a third RF transmission from the antenna, if a third transmission mode is desired.

16. An apparatus comprising:
means for receiving a transmission mode indicator;
means for forming a matching network during a first RF transmission from an antenna, if a first transmission mode is indicated by the transmission mode indicator;
and
means for switching the matching network to a parallel resonant circuit during a second RF transmission from the antenna, if a second transmission mode is indicated by the transmission mode indicator.

17. The apparatus of claim 16, the means for forming comprising means for connecting an inductor to a capacitor in series to form the matching network.

18. The apparatus of claim 17, the means for switching comprising means for connecting the inductor to the capacitor in parallel to form the parallel resonant circuit.

19. The apparatus of claim 16, further comprising means for utilizing the parallel resonant circuit to receive a third RF transmission from the antenna, if a third transmission mode is indicated by the transmission mode indicator.

20. The apparatus of claim 16, the first RF transmission comprises a Bluetooth (BT) transmission and the second RF transmission comprises a wireless local area network (WLAN) transmission.

1/5

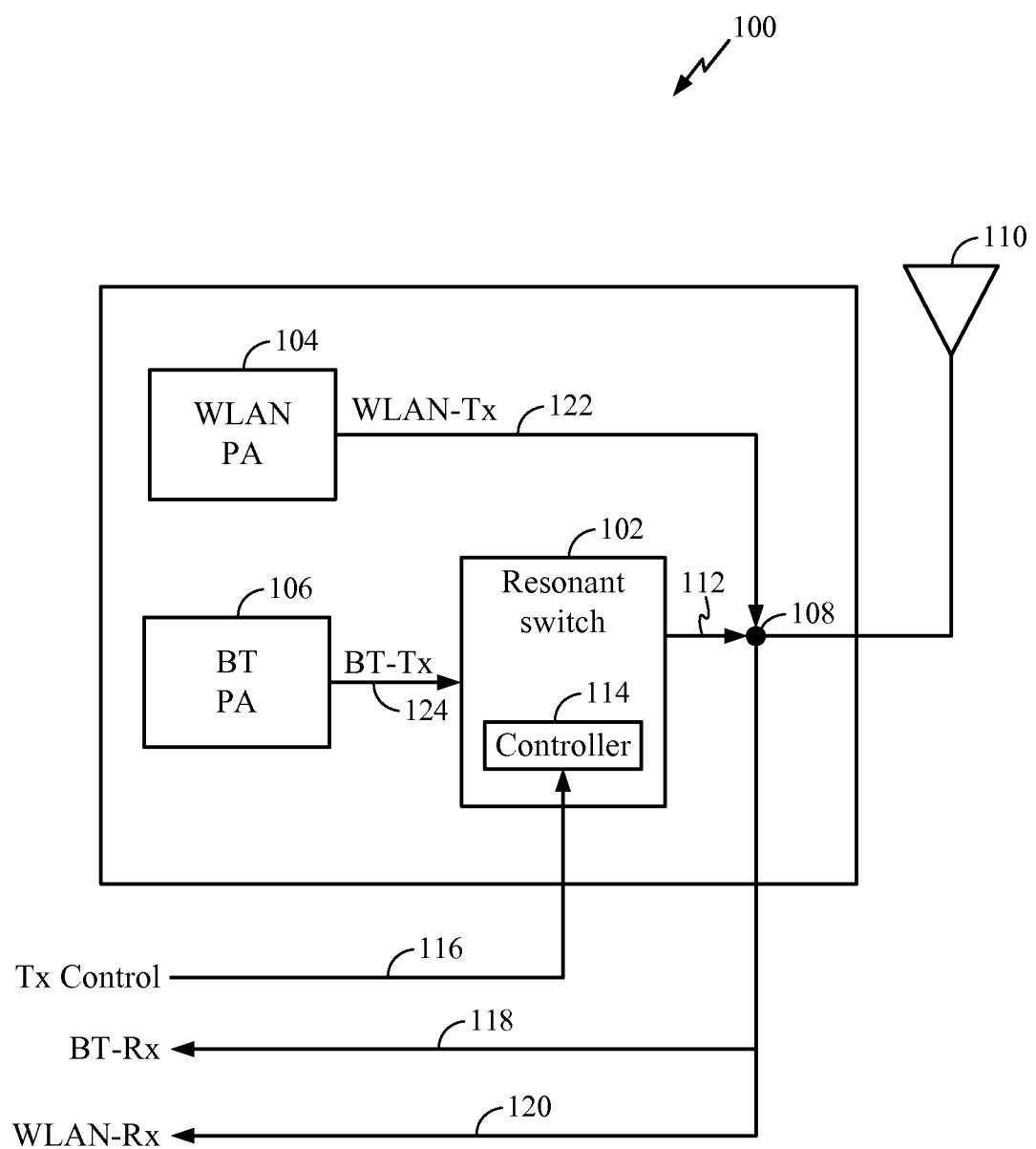


FIG. 1

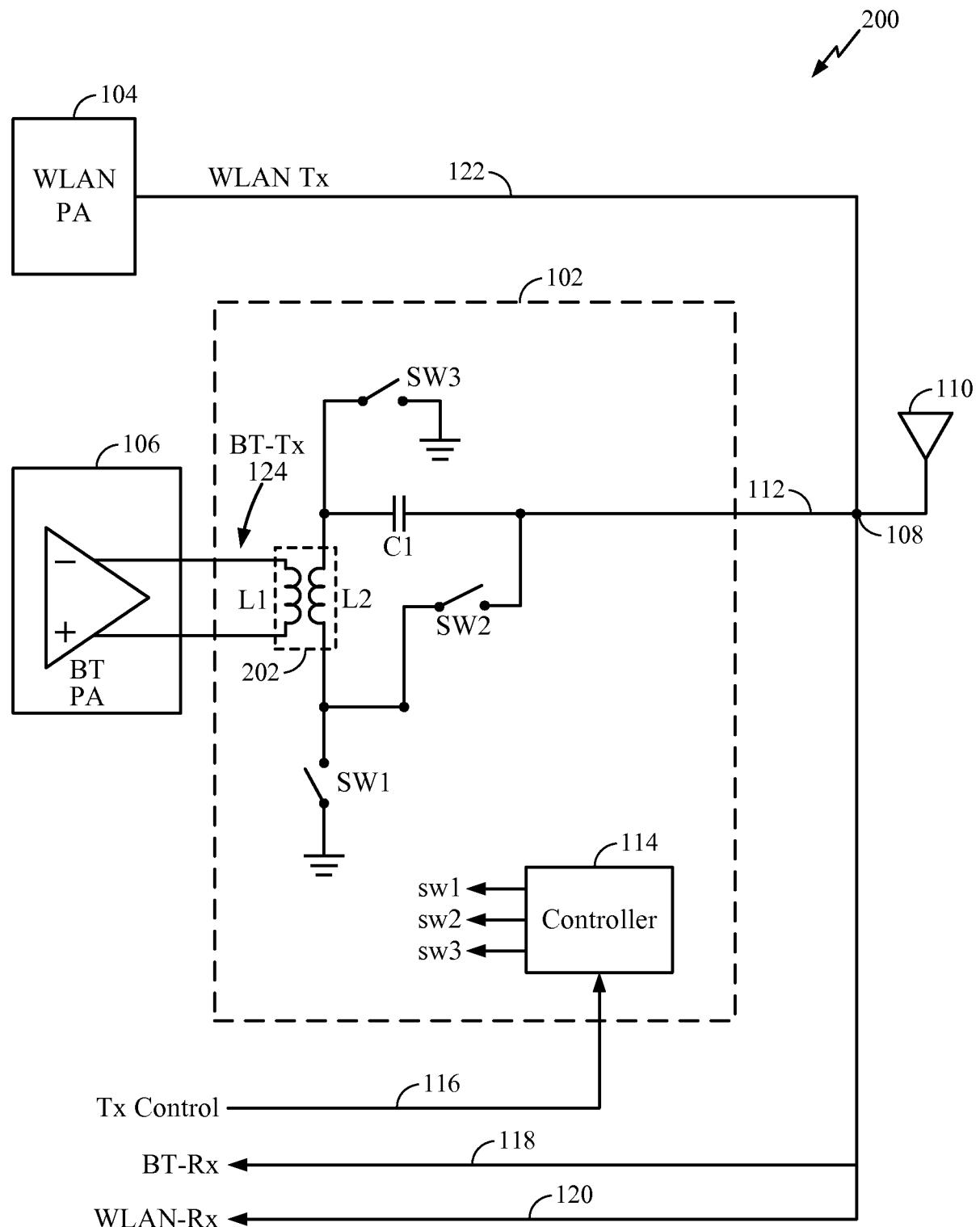


FIG. 2

3/5

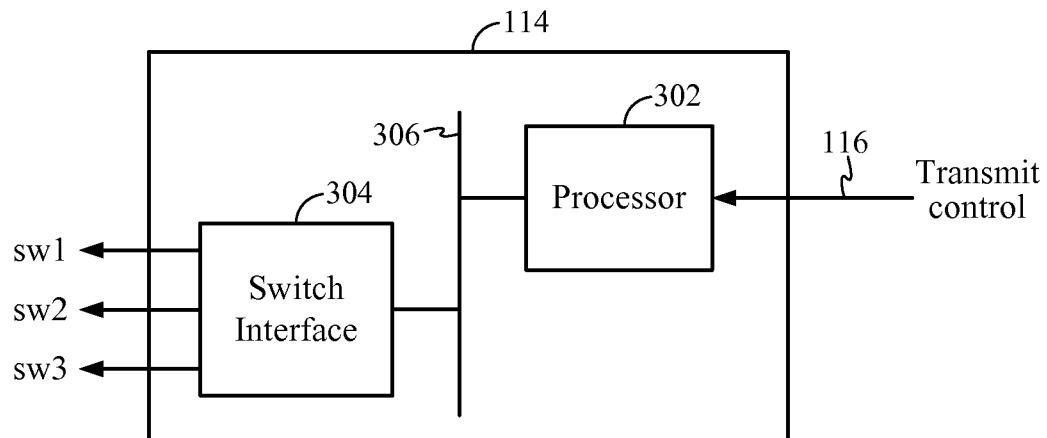


FIG. 3

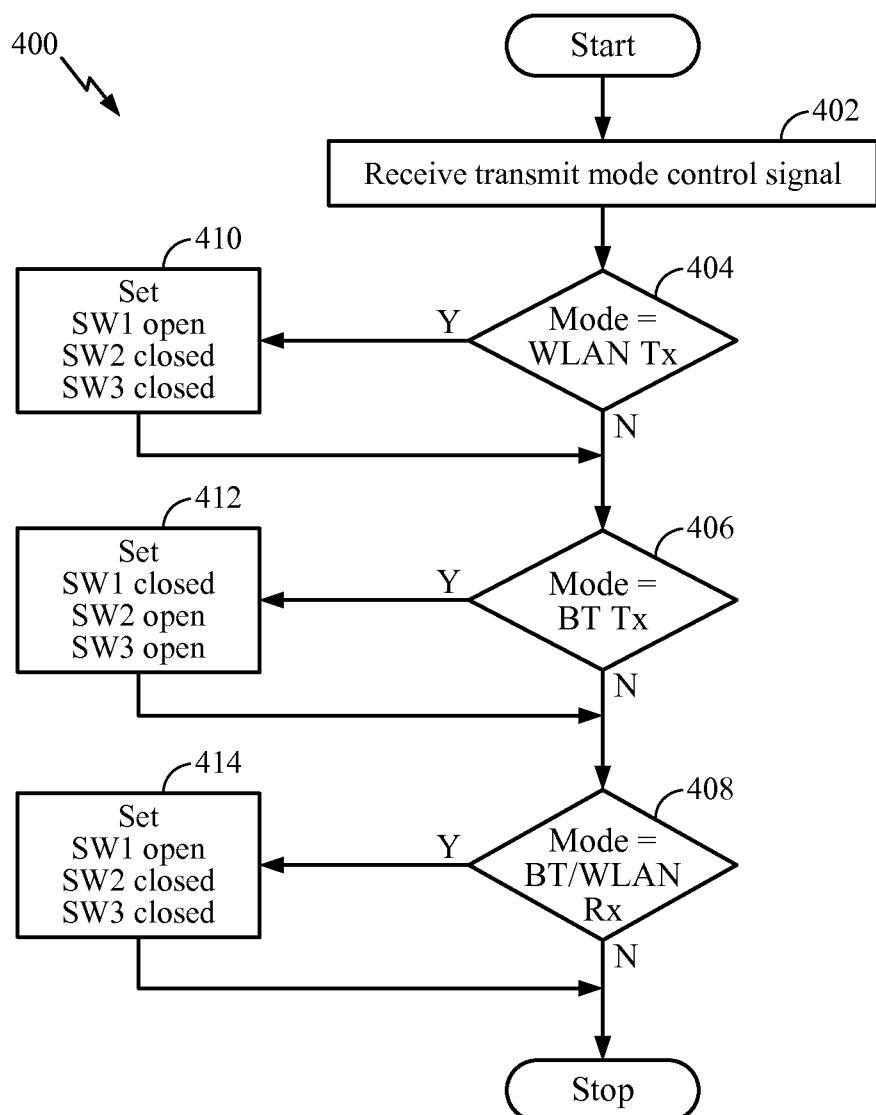


FIG. 4

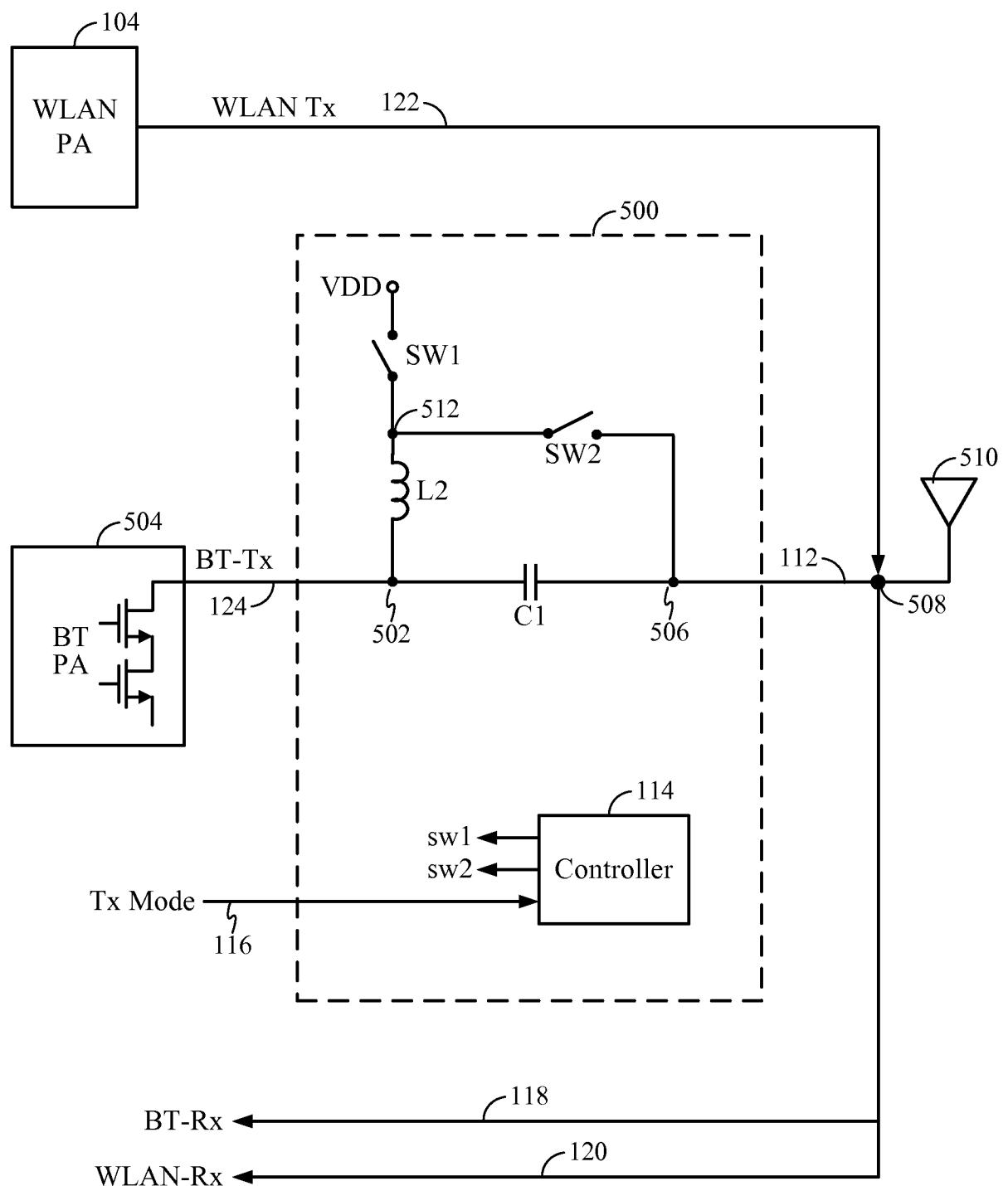


FIG. 5

5/5

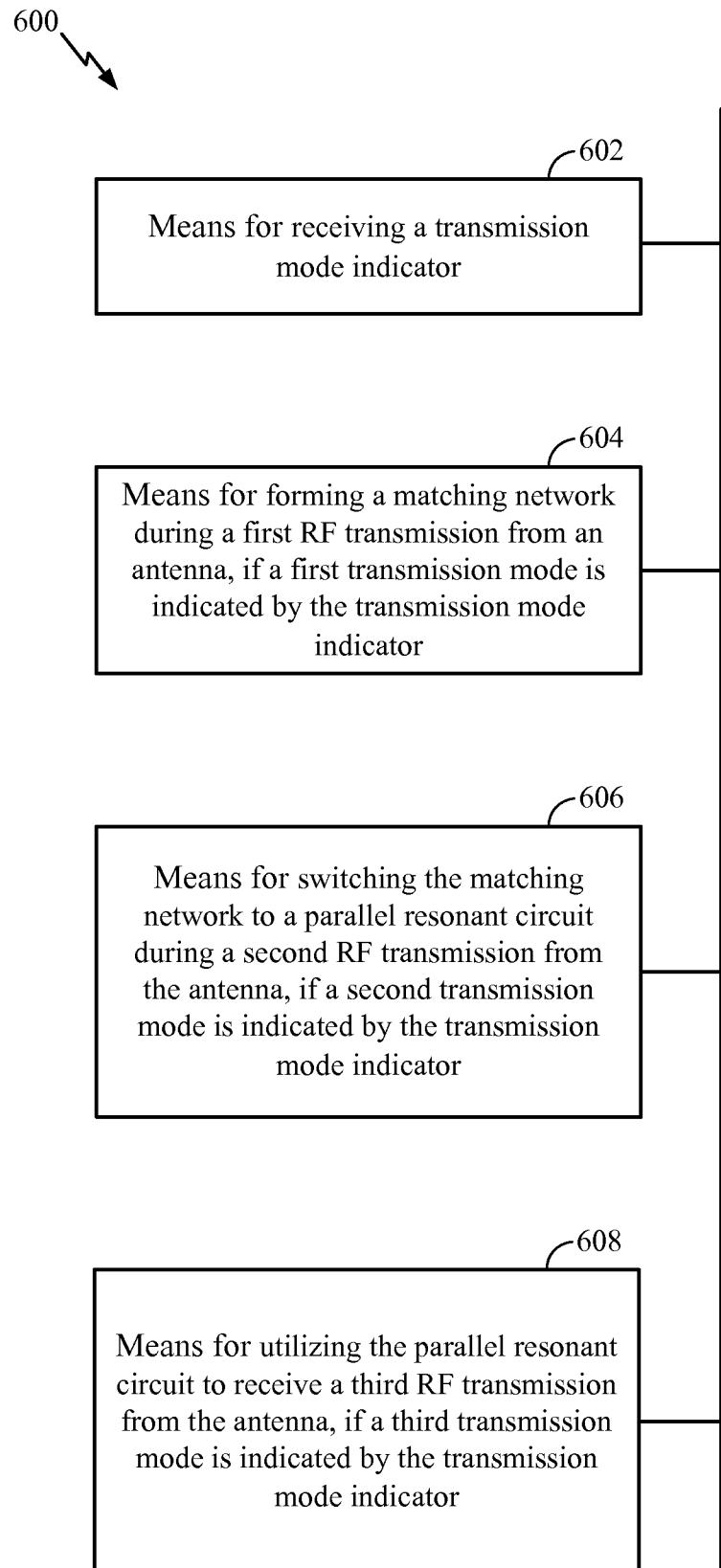


FIG. 6

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2013/054418

A. CLASSIFICATION OF SUBJECT MATTER
INV. H01Q1/24 H04B1/04
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01Q H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 393 264 B1 (SCHOLZ RALF [DE]) 21 May 2002 (2002-05-21) column 2, line 42 - column 3, line 38 figures 1, 2 ----- WO 02/07337 A2 (ERICSSON TELEFON AB L M [SE]; BRANDT PER OLOF [SE] ERICSSON TELEFON AB) 24 January 2002 (2002-01-24) page 5, line 12 - page 9, line 21 figures 2, 3 ----- WO 2009/009646 A2 (AXIOM MICRODEVICES INC [US]; QIAO DONGJAING [US]; KEE SCOTT D [US]; A0) 15 January 2009 (2009-01-15) the whole document ----- -/-	1-4,6-20 1,3,4,6, 7,12-16, 18-20 1-20
A		

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
10 October 2013	22/10/2013
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3046	Authorized officer Köppe, Maro

INTERNATIONAL SEARCH REPORTInternational application No
PCT/US2013/054418

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2004/253939 A1 (CASTANEDA JESUS A [US] ET AL) 16 December 2004 (2004-12-16) paragraph [0045] - paragraph [0046] figure 4 -----	1,5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/054418

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 6393264	B1	21-05-2002	CN	1196143 A	14-10-1998
			EP	0850512 A2	01-07-1998
			NO	980705 A	11-05-1998
			US	6393264 B1	21-05-2002
			WO	9710650 A2	20-03-1997
<hr/>					
WO 0207337	A2	24-01-2002	AT	270473 T	15-07-2004
			AU	8392401 A	30-01-2002
			DE	60104121 D1	05-08-2004
			DE	60104121 T2	25-08-2005
			EP	1302000 A2	16-04-2003
			JP	2004504759 A	12-02-2004
			US	6950410 B1	27-09-2005
			WO	0207337 A2	24-01-2002
<hr/>					
WO 2009009646	A2	15-01-2009	US	2009017775 A1	15-01-2009
			WO	2009009646 A2	15-01-2009
<hr/>					
US 2004253939	A1	16-12-2004	NONE		
<hr/>					