PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 12/02 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/00731

7 January 1999 (07.01.99)

(21) International Application Number: PCT/US98/13563

(22) International Filing Date: 29 June 1998 (29.06.98)

(30) Priority Data:

08/884,377 27 June 1997 (27.06.97) Us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
us
Filed on

08/884,377 (CON)
27 June 1997 (27.06.97)

(71) Applicant (for all designated States except US): CHAMELEON
SYSTEMS, INC. [US/US]; Suite 275, 960 N. San Antonio
Road, Los Altos, CA 94022 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COOKE, Laurence, H.
[US/US]; 25399 Spanish Ranch Road, Los Gatos, CA 95030
(US). PHILIPS, Christopher, E. [US/US]; 5888 Assis Court,
San Jose, CA 95138 (US). WONG, Dale [US/US]; 855 35th
Avenue, San Francisco, CA 94121 (US).

(74) Agent: KREBS, Robert, E.; Burns, Doane, Swecker & Mathis,
L.L.P., P.O. Box 1404, Alexandria, VA 223131404 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD FOR COMPILING HIGH LEVEL PROGRAMMING LANGUAGES

(57) Abstract

A computer program (item 101),
written in a high level programming lan-
guage, is compiled (item 103) into an in-
termediate data structure (105) which rep-
resents its control and data flow. This data
structure is analyzed (item 111) to iden-
tify critical blocks of logic which can be
implemented as an application specific in-
tegrated circuit (item 117) to improve the
overall performance. The critical blocks of
logic are first transformed into new equiva-
lent logic with maximum data parallelism.
The new parallelized logic is then trans-
lated into a Boolean gate representation
which is suitable for implementation on an
application specific integrated circuit (item
117). The application specific integrated
circuit (item 117) is coupled with a generic
microprocessor via custom instructions for
the microprocessor (item 107). The orig-
inal computer program is then compiled
into object code (item 109) with the new
expanded target instruction set.

101...
103...
105...
107...
109...
111
115...
113..
17...

PROGRAMMING LANGUAGE SOURCE CODE
SQURCE CODE COMPILER

COMPILED CODE INTERMEDIATE FORMAT
CODE GENERATOR FOR MICROPROCESSOR
OBJECT CODE FOR MICROPROCESSOR
..OPTIMIZER AND PARALLELIZER

CIRCUIT PRIMITIVES LIBRARY

SILICON COMPILER FOR INTEGRATED CIRCUIT
APPLICATION SPECIFIC INTEGRATED CIRCUIT

AL
AM
AT
AU
AZ
BA
BB

BF
BG
BJ
BR
BY
CA
CF
CcG
CH
CI
CM
CN
Ccu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
T
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugosiav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
T
UA
UG
Us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

- WO 99/00731 PCT/US98/13563

METHOD FOR COMPILING HIGH LEVEL PROGRAMMING LANGUAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to reconfigurable computing.

2. State of the Art

Traditionally, an integrated circuit must be designed by describing its structure
with circuit primitives such as Boolean gates and registers. The circuit designer must
begin with a specific application in mind, e.g. a video compression algorithm, and the
resulting integrated circuit can only be used for the targeted application.

Alternatively, an integrated circuit may be designed as a general purpose
microprocessor with a fixed instruction set, e.g. the Intel x86 processors. This allows
flexibility in writing computer programs which can invoke arbitrary sequences of the
microprocessor instructions. While this approach increases the flexibility, it decreases
the performance since the circuitry cannot be optimized for any specific application.

It would be desirable for high level programmers to be able to write arbitrary
computer programs and have them automatically translated into fast application specific
integrated circuits. However, currently there is no bridge between the computer
programmers, who have expertise in programming languages for microprocessors, and
the application specific integrated circuits, which require expertise in circuit design.

Research and development in integrated circuit design is attempting to push the
level of circuit description to increasingly higher levels of abstraction. The current
state of the art is the “behavioral synthesizer” whose input is a behavioral language
description of the circuit’s register/transfer behavior and whose output is a structural
description of the circuit elements required to implement that behavior. The input
description must have targeted a specific application and must describe its behavior in

high level circuit primitives, but the behavioral compiler will automatically determine

-1-

10

15

20

25

30

WO 99/00731 PCT/US98/13563

how many low level circuit primitives are required, how these primitives will be shared
between different blocks of logic, and how the use of these primitives will be
scheduled. The output description of these circuit primitives is then passed down to a
“logic synthesizer” which maps the circuit primitives onto a library of available “cells”,
where each cell is the complete implementation of a circuit primitive on an integrated
circuit. The output of the logic synthesizer is a description of all the required cells and
their interconnections. This description is then passed down to a “placer and router”
which determines the detailed layout of all the cells and interconnections on the
integrated circuit.

On the other hand, research and development in computer programming is also
attempting to push down a level of abstraction by matching the specific application
programs with custom targeted hardware. One such attempt is the Intel MMX
instruction set. This instruction set was designed specifically to accelerate applications
with digital signal processing algorithms. Such applications may be written generically
and an MMX aware compiler will automatically accelerate the compiled code by using
the special instructions. Another attempt to match the application with appropriate
hardware is the work on parallelizing compilers. These compilers will take a computer
program written in a sequential programming language and automatically extract the
implicit parallelism which can then be targeted for execution on a variable number of
processors. Thus different applications may execute on a different number of
processors, depending on their particular needs.

Despite the above efforts by both the hardware and software communities, the
gap has not yet been bridged between high level programming languages and integrated

circuit behavioral descriptions.

SUMMARY OF THE INVENTION
A computer program, written in a high level programming language, is
compiled into an intermediate data structure which represents its control and data flow.
This data structure is analyzed to identify critical blocks of logic which can be

implemented as an application specific integrated circuit to improve the overall

-

10

15

20

25

30

- WO 99/00731 PCT/US98/13563

performance. The critical blocks of logic are first transformed into new equivalent
logic with maximal data parallelism. The new parallelized logic is then translated into
a Boolean gate representation which is suitable for implementation on an application
specific integrated circuit. The application specific integrated circuit is coupled with a
generic microprocessor via custom instructions for the microprocessor. The original
computer program is then compiled into object code with the new expanded target
instruction set.

In accordance with one embodiment of the invention, a computer implemented
method automatically compiles a computer program written in a high level
programming language into a program for execution by one or more application
specific integrated circuits coupled with a microprocessor. Code blocks the functions
of which are to be performed by circuitry within the one or more application specific
integrated circuits are selected, and the code blocks are grouped into groups based on at
least one of an area constraint and an execution timing constraint. Loading and
activation of the functions are scheduled; and code is produced for execution by the
microprocessor, including instructions for loading and activating the functions.

In accordance another aspect of the invention, a computer implemented method
automatically compiles a computer program written in a high level programming
language into one or more application specific integrated circuits. In accordance with
yet another aspect of the invention, a computer implemented method automatically
compiles a computer program written in a high level programming language into one or
more application specific integrated circuits coupled with a standard microprocessor.

In accordance with still another aspect of the invention, a reconfigurable logic block is
locked by compiled instructions, wherein an activate configuration instruction locks the
block from any subsequent activation and a release configuration instruction unlocks the
block. In accordance with a further aspect of the invention, a high level programming
language compiler automatically determines a set of one or more special instructions to
extend the standard instruction set of a microprocessor which will result in a relative
performance improvement for a given input computer program. In accordance with yet

a further aspect of the invention, a method is provided for transforming the execution

~
-3~

10

15

20

25

30

) wO 99/00731 PCT/US98/13563

of more than one microprocessor standard instruction into the execution of a single
special instruction. In accordance with still a further aspect of the invention, a high
level programming language compiler is coupled with a behavioral synthesizer via a

data flow graph intermediate representation.

BRIEF DESCRIPTION OF THE DRAWING

The present invention may be further understood from the following description
in conjunction with the appended drawing. In the drawing:

Figure 1 shows the design methodology flow diagram of the preferred
embodiment of a compiler.

Figure 2 shows the control flow for the operation of the preferred embodiment
of an application specific integrated circuit.

Figure 3 shows a fragment of a high level source code example which can be
input into the compiler.

Figure 4 shows the microprocessor object code for the code example of Figure 3
which would be output by a standard compiler.

Figure 5 shows an example of the application specific circuitry which is output

by the compiler for the code example of Figure 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the preferred embodiment of the present invention, a
method is presented for automatically compiling high level programming languages into
application specific integrated circuits (ASIC).

Referring to Figure 1, the computer program source code 101 is parsed with
standard compiler technology 103 into a language independent intermediate format 105.
The intermediate format 105 is a standard control and data flow graph, but with the
addition of constructs to capture loops, conditional statements, and array accesses. The
format’s operators are language independent simple RISC-like instructions, but with
additional operators for array accesses and procedure calls. These constructs capture

all the high level information necessary for parallelization of the code. For further

-4

10

15

20

25

30

WO 99/00731

PCT/US98/13563

description of a compiled intermediate format see for example S. P. Amarasinghe, J.
M. Anderson, C. S. Wilson, S.-W. Liao, B. M. Murphy, R. S. French, M. S.
Lam and M. W. Hall; Multiprocessors from a Software Perspective; IEEE Micro,
June 1996; pages 52-61.

Because standard compiler technology is used, the input computer program can
be any legal source code for a supported high level programming language. The
methodology does not require a special language with constructs specifically for
describing hardware implementation elements. Front end parsers currently exist for
ANSI C and FORTRAN 77 and other languages can be supported simply by adding
new front end parsers. For further information on front end parsers see for example C.
W. Fraser and D. R. Hanson; A Retargetable Compiler for ANSI C; SIGPLAN
Notices, 26(10); October 1991.

From the intermediate format 105, the present methodology uniquely supports
code generation for two different types of target hardware: standard microprocessor and
ASIC. Both targets are needed because while the ASIC is much faster than the
microprocessor, it is also much larger and more expensive and therefore needs to be
treated as a scarce resource. The compiler will estimate the performance versus area
tradeoffs and automatically determine which code blocks should be targeted for a given
available ASIC area.

Code generation for the microprocessor is handled by standard compiler
technology 107. A code generator for the MIPS microprocessor currently exists and
other microprocessors can be supported by simply adding new back end generators. In
the generated object code 109, custom instructions are inserted which invoke the
ASIC-implemented logic as special instructions.

The special instructions are in four general categories: load configuration,
activate_configuration, invoke_configuration, release_configuration. The
load_configuration instruction identifies the address of a fixed bit stream which can
configure the logic and interconnect for a single block of reconfigurable logic on the
ASIC. Referring to Figure 2, the ASIC 200 may have one or more such blocks 201a,

201b on a single chip, possibly together with an embedded microprocessor 205 and

_5-

10

15

20

25

30

- WO 99/00731 PCT/US98/13563

control logic 207 for the reconfigurable logic. The identified bit stream may reside in,
for example, random access memory (RAM) or read-only-memory (PROM or
EEPROM) 203. The bit stream is downloaded to a cache of possible block
configurations on the ASIC. The activate_configuration instruction identifies a
previously downloaded configuration, restructures the reconfigurable logic on the ASIC
block according to that configuration, and locks the block from any subsequent activate
instructions. The invoke_ configuration instruction loads the input operand registers,
locks the output registers, and invokes the configured logic on the ASIC. After the
ASIC loads the results into the instruction’s output registers, it unlocks the registers and
the microprocessor can take the results and continue execution. The
release_configuration instruction unlocks the ASIC block and makes it available for
subsequent activate_configuration instructions. For further description of an embedded
microprocessor with reconfigurable logic see U.S. Patent Application 08/884,380 of L.
Cooke, C. Phillips, and D. Wong for An Integrated Processor and Programmable
Data Path Chip for Reconfigurable Computing, incorporated herein by reference.

Code generation for the ASIC logic can be implemented by several methods.
One implementation passes the intermediate control and data flow graphs to a
behavioral synthesis program. This interface could be accomplished either by passing
the data structures directly or by generating an intermediate behavioral language
description. For further discussion of behavioral synthesis see for example D. Knapp;
Behavioral Synthesis; Prentice Hall PTR; 1996. An alternative implementation
generates one-to-one mappings of the intermediate format primitives onto a library of
circuit implementations. For example: scalar variables and arrays are implemented as
registers and register files with appropriate bit widths; arithmetic and Boolean operators
such as add, multiply, accumulate, and compare are implemented as single cells with
appropriate bit widths; conditional branch implementations and loops are implemented
as state machines. In general, as illustrated in Figure 1, a silicon compiler 113 receives
as inputs compiled code in the intermediate format 105 and circuit primitives from a
circuit primitive library 115 and produces layout or configuration information for an

ASIC 117. For further discussion of techniques for state machine synthesis see for

-6-

10

15

20

25

- WO 99/00731 PCT/US98/13563

example G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antognetti; Design
Systems for VLSI Circuits; Martinus Nijhoff Publishers; 1987; pp. 327-364.

After the synthesis or mapping step is completed, an equivalent list of cells and
their interconnections is generated. This list is commonly referred to as a 'netlist. This
netlist is then passed to a placer and router which determines the actual layout of the
cells and their interconnections on an ASIC. The complete layout is then encoded and
compressed in a bit stream format which can be stored and loaded as a single unit to
configure the ASIC. A step-by-step example of the foregoing process is illustrated in
Figure 3, Figure 4, and Figure 5. For a general discussion of place and route
algorithms see T. Ohtsuki; Layout Design and Verification; North-Holland; 1986; pp.
55-198.

The basic unit of code that would be targeted for an ASIC is a loop. A single
loop in the input source code may be transformed in the intermediate format into
multiple constructs for runtime optimization and parallelization by optimizer and
parallelizer 111 in Figure 1. The degree of loop transformation for parallel execution
is a key factor in improving the performance of the ASIC versus a microprocessor.
These transformations are handled by standard parallelizing compiler technology which
includes constant propagation, forward propagation, induction variable detection,
constant folding, scalar privatization analysis, loop interchange, skewing, and reversal.
For a general discussion of parallel compiler loop transformations see Michael Wolfe;
High Performance Compilers for Parallel Computing; Addison-Wesley Publishing
Company; 1996; pp. 307-363.

To determine which source code loops will yield the most relative performance
improvement, the results of a standard source code profiler are input to the compiler.
The profiler analysis indicates the percentage of runtime spent in each block of code.

By combining these percentages with the amount of possible parallelization for each

10

15

20

25

30

WO 99[00731 PCT/US98/13563

loop, a figure of merit can be estimated for the possible gain of each loop. For

example:

Gain = (profilePercent) * (1 - 1 / parallelPaths)
where

profilePercent = percent of runtime spent in this loop
parallelPaths = number of paths which can be executed in parallel
The amount of ASIC area required to implement a source code loop is
determined by summing the individual areas of all its mapped cells and estimating the
additional area required to interconnect the cells. The size of the cells and their
interconnect depends on the number bits needed to implement the required data
precision. The ASIC area can serve as a figure of merit for the cost of each loop. For

example:

Cost = cellArea + MAX(0, (interconnectArea - overTheCellArea))
where

cellArea = sum of all component cell areas
overTheCellArea = cellArea * (per cell area available for interconnects)
interconnectArea = (number of interconnects) *
(interconnectLength) * (interconnect width)
interconnectLength = (square root of the number of cells) / 3

For further information on estimating interconnect area see B. Preas, M.
Lorenzetti; Physical Design Automation of VLSI Systems; Benjamin/Cummings
Publishing Company; 1988; pp. 31-64.

The method does not actually calculate the figures of merit for all the loops in
the source code. The compiler is given two runtime parameters: the maximum area for
a single ASIC block, and the maximum total ASIC area available, depending on the
targeted runtime system. It first sorts the loops in descending order of their percentage
of runtime, and then estimates the figures of merit for each loop until it reaches a
predetermined limit in the total amount of area estimated. The predetermined limit is a
constant times the maximum total ASIC area available. Loops that require an area
larger than a single ASIC block may be skipped for a simpler implementation. Finally,

with all the loops for which figures of merit have been calculated, a knapsack algorithm

is applied to select the loops. This procedure can be trivially extended to handle the

-8-

10

15

20

25

30

- WO 99/00731

PCT/US98/13563

case of targeting multiple ASICs if there is no gain or cost associated with being in
different ASICs. For a general discussion of knapsack algorithms see Syslo, Deo,
Kowalik; Discrete Optimization Algorithms; Prentice-Hall; 1983; pp. 118-176.

The various source code loops which are packed onto a single ASIC are
generally independent of each other. With certain types of ASICs, namely a field
programmable gate array (FPGA), it is possible to change at runtime some or all of the
functions on the FPGA. The FPGA has one or more independent blocks of
reconfigurable logic. Each block may be reconfigured without affecting any other
block. Changing which functions are currently implemented may be desirable as the
computer program executes different areas of code, or when an entirely different
computer program is loaded, or when the amount of available FPGA logic changes.

A reconfigurable FPGA environment presents the following problems for the
compiler to solve: selecting the total set of functions to be implemented, partitioning
the functions across multiple FPGA blocks, and scheduling the loading and activation
of FPGA blocks during the program execution. These problems cannot be solved
optimally in polynomial time. The following paragraphs describe some heuristics
which can be successfully applied to these problems.

The set of configurations simultaneously coexisting on an FPGA at a single
instant of time will be referred to as a snapshot. The various functions comprising a
snapshot are partitioned into the separate blocks by the compiler in order to minimize
the block’s stall time and therefore minimize the overall execution schedule. A block
will be stalled if the microprocessor has issued a new activate_configuration
instruction, but all the functions of the previous configuration have not yet completed.
The partitioning will group together functions that finish at close to the same time. All
the functions which have been selected by the knapsack algorithm are sorted according
to their ideal scheduled finish times (the ideal finish times assume that the blocks have
been downloaded and activated without delay so that the functions can be invoked at
their scheduled start times). Traversing the list by increasing finish times, each
function is assigned to the same FPGA block until the FPGA block’s area capacity is
reached. When an FPGA block is filled, the next FPGA block is opened. After all

-9-

10

15

20

25

30

WO 99/60731

PCT/US98/13563

functions have been assigned to FPGA blocks, the difference between the earliest and
the latest finish times is calculated for each FPGA block. Then each function is
revisited in reverse (decreasing) order. If reassigning the function to the next FPGA
block does not exceed its area capacity and reduces the maximum of the two
differences for the two FPGA blocks, then the function is reassigned to the next FPGA
block.

After the functions are partitioned, each configuration of an FPGA block may
be viewed as a single task. Its data and control dependencies are the union of its
assigned function’s dependencies, and its required time is the difference between the
latest finish time and the earliest start time of its assigned functions. The set of all such
configuration tasks across all snapshots may be scheduled with standard multiprocessor
scheduling algorithms, treating each physical FPGA block as a processor. This will
schedule all the activate configuration instructions.

A common scheduling algorithm is called list scheduling. In list scheduling, the
following steps are a typical implementation:

1. Each node in the task graph is assigned a priority. The priority is
defined as the length of the longest path from the starting point of the task graph to the
node. A priority queue is initialized for ready tasks by inserting every task that has no

immediate predecessors. Tasks are sorted in decreasing order of task priorities.

2. As long as the priority queue is not empty do the following:

a. A task is obtained from the front of the queue.

b. An idle processor is selected to run the task.

C. When all the immediate predecessors of a particular task are executed,

that successor is now ready and can be inserted into the priority queue.

For further information on muitiprocessor scheduling algorithms see A.
Zomaya; Parallel and Distributed Computing Handbook; McGraw-Hill; 1996; pp.
239-273.

All the load_configuration instructions may be issued at the beginning of the
program if the total number of configurations for any FPGA block does not exceed the

capacity of the FPGA block’s configuration cache. Similarly, the program may be

-10-

10

15

20

25

30

WO 99(00731 PCT/US98/13563

divided into more than one section, where the total number of configurations for any
FPGA block does not exceed the capacity of the FPGA block’s configuration cache.
Alternatively, the load_configuration instructions may be scheduled at the lowest
preceding branch point in the program’s control flow graph which covers all the
block’s activate_configuration instructions. This will be referred to as a covering load
instruction. This is a preliminary schedule for the load instructions, but will lead to
stalls if the actual load time exceeds the time the microprocessor requires to go from
the load_configuration instruction to the first activate_configuration instruction. In
addition, the number of configurations for an FPGA block may still exceed the capacity
of its configuration cache. This will again lead to stalls in the schedule. Insucha
case, the compiler will compare the length of the stall versus the estimated gains for
each of the configurations in contention. The gain of a configuration is estimated as
the sum of the gains of its assigned functions. Among all the configurations in
contention, the one with the minimum estimated gain is found. If the stall is greater
than the minimum gain, the configuration with the minimum gain will not be used at
that point in the schedule.

When a covering load instruction is de-scheduled as above, tentative
load_configuration tasks will be created just before each activate_configuration
instruction. These will be created at the lowest branch point immediately preceding the
activate instruction. These will be referred to as single load instructions. A new
attempt will be made to schedule the single load command without exceeding the FPGA
block’s configuration cache capacity at that point in the schedule. Similarly to the
previous scheduling attempt, if the number of configurations again exceeds the
configuration cache capacity, the length of the stall will be compared to the estimated
gains. In this case, however, the estimated gain of the configuration is just the gain of
the single function which will be invoked down this branch. Again, if the stall is
greater than the minimum gain, the configuration with the minimum gain will not be
used at that point in the schedule.

If a de-scheduled load instruction is a covering load instruction, the process will

recurse; otherwise if it is a single load instruction, the process terminates. This process

-11-

10

15

20

WO 99/60731 PCT/US98/13563

can be generalized to shifting the load instructions down the control flow graph one
step at a time and decreasing the number of invocations it must support. For a single
step, partition each of the contending configurations into two new tasks. For the
configurations which have already been scheduled, split the assigned functions into
those which finish by the current time and those that don’t. For the configuration
which has not been scheduled yet, split the assigned functions into those which start
after the stall time and those that don’t.

Branch prediction may be used to predict the likely outcome of a branch and to
load in advance of the branch a configuration likely to be needed as a result of the
branch. Inevitably, branch prediction will sometimes be unsuccessful, with the result
that a configuration will have been loaded that is not actually needed. To provide for
these instances, instructions may be inserted after the branch instruction to clear the
configuration loaded prior to the branch and to load a different configuration needed
following the branch, provided that a net execution-time savings results.

It will be appreciated by those of ordinary skill in the art that the invention can
be embodied in other specific forms without departing from the spirit or essential
character thereof. The presently disclosed embodiments are therefore considered in all
respects to be illustrative and not restrictive. The scope of the invention is indicated by
the appended claims rather than the foregoing description, and all changes which come
within the meaning and range of equivalents thereof are intended to be embraced

therein.

-12-

10

15

20

25

- WO ?9]00731 PCT/US98/13563

laims:

1. A computer implemented method for the automatic compilation of a
computer program written in a high level programming language into a program for
execution by one or more application specific integrated circuits coupled with a
microprocessor, the method comprising the steps of:

automatically determining a set of one or more special instructions, to be
executed by said one or more application specific integrated circuits, that will result in
a relative performance improvement for a given input computer program written for
execution by the microprocessor; and

generating code including said one or more special instructions.

2. The method of Claim 1, wherein generating code comprises producing
code for execution by the microprocessor, including instructions for loading and

activating said functions.

3. The method of Claim 2, comprising the further steps of:

selecting code blocks the functions of which are to be performed by circuitry
within the one or more application specific integrated circuits;

grouping the code blocks into groups based on at least one of an area constraint
and an execution timing constraint;

scheduling loading of said functions; and

scheduling activation of said functions.

4. The method of Claim 2, comprising the further step of producing

detailed integrated circuit layouts of said circuitry.

5. The method of Claim 4, comprising the further step of producing

configuration data for said functions.

-13-

) WO ?3/00731 PCT/US98/13563

10

15

20

25

30

6. The method of Claim 2, wherein said instructions include special
instructions to load, activate, invoke and/or release functions implemented on an

application specific integrated circuit.

7. The method of Claim 2, wherein grouping comprises calculating start

and finish times for the selected blocks of code.

8. The method of Claim 7, wherein the start and finish times are calculated
assuming that the selected code blocks are implemented in parallel with a fixed

overhead for each parallel operation.

9. The method of Claim 8, wherein the fixed overhead is calculated as OV
=1+ A + L, where I is an average time required to invoke the application specific
integrated circuit as a coprocessor instruction; A is an average time required to issue an
activate configuration instructions plus an average stall time for activation; and L is an
average time required to issue a load configuration instruction plus an average stall time

for loading.

10. The method of Claim 7, wherein grouping is performed such that a

difference between the latest and earliest finish times within a group is minimized.

11. The method of Claim 7, wherein grouping is performed such that for
each group, circuitry for performing the functions of that group does not exceed a

specified capacity of a block of an application integrated circuit.

12. The method of Claim 7, wherein grouping further comprises:

opening a new group with a total assigned area of zero;

sorting and traversing the code blocks in a predetermined order;

for each code block, if the area of the block plus the group’s assigned area does

not exceed a specified maximum area for a single group, adding the code block to the

-14-

10

15

20

25

30

~ WO 99/00731 PCT/US98/13563

group and adding the area of the code block to the group’s assigned area; otherwise,
opening a new group, adding the code block to the new group and adding the area of

the code block to the new group’s assigned area.

13. The method of Claim 12, wherein said predetermined order is in
increasing order of finish times as a primary key, and increasing order of start times as

a secondary key.

14. The method of Claim 13, wherein grouping comprises the further steps
of:

traversing the code blocks in decreasing order of finish times;

for each code block, determining a start spread and finish spread of a group to
which the code block belongs, wherein the start spread is the difference between the
latest and earliest start times of all of the code blocks belonging to the same group, and
the finish spread is the difference between the latest and earliest finish times of all of
the code blocks belonging to the same group; and

reassigning the code block to a different group if the code block’s area plus the
different group’s assigned area does not exceed the specified maximum area for a single
group, and if reassigning the code block results in a net improvement in at least one of
start spread and finish spread for the group to which the code block belongs and the

different group.

15. The method of Claim 2, wherein selecting comprises sampling the
percentage of time spent in each block of code when the computer program is executed

on a single microprocessor.

16. The method of Claim 15, wherein selecting further comprises:
parsing the high level programming language into an intermediate data structure
representing control and data dependencies of the computer program; and

analyzing the amount of implicit parallelism in the intermediate data structure.

-15-

- W0 99/00731 PCT/US98/13563

10

15

20

25

30

17. The method of Claim 16, wherein selecting further comprises, for at
least some of the code blocks of the computer program, estimating the cost and benefit
of implementing a code block using circuitry within an application specific integrated

circuit.

18. The method of Claim 17, wherein estimating the cost and benefit of
implementing a code block comprises:

estimating a reduction in execution time if the code block is implemented as an
application specific integrated circuit; and

estimating a layout area required if the code block is implemented as an

application specific integrated circuit.

19. The method of Claim 18, wherein selecting further comprises:

accepting a first runtime parameter representing a maximum area of a single
block of an application specific integrated circuit and a second runtime parameter
representing 2 maximum total area for all blocks to be considered for implementation as
application specific integrated circuits; and

selecting a set of code blocks which satisfies the first and second runtime

parameters and which maximizes a total estimated reduction in execution time.

20. The method of Claim 19, wherein selecting a set of code blocks which
satisfies the first and second runtime parameters and which maximizes a total estimated
reduction in execution time comprises:

sorting and traversing the code blocks in decreasing order of reduction in
execution time; and

for each code block:

if the reduction equals zero, terminate;
estimate the required layout area;
if the area exceeds the specified maximum area for a single block of an

application specific integrated circuit, skip this code block;

-16-

10

15

20

25

30

- WO 99/00731 PCT/US98/13563

multiplying the specified maximum total area for all blocks by a constant
greater than one;

if a total area of previously selected code blocks plus an estimated
required layout area for a current code block exceeds the specified maximum total
multiplied by the constant, terminate;

otherwise, select the code block; and

using a knapsack algorithm and the maximum total area to perform a

further selection on the selected code blocks.

21. The method of Claim 18, wherein the reduction in execution time is
estimated in accordance with the formula R = T(1 - 1/P) where T is a percentage of
execution time spent in the code block and P is a number of paths which can be

executed in parallel in the code block.

22. The method of Claim 18, wherein the intermediate data structure is a
tree structure containing nodes, and estimating the layout area comprises:

performing bottom-up traversal of the tree structure;

mapping each node in the tree to a cell from a library of circuit primitives;

calculating a total area of the mapped cells; and

calculating an additional area required for cell interconnections.

23. The method of Claim 22, wherein mapping is performed in accordance
with multiple predetermined mappings including at least one of the following: scalar
variables map to registers; arrays map to register files; addition and subtraction
operators map to adders; increment and decrement operators map to adders;
multiplications and division operators map to multipliers; equality and inequality
operators map to comparators; + =, - = operators map to accumulators; *=, /=
operators map to multiply-accumulators, < <, > > operators map to shift registers;
&, |, ~, " operators map to boolean gates, branches map to a state machine, and loops

map to a state machine.

-17-

10

15

20

25

- WO 99/00731

PCT/US98/13563

24. The method of Claim 22, wherein mapping includes determining a

number of significant bits required to support a data precision expected by the computer

program.

25. The method of Claim 22, wherein calculating an additional area required
for interconnections is performed in accordance with the following formula: area =
max(0, (A - B)) where A is an estimate of total area required for interconnections and

B is an estimate of area available within the mapped cells for use by interconnections.

26. The method of Claim 25, wherein A is calculated as the product of a
runtime parameter for the width of an interconnection, an average length of an
interconnection calculated as a fraction times the square root of the number of mapped

cells, and the total number of interconnections.

27. The method of Claim 25, wherein B is calculated as the product of a
runtime parameter for the fraction of cell area for interconnections and the total area of

all of the mapped cells.

28. The method of Claim 16, comprising the further step of estimating a

reduction in execution time for each group.

29. The method of Claim 28, wherein scheduling activation is performed
such that overall execution time is minimized subject to at least one of an area

constraint and an execution time constraint.

30. The method of Claim 29, wherein scheduling activation is performed
such that data and control dependencies of all code blocks within a group are not

violated.

-18-

10

15

20

25

30

WO 99/00731

PCT/US98/13563

31. The method of Claim 29, wherein scheduling activation is performed

such that a specified number of simultaneous blocks of an application specific circuit is

not exceeded.

32. The method of Claim 29, wherein scheduling further comprises:

modeling each group as a separate task;

modeling as a processor each available block of reconfigurable logic on an
application specific integrated circuit; and

running a modified multiprocessor scheduling algorithm.

33. The method of Claim 32, wherein the intermediate data structure is a
graph in which arcs represent dependencies, and wherein modeling each group as a
separate task comprises:

for each group, adding a node to the graph;

for each code block assigned to a group, modifying the graph such that arcs that
previously pointed to the code block point instead to a node representing the group;

determining a difference between a latest finish time and an earliest start time of
code blocks assigned to the group; and

setting a required time of the group equal to said difference.

34. The method of Claim 32, wherein running a modified multiprocessor
scheduling algorithm comprises:

running a standard list scheduling multiprocessor scheduling algorithm;

during running of the algorithm, in the event no processor is available when a
newly-ready task becomes ready:

calculating a stall time until a processor would become available;

create a list of contending tasks including the newly-ready task and tasks
scheduled to be executing at a time the newly-ready task becomes ready; and

finding a contending task with a minimum estimated reduction in execution

time.

-19-

10

15

20

25

30

- WO 99/060731 PCT/US98/13563

35. The method of Claim 34, wherein running the modified multiprocessor
scheduling algorithm further comprises:

if the stall time is less than or equal to the minimum reduction, scheduling the
newly-ready task to execute when a processor becomes available and continuing to run

the multiprocessor scheduling algorithm.

36. The method of Claim 35, wherein running the modified multiprocessor
scheduling algorithm further comprises, if the stall time is greater than the minimum
reduction, discarding the task with the minimum reduction and continuing to run the

multiprocessor scheduling aigorithm.

37. The method of Claim 35, wherein running the modified multiprocessor
scheduling algorithm further comprises, if the stall time is greater than the minimum
reduction:

replacing the newly-ready task with two new tasks, a first new task containing
code blocks of the newly-ready task having start times later than when a processor
would become available, and a second new task containing other code blocks of the
newly-ready task;

replacing respective tasks scheduled to be executing at a time the newly-ready
task becomes ready with two new respective tasks, a first new task containing code
blocks of the newly-ready task having start times later than when a processor would
become available, and a second new task containing other code blocks of the

newly-ready task.

38. The method of Claim 37, wherein running the modified multiprocessor
scheduling algorithm further comprises:

of the new tasks, finding a task with a minimum reduction in execution time;
and

discarding the task with the minimum reduction.

-20-

10

15

20

25

WO 99/00731 PCT/US98/13563

39. The method of Claim 28, wherein scheduling loading is performed such
that overall execution time is minimized subject to at least one of an area constraint and

an execution time constraint.

40. The method of Claim 39, wherein scheduling loading is performed such

that each function activation is preceded by loading.

41. The method of Claim 39, wherein scheduling loading is performed such

that a specified capacity for coexisting groups loaded for a block of an application

specific circuit is not exceeded.

42. The method of Claim 39, wherein the data structure includes a control
flow graph, and wherein scheduling loading comprises:

modeling each group as a task and each available block of an application
specific integrated circuit as a processor with a specified maximum number of
simultaneous tasks;

for each group activation of which has been successfully scheduled, creating a
new load_group task having a finish time equal to a finish time of a task representing
the group and having a start time equal to a start time of the task representing the group

minus a runtime parameter specifying a time required to load a group.

43. The method of Claim 42, wherein scheduling loading further comprises,

for each new load_group task, inserting a node into the control flow graph.

44. The method of Claim 42, wherein scheduling loading further comprises:
finding a branching node in the control flow graph immediately preceding

activation;

calculating a stall time of a load_group task as a finish time of the branching

node minus the load group task start time;

21-

10

15

20

25

WO 99/00731

PCT/US98/13563

if the stall time is less than or equal to the estimated reduction in execution time
for the group, creating a control flow arc from the branching node to the load_group
task;

otherwise, discarding the load group task and discarding the group.

45. The method of Claim 43 or Claim 44 wherein scheduling loading further

comprises running a modified list processing multiprocessor scheduling algorithm.

46. The method of Claim 45, wherein running a modified list processing
multiprocessor scheduling algorithm comprises:

running a list scheduling multiprocessor scheduling algorithm with a specified
maximum number of simultaneous tasks per processor;,

during running of the algorithm, in the event no processor is available when a
newly-ready task becomes ready:

calculating a stall time until a processor would become available;

create a list of contending tasks including the newly-ready task and tasks
scheduled to be executing at a time the newly-ready task becomes ready; and

finding a contending task with a minimum estimated reduction in execution

time.

47. The method of Claim 46, wherein running the modified multiprocessor
scheduling algorithm further comprises:

if the stall time is less than or equal to the minimum reduction, scheduling the
newly-ready task to execute when a processor becomes available, adjusting the schedule

for a corresponding group task and continuing to run the multiprocessor scheduling

algorithm.

48. The method of Claim 46, wherein running the modified muitiprocessor

scheduling algorithm further comprises, if the stall time is greater than the minimum

-22-

~ WO 99/00731 PCT/US98/13563

10

15

20

25

reduction, discarding the task with the minimum reduction and its corresponding group

and continuing to run the multiprocessor scheduling algorithm.

49. The method of Claim 48, wherein running the modified multiprocessor
scheduling algorithm further comprises, if in the control flow graph a branching node
intervenes between a node representing a discarded load_group task and a node
representing activation of the corresponding group:

finding a branching node in the control flow graph immediately preceding
activation;

calculating a stall time of a load_group task as a finish time of the branching
node minus the load group task start time;

if the stall time is less than or equal to the estimated reduction in execution time
for the group, creating a control flow arc from the branching node to the load_group
task;

otherwise, discarding the load_group task and discarding the group.

50. The method of Claim 48, wherein running the modified multiprocessor
scheduling algorithm further comprises, if the stall time is greater than the minimum
reduction:

replacing the newly-ready task with two new tasks and corresponding groups, a
first new group containing code blocks of the newly-ready task having start times later
than when a processor would become available, and a second new group containing
other code blocks of the newly-ready task;

replacing respective tasks scheduled to be executing at a time the newly-ready
task becomes ready with two new respective tasks and corresponding groups, a first
new group containing code blocks of the newly-ready task having start times later than
when a processor would become available, and a second new group containing other

code blocks of the newly-ready task.

-23-

- WO 99/00731 PCT/US98/13563

10

15

20

51. The method of Claim 50, wherein running the modified multiprocessor
scheduling algorithm further comprises:

of the new tasks, finding a task with corresponding group having a minimum
reduction in execution time; and

discarding the task with the corresponding partition having the minimum

reduction.

52. The method of Claim 51, wherein running the modified multiprocessor
scheduling algorithm further comprises, if in the control flow graph a branching node
intervenes between a node representing a discarded load _group task and a node
representing activation of the corresponding group:

finding a branching node in the control flow graph immediately preceding
activation;

calculating a stall time of a load_group task as a finish time of the branching
node minus the load group task start time;

if the stall time is less than or equal to the estimated reduction in execution time
for the group, creating a control flow arc from the branching node to the load_group
task;

otherwise, discarding the load group task and discarding the group.

24-

- WO 99/00731 PCT/US98/13563
) 1/2

’LDS ~ application specific integrated circuit o~ 1

Figure 2: application specific integrated circuit opeXation

2ele 26‘!)0

-WO 99/00731 2/2 PCT/US98/13563

/* finite impuise response filter */
for (j = 0; j < SAMPLES; j++)
{

out(j] =0;

/* inner loop */
for (i = 0; i <FILTER_TAPS; i++)

outj] += coeff[i] * samplefj + i};
H

Figure 3: high level source code example

mult coefffregisterA], sample{registerB], registerC
add registerC, registerD

add registerA, 1, registerA

add registerB, 1, registerB

Figure 4: inner loop compiled for sequential standard microprocessor object code

REG REG REG REG REG REG REG REG
Data Input
——ge REG REG REG
X{7:0]
\ 0 J1S 1] jte 2] IR] 11 | jto al §9 ?f1 18
b AN - AN AN
o]/

©*R K

Data Output
YB:0]
Figure 5: inner loop compiled for parallel execution on application specific circuitry

. INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/13563 —

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 12/02
US CL :395/709
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/709, 704

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A USA 5,794,044 (YELLIN) 11 AUGUST 1998, COL. 1-10 1,2,4,5-7,

11
X USA 5,625,797 (FERRY ET AL.) 29 APRIL 1997, COL. 1-6,| 1,2,4,5-7,

11

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited d T later d t published after the i ional filing date or priority
‘A d tdefining the ral state of the art which is not considered date and not in conflict with the application but cited to understand the
jocumentdefining the general s n e incipl i inventi
t0 be of : releoance principle or theory underlying the invention
“E* carlier document published on or aficr the international filing date X ;ﬁ“;::d‘fom‘;‘“:‘m ol' v v.9‘°“‘_' u') ned in cati °“.‘"°§£;
‘L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other | 5) L R
special reason (as specified) Y document of particular v ; the i cannot be
dered to lve an step when the document is
*0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such binati
means being obvious to a person skilled in the art
P* document published prior to the intemational filing date but later than =g+ document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
22 SEPTEMBER 1998 220CT 1998
Name and mailing address of the ISA/US Authorized officer n
Commissioner of Patents and Trademarks
Box PCT
e o, D.C. 20231 JOHN Q. CHAVIS
Facsimile No. (703) 305-3230 Telephone No. __(703) 305-9

Form PCT/ISA/210 (second sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

