

L. H. PERLMAN.

WHEEL.

APPLICATION FILED SEPT. 23, 1916.

1,237,692.

Patented Aug. 21, 1917.

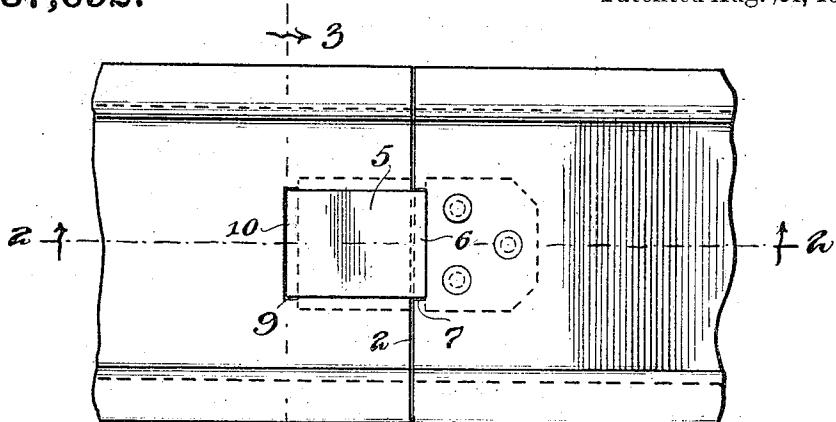
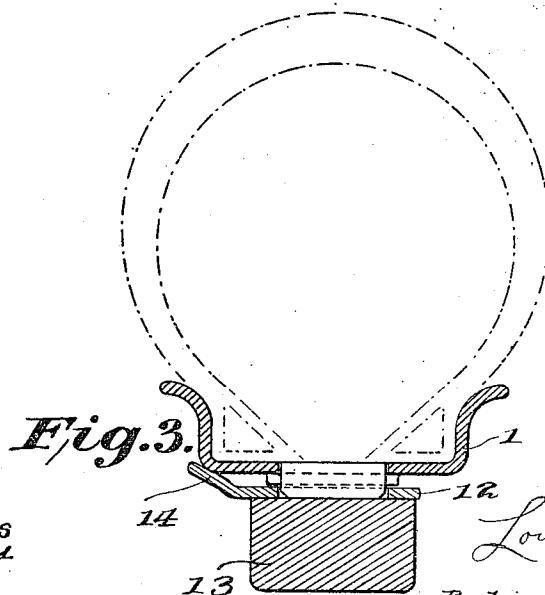
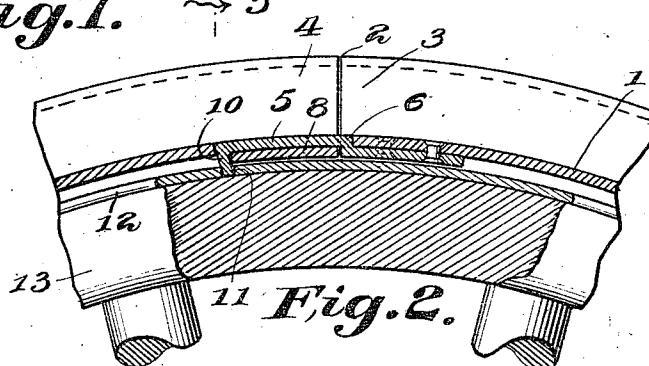




Fig. 1.

Witnesses
J. H. Lybrand

C. H. Ferler

Inventor
Louis H. Perlman
By his attorney
Edgar M. Kitchin

UNITED STATES PATENT OFFICE.

LOUIS H. PERLMAN, OF NEW YORK, N. Y.

WHEEL.

1,237,692.

Specification of Letters Patent. Patented Aug. 21, 1917.

Application filed September 23, 1916. Serial No. 121,834.

To all whom it may concern:

Be it known that I, LOUIS H. PERLMAN, a citizen of the United States, residing at New York, in the county of New York and State of New York, have invented certain new and useful Improvements in Wheels; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it appertains to make and use the same.

This invention relates to improvements in demountable rims for vehicle wheels, such as automobile wheels, and the object in view is the provision for effectively locking the ends of a cross-cut demountable rim.

With this and further objects in view as will hereinafter in part become apparent and in part be stated, the invention comprises certain novel constructions, combinations and arrangements of parts as subsequently specified and claimed.

In the accompanying drawing,—

Figure 1 is a fragmentary plan view of a demountable rim embodying the features of the present invention.

Fig. 2 is a transverse axial section thereof taken on the plane indicated by line 2—2 of Fig. 1, a fragment of a wheel body being illustrated in its co-operative relation to the rim and showing partly in elevation and partly in vertical section.

Fig. 3 is a vertical section taken on the plane indicated by line 3—3 of Fig. 1 and looking in the direction indicated by the arrow.

Referring to the drawing by numerals, 1 indicates a demountable rim of the usual cross-cut channel type, the rim being cross-cut at the point 2, leaving rim terminals 3 and 4.

A latch is connected to terminal 3 to engage terminal 4. The said latch consists of a tongue or strip of metal 5 riveted or otherwise fixed to the under surface of rim 1 at the terminal 3 and bent upwardly at 6 through a notch 7 formed in the material of rim 1 and opening at the terminal 3. The strip or tongue 5 is bent again to extend from the point of notch 7 toward and along the terminal portion 4 and that part of the tongue 5 extending along terminal portion 4 is accommodated by a recess formed in the terminal portion 4 by depressing a portion of the material of the terminal portion 4, the said depressed portion being seen at

8 and being sufficiently depressed to allow the tongue 5 to have its outer surface lie flush with the outer surface of the base of rim 1. That edge of the depressed portion 60 8 more remote from the end 4 of rim 1 is cut away from the material of the rim and a notch 9 is formed along such edge to receive the free end portion of the tongue 5. The said free end portion is bent inward, 65 as indicated at 10, and in operation extends through the notch 9 and projects a sufficient distance inwardly to enter a recess 11 formed in the felly band 12 of a wheel body 13. The said flange or projection 10 thus forms 70 a driver which prevents circumferential creeping of rim 1 in operation.

It will be understood, of course, that the rim 1 is mounted in the usual manner to rest against flange 14 of felly band 12 at 75 one edge and at the other edge of rim 1 the rim is supported by the usual locking means, not illustrated.

It is to be noted that the bend 6 is sufficiently abrupt to cause the material of the 80 tongue 5 to lie within the notch 7 and to be flush with the cut edge of rim 1 represented by the end 3.

In operation, the rim 1 is collapsed or distorted axially as preferred for the removal 85 and application of a tire as is well understood in the manipulation of cross-cut demountable rims of the channel type.

What I claim is:

1. In a wheel structure of the class described, the combination of a cross-cut demountable rim of the channel type having a notch at one terminal, and a latch comprising a tongue fixed to the inner face of one terminal of the rim extending through said 95 notch and along the outer face of the other terminal of the rim and engaging the latter terminal for locking the terminals together.

2. In a wheel structure of the class described, the combination of a cross-cut demountable rim of the channel type having a notch at one terminal, and a latch comprising a tongue fixed to the inner face of one terminal of the rim extending through said notch and along the outer face of the other terminal of the rim and engaging the latter terminal for locking the terminals together, the last-named terminal being formed with a depression for receiving the tongue and allowing the same to lie with its 105 outer face flush with the outer face of the base of the rim.

3. In a wheel structure of the class described, the combination of a cross-cut demountable rim of the channel type having a notch at one terminal, and a latch comprising a tongue fixed to the inner face of one terminal of the rim extending through said notch and along the outer face of the other terminal of the rim and engaging the latter terminal for locking the terminals together, the last-named terminal being formed with a depression for receiving the tongue and allowing the same to lie with its outer face flush with the outer face of the base of the rim, the rim being formed with a notch at the edge of the depressed portion remote from the cut end of the rim and the tongue being formed with its free terminal bent to project through said notch, the edge of the depressed portion remote from the cut end of the rim and the tongue being formed with its free terminal bent to project through said notch, the projecting terminal of the tongue being extended sufficiently to form a wheel-engaging driver.

4. In a wheel structure of the class described, the combination of a cross-cut demountable rim of the channel type having a notch at one terminal, and a latch comprising a tongue fixed to the inner face of one terminal of the rim extending through said notch and along the outer face of the other terminal of the rim and engaging the latter terminal for locking the terminals together, the last-named terminal being formed with a depression for receiving the tongue and allowing the same to lie with its outer face flush with the outer face of the base of the rim, the rim being formed with a notch at the edge of the depressed portion remote from the cut end of the rim and the tongue being formed with its free terminal bent to project through said notch, the relatively opposite face of the other terminal of the rim.

5. In a wheel structure of the class described, the combination with a cross-cut demountable rim of the channel type, of a latch therefor engaging the inner face of one terminal of the rim and the outer face of the other terminal thereof.

6. In a wheel structure of the class described, the combination with a cross-cut demountable rim of the channel type, of a latch fixed to one face of one terminal of the rim and having a locking engagement with the relatively opposite face of the other terminal of the rim.

7. In a wheel structure of the class described, the combination with a cross-cut demountable rim of the channel type, of a latch fixed to the inner face of one terminal of the rim and having a locking engagement with the outer face of the other terminal of the rim.

In testimony whereof I affix my signature in presence of two witnesses.

LOUIS H. PERLMAN.

Witnesses:

I. B. LEIBSON,
O. W. MOTT.