20147072855 AT |0 01000 10 010 R OO0 00

<

W

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2014/072855 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

15 May 2014 (15.05.2014) WIPOIPCT
International Patent Classification:
GO6F 7/544 (2006.01)
International Application Number:
PCT/IB2013/059491

International Filing Date:
21 October 2013 (21.10.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/723,422 7 November 2012 (07.11.2012) US
13157006.1 27 February 2013 (27.02.2013) EP

Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL];
High Tech Campus 5, NL-5656 AE Eindhoven (NL).

Inventors: GORISSEN, Paulus Mathias Hubertus
Mechtildis Antonius; ¢/o High Tech Campus, Building 5,
NL-5656 AE Eindhoven (NL). TOLHUIZEN, Ludovicus
Marinus Gerardus Maria; c¢/o High Tech Campus, Build-
ing 5, NL-5656 AE Eindhoven (NL).

Agents: KROEZE, Johannes Antonius et al.; High Tech
Campus, Building 5, NL-5656 AE Eindhoven (NL).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: COMPUTING DEVICE STORING LOOK-UP TABLES FOR COMPUTATION OF A FUNCTION

[ 100
© 110 120
i
1
— 1
—_— s 131
1
1
— >3 132
1
1
12 — > 134
1
1
i
— -] 136
i
1
1
i
L ———>r-——-) 138
b=

Figure 1

(57) Abstract: A computing device is provide, configured to compute a function of one or more inputs, the device comprising a stor-
age device storing one or more look-uptables used in the computation of said function, the look-up tables mapping input values to
output values, the look-up table being constructed with respect to the first error correcting code, a second error correcting code, a
first error threshold and a second error threshold, such that any two input values (112) that each differ at most a first error threshold
number of bits from a same code word of the first error correcting code, are mapped to respective output values (131- 38) that each
differ at most a second error threshold number of bits from a same code word of the second error correcting code, wherein the first
error threshold is at least 1 and at most the error correcting capability (t1) of the first error correcting code, and the second error 10
threshold is at most the error correcting capability (t2) of the second error correcting code.



10

15

20

25

2012PF01861
WO 2014/072855 PCT/IB2013/059491
1

Computing device storing look-up tables for computation of a function

FIELD OF THE INVENTION

The invention relates to a computing device configured to compute a function
of one or more inputs, the inputs having an input bit-size, the device comprising a storage
device storing one or more look-up tables used in the computation of said function, the look-

up tables mapping input values to output values.

BACKGROUND OF THE INVENTION

The security of a computer implemented system depends on multiple factors.
On the one hand there is the security of the underlying abstract protocol and cryptography.
Once the cryptography employed is broken, the system will typically also be broken. On the
other hand there is the security related to the implementation itself.

For example, it has long been known that computer systems leak some
information through so-called side-channels. Observing the input-output behavior of a
computer system may not provide any useful information on sensitive information, such as
secret keys used by the computer system. But a computer system has other channels that may
be observed, e.g., its power consumption or electromagnetic radiation; these channels are
referred to as side-channels. For example, small variations in the power consumed by
different instructions and variations in power consumed while executing instructions may be
measured. The measured variation may be correlated to sensitive information, such as
cryptographic keys. This additional information on secret information, beyond the observable
and intended input-output behavior are termed side-channels. Through a side-channel a
computer system may ‘leak’ secret information during its use. Observing and analyzing a
side-channel may give an attacker access to better information than may be obtained from
cryptanalysis of input-output behavior only. One known type of side-channel attack is the so-
called differential power analysis (DPA).

There are other ways to attack a system. Related to the classic side-channel
attack, are fault injection attacks. Here the underlying hardware is intentionally made to
malfunction. Due to the malfunction the device will produce wrong answers. If the particular

type of errors is related to secret information, then analyzing the errors may disclose secret



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
2

information. In particular, light attacks also known as flash attacks are a particular powerful
way to inject faults. In a light attack laser light is flashed on a circuit during computation to
disrupt intermediate values.

For example, a known attack to the RSA signature algorithm injects transient
faults in the target machine by regulating the voltage supply of the system. Attackers do not
need access to the internal components of the victim chip, they simply collect corrupted
signature outputs from the system while subjecting it to transient faults. Once a sufficient
number of corrupted messages have been collected, the private key can be extracted through
offline analysis.

One way to counter fault attacks is to verify the computations. For example,
by performing critical computations twice. In the particular case of RSA signatures, the
signature may be verified by the RSA verification algorithm. In this way a fault attack is
detected and it is avoided that erroneous values leave the computing device.

An even stronger attack on a computer is so called reverse engineering. In
many security scenarios attackers may have full access to the computer. This gives them the
opportunity to disassemble the program and obtain any information about the computer and
program. Given enough effort any key hidden say in a program may be found by an attacker.

Protecting against this attack scenario has proven very difficult. One type of
counter measure is so-called white-box cryptography. In white-box cryptography, the key
and algorithm are combined. The resulting algorithm only works for one particular key. Next
the algorithm may be implemented as a so-called, lookup table network. Computations are
transformed into a series of lookups in key-dependent tables. See for example, “White-Box
Cryptography and an AES Implementation”, by S. Chow, P. Eisen, H. Johnson, P.C. van
Oorschot, for an example of this approach.

Both implementations of functionality in computer hardware and computer
software are vulnerable to the above side-channel attacks. The problem is however most
severe in software. Compared to hardware implementations, software is relatively slow and
consumes a relatively large amount of power. Both factors favor side-channel attacks.

Attempts have been made to increase the resistance of computer programs
against side-channel attacks by changing their compilation.

US patent 7996671 suggests increasing the resistance of computer programs
against side-channel attacks by improved compilation. Since power analysis attacks rely on
measured power consumption, resistance is increased by compiling so as to reduce power

consumption. The compiler predicts the compilation that is the most energy efficient and



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
3

selects it. It is observed that energy consumption reduction increases the power
noise/variation and improves side-channel resistance.

If the energy reduction approach alone is not enough to introduce enough
power noise/variation, then the compiler approach that is used for energy optimization can be
used to randomize the power cost in critical portions of codes such as cryptographic
algorithms. This is accomplished at compile time by deliberately generating code with
different power requirements.

Current approaches to the side-channel problem that introduce randomness in

the computation have proved less than satisfactory.

SUMMARY OF THE INVENTION

It would be advantageous to address these and other security concerns. The
attackers have observed the mentioned compilation based countermeasure against side-
channel attacks may be somewhat successful in countering the passive side-channels, such as
DPA, but not the active attacks such as fault attacks and reverse engineering.

A computing device is provided configured to compute a function of one or
more inputs. The device is configured to obtain the one or more inputs as one or more
encoded inputs. The device comprises a storage device storing one or more look-up tables
used in the computation of said function, the look-up tables mapping input values to output
values, input values of a look-up table having a bit size equal to a first code word bit size (n1)
of a first error correcting code, the look-up table being constructed with respect to the first
error correcting code, a second error correcting code, a first error threshold and a second
error threshold, such that any two input values that each differ at most a first error threshold
number of bits with a same code word of the first error correcting code, are mapped to
respective output values that each differ at most a second error threshold number of bits with
a same code word of the second error correcting code. The first error threshold is at least 1
and at most the error correcting capability (t1) of the first error correcting code, and the
second error threshold is at most the error correcting capability (t2) of the second error
correcting code.

An encoded input may be obtained by applying an encoding function to one of
said inputs, the encoding function mapping an input to a corresponding code-word of an error
correcting code. Optionally, the encoded input may be corrupted to a certain extent; up to the
first threshold of bit errors corresponding to the first look-up table that will be applied to the

input values may be added to the encoded input values. In general adding bit errors may be



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
4

done by changing, i.e., flipping a bits, in this case up to a first error threshold number of bits.
In some applications, the program will in fact receive encoded inputs directly. The compiler
may be configured to produce an ancillary program to convert unencoded values to encoded
values. The ancillary program may be used by other applications that need to supply the
encoded input values.

Using encoded input values instead of the input values themselves contributes
to the obfuscation of the program, i.¢., increases the difficulty of reverse engineering the
program. The stored look-up tables have error correcting properties. These properties may be
exploited in two ways. All encoded input values that differ up to at most the error correcting
capability (also referred to as ‘t”) bits with a same code word are handled in the same way by
the look-up table. Thus a fault attack causing at most ‘t’ bit errors will not cause a security
relevant error, say a key-correlated error. Fault attacks become increasingly more difficult
with each additional error that must be injected. By performing computations using error
correcting tables, fault attacks become harder to do. On the other hand, the look-up table need
not give the same result for two inputs that belong to the same input value, i.e., are close to
the same code word. Since the look-up table is resistant against errors, these errors may also
be introduced on purpose. Reverse engineering is increasingly difficult when the fixed
relation between values and encoding is disturbed. When error correcting tables are used a
single input value may be represented by many encoded values. In particular automated
reverse engineering which depends on finding correlations between input values, output
values and internal variables will require data of significantly more runs to overcome this
statistical hurdle. The two ways the error correcting tables oppose fault and reverse
engineering attacks need exclude each other, both may be used at the same time.

Interestingly, the error correcting code need not be the same for each look-up
table. The error correcting codes need not even have the same parameters for each look-up
table. Using different error correcting codes is beneficial to obfuscation, but also greatly adds
to the flexibility of the system. Typically a function implemented with the look-up tables uses
a so-called network of tables. By allowing multiple different error correcting tables, these
tables need not be of the same size; this greatly saves on the size requirements needed, since
tables which could be small can actually be made small. In an embodiment of the device a
function is implemented as network of tables, constructed with respect to multiple different
first error correcting codes and multiple different second error correcting codes. In the look-

up table network the used error correcting odes should fit: if the output of a first table is fed



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
5

to a second table, the second error correcting code of the first table should be the first error
correcting code for the second table.

Indeed, in an embodiment, the one or more look-up tables used in the
computation of said function comprise a first and a second look-up table used in the
computation of said function, the first look-up table being constructed with respect to a first
first error correcting code and a first second error correcting code, the second look-up table
being constructed with respect to a second first error correcting code and a second second
error correcting code, wherein the first second error correcting code equals the second first
error correcting code.

However, this is not needed: in an embodiment, the first error correcting code
of a look-up table is the same as the second error correcting code of that look-up table. In an
embodiment, all the first error correcting codes of the look-up tables are the same and the
same as all the second error correcting codes of the look-up tables.

The first and second error thresholds allow trade-off to be made between fault
resistance and increased obfuscation.

For example, in an embodiment, the second error threshold is zero. In this
embodiment, any two input values that each differ at most a first error threshold number of
bits with a same code word are mapped to a same second code word. This embodiment
optimally protects against fault injections. Faults which are injected in intermediate values
are automatically corrected as soon as any computation is performed on them. This type of
look-up table also is best if intentional faults are inserted dynamically in the program, instead
of fixed in the tables. Similarly, by choosing the first error threshold equal to the error
correcting capability (t1) of the first error correcting code, error correcting capabilities are
increased. In a preferred embodiment, these two choices are combined.

In an embodiment, the computing device is configured to compute the
function in a so-called lookup table network. By applying a sequence of table loop-up
accesses in the look-up tables stored in the storage device a sequence of intermediate results
is obtained. The intermediate results include the encoded input values and the output values
of the table look-up accesses in the sequence, one of the intermediate results being the
encoded result of the function. The beneficial effects of the error correcting tables are
stronger if they are applied to a larger part of a program. By implementing a function as a
network of tables, the effects on obfuscation increase markedly.

Constructing the network of tables is easier if the first and second error

correcting functions are the same for each one of the look-up tables in the network. In that



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
6

case, an output value of one table may be directly used as an input value of another table.
However, with some care the tables may have different error correcting codes. For example,
one may make sure that the second error correcting code of one table is equal to the first error
correcting code of another table. Furthermore, by transforming the identity operator one
obtains converting tables that convert from one encoding to another.

For simplicity many of the examples will use one error correcting code both
for receiving the inputs, for giving the outputs and for all intermediate values. However, it is
noted that this is not needed, and indeed it may be beneficial to allow the increased
complexity of different first and second error correcting codes, i.¢., to obtain the additional
obfuscation and/or obtain foot-print reduction of the stored look-up tables. It is not even
needed that the first error correcting code and the second error correcting code have the same
minimum distance, nor is this needed across different tables. However, it is convenient if all
used error correcting codes have the same minimum distance, since this ensures a minimum
protection against errors, while it avoids making tables larger than needed to meet that
minimum protection.

An embodiment of the computing device is configured to compute a function
of one or more inputs. The device comprises a storage device storing one or more look-up
tables used in the computation of said function, the look-up tables mapping input values to
output values, input values and output values having a bit size equal to the code word bit size,
the look-up tables being constructed with respect to the error correcting code, such that any
two input values that each differ at most ‘t’ bits with a same code word are mapped to
respective output values that each differ at most ‘t” bits with a further same code word. The
value ‘t’ is also referred to as the ‘error correcting capability’ of the code.

For example, the computing device is configured to obtain the one or more
inputs as one or more encoded inputs, an encoded input being obtained by applying an
encoding function to one of said inputs, the encoding function mapping an input to a
corresponding code-word of a t-error correcting code, the code-words having a code word
bit-size, larger than a bit-size of the inputs. An input before encoding has an input bit-size,
and after encoding a code word bit size.

The function of the one or more inputs may be an implementation of a security
application, say a signature or decryption function. In particular functionality which handles
security sensitive values, such as a key, authorization, access, and the like, benefits from the

error correcting tables.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
7

Obtaining the encoded input may be done by the computing device itself by
applying an encoding function to one of said inputs, e.g., by an encoding module. It may also
be done outside of the computing device, in this case the computing device directly received
the encoded inputs. Note that encoding with an error correcting encoding may well be
combined with an obfuscating encoding, ¢.g., such as in known from white-box
cryptography.

For example, if Y denotes the unencoded domain, i.¢., plain (input) values.
And X denotes the code word space. Let M be the embedding of a domain Y into a larger
domain X, and let M be the mapping from the domain X to Y where a small error e in the
value M(v) of X still maps back to the to v. Encoding an input value y, may be done by
computing M(y). The latter may be done by applying an encoding function, say a linear
matrix multiplication, and the like, but also by a look-up table. Let g be a function of Y to Y
which obfuscates. Applying g hides the meaning of variables. This may be combined with the
encoding as given above as follows: y is mapped to M(g(y)). For example, g may chosen at
random, at least g is not the identity.

Using a tablized implementation of a function, ¢.g., obtained by a special
compiler, or made by hand, will lead to a larger footprint. Moreover the since the encoding
increases the size of values, the tables are larger than without the error correcting encoding.
For many applications the benefits outweigh this increase in space. Some interesting codes to
use, for the first and/or second error correcting code, are the following: [7, 4, 3], [11, 4, 5],
[12, 8, 3], [16, 8, 5], [21, 16, 3]. These codes combine a relative low value of ‘t’, i.c. 1 or 2,
with an unencoded block size that relates well to binary architectures. However, there is no
reason to restrict the unencoded input bit size (k) to powers of 2, although this is convenient.
In the latter case, one could use codes like [9, 5, 3], [13, 5, 5], [10, 6, 3], [14, 6, 5] ctc.

Use of codes having an even minimum distance is possible, although an odd
minimum distance is preferred. This means codes like [8,4,4], [10,4,4] may also be used.

Using an even minimum distance (d) may be important for fault detection.
With : d =2t one can correct (t-1) errors, and detect up to t bit errors. For example, error logic
may be included that verifies if there are t errors. Also, when using a non-perfect code the
error logic may detect uncorrectable bit patterns. When such problems are detected
appropriate actions may be taken, e.g., aborting the process, raising an error etc.

Although linear codes are to be preferred since they will simplify the design of

the compiler significantly, the linear structure does not lead to an improved look-up table.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
8

This means that non-linear codes may also be used, such as [14,7,5],[15,7,6],[15,8,5] en
[16,8,6].

However, to keep tables small, it is preferred to keep n small, say 12 or below,
or even below 11; and to keep the dimension small, say 8 or smaller, possibly 4.

An aspect of the invention concerns the construction of a look-up table, from a
operator mapping bit-strings of input bit-size to bit-strings of input bit-size. These methods
are preferably, computer implemented methods. The resulting look-up table is preferably
stored on a computer readable medium.

In an embodiment of the method, a subset of all correctable bit strings of code
word bit size (nl) are generated. The operator is applied to the decoding of the generated
correctable bit string; the decoding being performed according to the first error correcting
code. The result is encoded to a code word of the second error correcting code, possibly
adding one or more errors. A look-up table is constructed in which the generated correctable
bit string is mapped to the encoded to a code word including optional one or more errors. The
number of bits in the unencoded input value of the operator is at most the dimension of the
first error correcting code. The number of bits in the unencoded output value of the operator
is at most the dimension of the second error correcting code.

To construct the error correcting look-tables, there are at least two basis
approaches. In both approaches correctable bit strings of the same size as the code word size
of the first error correctable code are constructed; the operator result corresponding to the
correctable bit strings are computed; and the code word from the second error correcting code
is found by encoding the operator result. The latter step possibly including adding bit errors,
1.e., adding a correctable bit error. A look-up table is then constructed mapping the
correctable bit strings to operator results.

The correctable bit strings of the same size as the code word size of the first
error correcting code are constructed may found in at least two ways:

In a first approach the correctable bit strings are generated directly. For a
perfect code this may simply be generating all possible bit strings of a given length. In a more
advanced implementation this may be generating all possible bit strings of a given length but
filtering out the decodable bit strings. Some special codes have special algorithms to generate
the decodable bit strings.

In a second approach, uncoded bitstring of bit size equal to the dimension of
the first error correcting code are generated. This may be done by directly generating all

string of a given length. The generated bitstrings are then encoded to obtain code words of



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
9

the first error correcting code. From the obtained code words the correctable bits strings may
be obtained by adding correctable bit patterns. Adding correctable bit patterns may be adding
at most first error threshold bit errors to the code word, i.e, changing at most first error
threshold bits of the codeword.

For example, in an embodiment, correctable bit strings of code words are
obtained by generating bit-strings having the same size as the first code-word bit size (nl) of
the first error correcting code. In an embodiment all bit-strings of that size are generated. For
example, in an embodiment, the correctable bit strings of code word are obtained by
generating bit-strings having the same size as the first input bit size (k1), encoding the
generated bit-string to a code word of the first error correcting code, generating all
correctable error patterns, and applying the correctable error pattern to the encoded generated
bit-string. In an embodiment, all bit-strings and/or correctable error pattern are generated.

The operator may be an elementary operator, such as an arithmetic operator or
a logic operator. However, an operator may be complex operator, such as an expression
involving multiple basic operators, or even an algorithm taking input values and producing
output values. In particular the operator could be the function; but typically, the function
requires the application of multiple operators.

Look-up tables obtainable by the methods for the constructing of a look-up
table may be used in the computing device.

An aspect of the invention concerns a compiler for compiling a first computer
program written in a first computer programming language into a second computer program.
The compiler comprises a code generator to generate the second computer program by
generating tables and machine language code, the generated tables and the generated machine
language code together forming the second computer program, the generated machine
language code referencing the tables. The compiler is configured to identify an arithmetic or
logical expression in the first computer program, the expression depending on at least one
variable, and the code generator is configured to generate one or more tables representing
pre-computed results of the identified expression for multiple values of the variable and to
generate machine language code to implement the identified expression in the second
computer program by accessing the generated one or more tables representing pre-computed
results. The one or more tables may be generated according to any one of methods of

construction described herein.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
10

The compiler is advantageous since it shields the programmer from the
complexities associated from using error correcting tables. Especially when multiple error
correcting codes are used the complexities becomes impossible to manage by hand.

An aspect of the invention concerns a method to compute a function of one or
more inputs, the method comprising storing one or more look-up tables, the look-up tables
mapping input values to output values, input values of a look-up table having a bit size equal
to a first code word bit size (n1) of a first error correcting code, the look-up table being
constructed with respect to the first error correcting code, a second error correcting code, a
first error threshold and a second error threshold, such that any two input values that each
differ at most a first error threshold number of bits with a same code word of the first error
correcting code, are mapped to respective output values that each differ at most a second
error threshold number of bits with a same code word of the second error correcting code,
wherein the first error threshold is at least 1 and at most the error correcting capability (t1) of
the first error correcting code, and the second error threshold is at most the error correcting
capability (t2) of the second error correcting code, using the one or more look-up tables in
computing the function comprising applying the one or more look-up tables to encoded
values.

The computing device is an electronic device; it may be a mobile electronic
device, such as a mobile phone, set-top box, computer, and the like.

A method according to the invention may be implemented on a computer as a
computer implemented method, or in dedicated hardware, or in a combination of both.
Executable code for a method according to the invention may be stored on a computer
program product. Examples of computer program products include memory devices, optical
storage devices, integrated circuits, servers, online software, etc. Preferably, the computer
program product comprises non-transitory program code means stored on a computer
readable medium for performing a method according to the invention when said program
product is executed on a computer

In a preferred embodiment, the computer program comprises computer
program code means adapted to perform all the steps of a method according to the invention
when the computer program is run on a computer. Preferably, the computer program is

embodied on a computer readable medium.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
11

BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects of the invention are apparent from and will be
clucidated with reference to the embodiments described hereinafter. In the drawings,
Figure 1 is diagram illustrating an error correcting look-up table,
Figure 2 is a block diagram illustrating a computing device,
Figure 3 is a block diagram illustrating a network of look-up tables,

Figure 4 is a flowchart illustrating a method to generate a lookup table for an

operator,

Figure 5 is a flowchart illustrating a method to generate a lookup table for an
operator,

Figure 5b shows exemplifying values corresponding to figure 5a,

Figure 6 is a flowchart illustrating a compile,

Figure 7 is a block diagram illustrating a device for constructing a look-up
table.

It should be noted that items which have the same reference numbers in
different Figures, have the same structural features and the same functions, or are the same
signals. Where the function and/or structure of such an item has been explained, there is no

necessity for repeated explanation thereof in the detailed description.

DETAILED EMBODIMENTS

While this invention is susceptible of embodiment in many different forms,
there is shown in the drawings and will herein be described in detail one or more specific
embodiments, with the understanding that the present disclosure is to be considered as
exemplary of the principles of the invention and not intended to limit the invention to the
specific embodiments shown and described.

Figure 1 explains error correcting look-up tables. A look-up table maps an
input value to an output value by retrieving the output value from a storage device at a
memory location controlled by the input value.

Look-up table 100 comprises output values 120. Each output value
corresponds to an input value. The input values are schematically indicated at 110. Note that
the input values need not necessarily be stored. Often the input values are implicit, from the
context. For example, the input values typically have a fixed relation to the memory address
at which an output value is stored. In the common situation the look-up table, lists all values

in a particular range, and are listed in a sorted order. This is a situation in which the input



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
12

values need not be stored in memory. Not storing input values saves storage space, typically
by half. On the other hand explicitly storing input values has advantages too. For example,
when input values are stored they the output values may be in any, even random, order. The
output value can be found by looking-up the input value, slightly simplifying the code.
Importantly, however, by explicitly storing the input values the look-up table may easily omit
values. For example, if the look-up table represents some function or operator, then any
unused input value may be omitted. Furthermore, as explained below, it also allows the use
of encodings which do not use all possible bit-patterns. In this case storing the input values
may even reduce storage requirements.

Look-up table 100 has a special property, which respect to an error correcting
code C. The code C comprises 2" code words, of n bits. Any two code words in C differ at
least in d bits. The parameters of the code are referred to as a [n,k,d] code. The number t=
floor ((d-1)/2) denotes the number bit errors that can be corrected. That is, if at most t bits in
the code word flip, then there is a unique code word that is closest to the resulting bit string.
The number k is referred to as the dimension of the code, the number d as the minimum
distance. The use of the word dimension does not imply that a linear code is needed, although
that is preferred. We will use the word dimension to indicate that the code comprises at least
2 to the power of the dimension code words.

The number t is referred to as the error correcting capability of the code. If it
needs emphasis that the first error correcting code may be different from the second error
correcting code, a subscript is added, thus referring to nl, k1, t1 and to n2, k2, t2. However,
mostly we will provide examples in which the same code is used, in which case the number
may be omitted. Generalizing examples, to two different codes once the example for two
equal codes is given is straightforward.

Look-up table 100 has the property that any two input values that differ at
most t bits from a same code word have corresponding output values that also differ at most t
bits from a (possibly different) code word. In a special case the output values are all code
words. In the latter case, the any two input values that differ at most t bits from a same code
word have the same output values which are code words.

In figure 1, the inputs 112 differ at most t bits from a same code word. For
example, if t=1 and n>=5, the five inputs 112 could have been obtained from one codeword
and flipping 5 different bits; for example, if t>1 and n>3, the five inputs 112 could have been

obtained from one codeword and flipping 3 bits, etc. The number of 5 inputs is an example,



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
13

and could be more or less. Say 4 or 6 or 8 etc. Each input of the multiple inputs 112
corresponds to exactly one output of 131-138.

The inventors have found that the concept of error correcting tables is very
versatile and has many applications. First of all, if a computing environment is susceptible to
bit flips, as may happen in attacks, such as light attacks, an error correcting table will
automatically correct a bit flip in the input. The same hold for less reliable hardware, or
hardware used in hostile environments, e.g., high levels of radiation.

Another application is in code obfuscation. Since computations using error
correcting tables are resistant against some errors, one may introduce errors on purpose to
make it more difficult to reverse engineer the code. On may introduce errors on purpose by
using error adding means, e.g., a random number generator controlling an XOR. However,
the errors may also be introduced in the table itself. In this application, the output values are
not code words, but code words in which a number of bits are flipped. The number of bits
flipped must be less than or equal to the t, the error correcting bound.

To construct an error correcting table taking multiple inputs, one may use
currying. One may also concatenate the inputs. Given a code C, the concatenation C || C is
also a code.

Figure 2 shows a computing device, having a storage device 210. Storage
device 210 is typically one or more non-volatile memories, but may also be a hard disc,
optical disc, etc. Storage device 210 may also be a volatile memory comprising downloaded
or otherwise received data. Computing device 200 comprises a processor 250. The processor
typically executes code 255 stored in a memory. For convenience the code may be stored in
memory 210. The code causes the processor to execute a computation. Device 200 may
comprise an optional I/O device 260 to receive input values and/or transmit results. I/O
device 260 may be a network connection, removable storage device, etc.

Storage device 210 may comprise encoding look-up table 241, which take data
words as input value and have code words, possibly including errors, as output values. For
example, the input values have ‘k’ bits, whereas as the output values have ‘n’ bits,
corresponding to an [n,k,d] code.

Storage device 210 may comprise decoding table 242 to decode a code word
to its data bits. The table may be used for output over device 260.

Storage device 210 comprises single input look-up tables, as described above.
Shown are tables 221 and 222. For example, these tables may have been constructed to

represent monadic functions, such as negation.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
14

Interestingly, it also possible to have error correcting tables having more than
one input; the look-up tables mapping multiple input values to output values, input values
and output values having a bit size equal to the code word bit size (n), the look-up tables
being constructed with respect to the error correcting code; Two sets of multiple input values,
which differ such that corresponding input values differ at most ‘t” bits from a same code
word are mapped to a respective output values that each differ at most ‘t’ bits from a further
same code word. Figure 2 shows multiple input look-up tables 231, 232.

A look-up table having multiple input values may be represented in various
ways. One advantageous way is to use currying: by fixing one input value a look-up table for
‘r “input values is reduced to an operator having only r-1 input values. Such smaller look-up
tables are stored for all values of the fixed operand. Alternatively, the input values may be
concatenated. The latter is convenient if not all bit strings are allowed as input values. Figure
2 uses the currying approach: 2311-2323 are single input look-up tables.

In an embodiment, the computing device may work as follows during
operation: computing device 200 receives input values. The input values are encoded, ¢.g. by
using the encoding table 241. Thus the input values are obtained as encoded input values.
Note that the input values could be obtained as encoded input values directly. Processor 250
executes a program 255 in memory 210. The program causes the processor to apply look-up
tables to the encoded input values, or to resulting output values. Look-up tables may be
created for any logic or arithmetic function thus any computation may be performed by using
a sequence of look-up tables. In white box cryptography this used to obfuscate the program.
In this case intermediate values are encoded for obfuscation and so are the look-up tables.
Note that this may be combined advantageously, with the error correcting property.

At some point a result value is found. If needed the result may be decoded, ¢.g.
using the decoding table 242. But the result may also be exported in encoded form. Input
values may also be obtained from input devices, and output values may be used to show on a
screen.

The computation is performed on encoded data words, i.e., code words
possibly including up to t errors. The computation is done by applying a sequence of table
look-up accesses. The input values used may be input values received from outside the
computing device, but may also be obtained by previous look-up table access. In this way
intermediate results are obtained which may then be used for new look-up table accesses. At

some point one of the intermediate results is the encoded result of the function.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
15

Figure 3 illustrates a network of tables. Most functions may be expressed as a
network of tables. In particular any composition of arithmetic and logic operations may be so
expressed. For example, the network of tables, may be an implementation, e.g. of a cipher.
Shown are 8 tables of multiple tables. A table transforms an input value to an output value by
table-lookup of the input value. Shown are three of the input tables 310, for receiving input
from outside the function implementation. Shown is one of the output tables 330. The output
tables 330 together form the output of the function implementation, e.g. by concatenation.
Shown are four tables of the intermediate tables 320, who receive at least one input from
another one of the tables, and who produce an output for use as an input for at least one other
table. The tables 310, 320 and 330 together form a network. The cipher may be a block
cipher; the block cipher may be configured for encryption or for decryption. The block cipher
encrypts a block cipher, say AES. The implementation may be for a particular key, in which
case the tables may depend on the particular key.

As an example, suppose table 322 represents an operator mapping k1 bits to
k2 bits, then look-up table 322 has been constructed with respect to a first error correcting
code [nl, k1, d1] and second error correcting code [n2, k2, d2]. The table will map n1 bits to
n2 bits. An implementer has the choice to map all possible strings of nl bits, regardless if the
bit string is decodable or not, or to map only bit strings that are decodable. Using the first
option, the table has size n2* 2”n1 bits. Look-up table 324 who receives input values from
table 322 represents an operator mapping k2 bits to k3 bits. Look-up table 322 is constructed
with respect to a first error correcting code [n2, k2, d2].

Look-up table 326 represents an operator having two inputs and one output.
The construction of look-up tables for monadic operators may be extended to dyadic
operators. For example, the second input may be ‘curried out’; referring to the function
transformation technique, currying is the technique of transforming a function that takes n
multiple arguments (or an n-tuple of arguments) in such a way that it can be called as a chain
of functions, each with a single argument. When this approach is used the look-up table 326
is implemented as multiple monadic look-up tables. On the other hand one may also
generated correctable bit strings for each input and concatenate the results. In this way the
look-up table is generated directly, and one single but larger look-up table is obtained.
Although, the layout of the look-up tables may differ based on the construction, they have
equal size and the same properties. Note that it is not necessary that the multiple input values

are encoded according to the same error correcting code.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
16

Figure 4 shows a method 400 to create error correcting functions. In the
examples for figure 4 and 5, below we will use the [7,4,3] Hamming code. The code words
are 7 bits long, encode 4 data bits. The code can correct a single error, i.e. t= 1. We will use a
construction in which code words have the form d1 d2 d3 d4 p1 p2 p3, here d1-d4 are data
bits, pl = d1+d2+d4, p2=d2+d3+d4, p3=d1+d3+d4 are parity bits, and + denotes modulo two
addition.

It is assumed that an operator is given for which an error correcting look-up
table is desired. We will assume the function as two inputs, but 1 or more than 2, is possible.
The operator may be common operators, like plus, mod, mul, and the like. But the operator
may also be specific to an application, say an s-box of AES.

In the discussion below we will assume that the operator is a binary operator,
taking two input values. As an example, the arithmetic addition is used. To keep the example
manageable, the input values are 4 bits wide and encoded input values are 7 bits wide. In
practice much larger input values and/or encodings may be used, which will accordingly lead
to much larger tables.

In step 410 bitstrings of code word bit size (n) are generated. The generated bit
strings, are possible input values to the final look-up tables. In the example, the strings
1011001 and 0110111 are generated. Note that the former is code word, but the latter is not.
The generated bit strings are decoded, e.g., using an error correcting algorithm, so as to
obtain a decoded generated bit-string. The decoded strings are of input value bit size (k), here
4 bit. Note that the error in the second generated bit string has been corrected. In this case,
.e. with the [7,4,3] Hamming code, a so-called perfect code is used. Perfect codes have the
advantage that any generated bit string may be decoded to a unique decoded bit string. Non-
perfect codes may be used; in this case, a tie breaker is used to choose a decoded bit string
from the decoded bit strings that come closest. The tie breaker is deterministic, for example it
may impose an ordering, say a lexicographic ordering. Alternatively, some input strings may
not be decoded, but instead a “decoding error” is reported and appropriate action is taken.
This may also be notes in the table, for example, non-decodable bit-string may given as
output for a non-decodable input-string. Preferably, the non-decodable bit-string is random to
avoid inadvertently introducing key correlations, etc.

The operator is applied to the result of the decoding of the generated bit-string.
In this case two bit-strings have been generated, and the operator is applied to both of them.
In this case the addition on 4 bit is performed. The result is encoded to obtain a code word.

Optionally, up to at most t bit errors may be added to the code word. In this case one bit of



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
17

the code word may be flipped. Finally, the look-up table is constructed so that the generated
bit-string is mapped to the encoded result of the operator including optional bit errors.

The process is repeated until all desired bit string have been generated.
Typically, all bit strings of code bit size (n) are generated in order. In case the operator has
multiple inputs, then multiple bit strings are generated.

In this example, the method may generate all combination of two strings of 7
bits. So all 214 bit strings are generated. The results are listed in look-up table 452. At the
left side, indicated at 454 are input values, and at the right side at 456 are the corresponding
output values. Note that the input values need not necessarily be listed explicitly. Especially,
if all bit strings are generated, then the input side may be omitted.

Figure 5a shows an alternative way of constructing error correcting tables.
Figure 5b, shows how the same table may be constructed, by showing how the same table
entry may appear in the final look-up table as in figure 4.

In step 510 bit strings of input bit size (k) are generated. The generated bit
strings are used in step 530 by applying the operator to the generated bit string and encoding
the result in step 540. As in figure 4, optionally intentional errors (up to t) may be added to
the code word. The generated bit strings are also used in step 520 to generated the encoding,
1.e., the encoding as a code word. In step 560 correctable error patterns are generated. It is not
necessary that all possible input values are represented by the look-up table. Instead one may
restrict the input values to code words plus a limited set of correctable input values. If the
code is perfect and the set of correctable input values equals all patterns with up to t one bits,
and the rest zero. The result is the same. However, one may chose to add less than t errors. If
the code is non-perfect and the set of correctable input values equals all patterns with up to t
one bits, and the rest zero, the set of input values will be strictly smaller than all possible bit
strings. There should be correspondence between the correctable bit patterns added in step
560 and the error added in step 540.

Both in figure 4 and figure 5, a subset of all correctable bit strings of code
word bit size (n) are generated, the operator is applied to the result of decoding the generated
correctable bit string, the result is encoded to a code word, possibly adding one more errors.
A look-up table is constructed in which the generated correctable bit string is mapped to the
encoded to a code word including optional one or more errors.

Figure 6 illustrates as flow chart a compiling method 600. In step 610 a first
computer program is received by a receiver. In step 620 a lexical analysis is performed, ¢.g.,

to identify tokens, by a lexical analyzer. Possibly processing such as macro expansion is also



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
18

done. In step 630 the program is parsed by a parser. For example, the parser generates a
parsing tree according to a formal grammar of the programming language of the first
program. The parser identifies the different language constructs in the program and calls
appropriate code generation routines. In particular, an operator or multiple operators are
identified. In that case, in step 640 code generation is done by a code generator. During code
generation some code is generated and if needed accompanying tables. The accompanying
tables are error correcting tables. The generated code does not need, and generally will not,
contain the operator as it is replaced by one or more look-up tables. For example, the parser
will identify and add operation and translate this into a look-up table for the add instruction
and in generated code for applying the look-up table to the correct values.

In step 655 the generated tables are merged to a table base, since it may well
happen that some tables are generated multiple times, in that case it is not needed to store
them multiple times. E.g. an add-table may be needed and generated only once. When all
code is merged and all tables are merged the compilation is finished. Optionally, there may
be an optimization step.

Typically, the compiler uses encoded domains, i.e., sections of the program in
which all value, or at least all values corresponding to some criteria, are encoded, i.e., have
code word bit size (n). In the encoded domain, operations may be executed by look-up table
execution. When the encoded domain is entered all values are encoded, when the encoded
domain is left, the values are decoded. A criterion may be that the value is correlated, or
depends on, security sensitive information, e.g., a cryptographic key.

An interesting way to create the compiler is the following. In step 630 an
intermediate compilation is done. This may be to an intermediate language, ¢.g. register
transfer language or the like, but may also be a machine language code compilation. This
means that for steps 610-630 of figure 6 a conventional compiler may be used, which is does
not produce error correcting tables. However in step 640 code generation is done based on
the intermediate compilation. For example, if machine language code was used, each
instruction is replaced by a corresponding operator free implementation of that instruction,
1.e., a table-based implementation of that instruction. This represents a particular
straightforward way to create the compiler. Figures 6 may also be used to generate a
compiler that produces not machine language but a second programming language.

In an embodiment, the compiler is a compiler for compiling a first computer
program written in a first computer programming language into a second computer program,

the compiler comprises a code generator to generate the second computer program by



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
19

generating tables and machine language code, the generated tables and the generated machine
language code together forming the second computer program, the generated machine
language code referencing the tables, wherein the compiler is configured to identify an
arithmetic or logical expression in the first computer program, the expression depending on at
least one variable, and the code generator is configured to generate one or more error-
correcting tables representing pre-computed results of the identified expression for multiple
values of the variable and to generate machine language code to implement the identified
expression in the second computer program by accessing the generated one or more tables
representing pre-computed results. Ideally, the machine language code generated to
implement the identified expression does not contain arithmetic or logic machine instructions
itself, at least no arithmetic or logic machine instructions related to sensitive information.

This lowers, side-channel leakage of the second computer program is lower
because it does contain fewer arithmetic or logic operations. Ideally all arithmetic and logical
expressions and sub-expressions in are replaced by table accesses. Since those instructions
which constitute the arithmetic or logical expression or sub expressions are absent they
cannot leak any information. The table is pre-computed; the power consumed to perform the
arithmetic or logical behavior enclosed in the table is not visible during execution of the
program. Because the table is error correcting the program is also more resistant against fault
injection attacks. If the intentional errors are added in the program, either dynamically during
execution or in the look-up table, the relation between an internal variable and an external
result is further obfuscated, thus making reverse engineering more difficult.

Figure 7 shows a device constructing a look-up table 700. The device
comprises a correctable bit-string generator 712 and a decoded bit string generator 714.
Generators 712 and 714 work together to produce all strings that the look-up table should
accept as input, i.e., the correctable bit strings, and the corresponding unencoded strings.
Generator 712 produces strings of code word bit size (n1). Generator 714 produces strings of
operator input bit size (k1). Both generators correspond to a first error correcting code. The
pair may use any of the approach for constructing a look-up table as described herein.

The output of generator 714 is used by operator 730. Operator 730 is
configured to perform an operator on the unencoded, i.e. decoded, bit string. The output of
Operator 730 has k2 bits. Size k1 may equal k2. The result of the operator is encoded for a
second error correcting code by encoder 740. Finally, collector 750 collects the correctable
bit strings received from generator 712 and the corresponding encoded results of encoder

740, to produce a look-up table. If the relationship between an input to the resulting look-up



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
20

table and the location of the output may easily be obtained, for example, because the
collector actually includes all bit strings of size equal to the code word size of the first error
correcting code, then the correctable bit strings need not be included in the look-up table.

The collector may add the some or all of the bit errors. The locations on
which bit errors are added may depend on the correctable string, e.g., if the input string has a
bit error in position i.e., a bit error is added in position i+1 in the second error correcting
code.

Below a further refinement is given of an embodiment. The most common
instruction in a program are operations and storing the result thereof. These operations
include well known operations like addition (+), subtraction (-), multiplication (*), etc. The
compiler targets these instructions, that is, it decomposes the expression written in some high
level language into these known operations. Tables may be used for all involved operations,
both the operations in programs, and if a VM is used also for the operations of the VM the
program is executed on. Security may be further improved by endowing these tables with
special features or properties.

For every operation, tables may be used. The table is defined according to the
operation. Without the encoding, for instance, for a monadic operator Opm tableo,, [x] ==
Opm(x) or for a dyadic operator Opd tableo,q [x][y] == Opd(x.y). Note, that for a non-
monadic operation the compiler can implement the access to the table as multiple accesses, a
process known as Curry. That is X = tableo,q[x] followed by X[y]. Note: memory wise, for a
data path of 8-bits, 14 dyadic operators, would require a memory usage equal to 1 megabyte,
which is considered acceptable. Note that some or all tables may be stored in ROM and some
or/ all tables may be stored in other memory, whether volatile or non-volatile. Adding error
correcting encoding may be done by the substituting the encoding in the above formula.

The unity of compiler/linker and VM is maintained by, replacing the operation
usage, by a table access of the operation. The underlying platform need only be used for
jump instructions and writes/reads from/to registers and memory.

In a more advanced embodiment, compiler could implement complete
expressions as tables. For instance the expression: X* +Y? can be implemented through two
multiplications and one addition, resulting in at least three operations (or more if Curried).
However, it could also be implemented as a table of X* +Y* and be compiled to an access of
this table. This would result in one (two if Curried) table accesses.

If a VM is used for execution of the compiled program, then the unity between

compiler/linker and VM can be maintained by passing the tables to the VM. Labeled tables



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
21

become output of the compiler and input to the VM. In the code provided by the compiler,
these labels are then referred to. This may be an improvement memory wise, since tables of
unused operations may be omitted. In an embodiment the compiler comprises an expression
unit for identifying the first program an expression that assigns a value to one, two or
multiple numeric inputs, the code generator being configured to generate a table representing
the result of the expression for all values of the numeric inputs. Interestingly, there need the
expression need not be equal to an existing machine code instruction.

Interestingly, a virtual machine adapted to execute a program in a particular
VM programming language may be compiled to use error correcting tables. This in itself will
impart some of error correcting properties on any program that is executed on the VM.
However, also the program may be obtained by compiling a program in some further
language towards the VM programming language. The latter compilation may also be
compiled to use error correcting tables.

For example, one may use the tabelised instructions of the virtual machine,
extended with error correction, to implement the VM itself. We explain this for extending the
add instruction with an error correcting mechanism. Other instructions can be treated
similarly.

First step may be to add the property of error correcting to the instruction, in
the present case to the add_instruction. Let M be the embedding of a domain Y into a larger
domain X, and let M be the mapping from the domain X to Y where a small error e in the
value M(v) of X still maps back to the to v. Short M (M(v) @e ) =v. Here @ denotes the
addition in X. Typically, X consists of binary strings of equal length, € denotes bitwise
modulo two addition of strings, and an error ¢ is “small” if has few non-zero components (or,
in coding parlance, if it has small Hamming weight). We denote by E the set of errors we
wish to correct, and the set { M(v) @ e | v €Y ,e € E } by S. The error correcting coding is
designed in such a way that each element s in S can be written in a unique way as s = M(v)
@ e with vin Y and e in E; we then have that M (s ) = M (M(v) @e ) = v. For elements
x in X that are not in S, M”( x ) is not defined.

As a toy example, we take Y = {0,1,2,3}, X = {0,1}5, and E =
{00000,10000,01000, 00100,00010,00001} (so we wish to correct one bit error). We define
M by M(0)=00000, M(1)=01110, M(2)=10101 and M(3)=11011.

Clearly, we have that

M(0)@E = E = {00000, 10000,01000,00100, 00010,00001}

M(1)eE={01110,11110,00110,01010, 01100,01111}



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
22

M(2)®E = {10101,0010111101,10001,10111,10100}.

M@B)PE={11011,01011,10011,11111,11001,11011}.

By inspection, we see that each clement of S={M(u) @e|lu €Y, e € E}{}
can be written in a unique way as M(u)@e withuin Y and e in E. The set S thus is the set
decodable bit strings.

There are eight elements of X that are not in S (viz.
11000,10110,01101,00011, 10010, 11100,00111,01001); M is not defined for these cight
clements.

Similar to the obfuscation approach we now introduce:

add(x,y) ==M(M'(x)+M'(y))

forall x and y in S.

The function add(x,y) is not defined if at least one of x and y is not in S. It is
envisioned that whenever add(x,y) is called with such invalid input, this instruction is not
executed and an error sign occurs.

In this way we extend the original add with error correcting properties and
note that the expression apart from O or M is equal.

In the toy example, numbers were mapped that can be represented by two bits
to strings of five bits so as to enable correction of a single bit. In general, numbers than can
be represented by k bits can be encoded to bit strings of length k+r so that one error bit error
can be corrected, where r is such that k+r <2'-1. So for example, for k=8-bits numbers, we
can get by with r=4 redundant bits; for k=32 bits number, we can get by with =6 redundant
bits. In the latter case, as the encoded strings have length 38, the set E has 39 elements and
the memory size would be multiplied with a factor 39.

It is noted that many different ways of executing the method described herein
are possible, in particular those described in the claims and/or with reference to figures 4, 5,
and 6. This will be apparent to a person skilled in the art. For example, the order of the steps
can be varied or some steps may be executed in parallel. Moreover, in between steps other
method steps may be inserted. The inserted steps may represent refinements of the method
such as described herein, or may be unrelated to the method. For example, steps 520 and 530,
or 620 and 630, etc. may be executed, at least partially, in parallel. Moreover, a given step
may not have finished completely before a next step is started.

A method according to the invention may be executed using software, which

comprises instructions for causing a processor system to perform method 400, 500 or 600.



10

15

20

25

WO 2014/072855 PCT/IB2013/059491
23

Software may only include those steps taken by a particular sub-entity of the system. The
software may be stored in a suitable storage medium, such as a hard disk, a floppy, a memory
etc. The software may be sent as a signal along a wire, or wireless, or using a data network,
¢.g., the Internet. The software may be made available for download and/or for remote usage
on a server.

It will be appreciated that the invention also extends to computer programs,
particularly computer programs on or in a carrier, adapted for putting the invention into
practice. The program may be in the form of source code, object code, a code intermediate
source and object code such as partially compiled form, or in any other form suitable for use
in the implementation of the method according to the invention. An embodiment relating to a
computer program product comprises computer executable instructions corresponding to
cach of the processing steps of at least one of the methods set forth. These instructions may
be subdivided into subroutines and/or be stored in one or more files that may be linked
statically or dynamically. Another embodiment relating to a computer program product
comprises computer executable instructions corresponding to each of the means of at least
one of the systems and/or products set forth.

It should be noted that the above-mentioned embodiments illustrate rather than
limit the invention, and that those skilled in the art will be able to design many alternative
embodiments.

In the claims, any reference signs placed between parentheses shall not be
construed as limiting the claim. Use of the verb "comprise" and its conjugations does not
exclude the presence of elements or steps other than those stated in a claim. The article "a" or
"an" preceding an element does not exclude the presence of a plurality of such elements. The
invention may be implemented by means of hardware comprising several distinct elements,
and by means of a suitably programmed computer. In the device claim enumerating several
means, several of these means may be embodied by one and the same item of hardware. The
mere fact that certain measures are recited in mutually different dependent claims does not

indicate that a combination of these measures cannot be used to advantage.



10

15

20

25

WO 2014/072855

24

List of Reference Numerals:

100

110

112

120
131-138
200

210
221,222
231,232
2311-2323
241

242

255

250

260

310

320

330

452

454

456

552

700

712

714

730

740

750

a look-up table

Inputs to the table (not actually stored in memory)

multiple inputs that differ at most ‘t = floor ((d-1)/2)’ bits from a codeword

table contents,

table results for inputs 112

a computing device

a storage device

single input look-up tables
multiple input look-up tables
single input look-up tables
encoding look-up table
decoding look-up table
machine language code

a computer processor

I/O device

an input table

an intermediate table

an output table

a look-up table

input part

output part

look-up table

device for constructing a look-up table
correctable bit-string generator
decoded bit string generator
operator

encoder for a second error correcting code

collector

PCT/IB2013/059491



10

15

20

25

WO 2014/072855 PCT/IB2013/059491
25

CLAIMS:

1. A computing device configured to compute a function of one or more inputs,
- the device comprising a storage device storing one or more look-up tables
used in the computation of said function, the look-up tables mapping input values to output
values, the look-up table being constructed with respect to the first error correcting code, a
second error correcting code, a first error threshold and a second error threshold, such that
any two input values that each differ in at most a first error threshold number of bits from a
same code word of the first error correcting code, are mapped to respective output values that
cach differ in at most a second error threshold number of bits from a same code word of the
second error correcting code, wherein

- the first error threshold is at least 1 and at most the error correcting capability
(t1) of the first error correcting code, and the second error threshold is at most the error

correcting capability (t2) of the second error correcting code.

2. A computing device as in Claim 1, wherein the first error correcting code is

the same as the second error correcting code.

3. A computing device as in any one of the preceding claims, wherein the first

error threshold equals the error correcting capability (t1) of the first error correcting code.

4. A computing device as in any one of the preceding claims, wherein the second

error threshold is zero.

5. A computing device as in any one of the preceding claims, wherein the device
is configured to obtain the one or more inputs as one or more encoded inputs, an encoded
input being obtained by applying an encoding function to one of said inputs, the encoding
function mapping an input to a corresponding code-word of an error correcting code,

optionally adding up to a first error threshold number of bit errors.



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
26

6. A computing device according as in any one of the preceding claims, wherein
the computing device is configured to compute the function by applying a sequence of table
look-up accesses to a sequence of intermediate results, the intermediate results including the
encoded input values and the output values of the table look-up accesses in the sequence, one

of the intermediate results being the encoded result of the function.

7. A computing device according to any one of the preceding claims, wherein
any one of the first or second error correcting code is anyone of the following: [7, 4, 3], [11,
4,5],112, 8, 3], [16, 8, 5], [21, 16, 3] and [9, 5, 3], [13, 5, 5], [10, 6, 3], [14, 6, 5] and [8,4,4],
[10,4,4].

8. A method of constructing a look-up table, for an operator mapping bit-strings
of a input bit-size (k1) to bit-strings of a output bit-size (k2), the method comprising
- generating bit-strings, the generated bit strings having the same size as a code-
word bit size (nl) of a first error correcting code, the first error correcting code having a
dimension of at least the input bit size (k1),and
- for each decodable generated bit-string,
- decoding the generated bit-string so as to obtain a decoded generated
bit-string, the decoding corresponding to the first error correcting code,

applying the operator to the decoded generated bit-string, and
- encoding the result of the operator to obtain a code word of a second
error correcting code, optionally, adding at most a second error threshold number of bit errors
to the code word, the second error threshold number being at most the error correcting
capability (t2) of the second error correcting code, the second error correcting code having a
dimension of at least the output bit size (k2), and
- mapping in the look-up table the decodable generated bit-string to the

encoded result of the operator including optional bit errors.

9. A method of constructing a look-up table, for an operator mapping bit-strings
of input bit-size (k1) to bit-strings of output bit-size (k2), the method comprising

- generating bit-strings having the same size as the input bit size (k1),

- for each generated bit-string,

- applying the operator to the generated bit-string, and

- encoding the result of the operator to obtain a code word from a



10

15

20

25

30

WO 2014/072855 PCT/IB2013/059491
27

second error correcting code, optionally, adding a correctable error pattern to the code word,
the second error correcting code having a dimension of at least the output bit size (k2),

- encoding the generated bit-string to obtain a code word from a first
error correcting code, the first error correcting code having a dimension of at least the input
bit size (k1),and

- for each correctable error pattern,

- applying the correctable error pattern to the encoded generated bit-
string to obtain encoded input values,

- mapping in the look-up table the encoded input values to the encoded

result of the operator including optional bit errors.

10. A computing device according to any one of claims 1 to 7, wherein a look-up
table of the one or more look-up tables used in the computation of said function, has been
constructed from an operator mapping bit-strings of input bit-size (k) to bit-strings of input

bit-size (k), by the method of claim 8 or 9.

11. A computing device according to claim 10, wherein the operator is a bijection.
12. A computing device according to claim 10, wherein the operator is the
identity.

13. A compiler for compiling a first computer program written in a first computer

programming language into a second computer program,

- the compiler comprises a code generator to generate the second computer
program by generating tables and machine language code, the generated tables and the
generated machine language code together forming the second computer program, the
generated machine language code referencing the tables, wherein

- the compiler is configured to identify an arithmetic or logical expression in the
first computer program, the expression depending on at least one variable, and the code
generator is configured to generate one or more tables representing pre-computed results of
the identified expression for multiple values of the variable and to generate machine language
code to implement the identified expression in the second computer program by accessing the
generated one or more tables representing pre-computed results, wherein the one or more

tables are generated according to any one of claims 8§ and 9.



10

15

20

WO 2014/072855 PCT/IB2013/059491
28

14 A method to compute a function of one or more inputs, the inputs having an
input bit-size (k), the method comprising

- storing one or more look-up tables, the look-up tables mapping input values to
output values, input values of a look-up table having a bit size equal to a first code word bit
size (nl) of a first error correcting code, the look-up table being constructed with respect to
the first error correcting code, a second error correcting code, a first error threshold and a
second error threshold, such that any two input values that each differ at most a first error
threshold number of bits with a same code word of the first error correcting code, are mapped
to respective output values that each differ at most a second error threshold number of bits
with a same code word of the second error correcting code, wherein the first error threshold
is at least 1 and at most the error correcting capability (t1) of the first error correcting code,
and the second error threshold is at most the error correcting capability (t2) of the second
error correcting code

- using the one or more look-up tables in computing the function comprising

applying the one or more look-up tables to encoded values.

15. A computer program comprising computer program code means adapted to

perform all the steps of any one of claims 8, 9 and 14.

16. A computer program as claimed in claim 15 embodied on a computer readable

medium.



WO 2014/072855

112

Figure 1

L 110 120
:

1

1

P B 131
1

1

R > 132
1

1

Db mmemmend > 134
1

1

1

1

>t ---mm-- > 136
l

1

1

1

1

Sr--mmmmn2 > 138
e -

PCT/IB2013/059491



WO 2014/072855 PCT/IB2013/059491

210
221 222
2311 231 oy 232 241
2312 2322
242
2313 2323
255
N 250
N
200
260

Figure 2



WO 2014/072855

310

Figure 3

320

310

324

322

330

3/8

310

326

PCT/IB2013/059491



WO 2014/072855

Generate a bit string
of code word bit size

410

Decode the
generated bit-string
s0 as to obtain a
decoded generated
bit-string

420

Apply the operator to
the decoded
generated bit-string

430

Encoding the result
of the operator to
obtain a code word,
optionally, adding at
most t bit errors to
the code word

440

mapping in the look-
up table the
generated bit-string
to the encoded result
of the operator
including optional bit
errors

450

N
[aw]

Figure 4

PCT/IB2013/059491
1011 001 0110 111
1011 0110
0001
0001 111
v
452

10110010110 1117 0001 111

454 456



WO 2014/072855

Generate a bitstring 510
of input bit size

Encoding the 520
generated bit-string
Generate a 560
correctable error

pattern

applying the 570

correctable error
pattern to the
encoded generated
bit-string

Figure 5a

5/8

PCT/IB2013/059491

500
Apply the operatorto 530
the generated bit-
string
Encoding the result 540

pattern

of the operator to
obtain a code word,
optionally, adding a
correctable error

mapping in the look-
up table the encoded
bit-string including
correctable error

pattern to the
encoded result of the
operator including
optional bit errors

550




WO 2014/072855 PCT/IB2013/059491

510 1011 0110

520 1011001 0110 101 530 0001
560 0000000 0000010 540 0001 111
570 1011001 0110 111

550 562

1011 001 0110 111 0001 111

Figure 5b



WO 2014/072835
Receive first 610 600
computer
program
\
Perform lexical 620
analysis
A4
Parse 630
Code generation 640
Generate Table 650 Generate code 660
Merge with table 655 Merge with code 665

base

Figure 6

PCT/IB2013/059491



WO 2014/072855 PCT/IB2013/059491

8/8

700
Correctable bit-string 712 Decoded bit-string 714
generator of first >| generator
error correcting code
Operator 730
Encoder for second 740

error correcting
code, including
optional errors

Collector unit 750
constructing, a look-

up table mapping the
correctable bit string

to the encoded result

of the operator

including optional bit

errors

Figure 7



INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2013/059491

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F7/544
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figures 2a,2b,3

page 10, line 16 - page 11, line 22
_/__

A WO 2011/080487 Al (FRANCE TELECOM [FR]; 1-16
BILLET OLIVIER [FR]; MACARIO-RAT GILLES
[FR]) 7 July 2011 (2011-07-07)

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 April 2014

Date of mailing of the international search report

14/04/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Prins, Leendert

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2013/059491

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

KLEINOSOWSKI A J ET AL: "The NanoBox
project: exploring fabrics of
self-correcting logic blocks for high
defect rate molecular device
technologies",

VLSI, 2004. PROCEEDINGS. IEEE COMPUTER
SOCIETY ANNUAL SYMPOSIUM ON LAFAYETTE, LA,
USA 19-20 FEB. 2004, LOS ALAMITOS, CA,
USA,IEEE COMPUT. SOC, US,

19 February 2004 (2004-02-19), pages
19-24, XP010726371,

DOI: 10.1109/ISVLSI.2004.1339503

ISBN: 978-0-7695-2097-1

section 2.1

MARCEL MEDWED: "A Continuous Fault
Countermeasure for AES Providing a
Constant Error Detection Rate",
INTERNATIONAL ASSOCIATION FOR CRYPTOLOGIC
RESEARCH, ,

vol. 20090315:020844,

12 March 2009 (2009-03-12), pages 1-14,
XP061003820,

sections 1, 4.2

US 2005/259814 Al (GEBOTYS CATHERINE H
[CA] GEBOTYS CATHERINE HELEN [CA])

24 November 2005 (2005-11-24)

figure 3

YUANRUI ZHANG ET AL: "A special-purpose
compiler for look-up table and code
generation for function evaluation",
2010 DESIGN, AUTOMATION & TEST IN EUROPE
CONFERENCE & EXHIBITION : DATE 2010 ;
DRESDEN, GERMANY, 8 - 12 MARCH 2010, IEEE,
PISCATAWAY, NJ, US,

8 March 2010 (2010-03-08), pages
1130-1135, XP032317837,

DOI: 10.1109/DATE.2010.5456978

ISBN: 978-1-4244-7054-9

I. Introduction

1-16

1-16

1-16

1-16

Form PCT/ISA/210 (continuation of second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2013/059491
Patent document Publication Patent family Publication
cited in search report date member(s) date

WO 2011080487 Al 07-07-2011 EP 2520041 Al 07-11-2012
US 2012300922 Al 29-11-2012
WO 2011080487 Al 07-07-2011
US 2005259814 Al 24-11-2005 US 2005259814 Al 24-11-2005
US 2011033043 Al 10-02-2011

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

