009/029316 A1 |00 0 0O 0 O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 March 2009 (05.03.2009)

PO 000 AR A

(10) International Publication Number

WO 2009/029316 Al

(51) International Patent Classification:
GOG6F 15/173 (2006.01)

(21) International Application Number:
PCT/US2008/065582
(22) International Filing Date: 2 June 2008 (02.06.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/969,537 31 August 2007 (31.08.2007) US
12/049,245 14 March 2008 (14.03.2008) US
(71) Applicant (for all designated States except US):

TEALEAF TECHNOLOGY, INC. [US/US]; 45 Fremont
Street, Suite 1450, San Francisco, CA 94102 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WENIG, Robert, 1.
[GB/US]; 45 Fremont Street, Suite 1450, San Francisco,
CA 94102 (US). SAATHOFF, Kirk, R. [US/US]; 45 Fre-
mont Street, Suite 1450, San Francisco, CA 94102 (US).
GETTIER, Albert, F. [TR/US]; 45 Fremont Street, Suite
1450, San Francisco, CA 94102 (US).

(74) Agents: FORD, Stephen, S. et al.; Stolowitz Ford Cowger
LLP, 621 SW Morrison, Suite 600, Portland, OR 97205
US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(54) Title: REPLAYING CAPTURED NETWORK INTERACTIONS

HETWORK . ¢
ustr HE N Y RS Psmuem |
IMTERFACE Y 50 s
E;;iNE """") " ‘—f‘REQUESTSi—**‘ T APPLICATION
208 \ /
P R {RESPGNSES! R WEB
8 S - PAGES
> HE TWORK)
ol & 32 55~ 5ESSION -
. HMORITOR
s -
Ny 34
AN . é*—*
[CAFTURED CAPTURED 1
TERAL UT EVENTS NETWORK BATA |08
12— ~ 4]
SESSION

FIG. 1A

SESSION FILES ameHive

4g-{-J SESSION 50
3a-]| NETWORE | SESSION
BATA ANALYZER

34 UI EVENTS

o (57) Abstract: A user interface event monitor captures user interface events executed by a client during a network session. A
network session monitor captures network data exchanged between the client and a web application during the network session. A
replay device identifies control events in the network session that require execution before replaying associated user interface events.
Replay of the user interface events are delayed by the replay device until the associated control events have been fully executed.

WO 2009/029316 PCT/US2008/065582

REPLAYING CAPTURED NETWORK INTERACTIONS

Background

Users access web applications on remote web servers. In one example, the web
application allows users to purchase certain products or services online. However, the user
may experience problems while conducting the online purchase. For example, the web
application may crash every time the user selects an icon on a web page used for the online
purchase. In another situation, the user may not be able to determine how to complete the
online product purchase from the instructions displayed on the web page. In a different
situation, the web application may prevent the user from selecting particular items. In yet
another situation, the web site may slow down or crash during certain periods of time or for
particular operations. These are just a few of the many problems that may arise during an
online network session.

These problems can negatively affect an e-commerce business. For example, a
negative user experience during the online session may cause a potential customer to give up
and abort the purchase of a particular product. Even worse, the potential customer may stop
visiting the web site. Accordingly, it is important to be able to monitor user experiences
during online sessions and identify any problems.

Systems currently exist for monitoring web sites. However, a challenge exists
replaying the events captured during the web site monitoring. For example, web pages used
today execute code that operates more independently from the web server and contains more
state information. These rich web pages make it more difficult to accurately replay a

previously captured Internet session.

WO 2009/029316 PCT/US2008/065582

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a diagram showing an Event Tracking and Replay (ETR) system.

FIGS. 1B, 1C, and 1D compare traditional Internet applications with Rich Internet
Applications (RIA).

FIG. 2 is a diagram of a web page for making on-line airline reservations.

FIG. 3 is the web page in FIG. 2 showing a drop down menu control event.

FIG. 4 shows the next User Interface (UI) event where a user selects an airport from
the drop down menu control event.

FIG. 5 shows the next control event §vhere the FROM field of the web page is
populated with the user selection made in the drop down menu.

FIG. 6 is a block diagram showing the captured Ul events and captured network data
associated with the web page shown in FIGS. 2-5.

FIG. 7 is a diagram showing how a session replay controller replays the captured
network session.

FIGS. 8-10 show how the session replay controller in FIG. 7 synchronizes
asynchronous Ul events with associated control events.

FIG. 11 shows the web page in FIG. 2 fully populated just before a new web page is
rendered.

FIG. 12 shows a web page with programmed delay times.

FIG. 13 shows how to reduce the replay time for the web page shown in FIG. 12.

FIG. 14 shows how the replay controller automatically completes replay for

individual web pages.

DETAILED DESCRIPTION

2

WO 2009/029316 PCT/US2008/065582

FIG. 1A shows an Event Tracking and Replay (ETR) system 12. A client 14
operating on a terminal 13 establishes a network session 50 with a web application 43
operating on a web server 42. Many of the network sessions conducted over the web are
stateless in that the network connections are dynamically created and torn down as needed.
Therefore, logical user sessions may‘consist of multiple network sessions. It should be
understood that the ETR system 12 can be used with any variety of network sessions or
logical user sessions that may be established over a network.

The terminal 13 can be any device used for accessing or exchanging information with
server 42 over a network 28. The terminal 13 in some examples may be a Personal Computer
(PC), laptop computer, wireless Personal Digital Assistant (PDA), cellular telephone, or any
other wired or wireless device that can access and exchange web information with web
application 43.

The server 42 is any computing system that can operate one or more web applications
43 that are accessed by different clients 14. The web application 43 could be used for
conducting any type of online session such as>on1ine purchases or online financial services.
However, these are just examples, and any type of electronic web based transaction or other
online activity can be performed using web application 43. The client 14 may use a web
browser 15 to access and interact with web application 43. For simplicity, only one client 14
is shown in FIG. 1. However, it should be understood that multiple different clients 14 may
exist and be monitored.

A user of client 14 accesses the web application 43 on server 42. For example, using
HyperText Transport Protocol (HTTP) or HTTP over Secure Sockets Layer (SSL) (HTTPS).
According to different requests 30, the web application 43 sends different responses 32 back
to the client 14 that may include different web pages 44, web page logic or control, or other

data used during the web session 50. The series of requests 30 and responses 32 for a same

3

WO 2009/029316 PCT/US2008/065582

network session 50 is referred to generally as network data 38. In this example, a User
Interface (UI) 15, such as a web browser on terminal 13, is currently displaying a web page
18 provided by the web application 43. The web page 18 includes two fields 20A and 20B
that prompt a user to enter a name and credit card number, respectively.

The user enters information into fields 20A and 20B and may then select an “enter”
icon (not shown) that causes the information in fields 20A and 20B to be sent back to web
application 43 as additional requests 30. The web application 43 may then send back other
network data, such as responses 32 according to the information contained in previous
requests 30. In this example, the next response 32 from web application 43 may be
information confirming the completion of an online transaction that used the user information
previously entered into fields 20A and 20B. In other instances, the responses 32 can include

other web pages, or other information used in a next stage of the web session 50.

Network Monitoring

The ETR system 12 includes a network session monitor 36 that captures the network
data 38 that may include the requests 30 and responses 32 exchanged between the client 14
and web application 43 over the network 28. The ETR system 12 also includes a Ul event
monitor 16 that captures user interface events 34 performed by client 14 that include, but is
not limited to, events that may only occur locally on terminal 13.

Capturing both the network data 38 and Ul events 34 for a network/web session 50
allow the ETR system 12 to monitor and reproduce network sessions with a higher level of
granularity and reproduce and detect events that may not be discoverable with existing
network monitoring systems. As a result, the ETR system 12 can provide analytics for a

wider array of network session events that may happen during customer online experiences.

WO 2009/029316 PCT/US2008/065582

In order to power a visual replay and accurately understand the true user experience
during that network session, all of the network data 38 and all of the user interface events 34
associated with that network session 50 need to be captured. Alternatively, screen shots
could be taken and captured for every state change during the network session 50. However
this would require capturing large amounts of data and would not scale well when multiple
different network sessions needed to be captured and replayed. The ETR system 12 resolves
these issues by capturing and marrying the network traffic 38 (server side) with the client
events 34 in order to provide a scalable and secure means of captun'ng each and every user
experience for any number of network sessions 50.

One example of a network session monitor 36 is described in U.S. Patent No.
6,286,030 issued September 4, 2001, entitled: Systems and Methods For Recording and
Visually Recreating Sessions in a Client-Server Environment; and also described in U.S.
Patent No. 6,286,098 issued September 4, 2001, entitled: System and Method For Encrypting
Audit Information in Network Applications, which are both herein incorporated by reference
in their entirety.

Thé network session monitor 36 monitors the network 28 for any network data 38 that
is transferred between web application 43 and client 14 over network 28 during network
session 50. For example, the network data 30 and 32 may include web pages 44 sent from
web application 43 to client 14 and information sent from client 14 back to web application
43, such as the information entered into fields 20A and 20B.

The network data 38 can also include web page logic/code that is sent by web
application 43 along with the web pages 44 to the client 14. This web page logic is then
executed locally on the terminal 13 by client 14. An example of web page logic may include
Javascript. But of course any type of web page executable logic may be used. Network data

38 can also include web session data that may not necessarily include web pages 44, but

5

WO 2009/029316 PCT/US2008/065582

alternatively includes information that is used with a previously supplied web page 44. The
significance of these types of network data 38 is described in more detail below.

The network session monitor 36 may be located anywhere on the network 28 where
the network data 38 can be captured for network session 50. In one example, the network
session monitor 36 may operate on the same server 42 that operates the web application 43.
In another embodiment, the network session monitor 36 could operate on a separate server
that might be located within the same enterprise network as server 42. In another
embodiment, the network session monitor 36 is located somewhere else in packet switched
network 28. In yet another embodiment, the network session monitor 36 may operate on the
same terminal 13 that operates the Ul event monitor 16.

Many of the events that happen during the network session 50 may not necessarily be
transferred over network 28. Thus, network session monitor 36 may onlychapture a portion of
the information that is required to thoroughly analyze the network session 50. For example,
the individual key strokes or cursor selections used for entering information into fields 20A
and 20B of web page 18 may never be transferred back over network 28 to the web
application. Alternatively, a batch data transfér of only the completed information from web
page 18 may be transferred to web application 43 over network 28. Further, the logic sent
along with the web pages 44 may autonombusly change the state of a web page or the state of
the web session locally on terminal 13 without ever sending information back over the
network 28 to web application 43. This presents a problem when trying to fully analyze a

user experience during a previously occurring network session 50.

User Interface Event Monitoring

The UI event monitor 16 is used in conjunction with the network session monitor 36

to increase the visibility and recreation granularity of online user experiences. The UI event

6

WO 2009/029316 PCT/US2008/065582

monitor 16 monitors and captures Ul events 34 that interact with the network data 38 for the
network session 50. The UI event monitor 16, in one example, is a Javascript application that
is downloaded to the browser 15 operated by client 14 via a Hyper Text Markup Language
(HTML) tag. Of course, other types of software can also be used for implementing the UI
event monitor 16.

The Ul event monitor 16 operates autonomously from web application 43 and detects
certain Ul events 34 associated with a particular network session 50 established between the
web browser client 14 and web application 43. By operating locally on terminal 13, the UI
event monitor 16 can detect certain or selected events performed by client 14 on web page
18. For example, the UI event monitor 16 can detect each character entered into the fields
20A and 20B. The Ul event monitor 16 can also detect when a user selects different icons
displayed on the web page 18 or when the user makes selections on the web page that cause
the web session to display another web page or web link or that generally change the state of
the web session 50. Some of these Ul events 34, or sequence of events, might only Be
detectable locally on terminal 13 and never transferred over network 28. |

The local Ul events 34 associated with the network session 50 are captured by the Ul
event monitor 16 and then automatically transferred as captured UI events 34 to a session
archive 40. Similarly, the network session monitor 36 sends the captured network data 38 for
the network session 50 to the same session archive 40. A session analyzer tool 52 is then |
used to analyze the captured network data 38 and the captured Ul events 34 for the network
session 50.

The ETR system 12 provides the unique combination of capturing both network data
38 exchanged between client 14 and web application 43 during a web session 50 as well as
capturing the Ul events 34 that are entered locally by a user when interacting with the

network data 38. Based on what analytics need to be preformed, the captured network data

7

WO 2009/029316 PCT/US2008/065582

38 and captured Ul events 34 may be analyzed separately, in combination, or synchronized

together to virtually replay the previous network session 50.

Replaving Rich Internet Applications

A traditional web application operates as shown in FIG. 1B. Most user actions in a
user interface 60B trigger an HTTP request 60C back to a web server 60E. The web
application 60F on web server 60E does some processing 60G involved with retrieving data,
crunching numbers, talking to various legacy systems, and then returns HTML pages ‘al'ld
Cascading Style Sheets (CSS) 60D to the browser client 60A.

FIG. 1C shows how rich internet applications, such as AJAX, Flash, Flex, and Web
2.0, differ from the traditional web applications described in FIG. 1B.

Ajax, is a group of inter-related web development techniques used for creating
interactive web applications. A primary characteristic is the increased responsiveness and
interactivity of web pages achieved by exchanging small amounts of data with the server
"behind the scenes” so that the entire web page does not have to be reloaded each time there
is a need to fetch data from the server. This is intended to increase the web page's
interactivity, speed, functionality, and usability.

AJAX is asynchronous in that extra data is requested from the server and loaded in
the background without interfering with the display and behavior of the existing page.
JavaScript is the scripting language in which AJAX function calls are usually made. Data is
retrieved using an XMLHttpRequest object that is available to scripting languages run in
modern browsers, or alternatively remote scripting in browsers that do not support
XMLHttpRequest. There is, however, no requirement that the asynchronous content be

formatted in XML.

WO 2009/029316 PCT/US2008/065582

Flash technology is used for adding animation and interactivity to web pages. Flash is
commonly used to create animation, advertisements, various web page components, to
integrate video into web pages, and more recently, to develop rich Internet applications. Flex
is- used for the development and deployment of cross platform, rich Internet applications
based on the Adobe Flash platform. Flex uses an XML-based markup language that provides

a way to quickly build and lay out graphic user interfaces.

Web 2.0 websites allow users to do more than just retrieve information and allow
users to run software-applications entirely through a browser. Users can own the data ona
Web 2.0 site and exercise control over that data. This stands in contrast to old traditional
websites, the sort which limited visitors to viewing and whose content only the site's owner
could modify. Web 2.0 sites often feature a rich, user-friendly interface based on Ajax, Flex

or similar rich media.

Referring to FIGS. 1B and 1C, user actions in user interface 62B generate user actions
62C to an AJAX engine 62E. The user actions 62C can either request more data, code or
instructions or send up data or code/instructions for processing by the web application 621.

‘The AJAX engine 62E interprets the data or code/instructions (user action) 62C and either
provides responses 62D back to the user interface 62B or sends corresponding HTTP requests

62F with the data or code/instructions to a Web and/or XML server 62H.

For the data or code 62F, the web application 621 on server 62H again does
processing 62] involved with retrieving data, crunching numbers, talking to various legacy
systems and then returns the responsive data or code 62G to the AJAX engine 62E. The
AJAX engine 62E uses Javascript to interpret the data or code 62G returned from the web

application 621 and sends the interpreted results to the user interface 62B.

WO 2009/029316 PCT/US2008/065582

In the traditional web application in FIG. 1B, every state change in the application
60F results in a server side request for a new page. With rich internet applications as shown
in FIG. 1C, the client 62A (i.e. the browser) becomes miore than a rendering engine. The
client 62 A contains logic, rules, data caching and more.

Every user action that would normally generate an HTTP request 60C in FIG. 1B
instead takes the form of data or code 62C sent to the AJAX engine 62E in FIG. 1C. The
AJAX engine 62E handles on its own any response to the user action that does not require a
trip back to the server 62H, such as simple data validation, editing data in memory, and even
some navigation. The AJAX engine 62E may need something from the server 62H in order
to respond to the user action 62C, such as submitting data for processing, loading additional
interface code, or retrieving new data. The AJAX engine 62E makes those requests
asynchronously without stalling user interactions with the application 621,

To explain in more detail, the top of FIG. 1D shows a synchronous interaction pattern
of a traditional web application and the bottom of FIG. 1D shows an asynchronous pattern of
an AJAX web application.

Each user event 62H from client 60A is sent as a data transition 60C for system
processing 60G in the web server 60E. The results from the system processing 60G are sent
as data transitions 60D back to the client 60A. A next user event 60H from the client 60A is
then sent as a next data transition 60C for system processing 60G. This process is repeated
serially for each user event 60H.

The bottom of FIG. 1D shows how AJAX applications eliminate this start-stop-start-
stop nature of interaction on the Web by using the intermediary AJAX engine 62E between
the browser 62A and the server 62H. While it would seem that adding a layer to the web

application would make it less responsive, the opposite is true.

10

WO 2009/029316 PCT/US2008/065582

The AJAX engine 62E is responsible for both rendering the interface 62B (FIG. 1C)
that the user sees and communicating with the server 62H on behalf of the user. The AJAX
engine 62E allows user interactions with the application to happen asynchronously,
independent of communication with the server 62H. This prevents the user from having to
stare at a blank browser window and an hourglass icon, waiting for a response back from the
server 62H.

This is illustrated in the bottom half of FIG. 1D where the client browser 62A sends
user actions 62C to the AJAX engine 62E. A data transition 62F may be sent when the
AJAX engine 62E needs to communicate with the server 62H. However, the AJAX engine
62E can still asynchronously provide other responses 62D to the client browser 62A for other
user actions while waiting for data transitions 62G back from the server 62H. Thus, the
interactions between client browser 62A and the AJAX engine 62E can be asynchronous with
the interactions between AJAX engine 62E and the server 62H.

FIG. 2 shows a web page 70 that is monitored for different Ul events. In this
example, the web page 70 is used in conjunction with an on-line airline reservation
application. The web page 70 displays the name of tﬁe web site at location 72 and includes
different ROUND-TRIP and ONE-WAY fields 74 and 76, respectively, that are selected by a
user for booking either a round trip or one-way airline reservation. A FROM field 78 is used
for inputting the name of the airport where the plane flight begins and the TO field 80 is used
for inputting the name of the airport where the plane flight ends. A LEAVE DATE field 82
and TIME field 84 are used for inputting the desired day and time for the first leg of the plane
flight. A RETURN DATE field 86 and TIME field 88 are used for inputting the desired day
and time for the second return leg of the plane flight. A search icon 89 is selected by the user

when all of the necessary flight information has been entered into fields 74-88.

11

WO 2009/029316 PCT/US2008/065582

It should be understood that this is just one example of any type of web page that may
be used in conjunction with the replay system described in more detail below. The flight
reservation example is used only for illustrative purposes to further explain the replay system.
In a current state of the web page 70 shown in FIG. 2, the user has also entered the first letter
“P” of the originating airport for the plane reservation.

A “rich Internet application” may include web pages that execute different logic,
maintains different states, and displays different information while maintaining the same web
page rendering. Any combination of the logic, state, display etc. associated with a next
particular Ul event is referred to generally as “control”.

In this example, the web page 70 monitors the individual characters that are entered
into the FROM field 78. When at least three characters are entered into the FROM field 78,
the web page 70, or AJAX engine 62E in FIG. 1C, makes a data request to an associated web
server, such as the server 42 in FIG. 1. The data request asks the web server 42 to supply the
names of all airports that contain the three letters entered into FROM field 78. In this
example, the logic in web page 70 requests the web application 43 operating on server 42 to
provide the names of aﬂ airports that contain the three letters “POR”.

Referring to FIG. 3, and pursuant to the data request, the web page 70 receives back a
list of all airports containing the three letters “POR”. After the list of airports is received
back from the server 42, the web page 70 creates and displays a drop-down menu 90 that
contains the list of “POR” airports. This allows the user to easily select the desired
originating airport for the airline reservation without having to manually type in the entire
airport name. A similar process is performed with the TO field 80 where the web page
monitors the characters entered by the user. After the user enters some number of characters,

the web page 70 again sends a request to the web server 42 for all airports containing the

12

WO 2009/029316 PCT/US2008/065582

three letters entered into field 80. The list of destination airports is again displayed on a drop
down menu similar to menu 90 for selection by the user.

Referring to FIG. 4, the drop down menu 90 and populated list of airports is
alternatively referred to as a web page control field, logic state, or simply “control”. Control
refers to any information, web page logic, displayed web page content, etc. required for
properly executing a Ul event. In this example, a Ul event 92 may be a left mouse click that
selects PORTLAND, OREGON from the list of airports in drop down menu 90. The Ul
event monitor 16 in FIG. 1 captures the left mouse click UI event. However, the left mouse
click captured by the Ul event monitor 16 in FIG. 1 can only be replayed correctly when the
list of airports is properly displayed in drop down menu control 90. |

When processing (replaying) the left mouse click Ul event 92, it is important that the
airport list 90 first exists and is displayed in drop down menu 90. Again, if the web session
described above is to be accurately replayed during a subsequent replay session, the sequence
of UI events must be accurately sequenced with the associated control. For example, the
replayed on-line airline reservation session would fail if the left mouse click 92 were replayed
before the airport list in drop down menu 90 was displayed. Premature execution of the left
mouse click 90 would likely prevent the correct entry from being entered into the FROM
field 78. As a result, replay would not accurately reproduce the original network session.

FIG. 5 shows the results of the left mouse click Ul event 92 selecting PORTLAND,
OR from the drop down menu control 90. The FROM field 78 is automatically populated
with the airport location selected from drop down menu 90.

The replay system described below determines when captured Ul events are ready to
be executed based on the availability of the associated control events. This synchronization
prevents the captured Ul events from being prematurely executed out of sequence and

accordingly prevents false errors from being generate during replay of the network session.

13

WO 2009/029316 PCT/US2008/065582

To explain in more detail, FIG. 6 shows some of the Ul events 102 that are entered
via a web browser 100 into the web page 70 as previously shown in FIGS. 2-5. The user first
enters keystrokes (Ul events 102A) that request the airline reservation web pagé 70 shown
above. Accordingly, a network request 104A is sent to the web server 42 that operates the
airline reservation application 106. The airline reservation application 106 sends back the
airline reservation web page 70 in network response 104B.

After the web page 70 is displayed on the web browser 100, among other keystrokes
and other UI events, the user enters the three letters “POR” into the FROM field 78 of web
page 70 as previously shown in FIG. 3. These letters are captured as UI events 102B-102D,
respectively. As described above, the logic in the web page 70 then sends a network request
104C to the airline reservation application 106 requesting the names of all airports containing
the letters “POR”. The reservation application 106 sends response 104D back with the list of
“POR” airports.

In response to receiving the list of “POR?” airports, the logic operated in web page 70
displays the drop down menu 90 previously shown in FIGS. 3 and 4 that contains the list of
“POR” airports. The user moves the cursor over the PORTLAND, OR airport in the
displayed list and presses the left mouse button in U event 102E. The logic in web page 70
automatically populates the FROM field 78 with the selected airport as previously shown in

FIG. 5. The user then starts entering information into the other fields of web page 70 in UI

(

events 102F.

The Ul event monitor 16 captures all of the Ul events 102A-102F associated with the
web page 70 in a stack 106 on the session archive repository 40. Similarly, the network
session monitor 36 captures and stores the network events 104A-104D that are also

associated with the web page 70 in the session archive repository 40 as web page data 110.

14

WO 2009/029316 PCT/US2008/065582

In this example, the web page data 110 includes the web page 70 and the airport list 112
contained in response 104D.

The captured network data 110 is 1inked via pointers 105A and 105B to the
appropriate locations in UI event stack 106. For example, time stamps can be used to
indicate when the UI events 102 and the webpage data 110 are captured. The Ul events 102
and webpage data 110 can then be interleaved for serial execution according to their
associated time stamps.

Alternatively, other web page data 110 could be linked into appropriate locations in
Ul event stack 106 according to the associated UI event. For example, the Ul event 102A
that requests the web page 70 may normally be followed in stack 106 by the supplied web
page 70 that was the target of request 102A. In this example, the web page 70 would be
displayed during replay immediately after Ul event 102A.

FIG. 7 shows in more detail how a session replay controller 114 ensures client Ul
events in stack 106 are correctly synchronized with web page data and control 110 for the
same captured network session. The session replay controller 114 is implemented in software
operated by computer 13.

A particular network session is requested for replaying. Accordingly, the replay

controller 114 accesses the Ul event stack 106 and web page data 100 for the requested

The replay controller 114 replays the Ul event 102A that previously requested web
page 70 and then displays the web page 70 as originally displayed to the user during the
original web session. The replay controller 114 then replays the captured Ul events 102B,
102C, and 102D that the user previously entered into the FROM field 78 of the replayed web

page 70.

15

WO 2009/029316 PCT/US2008/065582

The replay controller 114 uses special control synchronization after replaying the
captured Ul events 102B, 102C, and 102D. For example, prior to processing the Ul event
102E (left fnouse click), the replay controller 114 checks to see if the control associated with
the UI event 102E is created and visible on replayed web page 70. For example, the replay
controller l 14 makes sure that the drop down menu 90 is displayed prior to executing the left
mouse click Ul event 102E that selects Portland, OR from the drop down menu 90.

Without the synchronization provided by replay controller 114, the replayed UI event
102E could be executed before the replayed web page 70 had a chance to create and display
the drop down menu 90 containing the airport list. If this happened, the replay session would
incorrectly move into a state that never existed in the original nétwork session and could
possibly create error conditions that never occurred during in the original network session.

The session replay controller 114 prevents the asynchronous Ul events 102 from
beiﬁg executed out of order with associated states in the web page 70 by verifying that the
control events associated with the Ul events 102 exist and are visible prior to executing the
associated Ul events. In the example in FIG. 7 this means that the replay controller 114 first
confirms that the replayed drop down menu 90 is displayed and contains the airport list prior

to executing the left mouse click UI event 102E.

Seaquencing User Events with Control

FIGS. 8-10 explain in more detail how Ul/client events are synchronized with
associated web page control events. Referring to FIG. 8, a user requests replay of a client Ul
event in operation 120. This may comprise a user operating the replay controller 114
requesting a next client event to be executed, such as the left mouse click event 102E in FIG.
7. The client event is transmitted to a client event handler in operation 122 that is inserted

into the web page session.

WO 2009/029316 PCT/US2008/065582

The client event handler in operation 124 first determines if any other client events are
currently pending on a pending action queue. For example, client events 102B-102D may
still be waitfng to be processed by the replay controller 114 prior to processing the left mouse
click client event 102E. If any client events are pending on the action queue in operation
124, then the current client event is placed on the queue after the already queued client events
in a first-in first-out order in operation 132. This ensures the client events are processed in
the correct order.

If no other client events are pending in the queue, then an attempt is made in
operation 126 to process the client event. If processing of the client event is not successful in
operation 128, the client event is placed on the pending queue in operation 132. When the
client event is successfully processed in operation 128, operation 130 returns control to the
replay controller 114. The replay controller 114 then waits for the next user replay request in
operation 120. If client events are loaded into the pending queue in operation 132, an interval
timer is started in operation 134, if not previously started. Operation 136 then returns to -
operation 120.

FIG. 9 describes in more detail the operations that are performed by the replay
controller 114 when attempting to process the client event in operation 126 in FIG. 8.
Operation 160 determines if control exists for the client event. Control can include any
activity, function, state, etc. that needs to exist before executing the client event. For
example, as shown above in FIG. 7, drop down menu 90 needs to exist with the populated
airport list prior to processing the left mouse click 102E that selects one of the displayed
airports.

When the control associated with the client event is not present, a failure is returned in
operation 162. In FIG. 8, this returned failure 162 causes the client event to be queued for

later replay in operations 128 and 132 of FIG. 8. If control for the client event exists,

17

WO 2009/029316 PCT/US2008/065582

operation 164 checks to see if the control is visible. For example, a user would not have
clicked the left mouse button if the drop down menu 90 previously shown in FIG. 4 was not
yet visible. Thus, if the control is nbt visible, a failure is returned in operation 166, Again
control can be anything displayed on the web page ’70 required for the user to properly
control the web page logic. |

If the control is visible, operation 168 checks to see if all parents are visible for any
hierarchical environment associated with the control data. For example, there may be
additional text control or other control that operates in combination with the drop down menu
90. For examplé, panel display logic may control the display of the drob down menu. If this
panel display logic does not display the drop down menu, then the airport list retrieved from
the web server is also not visible. If this hierarchical control is also not visible, then a failure
is returned in operation 170 causing the client event to be queued for later replay in operation
132 of FIG. 8.

Operation 172 determines if the control requires data, and if so, determines if that data
is loaded. For example, a combo box may need to be populated with a list of city names
before the client event is applied. If operation 172 needs to wait for data to populate control,
then a failure is returned in operation 174.

Otherwise, the client event is applied to the associated control in operation 176. A
returned in operation 178 completes the client event replay in operations 128 and 130 of FIG.
8. The replay controller 114 then moves back to operation 120 in FIG. 8 and waits for the
next client event replay request.

FIG. 10 explains the processing after the interval event timer operation 134 is initiated

and fires in FIG. 8. The start interval timer operation 134 may repeat the timer operations in

18

WO 2009/029316 PCT/US2008/065582

FIG. 10 periodically until there are no more client events in the queue. Any interval time
may be set, but in one example, the interval is set to 1 second.

The interval event timer fires in operation 180. Another attempt to process the
queued client event is made in operation 182 similar to the attempt made in operation 126 of
FIG. 8. In other words, the replay controller 114 again performs the operations described in
FIG. 9. If the client event is not successfully processed in operation 184, operation 186
returns and waits for the next timer firing in operation 180. For example, the replay
controller 114 waits another second and tries again to process the queued client event in
operation 182.

If the client event is successfully processed in operation 184, the client event is
removed from the pending action queue in operation 188. If the pending action queue is not
empty in operation 190, processing of the next client event in the pending action queue is
attempted in operation ‘1 82. Otherwise, operation 192 turns off the interval timer. Control is
then returned to the replay controller 114 in operation 194. The replay controller 114
responds to any subsequent client event replay requests in operation 120 in FIG. 8.

Thus the operations described above ensure that any asynchronous client UI events

are synchronized with the control required for those Ul events to be correctly processed.

FIG. 11 shows a next state of the web page 70 where entry of data into all of the fields
74-88 have been completed and the user selects the search icon 89. FIG. 12 shows a next
web page 200 that is rendered after web page 70 is completed and the search icon 89 selected.
The web page 200 shows a partial list of airline reservations that match the criteria previously
entered into web page 70. For example, a first listing 202-206 lists the prices, airline,

departure, and arrival times for a round trip flight between Portland, Oregon and San

19

WO 2009/029316 PCT/US2008/065582

Francisco, California. A second listing 208-212 lists the prices, airlines, and times for a
second flight and a third listing 214-218 lists the prices, airlines, and times for a third flight
between Portland and San Francisco.

Web pages may display partial lists of results while waiting to receive a complete list
from a web server. For example, the web page 200 may display the first three flights shown
in FIG. 12 while additional flight information is being received from web server 42 in FIG. 1.
For example, the web page 200 may have logic that every 4 seconds periodically displays all
of the currently received airline information. After each 4 second interval, the code in web
page 200 may display any additional flight information that was received from the web server
42. This display process may repeat every 4 seconds until all of the flight information is
received from the web server 42. This segmented display technique allows the user to view a
partial list of available flights while the remaining flight information is being received from
the web server 42.

During a session replay, all of the flight information has already been captured and
stored locally in the session archive 40 shown in FIG. 1. Thus, during the replay session it
may not be necessary to delay 4 seconds between each set of partially displayed airline
flights. To reduce the time required to replay a web session, the code in the web page 200 is
altered during replay to remove timing delays associated with network data transfers.

Referring to FIG. 13, the replay controller 114 in operation 230 identifies web page
timer commands in the web page logic for the captured web session. For example, the 4
second delay contained in the code for web page 200 shown in FIG. 12. In operation 232, the
replay controller 114 either reduces or removes the web page timer values. Operation 234
then replays the web page session using the reduced or removed web page timer commands

or values. This allows a user to still accurately replay the captured network session without

20

WO 2009/029316 PCT/US2008/065582

having to experience the delays that normally occur while exchanging data between the user

terminal 13 and the remote web server 42 in FIG. 1.

Displaving Completed Web Pages

Literally hundreds of user interface events may be required to completely fill out web
page fields. For example, a web page where a user fills out a loan application may require
the user to enter hundreds or thousands of characters and therefore has hundreds or thousands
of associated UI events. During replay, a user may want to “cut to the chase” and view the
final populated state of the web page. For example, a user may want to go directly to the
state of the web page 70 shown in FIG. 11 where all of the fields for the flight search have
already been entered and the user is about to select the search icon 89. FIG. 11 shows the last
state of web page 70 just prior to the web browser rendering the next web page 200 shown in
FIG. 12.

Referring to FIG. 14, the replay controller 114 in operation 250 identifies all of the Ul
events associated with the same web page. The Ul events for the same web page can be
identified by identifying and grouping together all of the UI events following the initiation of
a new web page through the UI event that causes a next subsequent web page to be rendered.

In operation 252, the replay controller 114 automatically replays all of the UI events
associated with the same web page until a next web page request is identified. At this point
the replay controller 114 displays the fully populated web page created dﬁring the replay.
This allows a user to quickly see what information was entered into a web page just prior to
the web page being sent to the web server 42.

The system described above can use dedicated processor systems, micro controllers,

programmable logic devices, or microprocessors that perform some or all of the operations.

21

WO 2009/029316 PCT/US2008/065582

Some of the operations described above may be implemented in software and other
operations may be implemented in hardware.

For the sake of convenience, the operations are described as various interconnected
functional blocks or distinct software modules.‘ This is not necessary, however, and there
may be cases where these functional blocks or modules are equivalently aggregated into a
single logic device, program or operation with unclear boundaries. In any event, the
functional blocks and software modules or features of the flexible interface can be
implemented by themselves, or in combination with other operations in either hardware or
software.

Having described and illustrated the principles of the invention in a preferred
embodiment thereof, it should be apparent that the invention may be modified in arrangement
and detail without departing from such principles. We claim all modifications and variation

coming within the spirit and scope of the following claims.

22

WO 2009/029316 ' PCT/US2008/065582

events;

Claims
A method comprising:
éapturing control events associated with a network session;
capturing client events associated with the same network session;
identifying client events that are executed in conjunction with associated control
and

synchronizing replay of the network session by waiting for the control events to be

executed before executing the associated client events.

2. The method according to claim 1 wherein the control events are logic, state, or display
operations.
3. The method according to claim 1 further comprising:

waiting for the control events to become visible;

putting the client events in a queue when the associated control events are not visible;
and

executing the client events when the associated control events are visible.
4. The method according to claim 3 further comprising:

identifying hierarchies of control events associated with the same one or more client
events;

putting the client events in the queue when the associated hierarchy of control events
are not yet visible; and

executing the client events only after the entire associated hierarchy of control events

are visible.

23

WO 2009/029316 PCT/US2008/065582

5. The method according to claim 1 further comprising:

identifying the control events that require data;

putting the client events associated with the identified control events into a queue
until the data is loaded; and

replaying the client events from the queue only after the data for the associated

control events has been loaded.

6. The method according to claim 1 further comprising:

identifying client events that is not yet ready to be applied to associated control
events;

putting the identified client events in a queue for later replay;

waiting a predetermined time period;

determining after the predetermined time period if one or more of the client events in
the queue are ready to be applied to the associated control events; and

replaying the one or more client events and removing the client events from the queue

when the client events are ready to be applied to the associated control events.

capturing network data or logic transferred between a client and a web application
during the network session;

capturing local events that are executed locally at the client in conjunction with the
network data or logic during the network session;

identifying the control events associated with the local events; and

24

WO 2009/029316 PCT/US2008/065582

synchronizing replay of the network session by delaying replay of the client events

until the associated control events have completed execution.

8. The method according to claim 1 further comprising:

identifying web page timer commands in the captured control events or captured
client events;

reducing or eliminating time values specified in the identified web page timer
commands; and

replaying the captured control events or captured client events using the reduced or

eliminated time values.

0. The method according to claim 1 further comprising:
identifying all of the client events associated with a same web page;
" automatically replaying all of the identified client events until a next web page request
is identified; and |

displaying the web page populated after replaying all of the identified client events.

10. An apparatus, comprising:
a computer confi
captured network session and identify the user interface events in the captured network
session that were executed in response to associated control events, the computer further
configured to wait until the control events have been replayed before replaying the associated

user events.

25

WO 2009/029316 PCT/US2008/065582

11. The apparatus according to claim 10 wherein the computer is further configured to
load the user interface events into a queue when the associated control events have not yet

completed replay execution.

12. The apparatus according to claim 11 wherein the computer is further configured to:

periodically check whether the control events associated with an oldest user interface
event in the queue has completed replay execution;

replay the oldest user interface event in the queue when the associated control events
has been fully executed;

remove the oldest user interface eifent from the queue; and

repeatedly check whether the control events associated with the next oldest user
interface event in the queue have completed replay execution before executing the next oldest

user interface event.

13. The apparatus according to claim 10 wherein the computer is further configured to

wait until the control events are visible before replaying the associated user interface events.

14. The apparatus according to claim 14 wherein the computer is further configured to
identity hierarchies of control events associated with the same user interface events and wait

until the entire hierarchies of control events are visible before replaying the associated user

interface events.

15. The apparatus according to claim 10 wherein the computer is further configured to
identify control events that require data and wait until the required data is loaded before

replaying the associated interface events.

26

WO 2009/029316 PCT/US2008/065582

16. The apparatus according to claim 10 wherein the computer is further configured to:
identify timer commands in the user interface events or control events;
reduce or remove time values specified in the timer commands; and
replay the user interface events or control events using the reduced or removed time

values.

17. The apparatus according to claim 10 wherein the computer is further configured to:
identify all of the. user interface events associated with a same web page;
replay all of the identified user interface events associated with the web page in a
same batch; and

display the web page after replaying all of the associated user interface events.

18. A system comprising:

a user interface event monitor configured to capture user interface events executed by
a client during a network session;

a network session monitor configured to capture network data exchanged between the

client and a web application during the network session; and

a replay device configured to identify control events in the network session that
require execution before replaying associated user interface events, the replay device further
configured to delay replay of the user interface events until the associated control events have

been executed.

27

WO 2009/029316 PCT/US2008/065582

19. The system according to claim 18 wherein the web application is a rich web
application wherein the user interface events and data can be executed or displayed

asynchronously from the network data exchanged between the client and the web application.

20. The system according to claim 18 wherein the control events include information

displayed on a web page that is selected by the associated user interface events.

21. The system according to claim 20 wherein the control events include a list of items
that are displayed on a drop down menu and the associated user interface events include a

selection event that selects one of items in the displayed list.
22, The system according to claim 18 wherein the user interface events are placed on a

queue when they are not ready to be applied to the associated control events and then serially

replayed from the queue after the associated control events have completed execution.

28

PCT/US2008/065582

WO 2009/029316

1/16

£
)

HIAZATYNY

J——

yiva

HOISS3S

SINTAY IN R
SHOMLIN [T8¢

JATHIHY | - .
iR ST

1 06 NOISSIES t12¥

W7D

$ I)

ot et m%@w i
go~| YLYO SORLIN w ﬁmﬁzmm
w 0
HOLINOW
—— HOISSIS [~88 4
¥ SNA0MLIN ;
S30¥d) :
- g3% — (SUSNOJETY] —
- E] \\\\\
4 :.x.\\\.ﬁ
zaﬁmmm&% T~] SISIN0IY | - SINIAY
So— NOTSS3S j g2g b g
. : XA LR
) MIAMIS o yanaian S vivi vor

¥

SHOM AN

PCT/US2008/065582

WO 2009/029316

2/16

. 929

oL '9id

T30 LINHILNI HOY

rzo

ic9

He¢o

EleleeTL AR T

329

e

A

mamw-mm\/mww

— SINF1SAS
AOVHTT 'DNISS300Hd
ANIHMOVE 'SFHOLSYLIVd

4

i

\u\Lw - NOLLVYOIMddV 834M

HIAYIS
1 TIAX YO/ANY 93M

J)

N o

D¢g de8

AA0oNLVYd

ANIONDT XVIY
C 4

aco 029

(BAaoowIYa o 3a00/;LVa

HAOVAHILINI H3SN

AN3ITO HASMOHY

Y29

409

909

dl ol

TAAQOW TYNOILLIAVHL

AAIS-HIALES

— SWFLSAS
AQVDAT 'ONISSIO0Ud
ANTHOVE 'SFHOLSYLIVA

b

A

\xré NOILVYOIddY g3M

- HIAGES 99M

=09

Vivd SSO aos 009

®1

4

g09

™ -

N1H

1S3aN0DIY

dilH

¥

- BV EETINRERE

ANIMO W3ASMOHd

J

V09 —~

‘WO 2009/029316 ‘ PCT/US2008/065582
3/16

A A
-
&
=
L
: e 3
G0y NOLUS ‘ & OQ‘S L >
Nvy Viveg | B 2y SITION 62F e
LVivg =y TRANSITION 62F |
=9 US\E‘S 2G| DATA TN —— 7
58 [
>
@8
L
LA e . T
L.
%ﬁ ‘Q\\ 4 NOfm_j_ VivQ o
= ' E?SNOZQ f.:u
i o,
L - NSITION 62F | &
" UsE‘:: e2C| DATA TRA]
L
z pcTIO
08 g
NO14y o)
OV -
i S NGTS 5
NBOC | O SNOy L]
RP\NS\T\O g; SQH =
EEEET//J & “ER DATA TRANSITION 62F _j &
g‘a U N/s/g?;}" .. : /5]
L
L
i =
4 '% D29 NOILISNVHI vivg 1 &
3s TG
< g Odsay TION 62F T‘ 7
o ~ USER g DATATRANS b
Al NS i
- L
) %)

BROWSER 62A
CLIENT
AJAX
- ENGINE 62E

FIG. 1D

PCT/US2008/065582

WO 2009/029316

4/16

¢ Old

ﬁ ONINIAT w _ L0/vLIoL ONINHOW L0/G/01
mw\ e o8) 3lva Nunl3Y vw\\ INIL -g J alva aaval
d
oL NOYH
ow\ 8/ J

AVM-INO O di¥l ANNOY @ HOYVAS LHOIH

mN\ E\

. SWEBU 91ISGBAA
Z.

04 1\\

PCT/US2008/065582

WO 2009/029316

5/16

€ 'oid

ONINIAZ L0/¥LI0}
]
ww\ INIL oo/ ALV NENLTY
J ol
08
AYM-ENO O
Ex

(NS d) leuoneuwlaiu] ssesad — HN ‘Uinowsuod
(AING) ouLB aquedia(] — BjanzausA ‘lewelod

{0d0) olod - [ebnjiog olod

(dvd) eieo siep] — ey ‘aoulld ny Jod
(S0d) ooteld — pepiui j/uleds JO Hod

(INMd) puepiod — 3N ‘puejliod
(XQd) puepiod — HO ‘puepiod
("d0d) uod — puejuig ‘uod

),
06 - Hod
) NOH4
g/ -
didL aNNOY @ HOYVYIS 1HOIT

J

-~
[

|2

BUIRY SHSUBAA

0. K

PCT/US2008/065582

WO 2009/029316

6/16

¥ Oid

07710}
) 31vaNenL3d

mm\ NI o6

T NOSIHO ANV1LH0d

1314 TOHINOD —
Y

(NS d) leuoheuiau] asesd — HN ‘yinowsiod
(AINd) oulB)y 8quUEDIB(— E|SNZBUSA 'JewBlod
(OdO) ouod — lebniiod‘opod

{dvd) 81e9 sie|y — jieH ‘eoulid Ny pod

(80d) ooteid — pepiuilj/uieds J0O Hod

(WAAG) puejiiod — JW ‘pueod

26 S.L0313S "dsn

08

AVM-ENO O

J

£7

> (X(d) pueliod — {0 PUeiod
(HOd) uod — pugjul] ‘uod

08 J ¥Od |
) WoH
8. -

diYl ANNOY ® HOYVYIS LHOIT
! }
A /

- SlUBU SUSUBAA

z.

0L —~

PCT/US2008/065582

WO 2009/029316

7716

G Ol

10/vL/0L
M _

wm\ aniL VAR TEN

7 NOS3HO ANV11LHOd
Z8 S10314dS d3sn

dndld TOHINGD ™5

(NS d) [euonBLIBIL| 8SBad — HN ‘UInowisyod
{ANG) oulBp aque)DIB(] — E|ONZBUBA ‘leweliod

(0dO) ouod — [ebnpod opod

(dvd) 81eg siey — ileH ‘@dulid ny jio0d
(S0d) ooield — pepiun | /ureds O Hod

(ML) pueod ~ 3N ‘puepiod

08

AVM-INO O

)

9L~

- (XAd) puejiod — HO 'puepiod
(40Od) 1od — puejui4 ‘od

06 J (X d) PUB[Iog ~ 90 "PUENO]
)/ eNE
8.
didL ONNOY @ HOYVIS 1HDI 14
i
v.
. suieU sUSUSAA
¢L

)

PCT/US2008/065582

WO 2009/029316

8/16

9 'Old

JAIHOYY ViVQO MHOMIAN 39vd d3M MOVLS IN 3OVYd 83M
NOISSHES asol HOMVES 103738 ‘N
HOd, HLIM | B
(S HALLTTHIINT 9
Zhl oy SLHOdHN \i; L, MONO ISNOW 1431 G
1| o, HALIATHAIND ¥
ov L O, HILIFTHIINT €]
0L 39Vd g3M p o MALITTYIAIND Z
oLL | | NOULYAUIST JOVdEIM 1SINDIY |
xmmwmmmr VS0l SIN3ATIN
A34Nidvo
d3dnidvo
HOLINOW _
NOISSIS ¥HOMLIN HOLINOW INSAS 1N
& / 4
SIN3AZ o8 oL SINIAT IN
AHOMLEN
b0l z0L —
— arol «
NOILLYOVlddY A\
NOILVAYISTY .H0d, SHILT=1 ONINIVINGD
ENN _ S1HOdYIY IAIFOTY 04 ADVd H3IM
ovolL /
901 Y [.40d, SY31LT1 ONINIVINGD B

HIAAYES
HaM

Q134 .01, OINI GFH3INT .S, /

-4201

G114 NMOQG d0dd
WOdd SO0 ISNOW 1437,

/, 4201

S1dOduiy 11V 1S3N03Y

K 39vd 93M IAIFOTY
gyt -

/

ra

HASMOHY d3M

A1 JNOH, OLNI AIHILNT AN

3

S—_gzol

a13id JANOY4, OLNI dd831NS (O,

T —0z01

QT JNOY, OLNI OFHIUNS o\
€20}

\ I9vd 93Mm 1S3n03Y
Yol -

/

004

&

3Ovd 83M 1S3N04 /
vZol

WO 2009/029316

9/16

PCT/US2008/065582

g k!
102A—— 1. REQUEST WEBPAGE RESERVATION | J— 70
1028 —— 2. ENTER LETTER P~ WEB PAGE
102C —— 3. ENTER LETTER “0"
102D —— 4. ENTER LETTER ‘R" 112 40
102E —— 5. LEFT MOUSE CLICK ™ ARPORTS 1T -
102F —+ 6. ENTER LETTER 8" . .. WITH “POR"
’ SESSION
] ARCHIVE
10 ¥
6 | 114
SESSION REPLAY CONTROLLER
B
122
W 4
\ AN
70
1028
102C ‘ ‘ ;
80
102D FROM // 78 ‘ TO //
< ’
~—— POR '
Pori, Finland — Pori (POR) _— 102k
Porttand. OR — Portland (PDX) -
90 Portland, ME - Portiand (PWM)
Port Of Spain/Trinidad — Plarco (POS) ~ '
\ - Port Au Prince, Haiti ~ Mais Gate (PAP) | SELECTION EVENT
N Porto, Portugal - Porto (OPO) PROCESSED AFTER
] DROF DOWN MENU
T CREATED AND VISIBLE
AN
\\\
13
\ N N ‘ N
N N N N N NN
RN AN N\ ™ N
- N N AN
AN AN

FIG. 7

WO 2009/029316

120

10/16

User Requests
Client Evert be

Replayed

122

124
4

L

\/Are Eve‘nts on
Pending Action Queus
N P

Transmit Event to
Client Event
Handier

7

Yes

.
YNO

126

S~

Attempt to Process
Client Event

128

/./
IS e
\S\ Successful?

|

i

\\ //,
T Yes

130

S

Return

FIG. 8

PCT/US2008/065582
132
Queue Event for M/»/
Later Replay
134
Start Interval i
Timer if Not "
Already Active
136
Return »//

WO 2009/029316 PCT/US2008/065582
11116

128 7
|
\M_j Attermpt 1o Process
i Client Event
!
16(162
\w/ Daoes the No Retumn Fallure M/
Controt Exxst? “ :
Yeg' 166
/
,..v”/
!s the Controf
\ViSlb! e Return Fallure
pd
158 170
/
\, ~"If a Hierarchical I
Environment, Are Al P Return Faifure
Parents V:sxbie 7
Yes
1”{2 /’\ e 174
\\\ // \ __/
7" control requires ~\ No oo
~Wata, is-data loaded .~
~ yet? 7
\\V/
Yes

176
K Apply Client Event
to Control

I

178

Return Success

FIG. 9

WO 2009/029316 PCT/US2008/065582
12/16

180

interval Event
Timer Fireg

182

Attempt to Process
Client Event

4

184

| .
\/ //*‘ 186
No
< Successful? > Return —/
\\\ o
\\!/ /)
Yes

i
!

188
Remove From J oo

% Queue ,//
e

162
' -
i No (’ 184

N _

Yes
< Queue Empty? S UM .?.ﬁ Interval Returm g
Nl . imer i

N |

190

FIG. 10

PCT/US2008/065582

WO 2009/029316

13/16

L Old

L0/5/01

v /) a1vaaava

NODIHO 'ANVY1LHOd

84

/ WO

HOHVYIS LHOId

ONINIAZ L0/ LI0L _ . H ONINHOW
]]
T mw\ J1va NYNLIY bg FNIL
VO ‘O9SIONVYL NVS
y ol
08
AVM-ENO C dIMLANNOY @
))
9/- i
-
zl

slieu susgep

",

PCT/US2008/065582

WO 2009/029316

14/16

—

002

Zl 9ld

NdZ0'8
V0P8

cle

NdL0:9
WVOr it

90z —
SANYHY

WNd.LE6 YV ANITHlY XAd < 04S

AV0E-9 YV ANITHIVY 4¥S < Xad 626$
m:N& 14 %4 \
NdZlE9 g INITEY Xd < 048
NV0E L Y ANTHIY 4VS < Xd 68¢%
OLe \ mom\

WdiEP Y ANITHIY XQd < 048

INVYOE:0L VaANITHlY dvS<Xad Gves

J

¥0C ~ givvd3aa

102

202

SLINSAH ONILVYGdN

PCT/US2008/065582

WO 2009/029316

15/16

£l Old-

SHWLL AVIdEY g30NAa3H ONISN NOISSIS F0Vd 83M AV ddd

veZ 4
AV1dTY 404 SANVWWOD YIWIL 39V §3M I0Nazu
zez v. i
SANVININOD YINIL IOV 93M ALLLNIAI
052

PCT/US2008/065582

WO 2009/029316

16/16

¥l 'Old

AV id3H ONRING G31VIH0 3DVd G3M G11LVINdOd TvNId 3H1L AVIdSId

¥5Z 4

GIALINZAL 81 183N03d 39Vd ddM LX3N
Y IANM SINIAT FOVARI LN H3SN GIIHIINIAL FHL 40 TV AVId3d ATIVOILYINOLNY

[414 4

FOVd 93M VS THL WO SINIAT OVAHILINI 438N TV AJLINIA

0S¢

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/65582

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/173 (2008.04)
USPC - 709/224

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC - 709/224

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 709/203, 223, 224, 225, 231 - text search, see search terms below

Electronic data base consulted during the international search (name of
PUbWEST(PGPB,USPT,USOC,EPAB,JPABY); Google Scholar

data base and, where practicable, search terms used)

Search Terms Used: replay, reconstruct, reproduce, callback, session, network, interactive, Internet, web, time, period, predetermined,
queue, remov, eliminat, fast, forward, dropdown, drop, down, menu, display, select, capture, user interface, timestamp, stamp

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2004/0100507 A1 (HAYNER et al.) 27 May 2004 (27.05.2004), entire document especially 1-5,7,9-11, 13-15, 17-
ol Figs 1, 2A, 3, 4; para [0006], [0029], [0031], [0035], [0037}-{0040], [0044), [0046]-[0047), [0052], | 20, 22
Y [0058}, (0060]-(0061]. S —
6, 8, 12, 16, 21

Y US 2005/0066037 A1 (SONG et al.) 24 March 2005 (24.03.2005), especially Figs 5, 11, 13; 6, 21

para [0078], [0096].
Y US 2005/0021713 A1 (DUGAN et al.) 27 January 2005 (27.01.2005), especially para [0315]. 8,12,16

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y™ document of particular relevance; the claimed invention cannot be
considered 1o involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

08 September 2008 (08.09.2008)

Date of mailing of the imerzaa'cﬁg search report
11 SEP

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report

